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Abstract—Xilinx’s AI Engine is a recent industry example of
energy-efficient vector processing that includes novel support for
2D SIMD datapaths and shuffle interconnection network. The
current approach to programming the AI Engine relies on a
C/C++ API for vector intrinsics. While an advance over assembly-
level programming, it requires the programmer to specify a
number of low-level operations based on detailed knowledge of
the hardware. To address these challenges, we introduce Vyasa, a
new programming system that extends the Halide DSL compiler
to automatically generate code for the AI Engine. We evaluated
Vyasa on 36 CONV2D workloads, and achieved geometric means
of 7.6 and 24.2 MACs/cycle for 32-bit and 16-bit operands
(which represent 95.9% and 75.6% of the peak performance
respectively).

I. INTRODUCTION

It is widely recognized that a major disruption is underway
in computer hardware as processors strive to extend, and
go beyond, the end-game of Moore’s Law. As part of the
disruption, there is an emphasis on specializing SIMD units
to improve energy efficiency benefits for compute-intensive
domains. An important specialization, which is referred to as
“2D vector SIMD datapath” [1]-[3], is the ability of each
vector lane to execute more than one scalar operation and
to chain the results from one operation to another. Another
specialization replaces expensive data permutation units (e.g.,
shuffle units) [4], [S] with sophisticated, programmable in-
terconnection networks (a.k.a shuffle networks) between the
SIMD datapath and vector register file [3], [6].

A recent industry example with these specializations is the
Xilinx Versal AI Engine [7], a high-performance VLIW SIMD
core with performance comparable to traditional FPGA solu-
tions for Computer Vision, Deep Learning, and 5G wireless
domains, but with 50% less power and up to 8 x more compute
capacity per silicon area [7]. The Versal Al Engine series
VC1902 has a total of 400 AI Engines that can deliver a peak
performance of 6.4 TOPS, 25.6 TOPS, and 102.4 TOPS for
32-bit, 16-bit, and 8-bit operands, respectively [8].

Tensor convolution is a widely used mathematical operation
in these domains, and it is becoming increasingly important
with the rise of its use in image processing workflows [9]-
[11] and with the proliferation of deep learning models [12]—
[15] in data centers, edge, and mobile devices. There has
been a lot of prior work on optimizing tensor convolutions
for a variety of target hardware devices such as CPUs [9],
[10], [16], GPUs [9], [16], [17], FPGAs [16], [18]-[21], and
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Dataflow accelerators [20], [22]-[24]. However, while it is
desirable to automatically generate optimized code for new
high performance processor architectures like the Al Engine
from high-level descriptions, doing so can be challenging. This
work demonstrates the ability to optimize tensor convolutions
for the Al Engine automatically and to obtain near-peak
performance for various workloads while using the Halide
DSL as a high-level programming model,

Challenges. Achieving peak performance on the Al Engine
requires leveraging several architectural features to maximize
vector datapath occupancy during program execution. Unlike
standard SIMD architectures that operate on 1D vectors, the
Al Engine architecture includes 2D vector operations for some
datatypes, which conceptually implement the fusion of several
1D vector operations. Unlike other architectures, the Al Engine
does not implement direct support for unaligned loads, scalar
broadcasts, and data manipulation operations. Instead, the
Al Engine architecture includes a novel shuffle network that
selects the desired elements of a vector register for a vector
operation instead of explicitly shuffling and storing them into
another vector register. To effectively leverage these features,
the layout of data in memory must match the capabilities of
the shuffle network.

Existing Al Engine compilers perform VLIW scheduling but
do not perform auto-vectorization. High-performance vector
code must be expressed using intrinsic architectural functions
for most vector operations, including the shuffle network
configuration. Optimizing programs in this way can be time-
consuming, even for experts. Simultaneously, there is a wide
variety of tensor convolution operators in common use; for
instance, deep neural networks may contain regular 2D convo-
lutions, depth-wise convolutions, and point-wise convolutions.
Even within the same network, the shape of tensor data can
vary radically between the early and late layers in DNN mod-
els. We find that no single optimization strategy is an optimal
choice for all these scenarios. Reducing the need for manual
optimization and quickly adapting to new tensor operations
through automatic optimization avoids these problems. The
overall goal of our work is to automate the generation of
high-performance vector code for tensor convolutions based
on their variations and shapes, while exploiting the unique
capabilities of the Xilinx Al Engine without requiring manual
effort in development and tuning. Achieving this goal requires
significant loop-level reuse analysis, code transformations, and



data-layout transformations, along with optimized low-level
code generation taking into account the shuffle network. Even
though our approach is tied to the AI Engine, ideas in the
approach are very applicable to other specialized SIMD units
with similar architectures. The main technical contributions of
this paper are briefly described below:

« We introduce an intermediate representation, Triplet, to
symbolically capture the loop body of a tensor convolu-
tion and also to simplify analyses and transformations to
generate optimized code for the Al Engine.

o« We propose a novel multi-step compiler approach that
includes analyses and transformations to 1) exploit the
2D SIMD datapath by identifying multiple 1D logical
vector operations that can be legally fused, 2) realize
unaligned loads, scalar broadcasts, data manipulation
using the shuffle network, 3) improve memory utilization
by exploiting vector register reuse and loop optimizations,
and 4) generate code that is more amenable to enabling
VLIW instruction scheduling for the Al Engine.

o We created a new tool, Vyasal, to implement our multi-
step compiler approach. Vyasa is built on the Halide
framework [9] and includes extensions needed for the
Al Engine that is not supported by Halide. Given a
tensor convolution specification in the Halide language
and workload sizes, Vyasa generates high-performance
C-code with vector intrinsics for the Al Engine.

e We evaluated Vyasa on 36 CONV2D workloads using
the in-house cycle-accurate simulator 2. Our results show
geometric means of 7.6 and 24.2 MACs/cycle for 32-
bit and 16-bit operands (95.9% and 75.6% of the peak
performance respectively). For four of these workloads
for which expert-written implementations were available
to us, Vyasa achieved a geometric mean performance
improvement of 1.10x from extended Halide code that is
around 50 smaller than the expert-written C/C++ code.

II. BACKGROUND

In this section, we start with an overview of tensor convo-
lutions, and then we briefly summarize the key architectural
features of the Xilinx Versal Al Engine.

A. Tensor Convolutions

Convolution is a mathematical operation which computes
the amount of overlap of a function g as it is shifted over
another function f. In this section, we restrict our attention to
describing CONV2D, a popular convolution operator widely
used in Deep learning [12]-[15], [25], [26] and Computer
Vision [9]-[11], [27]. In these domains, the function £ and
g are referred to as the “input” tensor (a.k.a image/activa-
tions) and “weight” tensor (a.k.a filters/kernels), respectively.
The CONV2D deals with three four-dimensional tensors, i.e.,

1Vyasa means “compiler” in the Sanskrit language, and also refers to the
sage who first compiled the Mahabharata.

2Since the Al Engine architecture was developed for real-time processing
applications which require deterministic performance, the simulator results are
reliably correlated with the actual performance of the Al Engine hardware.

Output (O), Weight (W), and Input (I), whose dimensions are
described below.

Tensor Diml Dim2 Dim3 Dim4
Output (0O) | Width (X) Height (Y) | Channels (K) | Batch (N)
Weight (W) | Width (R) Height (S) Channels (C) | Batch (K)

Input (I) Width (X*) | Height (Y’) | Channels (C) | Batch (N)

The mathematical expression of the CONV2D operations is
shown below, where f refers to stride factor.

¢ S R
O(z, y, k, n) :ZZZW(T, s, ¢, k)

xI(xx f+r, yxf+s, ¢ n)

Specialized versions of CONV2D are often interesting. For
example, image processing pipelines such as Blur detection,
Harris corner detection algorithms in compute vision domain
often involve CONV2D’s operating over two-dimensional
tensors only (number of channels and batch size are set to
one). In Convolutional Neural networks (CNNs), the number
of channels is often large, particularly in later layers. Other
types of convolution layers are special cases of CONV2D,
such as fully-connected, point-wise, depth-wise separable,
and spatially separable convolutions. These variations can be
viewed as constraints on the regular CONV2D as follows:

Constraints on CONV2D
Filter width = Filter height = 1
Filter width = Input width
Filter height = Input height
Filter width = 1 or Filter height = 1
Input channels = Filter channels = 1

Operator
Point-wise (PW)

Fully-connected (FC)

Spatially separable (SS)
Depth-wise separable (DS)

B. Xilinx Al Engine

Driven by the performance and energy efficiency require-
ments of many computing applications, Xilinx introduced
Versal Advanced Compute Acceleration Platform (ACAP) [8],
[28], a fully software-programmable, heterogeneous compute
platform. The Versal platform consists of three types of
programmable processors — Scalar Engines (CPUs), Adaptable
Engines (Programmable Logic), and an array of Intelligent En-
gines (Al Engines) [8]. In this work, we focus on Al Engines,
which are specialized SIMD and VLIW high-performance
processors for compute-intensive applications.

An Al Engine includes a 2D SIMD datapath for fixed-
point vector operations (our focus), a 1D SIMD datapath for
floating-point vector operations, and a scalar unit for scalar
operations. Each AI Engine also has access to 128KB scratch-
pad (a.k.a data/local) memory, a 16KB program memory, and
a 256B vector register file (a total of 16 registers with each
size being 128 bits). These high-performance AI Engines are
programmed using the C/C++ programming language with op-
tional pragmas. A simplified overview of the key architectural
features of the Al Engine core is shown in fig. 1.

1) Two-dimensional SIMD Datapath. The fixed point
vector unit of the AI Engine is a two-dimensional SIMD
datapath, and vector operations on the 2D SIMD datapath
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Fig. 1. A pictorial overview of the key architectural features of the Xilinx
Al Engine, i.e., 2D vector SIMD datapath and shuffle network.

are described using lanes/rows and columns. The number of
lanes corresponds to the number of output values generated
from the vector operation. The number of columns is the
number of operations that are done per output lane, with
each of the results being reduced together. This technique of
executing back to back dependent scalar operations along a
vector lane is popularly known as operation chaining [1] and
can improve energy efficiency by not writing intermediate
values back to the register file. Furthermore, the number of
columns is dependent on the operand precision. Operations on
32-bit types are organized as 8 lanes with 1 column, without
internal reduction. However, the operations on 16-bit types are
organized as either 16 lanes with 2 columns or 8 lanes with
4 columns. Also, the operations on 8-bit types are organized
as 16 lanes with 8 columns. As a result, the 2D datapath can
perform either 8§ MACs on 32-bit inputs, 32 MACs on 16-
bit input, or 128 MACs on 8-bit input per cycle. Currently,
the Al Engine compilers do not advertise support for auto-
vectorization, and application programmers write vectorized
code explicitly using architecture-specific vector intrinsics.

2) Shuffle network. A novelty of the Al Engine architecture is
its shuffle network, a flexible interconnection network between
the 2D SIMD datapath and vector register file to allow flexible
data selection from the input vector registers for the multipliers
of each lane and column of the SIMD datapath. The ability
to configure the shuffle network for each vector operation
is exposed to programmers via the vector intrinsic functions
arguments. The granularity of data selection using the shuffle
network on the vector registers is 32b, and so the network
allows full flexibility for making data selection, replication,
and permutation on vectors of 32b data types. However, for
data types of smaller sizes such as 16b and 8b data types, the
shuffle network imposes further constraints on data selection.
3) VLIW capabilities. The AI Engine is a very long
instruction word (VLIW) architecture with up to six issue slots
per instruction and one instruction per clock. Each VLIW in-
struction includes up to two scalar operations, two vector load
operations, one vector store operation, and one fixed/floating-

point vector operation. Currently, the Al Engine compilers
support automatic software pipelining [29] of innermost loops
to exploit instruction-level parallelism.

III. OUR APPROACH

In this section, we introduce our approach to generating a
high-performance vector code for a given high-level specifi-
cation of tensor convolution and its workload sizes that fit
into a single Al Engine’s data memory. These vector codes
are intended to execute on a single AI Engine and will
be integrated by a high-level compiler to run larger tensor
convolutions across multiple AI Engines. Our approach is
summarized in fig. 2, and it is implemented in a tool called
Vyasa which is developed as an extension to the Halide [9]
framework.

Tensor convolution
specification,
workload sizes

Lowering to Halide IR
N ! Auto-tuner
l (exploring
Halide 1) Translation to Triplet loop and
representation data-layout
Modules 7 optimizations)
2) Vector register reuse + handling Cycles
“— | unaligned loads, scalar broadcast
l Output:
Optimized c-code
3) Fusion of vector operations for
the 2D SIMD datapath Our approach

] (Vyasa)

4) Code generation (including better
interleaving of loads/stores/MACs)

Cycle-accurate
simulator

C-code

Fig. 2. Workflow of our approach (Vyasa) which is implemented as an
extension to the Halide framework [9].

Our approach begins with an auto-tuner taking the specifica-
tion of a tensor convolution in the Halide language and corre-
sponding workload sizes. Then, the auto-tuner iterates through
each possible schedule in the space of loop transformations
and data-layouts and invokes our multi-step compiler approach
to generate vector c-code corresponding to the schedule. Then,
our approach evaluates the generated code using a cycle-
accurate simulation of the AI Engine and chooses the best one
among all schedules to finally emit as the performant output
code. Now, we briefly describe various steps involved in our
multi-step compiler approach.

A. Translating into Triplet Representation

Tensor convolutions are often specified as multi-dimensional
perfectly nested loops, where each statement of the loop body
has two aspects — 1) A group of multiply-and-accumulate
(MAC) operations over input and weight tensors, and 2)
An update (reduction) operation to the output tensor. Since
each statement in the loop body performs a reduction and
the reduction is commutative, each statement’s order doesn’t
impact its correctness. Hence, a representation holding in-
formation about the two significant aspects described above



Buffer<intl6e> I(X',Y'");
Var x, y; RDom r (4, 3);

Buffer<intl6> W(4,3);
Func O; //output

//(a) Description of the convolution computation
O(x,y) += W(r.x, r.y) * I(x+r.x, y+r.y);

// (b) A sample schedule: Unrolling reduction loops
//Vectorizing loop corresponding to image width
O.update() .unroll(r.x, 4).unroll(r.y,3)

.vectorize(x, 16);
// (c) Intermediate code after lowering
for y:
for x: (vectorized)
O(x:x+15,y) += W(0,0) * I(x:x+15,y);
O(x:x+15,y) += W(1,0) » I(x+l:x+16,vy);
O(x:x+15,y) += W(2,0) » I(x+2:x+17,vy);
O(x:x+15,y) += W(3,0) » I(x+3:x+18,y);

Fig. 3. Algorithmic description of the convolution of a 4x3 filter over an input
2D image in the Halide language [9]. A(a:b,c) is a short hand vector notation
for denoting a contiguous slice from A(a,c) to A(b,c) in one direction.

for each statement is sufficient to precisely capture the body.
We call this representation a “triplet” since it symbolically
holds information about the accesses of two operands of each
multiplication and the update operand of each statement.

Input(l)

0123 15161718 ., 31 Weights (W)
o] 0123
0
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0
Y
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Fig. 4. A pictorial overview of the convolution of 4x3 filter based on the
schedule described in fig. 3(b) at the loop iterations x = 0 and y = 0.

We consider the convolution of a filter with size 4x3 on a
2D input image as a running example, whose specification
is shown in fig. 3(a). A sample schedule is also shown
in fig. 3(b), and it refers to unrolling loops corresponding to
filter dimensions (r.x, r.y) and vectorizing the loop—x
with vector length as 16. The pictorial overview of the
computation at the loop iteration x = 0, y = 0 is shown
in fig. 4. The first step in our approach after lowering the
specification and its schedule into Halide IR is to translate
the loop body into our triplet representation. For instance, the
triplet representation of the loop body in fig. 3(c) is shown
in Table I, where each row symbolically captures the access
patterns of multiplication operands and update operands of a
Statement.

B. Shuffle Interconnection Network

Our approach leverages the AI Engine’s unique shuffle
network to exploit temporal locality via vector register reuse
and spatial locality via adjacent scalar operands in memory.

TABLE I
TRIPLET REPRESENTATION OF THE LOOP BODY IN FIG. 3(C)

Update Operation MAC Operations
Operand Operand1 Operand2
O(x:x+15, vy) wW(0, 0) I(x:x+15, vy)
O(x:x+15, vy) w1, 0) I(x+1l:x+16, V)
O(x:x+15, vy) w2, 0) I(x+2:x+17, vy)
O(x:x+15, vy) wW(3, 0) I (x+3:x+18, vy)

During this process, unaligned vector loads and scalar broad-
cast operations, which are common in vectorization of tensor
convolutions, are indirectly addressed.

1) Exploiting vector register reuse. Tensor convolutions
often exhibit significant data reuse between vector loads.
For instance, the two vector loads I (x:x+15,y) and
I(x+1:x+16,y) have 15 data elements in common. Ex-
ploiting vector register reuse by reusing those common ele-
ments instead of fetching again from memory is essential to
reduce memory traffic and achieve better efficiency. The Al
Engine architecture provides support for grouping vector regis-
ters into a larger vector register. Leveraging this, our approach
groups individual vector loads having the reuse and constructs
a larger aligned vector load that subsumes the individual vector
loads having reuse. During vector operations, appropriate data
elements are then selected from vector registers using the
architectural shuffle network.

Our approach identifies opportunities for vector register
reuse by constructing a reuse graph, an undirected graph
where each node denotes a vector load, and an edge be-
tween two nodes denotes the presence of common elements.
The reuse graph corresponding to the vector loads of the
tensor I in table I is shown in fig. 5, for instance, nodes
I(x:x+15,y) and I (x+1:x+16,y) corresponds to two
vector loads and the edge between them denotes the presence
of common elements/reuse.

I(x:x+15, y) I(x+1:x+16, y)

1(x+3:x+18, y)

I(x+2:x+17, y)

Connected component
V1 — I(x:x+31, y)

Fig. 5. Reuse graph involving vector loads of the tensor I in Table I
Each connected component in the reuse graph can be viewed

as a larger vector load that subsumes individual vector loads.
For instance, the connected component I (x:x+31,y)

in fig. 5 represents a larger vector load subsuming
the vector loads I (x:x+15,y), I(x+1:x+16,y),
I(x+2:x+17,y), and I (x+3:x+18,y). The larger

vector load is also padded to ensure that vector load
instructions are always aligned on vector boundaries.



2) Exploiting Spatial Locality. Tensor convolutions often
exhibit significant spatial locality between scalar operands,
e.g., the scalar operands W (0, 0) and W(1,0) in Table I
are contiguous in the memory and also require broadcasting
for vector operations. Similar to our approach in exploiting
vector register reuse, we construct another reuse graph to
identify scalar operands adjacent in data memory and can
be subsumed as part of a single vector load. For instance,
the operands W (0,0), W(1,0), (2,0), W(3,0) can be
fetched from memory using a single aligned vector load
(say V2) of W(0:7, 0). Individual scalar elements can be
extracted from a vector register and broadcast to different lanes
of a SIMD operation using the architectural shuffle network
without explicit storage in a vector register.

C. 2D Vector SIMD Datapath

A key distinguishing feature of the Al Engine relative to the
traditional SIMD units is the presence of a two-dimensional
SIMD datapath that performs a reduction across all columns of
a SIMD lane. A single logical 1D vector operation can occupy
a single column of 2D datapath, but the vector operations
on the 2D SIMD datapath require using all the columns of
the datapath and don’t allow partial utilization. Hence, our
approach identifies and logically groups (fusing) all 1D logical
vector operations that contribute to the same output through
accumulation/reduction and use the same set of vector register
operands. The identification is made by searching in the triplet
representation for operations having the same update operand
and the same set of vector registers as multiplication operands.
Finally, our approach partitions the logical groups based on the
number of columns available for the given operand type and
the constraints imposed by the shuffle network on the data
selection over vector register operands. If the data selection
required for the operands of fused vector operations is in-
compatible with the constraints of the shuffle network, then
our approach generates a compilation error and prunes that
candidate code variant. There are four valid fusible logical 1D
operations for each row of the filter in Table I; our approach
groups them into two fused vector operations whose pictorial
overview is described in fig. 6.

D. Code Generation

Our approach extends the code generation capabilities in
the Halide [9] by implementing a code generator for the
triplet representation to generate explicitly vectorized code
using Al Engine intrinsic functions. A naive approach to code
generation can be implemented by first emitting all vector
loads, followed by all vector MAC operation, and then finally,
all vector stores. However, this naive approach results in
variables (loads) having large live ranges, possibly leading to
register spills and preventing software pipelining. Optimization
of memory accesses can be challenging for the downstream
compilers only given the generated intrinsic code. Hence,
our approach also reorders memory accesses and interleaves
them with vector MAC operations during the code generation
process to reduce each variable’s live range. This process is

0 7
[wo.0 Twi.o) [ weo [ weo [ wao [weo [weo [ weo | V2

ane 15

\ Lane % Lane 1

[0 Ji0,0 [ 120 Jieo [ a0 | Do EEn] 7o Juso [ - Jwwo]| V4
0 31
a) 0(0:15,0) = +

7
[wio.0 [ wa.0 [wzo) w0 [wiso [weo [wro] V2

<
[eoe[e—og] - Ec:
m::_::::- \'A
b) O(0:15, 0) += +

Fig. 6. An overview of the two fused vector operations (a and b) over the
vector registers V1, V2 for input and weights, respectively of the running
example at iterations x=0 and y=0. The shuffle network of the AI Engine
helps each multiplier of the 16 lanes and 2 columns of the 2D datapath to
choose required elements from the vector registers.

relatively easy given the information about memory access
patterns in Halide and helps the downstream compilers to
improve the packing of stores, loads, and vector MACs into
VLIW instructions.

E. Auto-tuner

Steps 1-5 in our multi-step compiler approach generates the
vectorized code for a given specification of tensor convolution,
a schedule from the auto-tuner, and workload sizes. The auto-
tuning functionality of the Halide framework supports only
multi-staged pipelines [30], [31], but our focus is only on
a single-stage involving a tensor convolution. To find the
best schedule for the operation, we implemented a custom
auto-tuner in our approach to explore all possible schedules
involving loop interchange, loop unroll and jam, choice of
the loop for vectorization, and data-layout choices such as
dimension permutation and data tiling. Our approach applies
the following pruning strategies: 1) Unrolling of reduction
loops to avoid memory traffic in writing and reading inter-
mediate (partial) results, and 2) applying bounds on the unroll
and jam factors to avoid spending compilation time on large
code since Al Engine has only 16KB of program memory
per core. Our auto-tuner evaluates each point in the pruned
search space by generating the vectorized C-code, compiling
with the Al Engine compiler, and executing it using the in-
house cycle-accurate architecture simulator. With performance
as the primary optimization goal, our approach obtained a
geometric mean performance improvement of 1.10x fewer
cycles than the expert-written and tuned codes available for



four workloads, showing that automatic exploration can find
useful design points which are not obvious to humans.

IV. EXPERIMENTS

We evaluated our approach over a total of 36 workloads
involving variations of CONV2D over two operand precisions
(32-bit and 16-bit) on a single Al Engine. Each workload
represents a unique combination of a convolution operation,
tensor shapes, and operand precision. The configuration is
shown in Table II and includes a 128KB local memory pre-
loaded with all the data required for the evaluation of each
workload. This accurately reflects real system performance
where local memory is usually double-buffered and loaded
by separate data movement engines. The configuration also
includes a vector register file of size 256B (a total of 16 reg-
isters with each size as 128 bits) in between the SIMD datapath
and the local memory. We used the Al Engine’s cycle-accurate
simulator to evaluate the functionality and performance of our
generated codes. We define the performance (MACs/Cycle)
of convolution implementation as the total number of MAC
operations in the convolution divided by the total number of
execution cycles taken by the implementation.

TABLE II
THE Al ENGINE CONFIGURATION USED IN OUR EVALUATION.
Parameter 32-bit 16-bit
2D SIMD data path 8§x 1 16 x 2

Peak compute
Scratchpad memory
Scratchpad memory ports
Vector register file

8 MACs/cycle | 32 MACs/cycle
128 KB @ 96B/cycle
32B 2 read and 1 write
256 B

A. CONV2D in Computer Vision (2D Tensors)

In the following experiments, we compare two experimental
variants: 1) Code written by an expert (for 3x3 and 5x5
filters) available as part of the Xilinx’s Al Engine compiler
infrastructure, 2) Code generated by our approach leveraging
the auto-tuner. Both codes are designed to produce a 256x 16
tile of a larger image. We observe from fig. 7 that our ap-
proach achieved a geometric mean performance improvement
of 1.10x from the Halide codes compared with the available
expert-written codes.

B Expert-Written Our approach with auto-tuner Al Engine Peak

32.00 32.00 32.00

23.3023.65 22,60
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3x3 (32-bit) 5x5 (32-bit) 3x3 (16-bit) 5x5 (16-bit) Geo. Mean (32-bit)  Geo. Mean (16-bit)

MACs/Cycle

Fig. 7. Comparison of our approach with auto-tuner against the available
expert-written codes for CONV2D operation with 3x3 and 5x5 filters.

The auto-tuner of our approach was able to find better
schedules than used in the expert-written codes (roof-line

graphs for the workloads is shown in fig. 8), including non-
trivial unroll and jam factors along the image height (1Loop-vy)
dimension for better reuse. These factors also enabled more
opportunities in the loop body for the downstream compil-
ers to perform better software pipelining. Furthermore, since
workload sizes are also expressed in the Halide codes, our
approach annotated the loops of generated codes with loop
bound pragmas enabling the downstream compilers to estimate
loop pre-amble and post-amble overheads accurately and gen-
erate better VLIW code. Such overheads can be significant,
particularly for tiled inner loops executed many times.
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Fig. 8. Roof-line graphs of four workloads considered in fig. 7, where each
data point is a schedule explored by the auto-tuner.

In the case of the 3x3 and 5x5 filters with 16-bit operands,
the total number of fusible logical 1D vector multiplications
corresponding to each row of the filters is odd. Hence, our
approach padded the filters with an additional column to
generate an even number of fusible 1D operations and map
onto the two columns present in the 2D SIMD datapath for
16-bit types. Expert-written codes used a slightly different
optimization strategy, fusing some logical 1D vector multipli-
cations corresponding to different rows of the filters to reduce
unused vector lanes due to padding. This was accomplished by
carefully merging the required input image data from different
rows into a single vector register in a way that is not currently
accessible in our automated approach. However, we see that
the code generated using our approach can perform better than
the expert-written code by leveraging non-trivial unroll and
jam factors.

Our approach with auto-tuner for 32-bit types (Al Engine Peak : 8 MACs/cycles)
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Fig. 9. Performance of our approach generated codes for CONV2D workloads
in Table III over filter sizes from 2 to 11.



TABLE III
CONV2D WORKLOADS OVER 2D TENSORS USED IN OUR EVALUATION
AND OPTIMAL SCHEDULES FROM AUTO-TUNER

Optimal schedule
. from auto-tuner
((())‘;“S’i‘;z (Vv‘éﬁ‘*‘::‘; (g“;;‘z‘e #MACs [ Unroll and
Jam factors Loop
32-bit | 16-bit | order
X[y | x[y
2x2 264 x 17 16384 114171718 Xy
3x3 264 x 18 36864 1 4 11 2 Xy
4x4 264 x 19 65536 1 2 11 1 Xy
5x5 264 x20 | 102400 [T [ 2| T |1 Xy
256 6x6 264 x 21 147456 1 1 1 1 Xy
x 16 7Tx7 264x22 1200704 [T [ 1T 171 Xy
8x 38 264 x23 [ 262144 [ 1T [ 4 [T |1 Xy
9x9 264 x24 | 331776 [ 1[4 |11 Xy
10x10 [ 264x25] 409600 [ T[4 [ 1] 4 Xy
ITxIT | 264x26 | 495616 [ 1 [ 4 [ 1| 4 Xy

In addition to 3x3 and 5x5 filters, we have evaluated other
filter sizes commonly used in computer vision. Table III
presents those workload sizes, total MAC operations involved
in each workload, and optimal schedules reported by the
auto-tuner. We padded each non-even sized 16-bit filter with
an additional column for evaluation, and report achieved
performance (MACs/cycle) in fig. 9. Our approach made a
geometric mean performance of 7.67 and 25.92 MACs/cycle
for 32-bit and 16-bit types, respectively, for the workloads in
Table III. The auto-tuner chose the 1oop—x for vectorization
for all the workloads because it has more reuse opportunities
and has a larger number of iterations than the 1oop-y. The
optimal unroll and jam factors are not the same for all the
workloads and vary for different precisions of the same filter
size. Even though increasing unroll and jam factors improve
the reuse opportunities, it often resulted in register spills after
a threshold and interfered with software pipelining of inner
loops. Furthermore, larger unroll and jam factors along the
loop—x resulted in larger connected components of the reuse
graph and required a larger vector register than the maximum
possible (e.g., 1024b for 32-bit operands) in the hardware.

B. CONV2D in Deep Learning

We considered a wide variety of CONV2D operations in
the deep learning domain such as regular (REG) CONV2D
over various filter sizes, point-wise (PW), spatially separable
(S8S), depth-wise separable (DS), and fully-connected (FC)
operations. Table IV presents those workload sizes (with unit
batch size, i.e., N = 1), total MAC operations involved in each
workload, and optimal schedules reported by the auto-tuner.
Since the memory footprint of typical CONV2D operations
don’t fit into the local memory, we chose the similar tensor
memory footprint used in section IV-A. For these workloads,
our approach achieved a geometric mean performance of 7.67
and 22.53 MACs/cycle for 32-bit and 16-bit types respectively,
as shown in fig. 10.

The auto-tuner identified vectorization along loop-x (i.e.,
output width) to be beneficial for REG-5x5 and REG-7x7
workloads, because there exist more opportunities for vector

Our approach with auto-tuner for 32-bit types (Al Engine Peak: 8 MACs/cycles)
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Fig. 10. Performance of our approach generated codes for a wide variety of
CONV2D workloads in Deep Learning models.

register reuse (convolutional reuse) in loop-x with larger
kernels sizes. But, for workloads such as PW (REG-1x1) and
FC that have little to no convolutional reuse in 1oop—x, vec-
torization was performed on loop-k (i.e., output channels).

% c S Input layout scheme (C/2)Y’X’(2)
o
@ | R Al Wl A AWl A
c
g e Qe 4kt kaRaka 4 KaKaRaRaBa T,
g 12 alalala
2 "
8 - [ -1
5
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>
L
2
% Fused Vector Multiplication: W1 * |1 + W2 * |2
H LLl]

Fig. 11. Data-layouts of input and weight tensors of the 16-bit REG-3x3
workload, to enable the fusion of 1D logical vector multiplications along the
channels, thereby avoiding the padding required for weights.

In these workloads, there exists an even number of fusible
1D vector multiplications along the filter channels. Hence
our approach didn’t require any padding to the filters, except
for the depth-wise CONV2D workload, which has only one
channel. However, the data-layouts of these workload tensors
need to be modified to support the fusion of 1D logical vector
multiplications along the channels. An example data-layout
for the input and weights of the 16-bit REG-3x3 workload
identified by our approach for the fusion along channels is
shown in fig. 11, where the data-layout scheme for the input
tensor (C/2)Y’X’(2) refers to first laying out a block of two
channels followed by width, height, and remaining channels.

Along with the advantages of avoiding padding, data-layouts
can be used for exploring better schedules as well. Such
data-layout schemes over the workload tensors should respect
two constraints: 1) The required number of data elements
of each operand of the fused vector multiplication should fit
into logically the maximum vector register size, and 2) The
required data selection parameters over the vector register
should respect the shuffle network constraints. Our auto-
tuner was able to automatically explore a variety of such
valid data-layout schemes in our evaluation. Although the
architecture can support the resulting data-layouts, they can be
rather complex and non-intuitive (e.g., (K/16)SR(C/2)(16)(2)



TABLE IV
CONV2D WORKLOADS IN DEEP LEARNING DOMAIN USED IN OUR EVALUATION (VARIABLES DESCRIBED IN SECTION II) AND OPTIMAL SCHEDULES.

CONV Output Filter Input Optimal schedules from the auto-tuner
P (O) size (F) size (I) size #MACs | Precision Data 1 t Vect SW Unroll and L
YPE | (XxYxK) | (RxSxCxK) | (X’xY’xC) ata fayouts lec or ) Jam factors ‘:1""
0 W I oop oop X y K order
32bit | XYK | (KBYCR)SRE)B) | CRY X (3) K x | 1]2] 1 Kyx
3x3x8x16 144x4x8 | 294912 T6-bit | KYX K(C/2)SR(2) CDHYX Q) X X |11 1 yxk
3261t | KYX KCSR cY'X X X [ 1] 1| I | kyx
(REG) Sx5x8x16 | 144x6x8 | 819200 —rr—rgyx K(C/2)SR2) YYD | x x T2 T kyx
326t | KYX KCSR cY'X X X [ 12 I | kyx
Tx7x8x16 144x8x8 | 1605632 166t | KYX K(C/2)SR(2) CRYX ) X x |1 ]2 1 Kyx
326t | XYK | (KB)CRSR®EB) | ([CRY X (B) K X [T 12 1T | kyx
(PW) | 128x2x16 | 1x1x8x16 144x2x8 32768 T6bi | YXK T (KIT6)SRCDI6D X t T2 T ok
32bit | XYK | (KB)CBSRE)®) | (CRY X (B) K p 121 Kyx
SS) 1x3x8x16 144x4x8 98304 T6-bit | KYX K(C/2)SR(2) CDHYX Q) X X |12 1 Kyx
3261t | XYK | (KB)CRSRA®)(B) | (CRY X (B) K X [ 1] 1| T | kyx
3x1x8x16 144x2x8 98304 T6-bit | YXK | (K/I6)SR(C/2)(16)(2) YX'C k kK [T ]2 1 xyk
326t | KYX KCSR cY'X X X [ 1] 2 T | kyx
(DS) 3x3x16x16 | 144x4x16 | 36864 T RY X RCSR e > R o
32bit | XYK | (K/S)CR)SRB®)(B) | (CIHY X () K kK [ 1] 1| T | kyx
(FC) | 4096x1x1 | 1x1x8x4096 | 16x1x8 32768 T6 bt YXK | (K616 YT T e B B Xk

for weights in 16-bit PW-1x1). Manually identifying such a
data layout and writing the corresponding intrinsic-based code
is exceptionally challenging and error-prone, even for experts,
thereby demonstrating the benefits of our automatic approach.

The FC workload in our evaluation has lower arithmetic
intensity (because it lacks convolutional reuse) and lies on the
left side of the inflection point of the roof-line graph of the
Al engine, indicating memory-bound execution. The workload
peak performance based on its arithmetic intensity is 21.22
MACs/cycle, and our approach achieved 75% of the peak.

Overall, our evaluation over all the workloads shows geo-
metric means of 7.6 and 24.2 MACs/cycle for 32-bit and 16-
bit operands (which represent 95.9% and 75.6% of the peak
performance respectively). This difference in efficiency is not
surprising, since it is more challenging to utilize two columns
in the SIMD data path in the case of 16-bit operands, compared
to a single column in the case of 32-bit operands. However,
the absolute performance in the 16-bit case is still significantly
higher than the 32-bit case, despite a lower efficiency.

V. RELATED WORK

The Halide framework [9] for image processing pipelines
have been shown to improve the productivity of application
programmers, while generating high-performance code for a
variety of architectures, including CPUs, GPUs, and FPGAs.
Recently, Vocke et al. [32] extended the Halide framework to
support specialized Digital Signal Processors (DSPs) of the
Intel Imaging Processing Units (IPUs). Furthermore, Halide
has the support for the Hexagon Vector eXtensions (HVX) on
the Qualcomm Hexagon DSP processors. However, none of
the above prior work addresses the 2D SIMD datapaths and
shuffle network, which are unique to the AI Engine. To the
best of our knowledge, the only prior work on auto-vectorizing
for a 2D SIMD datapath is the work by Dasika et al. [2] for
the PEPSC’s architecture, where the authors have proposed a
greedy compiler approach to identify fusible vector operations.

Exploiting vector register reuse (including partial reuse)
on SIMD units is a vital optimization to achieve high-

performance, and prior work exploited the reuse by shuf-
fling the vector registers using the data manipulation/shuffle
units [33]-[35]. However, our approach constructs a larger
vector load covering the loads having the reuse and uses
the Al Engine’s unique shuffle network to select the desired
elements. Furthermore, our approach uses the shuffle network
to address the unaligned vector loads and scalar broadcasts
without requiring any additional hardware support.

The vector codes generated by our approach can be viewed
as high-performance primitives for a single Al Engine. These
primitives will be composed and integrated by a high-level
compiler to run larger tensor convolutions across multiple Al
Engines. Some of the prior works that have followed the sim-
ilar strategy of automating the library/primitive development
for the performance-critical kernels are SPIRAL [36] for the
domain of linear transforms, ATLAS [37] for the basic linear
algebra subroutines (BLAS), and FFTW [38] for the discrete
Fourier transforms.

VI. CONCLUSIONS & FUTURE WORK

In this work, we introduced Vyasa, a high-level program-
ming system built on the Halide framework, to generate high-
performance vector codes for the tensor convolutions onto the
Xilinx Versal Al Engine. Our proposed multi-step compiler
approach leverages the Al Engine’s unique capabilities of the
2D SIMD datapath and the shuffle interconnection networks
to achieve close to the peak performance for various work-
loads. Manually identifying best schedules and writing the
corresponding intrinsic-based code is exceptionally challeng-
ing and error-prone, even for experts, thereby demonstrating
the benefits of our automatic approach. Our results show a
geometric mean of 7.6 and 24.2 MACs/cycle for 32-bit and
16-bit operands (which represent 95.9% and 75.6% of the
peak performance respectively). In the future, we plan to
extend our system to other computationally expensive linear
algebra kernels. We also plan to integrate the generated high-
performance codes into a high-level compiler to run larger
tensor convolutions across multiple AI Engines.
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