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Abstract—Xilinx’s AI Engine is a recent industry example of
energy-efficient vector processing that includes novel support for
2D SIMD datapaths and shuffle interconnection network. The
current approach to programming the AI Engine relies on a
C/C++ API for vector intrinsics. While an advance over assembly-
level programming, it requires the programmer to specify a
number of low-level operations based on detailed knowledge of
the hardware. To address these challenges, we introduce Vyasa, a
new programming system that extends the Halide DSL compiler
to automatically generate code for the AI Engine. We evaluated
Vyasa on 36 CONV2D workloads, and achieved geometric means
of 7.6 and 24.2 MACs/cycle for 32-bit and 16-bit operands
(which represent 95.9% and 75.6% of the peak performance
respectively).

I. INTRODUCTION

It is widely recognized that a major disruption is underway

in computer hardware as processors strive to extend, and

go beyond, the end-game of Moore’s Law. As part of the

disruption, there is an emphasis on specializing SIMD units

to improve energy efficiency benefits for compute-intensive

domains. An important specialization, which is referred to as

“2D vector SIMD datapath” [1]–[3], is the ability of each

vector lane to execute more than one scalar operation and

to chain the results from one operation to another. Another

specialization replaces expensive data permutation units (e.g.,

shuffle units) [4], [5] with sophisticated, programmable in-

terconnection networks (a.k.a shuffle networks) between the

SIMD datapath and vector register file [3], [6].

A recent industry example with these specializations is the

Xilinx Versal AI Engine [7], a high-performance VLIW SIMD

core with performance comparable to traditional FPGA solu-

tions for Computer Vision, Deep Learning, and 5G wireless

domains, but with 50% less power and up to 8× more compute

capacity per silicon area [7]. The Versal AI Engine series

VC1902 has a total of 400 AI Engines that can deliver a peak

performance of 6.4 TOPS, 25.6 TOPS, and 102.4 TOPS for

32-bit, 16-bit, and 8-bit operands, respectively [8].

Tensor convolution is a widely used mathematical operation

in these domains, and it is becoming increasingly important

with the rise of its use in image processing workflows [9]–

[11] and with the proliferation of deep learning models [12]–

[15] in data centers, edge, and mobile devices. There has

been a lot of prior work on optimizing tensor convolutions

for a variety of target hardware devices such as CPUs [9],

[10], [16], GPUs [9], [16], [17], FPGAs [16], [18]–[21], and

Dataflow accelerators [20], [22]–[24]. However, while it is

desirable to automatically generate optimized code for new

high performance processor architectures like the AI Engine

from high-level descriptions, doing so can be challenging. This

work demonstrates the ability to optimize tensor convolutions

for the AI Engine automatically and to obtain near-peak

performance for various workloads while using the Halide

DSL as a high-level programming model,

Challenges. Achieving peak performance on the AI Engine

requires leveraging several architectural features to maximize

vector datapath occupancy during program execution. Unlike

standard SIMD architectures that operate on 1D vectors, the

AI Engine architecture includes 2D vector operations for some

datatypes, which conceptually implement the fusion of several

1D vector operations. Unlike other architectures, the AI Engine

does not implement direct support for unaligned loads, scalar

broadcasts, and data manipulation operations. Instead, the

AI Engine architecture includes a novel shuffle network that

selects the desired elements of a vector register for a vector

operation instead of explicitly shuffling and storing them into

another vector register. To effectively leverage these features,

the layout of data in memory must match the capabilities of

the shuffle network.

Existing AI Engine compilers perform VLIW scheduling but

do not perform auto-vectorization. High-performance vector

code must be expressed using intrinsic architectural functions

for most vector operations, including the shuffle network

configuration. Optimizing programs in this way can be time-

consuming, even for experts. Simultaneously, there is a wide

variety of tensor convolution operators in common use; for

instance, deep neural networks may contain regular 2D convo-

lutions, depth-wise convolutions, and point-wise convolutions.

Even within the same network, the shape of tensor data can

vary radically between the early and late layers in DNN mod-

els. We find that no single optimization strategy is an optimal

choice for all these scenarios. Reducing the need for manual

optimization and quickly adapting to new tensor operations

through automatic optimization avoids these problems. The

overall goal of our work is to automate the generation of

high-performance vector code for tensor convolutions based

on their variations and shapes, while exploiting the unique

capabilities of the Xilinx AI Engine without requiring manual

effort in development and tuning. Achieving this goal requires

significant loop-level reuse analysis, code transformations, and



data-layout transformations, along with optimized low-level

code generation taking into account the shuffle network. Even

though our approach is tied to the AI Engine, ideas in the

approach are very applicable to other specialized SIMD units

with similar architectures. The main technical contributions of

this paper are briefly described below:

• We introduce an intermediate representation, Triplet, to

symbolically capture the loop body of a tensor convolu-

tion and also to simplify analyses and transformations to

generate optimized code for the AI Engine.

• We propose a novel multi-step compiler approach that

includes analyses and transformations to 1) exploit the

2D SIMD datapath by identifying multiple 1D logical

vector operations that can be legally fused, 2) realize

unaligned loads, scalar broadcasts, data manipulation

using the shuffle network, 3) improve memory utilization

by exploiting vector register reuse and loop optimizations,

and 4) generate code that is more amenable to enabling

VLIW instruction scheduling for the AI Engine.

• We created a new tool, Vyasa1, to implement our multi-

step compiler approach. Vyasa is built on the Halide

framework [9] and includes extensions needed for the

AI Engine that is not supported by Halide. Given a

tensor convolution specification in the Halide language

and workload sizes, Vyasa generates high-performance

C-code with vector intrinsics for the AI Engine.

• We evaluated Vyasa on 36 CONV2D workloads using

the in-house cycle-accurate simulator 2. Our results show

geometric means of 7.6 and 24.2 MACs/cycle for 32-

bit and 16-bit operands (95.9% and 75.6% of the peak

performance respectively). For four of these workloads

for which expert-written implementations were available

to us, Vyasa achieved a geometric mean performance

improvement of 1.10× from extended Halide code that is

around 50× smaller than the expert-written C/C++ code.

II. BACKGROUND

In this section, we start with an overview of tensor convo-

lutions, and then we briefly summarize the key architectural

features of the Xilinx Versal AI Engine.

A. Tensor Convolutions

Convolution is a mathematical operation which computes

the amount of overlap of a function g as it is shifted over

another function f . In this section, we restrict our attention to

describing CONV2D, a popular convolution operator widely

used in Deep learning [12]–[15], [25], [26] and Computer

Vision [9]–[11], [27]. In these domains, the function f and

g are referred to as the “input” tensor (a.k.a image/activa-

tions) and “weight” tensor (a.k.a filters/kernels), respectively.

The CONV2D deals with three four-dimensional tensors, i.e.,

1Vyasa means “compiler” in the Sanskrit language, and also refers to the
sage who first compiled the Mahabharata.

2Since the AI Engine architecture was developed for real-time processing
applications which require deterministic performance, the simulator results are
reliably correlated with the actual performance of the AI Engine hardware.

Output (O), Weight (W), and Input (I), whose dimensions are

described below.

Tensor Dim1 Dim2 Dim3 Dim4

Output (O) Width (X) Height (Y) Channels (K) Batch (N)

Weight (W) Width (R) Height (S) Channels (C) Batch (K)

Input (I) Width (X’) Height (Y’) Channels (C) Batch (N)

The mathematical expression of the CONV2D operations is

shown below, where f refers to stride factor.

O(x, y, k, n) =

CX

c

SX

s

RX

r

W (r, s, c, k)

× I(x× f + r, y × f + s, c, n)

Specialized versions of CONV2D are often interesting. For

example, image processing pipelines such as Blur detection,

Harris corner detection algorithms in compute vision domain

often involve CONV2D’s operating over two-dimensional

tensors only (number of channels and batch size are set to

one). In Convolutional Neural networks (CNNs), the number

of channels is often large, particularly in later layers. Other

types of convolution layers are special cases of CONV2D,

such as fully-connected, point-wise, depth-wise separable,

and spatially separable convolutions. These variations can be

viewed as constraints on the regular CONV2D as follows:

Operator Constraints on CONV2D

Point-wise (PW) Filter width = Filter height = 1

Fully-connected (FC)
Filter width = Input width
Filter height = Input height

Spatially separable (SS) Filter width = 1 or Filter height = 1

Depth-wise separable (DS) Input channels = Filter channels = 1

B. Xilinx AI Engine

Driven by the performance and energy efficiency require-

ments of many computing applications, Xilinx introduced

Versal Advanced Compute Acceleration Platform (ACAP) [8],

[28], a fully software-programmable, heterogeneous compute

platform. The Versal platform consists of three types of

programmable processors – Scalar Engines (CPUs), Adaptable

Engines (Programmable Logic), and an array of Intelligent En-

gines (AI Engines) [8]. In this work, we focus on AI Engines,

which are specialized SIMD and VLIW high-performance

processors for compute-intensive applications.

An AI Engine includes a 2D SIMD datapath for fixed-

point vector operations (our focus), a 1D SIMD datapath for

floating-point vector operations, and a scalar unit for scalar

operations. Each AI Engine also has access to 128KB scratch-

pad (a.k.a data/local) memory, a 16KB program memory, and

a 256B vector register file (a total of 16 registers with each

size being 128 bits). These high-performance AI Engines are

programmed using the C/C++ programming language with op-

tional pragmas. A simplified overview of the key architectural

features of the AI Engine core is shown in fig. 1.

1) Two-dimensional SIMD Datapath. The fixed point

vector unit of the AI Engine is a two-dimensional SIMD

datapath, and vector operations on the 2D SIMD datapath
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TABLE IV
CONV2D WORKLOADS IN DEEP LEARNING DOMAIN USED IN OUR EVALUATION (VARIABLES DESCRIBED IN SECTION II) AND OPTIMAL SCHEDULES.

CONV
type

Output
(O) size

(XxYxK)

Filter
(F) size

(RxSxCxK)

Input
(I) size

(X’xY’xC)
#MACs Precision

Optimal schedules from the auto-tuner

Data layouts Vector
loop

SW
loop

Unroll and
Jam factors

Loop
order

O W I x y k

(REG)

128x2x16

3x3x8x16 144x4x8 294912
32-bit XYK (K/8)(C/8)SR(8)(8) (C/8)Y’X’(8) k x 1 2 1 kyx
16-bit KYX K(C/2)SR(2) (C/2)Y’X’(2) x x 1 1 1 yxk

5x5x8x16 144x6x8 819200
32-bit KYX KCSR CY’X’ x x 1 1 1 kyx
16-bit KYX K(C/2)SR(2) (C/2)Y’X’(2) x x 1 2 1 kyx

7x7x8x16 144x8x8 1605632
32-bit KYX KCSR CY’X’ x x 1 2 1 kyx
16-bit KYX K(C/2)SR(2) (C/2)Y’X’(2) x x 1 2 1 kyx

(PW) 1x1x8x16 144x2x8 32768
32-bit XYK (K/8)(C/8)SR(8)(8) (C/8)Y’X’(8) k x 1 2 1 kyx
16-bit YXK (K/16)SR(C/2)(16)(2) Y’X’C k k 1 2 1 xyk

(SS)
1x3x8x16 144x4x8 98304

32-bit XYK (K/8)(C/8)SR(8)(8) (C/8)Y’X’(8) k p 1 2 1 kyx
16-bit KYX K(C/2)SR(2) (C/2)Y’X’(2) x x 1 2 1 kyx

3x1x8x16 144x2x8 98304
32-bit XYK (K/8)(C/8)SR(8)(8) (C/8)Y’X’(8) k x 1 1 1 kyx
16-bit YXK (K/16)SR(C/2)(16)(2) Y’X’C k k 1 2 1 xyk

(DS) 3x3x16x16 144x4x16 36864
32-bit KYX KCSR CY’X’ x x 1 2 1 kyx
16-bit KYX KCSR CY’X’ x x 1 2 1 kyx

(FC) 4096x1x1 1x1x8x4096 16x1x8 32768
32-bit XYK (K/8)(C/8)SR(8)(8) (C/8)Y’X’(8) k k 1 1 1 kyx
16-bit YXK (K/16)SR(C/2)(16)(2) Y’X’C k k 1 1 1 xyk

for weights in 16-bit PW-1x1). Manually identifying such a

data layout and writing the corresponding intrinsic-based code

is exceptionally challenging and error-prone, even for experts,

thereby demonstrating the benefits of our automatic approach.

The FC workload in our evaluation has lower arithmetic

intensity (because it lacks convolutional reuse) and lies on the

left side of the inflection point of the roof-line graph of the

AI engine, indicating memory-bound execution. The workload

peak performance based on its arithmetic intensity is 21.22

MACs/cycle, and our approach achieved 75% of the peak.

Overall, our evaluation over all the workloads shows geo-

metric means of 7.6 and 24.2 MACs/cycle for 32-bit and 16-

bit operands (which represent 95.9% and 75.6% of the peak

performance respectively). This difference in efficiency is not

surprising, since it is more challenging to utilize two columns

in the SIMD data path in the case of 16-bit operands, compared

to a single column in the case of 32-bit operands. However,

the absolute performance in the 16-bit case is still significantly

higher than the 32-bit case, despite a lower efficiency.

V. RELATED WORK

The Halide framework [9] for image processing pipelines

have been shown to improve the productivity of application

programmers, while generating high-performance code for a

variety of architectures, including CPUs, GPUs, and FPGAs.

Recently, Vocke et al. [32] extended the Halide framework to

support specialized Digital Signal Processors (DSPs) of the

Intel Imaging Processing Units (IPUs). Furthermore, Halide

has the support for the Hexagon Vector eXtensions (HVX) on

the Qualcomm Hexagon DSP processors. However, none of

the above prior work addresses the 2D SIMD datapaths and

shuffle network, which are unique to the AI Engine. To the

best of our knowledge, the only prior work on auto-vectorizing

for a 2D SIMD datapath is the work by Dasika et al. [2] for

the PEPSC’s architecture, where the authors have proposed a

greedy compiler approach to identify fusible vector operations.

Exploiting vector register reuse (including partial reuse)

on SIMD units is a vital optimization to achieve high-

performance, and prior work exploited the reuse by shuf-

fling the vector registers using the data manipulation/shuffle

units [33]–[35]. However, our approach constructs a larger

vector load covering the loads having the reuse and uses

the AI Engine’s unique shuffle network to select the desired

elements. Furthermore, our approach uses the shuffle network

to address the unaligned vector loads and scalar broadcasts

without requiring any additional hardware support.

The vector codes generated by our approach can be viewed

as high-performance primitives for a single AI Engine. These

primitives will be composed and integrated by a high-level

compiler to run larger tensor convolutions across multiple AI

Engines. Some of the prior works that have followed the sim-

ilar strategy of automating the library/primitive development

for the performance-critical kernels are SPIRAL [36] for the

domain of linear transforms, ATLAS [37] for the basic linear

algebra subroutines (BLAS), and FFTW [38] for the discrete

Fourier transforms.

VI. CONCLUSIONS & FUTURE WORK

In this work, we introduced Vyasa, a high-level program-

ming system built on the Halide framework, to generate high-

performance vector codes for the tensor convolutions onto the

Xilinx Versal AI Engine. Our proposed multi-step compiler

approach leverages the AI Engine’s unique capabilities of the

2D SIMD datapath and the shuffle interconnection networks

to achieve close to the peak performance for various work-

loads. Manually identifying best schedules and writing the

corresponding intrinsic-based code is exceptionally challeng-

ing and error-prone, even for experts, thereby demonstrating

the benefits of our automatic approach. Our results show a

geometric mean of 7.6 and 24.2 MACs/cycle for 32-bit and

16-bit operands (which represent 95.9% and 75.6% of the

peak performance respectively). In the future, we plan to

extend our system to other computationally expensive linear

algebra kernels. We also plan to integrate the generated high-

performance codes into a high-level compiler to run larger

tensor convolutions across multiple AI Engines.
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