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Abstract. The evaluation of machine learning algorithms in biomedical fields for 
applications involving sequential data lacks both rigor and standardization. Com-
mon quantitative scalar evaluation metrics such as sensitivity and specificity can 
often be misleading and not accurately integrate application requirements. Eval-
uation metrics must ultimately reflect the needs of users yet be sufficiently sen-
sitive to guide algorithm development. For example, feedback from critical care 
clinicians who use automated event detection software in clinical applications has 
been overwhelmingly emphatic that a low false alarm rate, typically measured in 
units of the number of errors per 24 hours, is the single most important criterion 
for user acceptance. Though using a single metric is not often as insightful as 
examining performance over a range of operating conditions, there is, neverthe-
less, a need for a single scalar figure of merit. 

In this chapter, we discuss the deficiencies of existing metrics for a seizure de-
tection task and propose several new metrics that offer a more balanced view of 
performance. We demonstrate these metrics on a seizure detection task based on 
the TUH EEG Seizure Corpus. We introduce two promising metrics: (1) a meas-
ure based on a concept borrowed from the spoken term detection literature, Ac-
tual Term-Weighted Value, and (2) a new metric, Time-Aligned Event Scoring 
(TAES), that accounts for the temporal alignment of the hypothesis to the refer-
ence annotation. We demonstrate that state of the art technology based on deep 
learning, though impressive in its performance, still needs significant improve-
ment before it will meet very strict user acceptance guidelines. 

Keywords: Electroencephalogram, EEGs, scoring, evaluation metrics, machine 
learning, seizure detection 

1 Introduction 

Electroencephalograms (EEGs) are the primary means by which physicians diagnose 
and manage brain-related illnesses such as epilepsy, seizures and sleep disorders [1]. 
Automatic interpretation of EEGs by computer has been extensively studied for the past 
40 years [2]-[6] with mixed results. Even though many published research systems re-
port impressive levels of accuracy, widespread adoption of commercial technology has 
yet to happen in clinical settings primarily due to the high false alarm rates of these 
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systems [7]-[9]. In this chapter, we investigate the gap in performance between research 
and commercial technology and discuss how these perceptions are influenced by a lack 
of a standardized scoring methodology. 

There are in general two ways to evaluate machine learning technology: user ac-
ceptance testing [10][11] and objective performance metrics based on annotated refer-
ence data [12][13]. User acceptance testing is slow, time-consuming and expensive. It 
has never been a practical way to guide technology development because algorithm 
developers need rapid turnaround times on evaluations. Hence evaluations using objec-
tive performance metrics, such as sensitivity and specificity, are common in the ma-
chine learning field [14]-[16]. When using objective performance metrics, it is very 
important to have a rich evaluation dataset and a performance metric that correlates 
well with user and application needs. The metric must have a certain level of granularity 
so that small differences in algorithms can be investigated and parameter optimizations 
can be evaluated. For example, in speech recognition applications, word error rate has 
been used for many years because it correlates well with user acceptance testing but 
provides the necessary level of granularity to guide technology development. Despite 
many years of research focused on finding better performance metrics [17][18], word 
error rate remains a valid metric for technology development and assessment in speech 
recognition.  

Sequential pattern recognition applications, such as speech recognition, keyword 
search or EEG event detection, require additional considerations. Data are not simply 
assessed with an overall judgment (e.g., “did a seizure occur somewhere in this file?”). 
Instead, the locality of the hypothesis must be considered – to what extent did the start 
and end times of the hypothesis match the reference transcription. This is a complex 
issue since a hypothesis can partially overlap with the reference annotation, and a con-
sistent mechanism for scoring such events must be adopted. 

Unfortunately, there is no such standardization in the EEG literature. For example, 
Wilson et al. [4] advocates using a term-based metric involving sensitivity and speci-
ficity. A term was defined as a connection of consecutive decisions of the same type of 
event. A hypothesis is counted as a true positive when it overlaps with one or more 
reference annotations. A false positive corresponds to an event in which a hypothesis 
annotation does not overlap with any of the reference annotations. Kelly et al. [19] 
recommends using a metric that measures sensitivity and false alarms. A hypothesis is 
considered a true positive when time of detection is within two minutes of the seizure 
onset. Otherwise it is considered a false positive. Baldassano et al. [20] uses an epoch-
based metric that measures false positive and negative rates as well as latency. The 
development, evaluation and ranking of various machine learning approaches is highly 
dependent on the choice of a metric. 

A large class of bioengineering problems, including seizure detection, involve pre-
diction as well as classification. In prediction problems, we are often concerned with 
how far in advance of an event we can predict an outcome. The accuracy of a prediction 
varies with latency. By convention, we refer to negative latency as prediction before 
the event has occurred. Positive latency means a system outputs a hypothesis after an 
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event has occurred. It is not uncommon for machine learning systems to have signifi-
cant amounts of latency – often tens of seconds for seizure detection. Similarly, predic-
tion of a seizure before the seizure has occurred is an extremely valuable technology 
with far-reaching clinical implications if the onset of a seizure can be predicted long in 
advance (e.g., tens of minutes) of the actual event. This gives healthcare providers a 
chance to perform a medical intervention as well as allows the patient to make neces-
sary preparations for a medical emergency. 

 Measuring performance as a function of latency adds some complexity to the pro-
cess. Winterhalder et al. [21] have studied this problem extensively and argue for scor-
ing based on long-term considerations. In this chapter, we are not concerned with these 
types of prediction problems. We are focused mainly on assessing the accuracy of clas-
sification of events and assessing the proximity of these classifications to the actual 
event. We refer to this as time-aligned scoring. 

Therefore, in this chapter, we analyze several popular scoring metrics and discuss 
their strengths and weaknesses on sequential decoding problems. We introduce several 
alternatives, such as the Actual Term-Weighted Value (ATWV) [22][23] and Time-
Aligned Event Scoring (TAES), and discuss their relevance to the seizure detection 
problem. We present a comparison of performance for several systems using these met-
rics and discuss how this correlates with a proxy for overall user acceptance involving 
a combination of sensitivity and false alarm rate. 

Comparing systems using a single operating point is, of course, not always correct. 
It is quite possible the systems are simply operating at different points on what is known 
as their Receiver Operating Characteristic (ROC) curve. This was a problem well-stud-
ied in the mid-1960’s with the emergence of communication theory [15]. In machine 
learning, we often prefer to analyze systems using a Detection Error Tradeoff (DET) 
curve [23]-[25] . These curves provide a holistic view of performance but make it dif-
ficult to tune a system at a specific operating point. We will also briefly discuss holistic 
measures based on DET analysis. 

2 Basic Error Measures and Relevant Derived Measures 

Researchers in biomedical fields typically report performance in terms of sensitivity 
and specificity [26]. In a two-class classification problem such as seizure detection, it 
is common to characterize performance in terms of four based error measures: 

• True Positives (TP):  the number of ‘positives’ detected correctly 
• True Negatives (TN): the number of ‘negatives’ detected correctly 
• False Positives (FP): the number of ‘negatives’ detected as ‘positives’ 
• False Negatives (FN): the number of ‘positives’ detected as ‘negatives’  

False positives, also known as type I errors, play a very important role in sequential 
decoding applications since they tend to dominate performance considerations. 
Throughout this chapter, we will quantify, or normalize, false positives by using the 
false alarm (FA) rate, which is simply the number of false positives divided by the total 
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amount of data measured in units of time. We typically compute FAs/24	ℎ𝑟𝑠 – the 
number of false alarms per day. This is a useful figure of merit for critical care appli-
cations in healthcare. 

There are a large number of measures derived from these four basic quantities that 
are appear extensively in the sequential decoding literature. These are summarized con-
cisely in [27]. For example, in information retrieval applications, systems are often 
evaluated using: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	(𝑅𝑒𝑐𝑎𝑙𝑙) = 	 (𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄ ) , (1) 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	(𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) = 	 (𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄ )	,		 (2)	
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =	((𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃)⁄ )	,		 (3)	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =	 (𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄ )	.	 (4) 

More recently, integrated measures such as the F1 score and the Matthews correlation 
coefficient (MCC) [28] have become popular for tasks ranging from information re-
trieval to binary classification: 

𝐹1 =	 ((2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)⁄ )	,	 (5) 

𝑀𝐶𝐶 = D(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)F GD(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)FH 	.	 (6)	

In the field of machine translation, the bilingual evaluation understudy (BLEU) metric, 
which measures the similarity between two strings of text, was one of the first objective 
evaluation metrics to claim a high correlation with human judgements of quality [29]. 

However, none of these measures address the time scale over which the scoring must 
occur, which is critical in the interpretation of these measures for many real-time bio-
engineering applications. When the time alignment of the reference event and the hy-
pothesized event is important, and spurious hypotheses play a critical role in overall 
system performance, evaluation metrics must take into account the accuracy of the start 
time and end time of these detected events. We refer to this as the temporal localization 
problem. Accurate temporal localization is critical if sequential decoding technology is 
to be successfully applied in clinical settings.  

In some applications, it is preferable to score every unit of time. With multichannel 
signals, such as EEGs, scoring for each channel for each unit of time is appropriate 
since significant events such as seizures occur on a subset of the channels present in the 
signal. However, it is more common in the literature to simply score a summary deci-
sion per unit of time that is based on an aggregation of the per-channel inputs (e.g., a 
majority vote). We refer to this type of scoring as epoch-based [30][31]. 

An alternative, that is more common in speech and image recognition applications, 
is term-based [23][32], in which we consider the start and stop time of the event, and 
each event identified in the reference annotation is counted once. There are fundamental 
differences between the two conventions. For example, one event containing many 
epochs will count more heavily in an epoch-based scoring scenario. Epoch-based scor-
ing generally weights the duration of an event more heavily since each unit of time is 
assessed independently. 
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Time-aligned scoring is essential to the evaluation of sequential decoding systems. 
But to implement such scoring in a meaningful way, there needs to be universal agree-
ment on how to assess overlap between the reference and the hypothesis. For example, 
Figure 1 demonstrates a typical issue in scoring. The machine learning system correctly 
detected 5 seconds of an event 10 seconds in duration. Essentially 50% of the event is 
correctly detected, but how that is reflected in the scoring depends on the specific met-
ric. Epoch-based scoring with an epoch duration of 1	𝑠𝑒𝑐 would count 5 FN errors and 
5 TP detections. Term-based scoring would potentially count this as a correct recogni-
tion depending on the way overlaps are scored.  

Term-based metrics score on an event basis and do not count individual frames. A 
typical approach for calculating errors in term-based scoring is the Any-Overlap 
Method (OVLP) [5][33]. TPs are counted when the hypothesis overlaps with the cor-
responding event in the reference annotation. FPs correspond to situations in which a 
hypothesis does not overlap with the corresponding event in the reference. The metric 
ignores the duration of the term in the reference annotation. In Figure 2, we demonstrate 
two extreme cases for which the OVLP metric fails. In each case, 90% of the event is 
incorrectly scored. In Example 1, the system does not detect approximately 9 seconds 

 
Figure 1. A hypothesis (HYP) has a 50% overlap with the reference (REF). 

 
Figure 2. TP scores for the Any-Overlap method are 100% even though large portions of the 
event are miss (Example 1) or false alarm (Example 2). 



Shah et al.: Objective Evaluation Metrics… Page 6 of 34 

IEEE SPMB 2019 v2.0: October 1, 2020 

of a seizure event, while in Example 2, the system incorrectly labels an additional 9 sec-
onds of time as seizure. OVLP is considered a very permissive way of scoring, resulting 
in artificially high sensitivities. In Figure 2, the OVLP metric will score both examples 
as 100% TP. These kinds of significant differences in scoring, and in the interpretation 
of the results, necessitate a deeper look at the characteristics of several popular evalua-
tion metrics, and motivate the need for industry-wide standardized scoring. That is the 
focus of this book chapter. 

3 Evaluation Metrics 

The proper balance between sensitivity and FA rate is often application specific and 
has been studied extensively in a number of research communities. For example, eval-
uation of voice keyword search technology was carefully studied in the Spoken Term 
Detection (STD) evaluations conducted by the National of Standards and Technology 
(NIST) [22][23][34]. These evaluations resulted in the introduction of a single metric, 
ATWV, to address concerns about tradeoffs for the different types of errors that occur 
in voice keyword search systems. Despite being popular in the voice processing com-
munity, ATWV has not been widely used outside the voice processing community. 

Therefore, in this chapter, we present a detailed comparison of five important scoring 
metrics popular in a wide range of machine learning communities. These are briefly 
described below: 
1. NIST Actual Term-Weighted Value (ATWV): based on NIST’s popular scoring package 

(F4DE v3.3.1), this metric, originally developed for the NIST 2006 Spoken Term Detec-
tion evaluation, uses an objective function that accounts for temporal overlap between the 
reference and hypothesis using the detection scores assigned by the system. 

2. Dynamic Programming Alignment (DPALIGN): similar to the NIST package known as 
SCLite [35], this metric uses a dynamic programming algorithm to align terms. It is most 
often used in a mode in which the time alignments produced by the system are ignored. 

3. Epoch-Based Sampling (EPOCH): treats the reference and hypothesis as temporal sig-
nals, samples each at a fixed epoch duration, and counts errors accordingly. 

4. Any-Overlap (OVLP): assesses the overlap in time between a reference and hypothesis 
event, and counts errors using binary scores for each event.  

5. Time-Aligned Event Scoring (TAES): similar to (4) but considers the percentage overlap 
between the two events and weights errors accordingly. 

It is important to understand that each of these measures estimates TP, TN, FP and FN 
through some sort of error analysis. From these estimated quantities, traditional 
measures such as sensitivity and specificity are computed, as shown in Eqs. (1)-(6). As 
a result, we will see that sensitivity is a function of the underlying metric, and this is 
why it is important there be community-wide agreement on a specific metric. 

We also include two derived measures in our analysis: 
6. Inter-Rater Agreement (IRA): uses EPOCH scoring to estimate errors, and calculates Co-

hen’s Kappa coefficient [31] using the measured TP, TN, FP and FN. 
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7. Area Under the Curve (AUC): Reduces a ROC or DET curve to a single scalar figure of 
merit by measuring the area encompassed by the curve. 

IRA is popular for comparing the variability in human annotations when manually an-
notating reference data. We consider this a derived measure because it relies on one of 
the first five measures to estimate errors. Similarly, AUC relies on the generation of an 
ROC or DET curve, which in turn depend on one of the first five measures to estimate 
errors. 

We now briefly describe each of these approaches and provide several examples that 
illustrate their strengths and weaknesses. These examples are drawn on a compressed 
timescale for illustrative purposes and were carefully selected because they demonstrate 
the strengths and weaknesses of the algorithms we are evaluating. 

3.1 NIST Actual Term-Weighted Value (ATWV) 

ATWV is a measure that balances sensitivity and FA rate. ATWV essentially assigns 
an application-dependent reward to each correct detection and a penalty to each incor-
rect detection. A perfect system results in an ATWV of 1.0, while a system with no 
output results in an ATWV of 0.0. It is possible for ATWV to be less than zero if a 
system is doing very poorly (for example a high FA rate). Experiments in voice key-
word search have shown that an ATWV greater than 0.5 typically indicates a promising 
or usable system for information retrieval by voice applications. We believe a similar 
range is applicable to EEG analysis. 

The metric accepts as input a list of N-tuples representing the hypotheses for the 
system being evaluated. Each of these N-tuples consists of a start time, end time and 
system detection score. These entries are matched to the reference annotations using an 
objective function that accounts for both temporal overlap between the reference and 
hypotheses and the detection scores assigned by the system being evaluated. These de-
tection scores are often likelihoods or confidence scores [22]. The probabilities of er-
rors due to misses and false alarms at a detection threshold 𝜃 are computed using: 

𝑃!"##(%&,() = 1 −	𝑁*+,,-./(%&,() 𝑁0-1(%&)I 	,		 (7)	

𝑃23(%&,() =
𝑁456,"+6#(%&,()

𝑁78(%&)	I ,	 (8)	

where 𝑁!"##$%&((),+) is the number of correct detections of terms with a detection score 
greater than or equal to 𝜃, 𝑁-./#0"/1((),+) is the number of incorrect detections of terms 
with a detection score greater than or equal to 𝜃, and 𝑁23(()) is the number of non-
target trials for the term 𝑘𝑤 in the data. The number of non-target trials for a term is 
related to the total duration of source signal in seconds,	𝑇-"/#%$, and is computed as 
𝑁23(()) =	𝑇-"/#%$ −𝑁4$5(()). 

A term-weighted value (TWV) is then computed that quantifies a trade-off between 
misses and FAs. ATWV is defined as the value of TWV at the system’s chosen 
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detection threshold. Using a predefined constant, 𝛽, that was optimized experimentally 
(𝛽	 = 	999.9) [23], ATWV is computed using: 
𝑇𝑊𝑉(%&,() = 1 −	𝑃!"##(%&,() −	𝛽	𝑃23(%&,()	.	 (9)	

A standard implementation of this approach is available from NIST via GitHub [35]. 

This metric has been widely used throughout the human language technology com-
munity for almost 20 years. This is a very important consideration in standardizing such 
a metric – researchers are using a common shared software implementation that ensures 
there are no subtle implementation differences in scoring software implementation be-
tween sites or researchers. There are always numerous parameters associated with this 
type of software and the only ways to make sure algorithms are producing identical 
results are (1) the existence of a common (open source) software package or (2) the 
distribution of a detailed set of regression tests that establish the equivalency of the 
implementations. The former has been a standard methodology for 40 years in the hu-
man language technology community, but the bioengineering communities have not 
quite achieved this level of standardization yet. 

To demonstrate the features of this approach, consider the case shown in Figure 3. 
The hypothesis for this segment consists of several short seizure events while the ref-
erence consists of one long event. The ATWV metric will assign a TP score of 100% 
because the midpoint of the first event in the hypothesis annotation is mapped to the 
long seizure event in the reference annotation. This is somewhat generous given that 
50% of the event was not detected. The remaining 5 events in the hypothesis annota-
tion are counted as false positives. The ATWV metric is relatively insensitive to the 
duration of the reference event, though the 5 false positives will lower the overall per-
formance of the system. The important issue here is that the hypothesis correctly de-
tected about 70% of the seizure event, and yet because of the large number of false 
positives, it will be penalized heavily.  

In Figure 4 we demonstrate a similar case in which the metric penalizes the hypoth-
esis for missing three seizure events in the reference. Approximately 50% of the seg-
ment is correctly identified. Scoring that penalizes repeated events that are part of a 
larger event in the reference makes sense in an application like voice keyword search 
because in human language each word hypothesis serves a unique purpose in the overall 
understanding of the signal. However, for a two-class event detection problem such as 
seizure detection, such scoring too heavily penalizes a hypothesis for splitting a long 
event into a series of short events. 

3.2 Dynamic Programming Alignment (DPALIGN) 

The DPALIGN metric essentially performs a minimization of an edit distance (the 
Levenshtein distance) [12] to map the hypothesis onto the reference. DPALIGN deter-
mines the minimum number of edits required to transform the hypothesis string into the 
reference string. Given two strings, the source string 𝑋	 = 	[𝑥6, 𝑥7, . . . , 𝑥8] of length 𝑛, 
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and target string 𝑌	 = 	[𝑦6, 𝑦7, . . . , 𝑦9]  of length 𝑚, we define 𝑑0,:, which is the edit 
distance between the substring 𝑥6: 𝑥0 and 𝑦6: 𝑦:, as: 

	𝑑",: =	O
𝑑";<,: + 𝑑𝑒𝑙
𝑑",:;< + 𝑖𝑛𝑠
𝑑";<,:;< + 𝑠𝑢𝑏

	.	 (10)	

The quantities being measured here are often referred to as substitution (sub), insertion 
(ins) and deletion (del) penalties. For this study, these three penalties are assigned equal 
weights of 1.0. A dynamic programming algorithm is used to find the optimal align-
ment between the reference and hypothesis based on these weights. Though there are 
versions of this metric that perform time-aligned scoring in which both the reference 
and hypothesis must include start and end times, this metric is most commonly used 
without time alignment information.  

The metric is best demonstrated using the two examples shown in Figure 5. In the 
first example, the reference annotation has a series of 7 events, while the hypothesis 
contains 5 events. The hypothesis substitutes background for the second seizure event, 
omits the third seizure event and the last background event. Hence, there are a total of 

 
Figure 3. ATWV scores this segment as 1 TP and 5 FPs. 

 
Figure 4. ATWV scores this segment as 0 TP and 3 FN events. 

Ref: bckg seiz SEIZ SEIZ bckg seiz bckg 
Hyp: bckg seiz BCKG **** bckg seiz **** 

(Hits: 4 Sub: 1 Ins: 0 Del: 2 Total Errors: 3) 

Ref: bckg seiz BCKG **** bckg seiz **** 
Hyp: bckg seiz SEIZ SEIZ bckg seiz bckg  

(Hits: 4 Sub: 1 Ins: 2 Del: 0 Total Errors: 3) 

Figure 5. DPALIGN aligns symbol sequences based on edit distance, ignoring the actual time 
alignments present in the reference annotation and the system output. 
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three errors: two deletions and one substitution. In the second example, the reference 
annotation and hypothesis have been swapped to demonstrate the symmetry of the error 
calculations. The hypothesis generated two insertions and one substitution. 

In practice, there are often multiple alignments that makes sense based only on the 
labels associated with the annotations. As long as the algorithm is consistent about its 
choices, scoring will be fine. To accurately resolve such ambiguities, the actual end-
points of the hypotheses must be compared to the endpoints in the reference annota-
tions. NIST distributes the ability to score this way, often referred to as time-aligned 
scoring, in their open source package [35]. But this scoring mode is a little more com-
plicated from a data interface point of view and has not been as popular. Though this 
type of scoring might at first seem highly inaccurate since it ignores time alignments of 
the hypotheses, it has been surprisingly effective in scoring machine learning systems 
in sequential data applications (e.g., speech recognition) [12][16][23]. 

3.3 Epoch-Based Sampling (EPOCH) 

Epoch-based scoring uses a metric that treats the reference and hypothesis as signals. 
These signals are sampled at a fixed frame rate, or epoch, duration. The corresponding 
label in the reference is compared to the hypothesis. Similar to DPALIGN, substitu-
tions, deletions and insertion errors are tabulated with an equal weight of 1.0 for each 
type of error. This process is depicted in Figure 6. Epoch-based scoring requires that 
the entire signal be annotated (every second of the signal must be accounted for in the 
reference and hypothesis annotations), which is normally the case for sequential decod-
ing evaluations. It attempts to account for the amount of time the two annotations over-
lap, so it directly addresses the inconsistencies demonstrated in Figures 3 and 4. 

One important parameter to be tweaked in this algorithm is the frequency with which 
we sample the two annotations, which we refer to as the scoring epoch duration. The 
scoring epoch duration is ideally set to an amount of time smaller than the unit of time 
used by the classification system to make decisions. For example, the hypothesis in 
Figure 6 contains decisions made for every 1	𝑠𝑒𝑐 of data. The scoring epoch duration 
should be set less than 1	𝑠𝑒𝑐. We set this parameter to 0.25	𝑠𝑒𝑐𝑠 for most of our work 
because our analysis system epoch duration is typically 1	𝑠𝑒𝑐. We find in situations 
like this the results are not overly sensitive to the choice of the scoring epoch duration 

 
Figure 6. EPOCH scoring directly measures the similarity of the time-aligned annotations. TP, 
FN and FP are 5, 2 and 1 respectively. 
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as long as it is below the frame rate of the classification system, which is 1	𝑠𝑒𝑐 in this 
case. This parameter simply controls the precision used to assess the accuracy of seg-
ment boundaries.  

Because EPOCH scoring samples the annotations at fixed time intervals, it is inher-
ently biased to weigh long seizure events more heavily. For example, if a signal con-
tains one extremely long seizure event (e.g., 1000	𝑠𝑒𝑐𝑠) and two short events (e.g., 
each 10	𝑠𝑒𝑐𝑠 in duration), the accuracy with which the first event is detected will dom-
inate the overall scoring. Since seizure events can vary dramatically in duration, this is 
a cause for concern. 

3.4 Any-Overlap Method (OVLP) 

In Section 2, we briefly introduced the OVLP metric and indicated it was a popular 
choice in the neuroengineering community [5][33]. OVLP is a more permissive metric 
that tends to produce much higher sensitivities. If an event is detected in close proximity 
to a reference event, the reference event is considered correctly detected. If a long event 
in the reference annotation is detected as multiple shorter events in the hypothesis, the 
reference event is also considered correctly detected. Multiple events in the hypothesis 
annotation corresponding to the same event in the reference annotation are not typically 
counted as FAs. Since the FA rate is a very important measure of performance in critical 
care applications, this is another cause for concern. 

The OVLP scoring method is demonstrated in Figure 7. It has one significant tunable 
parameter – a guard band that controls the degree to which a misalignment is still con-
sidered as a correct match. In this study, we use a fairly strict setting for this parameter – 
1	𝑚𝑠. This has the effect of requiring some overlap between the two events in time – 

 
Figure 7. OVLP scoring is very permissive about the degree of overlap between the reference 
and hypothesis. The TP score for Example 1 is 1 with no false alarms. In Example 2, the system 
detects 2 out of 3 seizure events, so the TP and FN scores are 2 and 1 respectively.  
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essentially a guard band of zero. The guard band needs to be tuned based on the needs 
of the application. Sensitivity generally increases as the guard band is increased. 

3.5 Time-Aligned Event Scoring (TAES) 

Though EPOCH scoring directly measures the amount of overlap between the anno-
tations, there is a possibility that this metric also too heavily weighs single long events. 
Seizure events can vary in duration from a few seconds to several minutes (a seizure 
that lasts longer than five minutes is considered a medical emergency). In some appli-
cations, correctly detecting the number of events is as important as their duration. 

In machine learning, the Jaccard Index [36] is widely used for the analysis of such 
overlapping events. The Jaccard index is the ratio between the intersection and the un-
ion of two events. However, this metric lacks the ability to specify the degree of the 
misses and false alarms separately. Hence, since the FA rate is of great interest in bio-
engineering applications, the TAES metric was designed to tabulate these errors sepa-
rately. The essential parameters for calculation of sensitivity and specificity such as TP, 
TN and FP for the TAES scoring metric are defined as follows: 

𝑇𝑃 = =!"#$;=!"%&"
0-1'(&

, 𝑤ℎ𝑒𝑟𝑒	𝑅#/>,/ 	≤ 𝐻	 ≤ 	𝑅#/+5	,	 (11)  

𝑇𝑁 = <;(8=!"#$;8=!"%&")
0-1'(&

, 𝑤ℎ𝑒𝑟𝑒	𝑅#/>,/ 	≤ 𝐻	 ≤ 	𝑅#/+5	,  (12) 

𝐹𝑃 =

⎩
⎨

⎧
=!"#$;	0!"#$
0-1'(&

, 𝑖𝑓	𝐻#/+5 ≥	𝑅#/+5, 	𝐻#/>,/ ≥	𝑅#/>,/	𝑎𝑛𝑑	𝐻#/+5 −	𝑅#/+5 ≤ 1,
0!"%&";	=!"%&"

0-1'(&
, 𝑖𝑓	𝑅#/>,/ ≥ 	𝐻#/>,/, 	𝑅#/+5 ≥	𝐻#/+5	𝑎𝑛𝑑	𝑅#/>,/ −	𝐻#/>,/ ≤ 1,

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

	 (13) 

where 𝐻 and 𝑅 represent the reference and hypothesis events respectively, and 𝑅𝑒𝑓;/# 
represents the duration of the reference events. 

TAES gives equal weight to each event, but it calculates a partial score for each 
event based on the amount of overlap. The TP score is the total duration of a detected 
term divided by the total duration of the reference term. The FN score is the fraction of 
the time the reference term was missed divided by the total duration of the reference 
term. The FP score is the total duration of the inserted term divided by total amount of 
time this inserted term was incorrect according to the reference annotation. FPs are 
limited to a maximum of 1 per event. Therefore, like TP and FN, a single FP event 
contributes only a fractional amount to the overall FP score if it correctly detects a 
portion of the same event in the reference annotation (partial overlap). Moreover, if 
multiple reference events are detected by a single long hypothesis event, all but the first 
detection are considered as FNs. These properties of the metric help manage the 
tradeoff between sensitivity and FAs by balancing the contributions from short and long 
duration events. An example of TAES scoring is depicted in Figure 8. 
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3.6 Inter-Rater Agreement (IRA) 

Inter-rater agreement (IRA) is a popular measure when comparing the relative sim-
ilarity of two annotations. We refer to this metric as a derived metric since it is com-
puted from error counts collected using one of the other five metrics. IRA is most often 
measured using Cohen’s Kappa coefficient [37], which compares the observed accu-
racy with the expected accuracy. It is computed using: 

𝜅 =	 5);5*
<;5*

,		 (14)	

where 𝑝"	is the relative observed agreement among raters and 𝑝$ is the hypothetical 
probability of chance agreement. 

The range of the Kappa coefficient is [−1, 	1] where 𝜅 = 1	corresponds to complete 
agreement and	𝜅	 = −1 which corresponds to no agreement. It has been used exten-
sively to assess inter-rater agreement for experts manually annotating seizures in EEG 
signals. Values in the range of 0.5 ≤ 𝜅	 ≤ 	0.8 are common for these types of assess-
ments [38]. The variability amongst experts mainly involves fine details in the annota-
tions, such as the exact onset of a seizure. These kinds of details are extremely important 
for machine learning and hence we need a metric that is sensitive to small variations in 
the annotations. For completeness, we use this measure as a way of evaluating the 
amount of agreement between two annotations. 

3.7 A Brief Comparison of Metrics 

A simple example of how these metrics compare on a specific segment of a signal is 
shown in Figure 9. A 10	𝑠𝑒𝑐 section of an EEG signal is shown subdivided into 1	𝑠𝑒𝑐 

 
Figure 8. TAES scoring accounts for the amount of overlap between the reference and hypothe-
sis. TAES scores Example 1 as 0.71 TP, 0.29 FN and 0.14 FP. Example 2 is scored as 1 TP, 
1 FN and 1 FP. 

 

 

 
Figure 9. An example that summarizes the differences between scoring metrics 

 



Shah et al.: Objective Evaluation Metrics… Page 14 of 34 

IEEE SPMB 2019 v2.0: October 1, 2020 

segments. The reference has three isolated events. The system being evaluated outputs 
one hypothesis that starts in the middle of the first event and continues through the 
remaining two events. 

ATWV scores the system as 1 TP and 2 FNs since it assigns the extended hypothesis 
event to the center reference event and leaves the other two undetected. The ATWV 
score is 0.33 for seizure events, 0.25 for background events, resulting in an average 
ATWV of 0.29. The sensitivity and FA rates for seizure events for this metric are 33% 
and 0 per 24	ℎ𝑟𝑠. respectively. 

DPALIGN scores the system the same way since time alignments are ignored and 
the first event in each annotation are matched together, leaving the other two events 
undetected. 

The EPOCH method scores the alignment 5 TP, 3 FP and 1 FN using a 1	𝑠𝑒𝑐 epoch 
duration because there are 4  epochs for which the annotations do not agree and 
5 epochs where they agree. The sensitivity is 83.33% and the FA rate per 24	ℎ𝑟𝑠 is 
very high because of the 3 FPs. 

The OVLP method scores the segment as 3 TP and 0 FP because the detected events 
have partial to full overlap with all the reference events, giving a sensitivity of 100% 
with an FA rate of 0. TAES scores this segment as 0.5 TP and 2.5 FN because the first 
event is only 50% correct and there are FN errors for the 5th to 7th and 9th epochs (an 
example of multiple overlapping reference events), giving a sensitivity of 16.66% and 
a corresponding high FA rate. 

IRA for seizure events evaluated using Cohen’s Kappa statistic is 0.09 for this ex-
ample because there are essentially 4 errors for 4 seizure events. IRAs below 0.5 indi-
cate a poor match between the reference and the hypothesis. 

It is difficult to conclude from this example which of these measures are most ap-
propriate for EEG analysis. However, we see that ATWV and DPALIGN generally 
produce similar results. The EPOCH metric produces larger counts because this metric 
samples time rather than events. OVLP produces a high sensitivity while TAES pro-
duces a low sensitivity but a relatively higher FA rate. In the next section we conduct a 
more rigorous evaluation of these metrics using the output of several automatic seizure 
detection systems. 

4 Evaluation 

In order to evaluate the behavior of our scoring metrics, we analyzed the perfor-
mance of several machine learning systems on a seizure detection task. We briefly in-
troduce the TUH Seizure Detection Corpus. Next we introduce 5 different hybrid ma-
chine learning architectures based on deep learning principles. We then conduct a very 
detailed statistical analysis of the performance of these systems using the scoring met-
rics introduced in Section 3.  
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4.1 The TUH EEG Seizure Corpus 

To demonstrate the differences between these metrics on a realistic task, we have 
evaluated a range of machine learning systems on a seizure detection task based on the 
TUH EEG Seizure (TUSZ) Corpus [39]. This is a subset of the TUH EEG Corpus de-
veloped at Temple University [40] that has been manually annotated. An overview of 
the corpus is given in Table 1. This is the 
largest open source corpus of its type. It 
consists of clinical data collected at 
Temple University Hospital. TUSZ rep-
resents a very challenging machine 
learning task because it contains a rich 
variety of common real-world problems 
(e.g. patient movements and artifacts) 
found in clinical data as well as various 
types of seizures (e.g., absence, tonic-
clonic). It is worth noting that seizure 
data represents an extremely unbalanced 
data set – only about 8% of the data are 
annotated as seizure events. 

The version of the seizure database used for this study was v1.1.1 which contains 
196 patients in the training set and 50 patients in the evaluation set, making it adequate 
to accurately assess fine differences in algorithm performance for machine learning 
algorithms. Although this database provides event-based as well as term-based annota-
tions, for our study we only used the term–based annotations: a single decision is made 
at each point in time based on examination of all channels. Though annotations are 
channel-based (each channel is annotated independently), these annotations are aggre-
gated to produce a single decision at each point in time. More information about the 
annotation process is available in Ochal et al. [41]. 

4.2 Machine Learning Architectures 

For EEG signals, it is appropriate to use algorithms which can learn spatial as well 
as temporal context efficiently. Sequential algorithms such as hidden Markov models 
(HMMs), recurrent neural networks (RNNs) and convolutional neural networks 
(CNNs) are perfect candidates as the building blocks of the recognition system. We 
developed five different hybrid networks which use these algorithms in their system 
design so that we had a variety of classification algorithms represented in our study. A 
general architecture for the five machine learning systems evaluated is shown in Fig-
ure 10.  

The first step in this architecture is to convert an EEG signal, typically stored in a 
European Data Format (EDF) file [42], to a sequence of feature vectors. Linear Fre-
quency Cepstral Coefficients features [43] are created using a 0.1	𝑠𝑒𝑐 frame duration 
and a 0.2	𝑠𝑒𝑐 analysis window for each channel. We use the first 7 cepstral coefficients 

Table 1. The TUSZ Corpus (v1.1.1) 

Description Train Eval 
Patients 196 50 
Sessions 456 230 
Files 1,505 984 

No. Seizure Events 870 614 
Seizure (secs) 51,140 53,930 

Non-Seizure (secs) 877,821 547,728 
Total (secs) 928,962 601,659 
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along with their first and second derivatives. We add several energy terms which bring 
the total feature vector dimension to 26. Attempts to circumvent the feature extraction 
process by using a deep learning-based approach have not produced significantly better 
results than these model-based features.  

A group of frames are classified into an event on a per-channel basis using a combi-
nation of deep learning networks. The deep learning system essentially looks across 
multiple epochs, which we refer to as temporal context, and multiple channels, which 
we refer to as spatial context, since each channel is associated with a location of an 
electrode on a patient’s scalp. There are a wide variety of algorithms that can be used 
to produce a decision from these inputs. Even though seizures occur on a subset of the 
channels input to such a system, we focus on a single decision made across all channels 
at each point in time. 

The five systems we included in this study were carefully selected because they rep-
resent a range of performance that is representative of state of the art on this task and 
because these systems exhibit different error modalities. The performance of these sys-
tems is sufficiently close so that the impact of these different scoring metrics becomes 
apparent. The systems selected are briefly described below. 

(1) HMM/SdA[44]: a hybrid system consisting of a hidden Markov model (HMM) 
decoder and a postprocessor that uses a Stacked Denoising Autoencoder (SdA). 
An N-channel EEG was transformed into N independent feature streams using a 
standard sliding window-based approach. The hypotheses generated by the 
HMMs were postprocessed using a second stage of processing that examines the 
temporal and spatial context. We apply a third pass of postprocessing that uses 
a stochastic language model to smooth hypotheses involving sequences of events 
so that we can suppress spurious outputs. This third stage of postprocessing pro-
vides a moderate reduction in the false alarm rate. 

Standard three state left-to-right HMMs with 8 Gaussian mixture components 
per state were used for sequential decoding. We divide each channel of an EEG 

 
Figure 10. A hybrid deep learning architecture that integrates temporal and spatial context 
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into 1 sec epochs, and further subdivide these epochs into a sequence of frames. 
Each epoch is classified using an HMM trained on the subdivided epoch, and 
then these epoch-based decisions are postprocessed by additional statistical 
models in a process similar to the language modeling component of a speech 
recognizer. 

The output of the epoch-based decisions was postprocessed by a deep learning 
system. The SdA network has three hidden layers with corruption levels of 0.3 
for each layer. There are 800 nodes in the first layer, 500 nodes in the second 
layer and 300 nodes in the third layer. The parameters for pre-training are: learn-
ing rate = 	0.5, number of epochs = 	150, batch size = 	300. The parameters 
for fine-tuning are: learning rate = 	0.1 , number of epochs = 	300 , batch 
size =	100. The overall result of the second stage is a probability vector of di-
mension two containing a likelihood that each label could have occurred in the 
epoch. A soft decision paradigm is used rather than a hard decision paradigm 
because this output is smoothed in the third stage of processing. 

(2) HMM/LSTM [44]: an HMM decoder postprocessed by a Long Short-Term 
Memory (LSTM) network. Like the HMM/SdA hybrid approach previously de-
scribed, the output of the HMM system is a vector of dimension: number of 
classes (2) × number of channels (22) × the window length (7) = 	308. There-
fore, we also use Principal Components Analysis (PCA) before LSTM in this 
approach to reduce the dimensionality of the data to 20. For this study, we used 
a window length of 41 for LSTM. This layer is composed of one hidden layer 
with 32 nodes. The output layer nodes in this LSTM level use a sigmoid activa-
tion function. The parameters of the models are optimized to minimize the error 
using a cross-entropy loss function. Adaptive Moment Estimation (Adam) is 
used in the optimization process. 

(3) IPCA/LSTM [44]: a preprocessor based on Incremental Principal Component 
Analysis (IPCA) followed by an LSTM decoder. The EEG features are delivered 
to an IPCA layer for spatial context analysis and dimensionality reduction. A 
batch size of 50 is used in IPCA and the output dimension is 25. The output of 
IPCA is delivered to an LSTM for classification. We used a one-layer LSTM 
with a hidden layer size of 128. A batch size of 128 was used along with Adam 
optimization and a cross–entropy loss function. 

(4) CNN/MLP[46]: a pure deep learning-based approach that uses a Convolutional 
Neural Network (CNN) decoder and a Multi-Layer Perceptron (MLP) postpro-
cessor. The network contains six convolutional layers, three max pooling layers 
and two fully-connected layers. A rectified linear unit (ReLU) non-linearity is 
applied to the output of every convolutional and fully-connected layer. 

(5) CNN/LSTM[46]: a pure deep learning-based architecture that uses a combina-
tion of CNN and LSTM networks. In this architecture, we integrate 2D CNNs, 
1D CNNs and LSTM networks to better exploit long-term dependencies. Expo-
nential Linear Units (ELU) are used as the activation functions for the hidden 
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layers. Adam is used in the optimization process along with a mean squared error 
loss function. 

The details of these systems are not critical to this study. We selected these systems 
because we needed a range of typical system performance that would expose the dif-
ferences in the scoring metrics. What is more important is how the range of performance 
is reflected in these metrics. 

A comparison of the performance is presented in Table 2. For each scoring metric, 
we provide the measured sensitivity, specificity and FA rate. For the ATWV metric, 
we also provide the ATWV score. Though the rankings of these systems vary as a func-
tion of the metric, the overall trends are accurately represented in Table 2. HMM/SdA 
generally performs the poorest of these systems, delivering a respectable sensitivity at 
a high FA rate. CNN/LSTM typically delivers the highest overall performance because 
it has a low FA rate, which is very important in this type of application. 

5 Derived Measures 

Most supervised machine learning algorithms are designed to classify labels with 
some type of bounded or unbounded confidence measure such as a posterior probability 
or a log-likelihood. Possible exceptions are nonparametric techniques such K-nearest 
neighbors and decision trees. These confidence measures allow algorithm designers to 
sweep through threshold values for the confidence measures and observe performance 

Table 2. Performance vs. scoring metric 

Metric Measure HMM/ 
SdA 

HMM/ 
LSTM 

IPCA/ 
LSTM 

CNN/ 
MLP 

CNN/ 
LSTM 

ATWV 

Sensitivity 30.35% 26.73% 24.73% 29.52% 30.34% 
Specificity 61.38% 68.93% 64.51% 65.87% 93.15% 
FA/24 hr. 98.65 75.59 94.41 94.25 12.78 
ATWV -0.8392 -0.8469 -0.4628 -0.7971 0.1737 

DPALIGN 
Sensitivity 44.11% 33.77% 35.77% 43.35% 32.46% 
Specificity 66.87% 72.99% 69.59% 71.49% 95.17% 
FA/24 hr. 86.15 66.98 81.17 77.67 10.19 

EPOCH 
Sensitivity 20.71% 50.46% 51.02% 65.03% 9.784% 
Specificity 98.22% 94.82% 94.09 91.55% 99.84% 
FA/24 hr. 1418.02 4133.34 4711.58 6738.82 125.79 

OVLP 
Sensitivity 35.35% 30.05% 32.97% 39.09% 30.83% 
Specificity 73.35% 80.53% 77.57% 76.84% 96.86% 
FA/24 hr. 77.39 60.92 73.52 77.19 6.75 

TAES 
Sensitivity 17.29% 22.84% 22.12% 31.58% 12.48% 
Specificity 66.04% 70.41% 66.64% 64.75% 95.24% 
FA/24 hr. 82.26 68.31 83.01 91.53 7.54 
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at different operating points. In this section, we analyze the performance of these sys-
tems using DET curves and derived measures such as AUC and F scores. 

5.1 Detection Error Trade-off Analysis 

Evaluating systems from a single operating point is always a bit tenuous. It is very 
difficult to compare the performance of various systems when only two values are re-
ported (e.g. sensitivity and specificity) because these systems might simply be designed 
to balance the four basic error categories differently (e.g., using a different threshold to 
reject FPs). For example, in seizure detection, the a priori probability of a seizure is 
very low, which means assessment of background events dominate the error calcula-
tions. The degree to which a system is capable of producing a seizure hypothesis will 
greatly impact its specificity. Further, sensitivity varies significantly when the FA rate 
is very low. Therefore, comparing systems that differ significantly in FA rate can be 
misleading. Often, we prefer a more holistic view of performance that is provided by a 
Receiver Operating Characteristic (ROC) curve or a Detection Error Trade-off (DET) 
curve. A ROC curve displays TP as a function of FP while a DET curve displays FN as 
a function of FP. 

In Figure 11, we provide DET curves for the systems presented in Table 2. We refer 
to this analysis as a derived measure because these curves require calculations of the 
four measures described in Section 2, which in turn requires the selection of a scoring 

 
Figure 11. A comparison of DET curves 
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metric. The DET curves in Figure 11 were derived from output generated using the 
OVLP scoring metric. The shapes of the DET curves do not change significantly with 
the scoring metric though the absolute numbers vary similarly to what we see in Ta-
ble 2. 

From this data it is clear that CNN/LSTM performance is significantly different from 
the other systems. This is primarily because of its low FA rate. For this particular ap-
plication, sensitivity drops rapidly as the FA rate is lowered. Therefore, comparing a 
single data point for each system is dangerous because the systems are most likely op-
erating at different points on a DET curve if the sensitivities are significantly different. 
We find tuning these systems to have a comparable FA rate is important when compar-
ing two systems only based on sensitivity. 

The sensitivity for each metric is given in Table 2. For example, for HMM/SdA, we 
see the lowest sensitivities are produced by the TAES and EPOCH metrics, while the 
highest sensitivities are produced by OVLP and DPALIGN. This makes sense because 
OVLP and DPALIGN are very forgiving of time alignment errors, while TAES and 
EPOCH penalize time alignment errors heavily. We see similar trends for CNN/LSTM 
though the range of differences between the three highest scoring metrics is smaller. 
We also see that the five algorithms are ranked similarly by each scoring metric even 
though the scale of the numbers varies by metric. HMM/SdA consistently scores the 
lowest and CNN/LSTM consistently scores the highest. The other three systems are 
very similar in their performance. 

The ATWV scores for all algorithms are extremely low. The ATWV scores are be-
low 0.5 which indicates that overall performance is poor. However, the ATWV score 
for CNN/LSTM is significantly higher than the other four systems. ATWV attempts to 
reduce the information contained in a DET curve to a single number, and does a good 
job reflecting the results shown in Figure 11. The DET curves for HMM/LSTM and 
HMM/SdA overlap considerably for an FP rate between 0.25 and 1.0, and this is a pri-
mary reason why their ATWV scores are similar. However, for seizure detection we 
are primarily interested in the low FP rate region, and in that range, HMM/LSTM and 
IPCA/LSTM perform similarly. 

When a single metric is preferred, the area under a DET or ROC curve (AUC) is also 
an effective way of comparing the performance. A random guessing approach to clas-
sification, assuming equal priors for each class, will give an AUC of 0.5 while a perfect 
classifier will give an AUC of 1.0. In Ta-
ble 3 we provide AUCs for these DET 
curves calculated using OVLP and TAES 
for comparison. AUC values in Table 3 
also follow a similar trend but the differ-
ences are less pronounced than in Fig-
ure 11 or in Table 2. 

Note that the AUC value for the pre-
sumptive best system, CNN/LSTM, is 
significantly lower than the other four 

Table 3. AUC comparison 

Algorithm AUC 
(OVLP) 

AUC 
(TAES) 

HMM/SdA 0.44 0.72 
HMM/LSTM 0.44 0.71 
IPCA/LSTM 0.39 0.72 
CNN/MLP 0.38 0.65 
CNN/LSTM 0.21 0.56 
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systems. If we examined the AUC in the FPR range of [0.0, 	0.2], which corresponds 
to a low FA rate, and is the region of greatest interest, CNN/LSTM is still significantly 
better than the other algorithms, but the margin of difference shrinks slightly. The dif-
ference in the FPR range of [0.2, 	0.8] is more pronounced. This is something we often 
see when evaluating new machine learning algorithms. They tend to deliver their best 
performance in the upper ranges of FPR but are not as impressive when the FPR rate is 
very low. This suggests the major issues an algorithm needs to address in the low FPR 
region are more related to auxiliary issues such as segmentation and noise rejection 
rather than optimal modeling of a complex decision surface. It is not uncommon that in 
machine learning applications involving real-world applications, such as clinical data, 
low-level issues such as segmentation of the data and robustness to spurious noises 
ultimately limit performance. 

5.2 Accuracy and Other Derived Scores 

A commonly used metric in the machine learning community that is somewhat in-
tuitive is accuracy. The accuracies of the five systems are shown in Table 4. Accuracy 
places an equal weight on each type of error (though it is possible to apply heuristic 
weights in practice). This is acceptable if the dataset is balanced. However, for many 
bioengineering applications, such as seizure detection, the target class, or class of in-
terest, occurs infrequently. According to the accuracies presented in Table 4, we see 
that CNN/LSTM is still significantly more accurate than the other four systems and the 
differences between the remaining four systems are minimal. 

Another popular metric that attempts to aggregate performance into a single data 
point, and is popular in the information retrieval communities, is the F1 score. F1 scores 
for the five systems are shown in Table 5. We see there are significant variations be-
tween the systems and the results don’t completely correlate with Table 4. For example, 
for the TAES and EPOCH metrics, which emphasize time alignments, the best per-
forming system is not CNN/LSTM. F1 scores weigh miss and false alarm errors 
equally. In our experience, changing the weight of these errors (e.g. F-score with beta 
value 0.2) does not adequately emphasize the FA rate for applications such as seizure 
detection where the classes are unbalanced. 

The Matthews Correlation Coefficient (MCC) [28] is an effective solution when a 
significant class imbalance exists. MCC is a contingency matrix method of calculating 
the Pearson product-moment correlation coefficient [47] between actual and predicted 
values. Recall (sensitivity) is the fraction of relevant samples that are correctly re-
trieved. Its dual metric, precision, is the fraction of retrieved samples that are relevant. 
Meaningfully combining precision and recall generates alternative performance evalu-
ation measures such as the F1 ratio, which combines these scores using a geometric 
mean. MCC takes into account all four values in the confusion matrix. A value close to 
1.0 means that both classes are predicted well, even if one class is disproportionately 
represented. Since MCC is a correlation coefficient, it ranges from [−1, 	1]. Perfect 
misclassification corresponds to a value of −1, perfect classification corresponds to a 
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value of 1.0, and random guessing with equal priors corresponds to a value of 0.0. 
Since no class is more important than the other, MCC is symmetric. 

In Table 6, we present MCC results for the five systems and the five metrics. It is 
interesting to note that for the overall best system CNN/LSTM, MCC produces higher 
correlations for the first three metrics (ATWV, DPALIGN and OVLP). These metrics 
are based less on time alignments of the hypotheses. The latter two metrics (EPOCH 
and TAES) weigh the time alignments more heavily and generally produce lower scores 
because their matching criteria are more stringent. 

Table 4. Accuracy vs. metric 

Metric HMM/ 
SdA 

HMM/ 
LSTM 

IPCA/ 
LSTM 

CNN/ 
MLP 

CNN/| 
LSTM 

ATWV 54.0% 54.0% 52.1% 54.9% 70.7% 
DPALIGN 61.5% 60.2% 59.2% 62.9% 73.6% 
EPOCH 92.3% 91.5% 90.8% 89.5% 91.5% 
OVLP 65.1% 66.5% 65.6% 66.9% 78.9% 
TAES 56.6% 57.3% 55.4% 57.2% 69.7% 

Table 5. F1 vs. metric 

Metric HMM/  
SdA 

HMM/ 
LSTM 

IPCA/ 
LSTM 

CNN/ 
MLP 

CNN/ 
LSTM 

ATWV 0.24 0.28 0.24 0.28 0.42 
DPALIGN 0.35 0.36 0.35 0.42 0.45 
EPOCH 0.29 0.47 0.46 0.49 0.14 
OVLP 0.31 0.33 0.34 0.38 0.45 
TAES 0.16 0.26 0.24 0.31 0.19 

Table 6. MCC vs. metric 

Metric HMM/  
SdA 

HMM/ 
LSTM 

IPCA/ 
LSTM 

CNN/ 
MLP 

CNN/ 
LSTM 

ATWV -0.07 -0.04 -0.11 -0.05 0.30 
DPALIGN 0.01 0.07 0.05 0.15 0.35 
EPOCH 0.28 0.43 0.41 0.45 0.23 
OVLP 0.08 0.11 0.11 0.16 0.41 
TAES -0.16 -0.07 -0.12 -0.04 0.13 

Table 7. Cohen’s Kappa (𝜅) vs. metric 

Metric HMM/  
SdA 

HMM/ 
LSTM 

IPCA/ 
LSTM 

CNN/ 
MLP 

CNN/ 
LSTM 

ATWV -0.07 -0.04 -0.11 -0.05 0.26 
DPALIGN 0.09 0.07 0.05 0.15 0.31 
EPOCH 0.26 0.43 0.41 0.43 0.12 
OVLP 0.08 0.11 0.11 0.16 0.35 
TAES -0.16 -0.07 -0.11 -0.04 0.09 
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Inter-rater agreement (IRA) is an extremely useful measure for the development of 
reference annotations. It is not uncommon that a team of annotators will be involved in 
the annotation of a large corpus. Individual annotators are evaluated and compared us-
ing IRA [48]. Though there are numerous ways to measure IRA, Cohen’s Kappa sta-
tistic, as shown in Eq. (14), is one of the most popular ways to compute IRA. In Table 7, 
we show IRA values for the five systems. Again, we observe that CNN/LSTM has 
higher IRA values than the other systems, except for the EPOCH metric. Both MCC 
and IRA report similar trends for CNN/LSTM versus the other four systems for the 
EPOCH metric. 

5.3 Additional Insight 

We generally prefer operating points where performance in terms of sensitivity, 
specificity and FAs is balanced. The ATWV metric explicitly attempts to encourage 
balancing of these by assigning a reward to each correct detection and a penalty to each 
incorrect detection. None of the conventional metrics described here consider the frac-
tion of a detected event that is correct. This is the inspiration behind the development 
of TAES scoring. TAES scoring requires the time alignments to match, which is a more 
stringent requirement than, for example, OVLP. Consequently, the sensitivity produced 
by the TAES and EPOCH metrics tends to be lower. 

Comparing results across these five metrics can provide useful diagnostic infor-
mation and provide insight into the system’s behavior. For example, the IPCA/LSTM 
and HMM/LSTM systems have relatively higher sensitivities according to the EPOCH 
metric, indicating that these systems tend to detect longer seizure events. Conversely, 
since the CNN/LSTM system has relatively low sensitivities according to the TAES 
and EPOCH metrics, it can be inferred that this system misses longer seizure events. 
Similarly, if the sensitivity was relatively high for TAES and relatively low for EPOCH, 
it would indicate that the system tends to detect a majority of smaller to moderate events 
precisely regardless of the duration of an event. A comparison of ATWV scores with 
other metrics gives diagnostic information such as whether a system accurately detects 
the onset and end of an event or whether the system splits long events into multiple 
short events. 

6 Statistical Analysis  

To understand the pairwise statistical difference between these evaluation metrics 
and the hybrid deep learning systems, we have performed three tests: Kolmogorov-
Smirnov (KS), Pearson’s R (correlation coefficient) and 𝑧-test [49]. These tests were 
performed to evaluate results of these systems on the basis of sensitivity and specificity. 
Each individual patient from the TUSZ dataset was evaluated separately. Outliers were 
removed by rejecting all input values collected from patients which have no seizures 
and from those for which the systems detected no seizures. 
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6.1 Kolmogorov-Smirnov and Pearson’s R Tests 

Prior to performing statistical significance tests, it must first be determined whether 
or not the group sample, which in our case is the individual metric’s score on per patient 
basis, is normally distributed. We performed KS tests on each separate evaluation met-
ric and confirmed that the group distribution is indeed Gaussian. The KS values range 
from 0.61	– 	0.71 for sensitivity and 0.99	– 	1.00 for specificity with the p-values equal 
to zero. We then evaluated the correlation coefficient (Pearson’s R) between pairs of 
metrics. 

Correlations for each pair of scoring metrics are shown in Table 8 (for sensitivity) 
and Table 9 (for specificity). It can be seen that the pairwise correlations between 
OVLP, ATWV and DPALIGN are highest, while the pairs ATWV-EPOCH and 
DPALIGN-EPOCH have the lowest correlation (~0.5). The EPOCH method has a low 
correlation with all other metrics but TAES. This makes sense because the EPOCH 
method scores events on a constant time scale instead of on individual events. TAES 
takes into account the duration of the overlap, so it is the closest method to EPOCH in 
this regard. 

Since OVLP and TAES both score overlapping events independently, we also expect 
these two methods to be correlated (sensitivity: 0.78; specificity: 0.95). ATWV on the 
other hand has fairly low correlations with the other metrics for specificity because of 
its stringent rules for FPs when there are multiple overlapping events. The overall high-
est correlation is between ATWV and OVLP for sensitivity, and OVLP and TAES for 
specificity. All the correlation values (Pearson’s R) collected in these tables are statis-
tically significant with 𝑝	 < 	0.001. 

Table 8. Correlation of the scoring metrics based on sensitivity (p < 0.001) 

Metric ATWV DPALIGN EPOCH OVLP TAES 
ATWV --- 0.87 0.50 0.92 0.71 
DPALIGN  --- 0.48 0.90 0.69 
EPOCH   --- 0.62  0.87 
OVLP    --- 0.78 
TAES     --- 

Table 9. Correlation of the scoring metrics based on specificity (p < 0.001) 

Metric ATWV DPALIGN EPOCH OVLP TAES 
ATWV --- 0.49 0.32 0.45 0.54 
DPALIGN  --- 0.38 0.94 0.89 
EPOCH   --- 0.44 0.56 
OVLP    --- 0.95 
TAES     --- 
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6.2 Z-tests 

To understand the statistical significance of each system, we perform two-tailed 
𝑧-tests for sensitivity as shown in Table 10 and for specificity as shown in Table 11. 
Cells in these tables contain entries that consist of the sensitivity/specificity differences 
between the systems and a binary classification value (Yes/No) based on extracted 
p-values from the 𝑧-test with 95% confidence. (Due to space constraints, the five clas-
sification systems are represented using the abbreviations M1 to M5.) The data was 
prepared by scoring systems on individual patients. Prior to performing 𝑧-tests, the 
Gaussianity of each sample was evaluated using a KS test. All the samples were con-
firmed as normal with 𝑝	 < 	0.001.  

From Table 10, it can be observed that, aside from the EPOCH and TAES scoring 
metrics, the differences between the CNN-LSTM system and all the other systems are 
statistically significant (rejecting the null hypothesis with 𝑝	 < 	0.05. On the other 
hand, the EPOCH and TAES metrics fail to reject the null hypothesis for CNN-LSTM. 
According to these metrics, the performance of HMM-SDA is statistically different 
from the other systems, confirming its poor performance. This can also be observed 
from EPOCH/TAES results shown in Table 2. 

Table 11 shows a different trend than Table 10. The EPOCH metric fails to reject 
null hypothesis for all the systems. Since specificity is calculated from TN and FP val-
ues, for an evaluation set 167 hours in duration and an epoch duration of 0.25	𝑠𝑒𝑐, a 
few thousand seconds of FPs do not make any significant difference in terms of speci-
ficity. This can also be directly observed in Table 2, where the specificity of all systems 
according to the EPOCH metric is always greater than 90%. The huge difference be-
tween the duration of background and seizure events is the primary reason for such high 
specificities. However, the OVLP and TAES metrics completely agree with each 
other’s 𝑧-test results for specificity. 

7 Conclusions 

Standardization of scoring metrics is an extremely important step for a research com-
munity to take in order to make progress on machine learning problems. There has been 
a lack of standardization in most bioengineering fields. Popular metrics such as sensi-
tivity and specificity do not completely characterize the problem and neglect the im-
portance that FA rate plays in achieving clinically acceptable solutions. In this chapter, 
we have compared several popular scoring metrics and demonstrated the value of con-
sidering the accuracy of time alignments in the overall assessment of a system. We have 
proposed the use of a new metric, TAES scoring, which is consistent with popular scor-
ing approaches such as OVLP but provides more accurate assessments by producing 
fractional scores for recognition of events based on the degree of match in the time 
alignments. We have also demonstrated the efficacy of an existing metric, ATWV, that 
is popular in the speech recognition community. 
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We have not discussed the extent to which we can tune these metrics by weighting 
various types of errors based on feedback from clinicians and other customers of the 
technology. Optimization of the metric is a research problem in itself, since many con-
siderations, including usability of the technology and a broad range of applications, 
must be involved in this process. Our informal attempts to optimize ATWV and OVLP 
for seizure detection have not yet produced significantly different results than what was 
presented here. Feedback from clinicians has been consistent that FA rate is perhaps 
the single most important measure once sensitivity is above approximately 75%. As we 
move more technology into operational environments, we expect to have more to con-
tribute to this research topic. 

Finally, the Python implementation of these metrics is available at the project web 
site: https://www.isip.piconepress.com/projects/tuh_eeg/downloads/nedc_eval_eeg. 
This scoring software described here has been publicly available since late 2018. It has 
been used for two open source evaluations [50][51]. Readers are encouraged to refer to 
the software for detailed questions about the specific implementations of these algo-
rithms and the tunable parameters available. 
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Table 10. Significance calculated using z-tests for α = 0.05 (for sensitivity) 

ATWV (Abs. Sensitivity Difference (%), Significant/Non-significant) 
ML Systems 
(Sens.) 

CNN-LSTM 
(M1) 

CNN-MLP 
(M2) 

HMM-LSTM 
(M3) 

HMM-SDA 
(M4) 

IPCA-LSTM 
(M5) 

M1 (30.34%) --- (00.82%) Y (03.61%) Y (00.01%) Y (05.61%) Y 
M2 (29.52%)  --- (02.79%) N (00.83%) N (04.79%) N 
M3 (26.73%)   --- (03.62%) N (02.00%) N 
M4 (30.35%)    --- (05.62%) N 
M5 (24.73%)     --- 

DPALIGN (Abs. Sensitivity Difference, Significant/Non-significant) 
ML Systems 
(Sens.) 

CNN-LSTM 
(M1) 

CNN-MLP 
(M2) 

HMM-LSTM 
(M3) 

HMM-SDA 
(M4) 

IPCA-LSTM 
(M5) 

M1 (32.46%) --- (10.89%) Y (01.31%) Y (11.65%) Y (03.31%) Y 
M2 (43.35%)  --- (09.58%) N (00.76%) N (07.58%) N 
M3 (33.77%)   --- (10.34%) N (02.00%) N 
M4 (44.11%)    --- (08.34%) N 
M5 (35.77%)     --- 

EPOCH (Abs. Sensitivity Difference, Significant/Non-significant) 
ML Systems 
(Sens.) 

CNN-LSTM 
(M1) 

CNN-MLP 
(M2) 

HMM-LSTM 
(M3) 

HMM-SDA 
(M4) 

IPCA-LSTM 
(M5) 

M1 (09.78%) --- (55.25%) N (40.68%) N (10.93%) Y (41.24%) N 
M2 (65.03%)  --- (14.57%) Y (44.32%) Y (14.01%) N 
M3 (50.46%)   --- (29.75%) Y (00.56%) N 
M4 (20.71%)    --- (30.31%) Y 
M5 (51.02%)     --- 

OVLP (Abs. Sensitivity Difference, Significant/Non-significant) 
ML Systems 
(Sens.) 

CNN-LSTM 
(M1) 

CNN-MLP 
(M2) 

HMM-LSTM 
(M3) 

HMM-SDA 
(M4) 

IPCA-LSTM 
(M5) 

M1 (30.83%) --- (08.26%) Y (02.14%) Y (04.52%) Y (02.14%) Y 
M2 (39.09%)  --- (09.04%) N (03.74%) N (06.12%) N 
M3 (30.05%)   --- (05.30%) N (02.92%) N 
M4 (35.35%)    --- (02.38%) N 
M5 (32.97%)     --- 

TAES (Abs. Sensitivity Difference, Significant/Non-significant) 
ML Systems 
(Sens.) 

CNN-LSTM 
(M1) 

CNN-MLP 
(M2) 

HMM-LSTM 
(M3) 

HMM-SDA 
(M4) 

IPCA-LSTM 
(M5) 

M1 (12.48%) --- (19.10%) N (10.36%) N (04.81%) Y (09.64%) N 
M2 (31.58%)  --- (08.74%) N (14.29%) Y (09.46%) N 
M3 (22.84%)   --- (05.55%) Y (00.72%) N 
M4 (17.29%)    --- (04.83%) Y 
M5 (22.12%)     --- 
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Table 11. Significance calculated using z-tests for α = 0.05 (for specificity) 

ATWV (Abs. Specificity Difference (%), Significant/Non-significant) 
ML Systems 
(Spec.) 

CNN-LSTM 
(M1) 

CNN-MLP 
(M2) 

HMM-LSTM 
(M3) 

HMM-SDA 
(M4) 

IPCA-LSTM 
(M5) 

M1 (93.15%) --- (27.28%) Y (24.22%) Y (31.77%) Y (28.64%) Y 
M2 (65.87%)  --- (03.06%) N (04.49%) N (01.36%) N 
M3 (68.93%)   --- (07.55%) Y (04.42%) N 
M4 (61.38%)    --- (03.13%) N 
M5 (64.51%)     --- 

DPALIGN (Abs. Specificity Difference (%), Significant/Non-significant) 
ML Systems 
(Spec.) 

CNN-LSTM 
(M1) 

CNN-MLP 
(M2) 

HMM-LSTM 
(M3) 

HMM-SDA 
(M4) 

IPCA-LSTM 
(M5) 

M1 (95.17%) --- (23.68%) Y (22.18%) Y (28.30%) Y (25.58%) Y 
M2 (71.49%)  --- (01.50%) N (04.62%) Y (01.90%) N 
M3 (72.99%)   --- (06.12%) Y (03.40%) N 
M4 (66.87%)    --- (02.72%) Y 
M5 (69.59%)     --- 

EPOCH (Abs. Specificity Difference (%), Significant/Non-significant) 
ML Systems 
(Spec.) 

CNN-LSTM 
(M1) 

CNN-MLP 
(M2) 

HMM-LSTM 
(M3) 

HMM-SDA 
(M4) 

IPCA-LSTM 
(M5) 

M1 (99.84%) --- (08.29%) N (05.02%) N (01.62%) N (05.75%) N 
M2 (91.55%)  --- (03.27%) N (06.67%) N (02.54%) N 
M3 (94.82%)   --- (03.40%) N (00.73%) N 
M4 (98.22%)    --- (04.13%) N 
M5 (94.09%)     --- 

OVLP (Abs. Specificity Difference (%), Significant/Non-significant) 
ML Systems 
(Spec.) 

CNN-LSTM 
(M1) 

CNN-MLP 
(M2) 

HMM-LSTM 
(M3) 

HMM-SDA 
(M4) 

IPCA-LSTM 
(M5) 

M1 (96.86%) --- (20.02%) Y (16.33%) Y (23.51%) Y (19.29%) Y 
M2 (76.84%)  --- (03.69%) N (03.49%) Y (00.73%) N 
M3 (80.53%)   --- (07.18%) Y (02.96%) N 
M4 (73.35%)    --- (04.22%) Y 
M5 (77.57%)     --- 

TAES (Abs. Specificity Difference (%), Significant/Non-significant) 
ML Systems 
(Spec.) 

CNN-LSTM 
(M1) 

CNN-MLP 
(M2) 

HMM-LSTM 
(M3) 

HMM-SDA 
(M4) 

IPCA-LSTM 
(M5) 

M1 (95.24%) --- (31.21%) Y (24.83%) Y (29.20%) Y (28.60%) Y 
M2 (64.03%)  --- (06.38%) N (02.01%) Y (02.61%) N 
M3 (70.41%)   --- (04.37%) Y (03.77%) N 
M4 (66.04%)    --- (00.60%) Y 
M5 (66.64%)     --- 
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