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Abstract—SpMV, the product of a sparse matrix and a dense
vector, is emblematic of a new class of applications that are mem-
ory bandwidth and communication, not flop, driven. Sparsity and
randomness in such computations play havoc with performance,
especially when strong, instead of weak, scaling is attempted. In
this study we develop and evaluate a hybrid implementation for
strong scaling of the Compressed Vectorization-oriented sparse
Row (CVR) approach to SpMV on a cluster of Intel Xeon
Phi Knights Landing (KNL) processors. We show how our
hybrid SpMV implementation achieves increased computational
performance, yet does not address the dominant communication
overhead factor at extreme scale. Issues with workload distribu-
tion, data placement, and remote reductions are assessed over
a range of matrix characteristics. Our results indicate that as
P −→∞ communication overhead is by far the dominant factor
despite improved computational performance.

Keywords-Scalability, KNL, Hybrid SpMV, Communication Over-
head, HPC, MPI;

I. INTRODUCTION

Dense linear algebra boasts well documented efficient algo-
rithms and performance models for nearly all modern archi-
tectures. In contrast, sparse linear algebra operations remains
a field rife for deeper optimization efforts. The product of
a sparse matrix and a dense vector (SpMV) is a key part
of many codes from disparate areas. SpMV constitutes the
bulk of the High Performance Conjugate Gradient (HPCG)
[1] code that has become an alternative to LINPACK for
rating supercomputers. It is also used extensively in its general
sparse-matrix sparse-matrix form, in linear solvers such as
HYPRE [2] for finite method applications such as PGFem3D
[3], [4]. Additionally when matrix operations are changed from
floating multiply and add to other non-numeric functions, it
becomes an essential part of many graph kernels [5], [6], and
is a key function in the GRAPHBLAS spec [7].

An earlier study [8] looked at strong scaling of SpMV in
a hybrid Message Passing Interface (MPI) + Multi-threading
(OpenMP) environment on a conventional processor multi-
node system. This work showed that when strong scaling is
attempted (fixed matrix but increasing processor count), SpMV
performance degradation (not speedup) can be seen for all
matrices, often with relatively few processes. While strong
scaling increased the performance of the computational part
of the code, the impact of network communication among
participating MPI processes drastically reduced any overall

speedup. Fig. 1 (taken from [8]) illustrates these effects on
overall kernel performance for all matrices tested.

Many-core architectures such as graphics processing units
(GPUs) and Intel Xeon Phi Knights Landing (KNL) have
been shown to exhibit superior performance for sparse kernels
due to greater parallelism, lower memory access times, and
increased memory bandwidth [9], [10], [11], [12], [13]. A
new storage format Compressed Vectorization-oriented sparse
Row (CVR) [14] has exhibited superior performance on KNL
by addressing the memory locality. Our goal for this study
was therefore to explore strong scaling of a hybrid code
on KNL using CVR as well as to analyze the impact of
communication overhead on performance for extremely sparse
matrices, especially considering the difference in networks.
Our SpMV Implementation was run on extremely sparse yet
relatively small matrices in order to simulate and observe
the effects of extreme strong scaling while utilizing more
manageable data set and cluster sizes.

In organization, Section II provides necessary background.
Section III describes the hybrid algorithm. Section IV de-
scribes the spectrum of sparse matrices considered. Section
V overviews the experimental platform, including workload
balancing and distribution. Section VI evaluates the results.
Section VIII concludes.

Fig. 1: Observed speedup for 25 Sparse Matrices at varying MPI
process counts. As detailed in [8], matrices with higher non-zero per
row counts achieve higher performance, while lower non-zero per row
count matrices experienced the lowest. The distinct dips and peaks
are attributed to various network effects at scale, and were observed
for all matrices evaluated.



II. BACKGROUND

A. The Intel Xeon Phi Processor
Intel Xeon Phi product line exhibited an exploration into

intermediate and high band width memory coupled with a
many core vector processing unit design. This is not unique
to KNL, but is becoming a widespread trend. The Knights
Landing is the latest generation Intel Xeon Phi line. KNL
utilizes hierarchical memory consisting of double data rate
(DDR) memory, as well as multichannel DRAM (MCDRAM).
MCDRAM acts as configurable high bandwidth memory
(HBM) capable of operating in one of three modes: cache,
flat, and hybrid. The MCDRAM consists of 8 units of 2GB
each, providing a total of 16GB of HBM. The on board HBM
can deliver very high bandwidths of over 450GB/s [9].

In addition to 3D stacked high bandwidth memory, the Xeon
Phi product line previewed important architectural features
such as AVX-512 floating point units, the on die mesh in-
terconnect, and integration of Omni-Path controllers. Three
of the features explored in the Xeon Phi series have already
been implemented in traditional Xeon processors, while 3D
memory is a likely candidate for inclusion into the Ice Lake
generation of Xeons. In light of this, the investigation of sparse
problems on KNL allows for behavior analysis on a system
which incorporates all of these design features into a single
package, and is presently available to researchers.

In this study we evaluated an SPMV implementation de-
veloped in an effort to optimize the use of KNLs vector
processing units along with minimizing cache miss percentage
and associated penalties.

B. SpMV on Many Core Architectures
In previous studies SpMV has been shown to be memory

bound on conventional architectures. Most implementations
suffered from poor cache hit ratios with the memory traffic
for each non-zero being approximately 20 bytes for two
floating point operations [15]. This memory bound character-
istic severely limits the computational performance of SpMV
regardless of a given system’s core flop capability. There is a
continued push towards greater core counts, for example the
Sunway TaihuLight’s architecture contains 256 cores per chip.
Many-core architectures such as GPUs provide memory access
channels capable of higher sustained bandwidth and therefore
can potentially aid in the performance of sparse memory bound
problems such as SpMV. Several studies have analyzed SpMV
on many-core platforms, with the majority exploring the
impact of novel matrix compression techniques. For instance
ELLPACK and Hybrid [16], [11], originally developed for use
with GPUs, have exhibited greatly improved performance over
that of the traditional Compressed Sparse Row (CSR) format.
Such methods capitalize on the architectural nuances these
platforms provide [17], [12]. However these methods focus
on single node or shared memory implementations and do
not account for strong scaling ability via distributed or hybrid
memory environments.

Similarly, previous implementations of SpMV on single-
node KNL systems account for the structural mechanisms as

well as wide vector instructions intended to increase paral-
lelism and memory access efficiency [18], [19], [14].

While KNL and GPUs share many similarities and are both
highly multithreaded, the Compressed Vectorization-Oriented
Sparse Row method, discussed in Section III, was written
specifically for KNL and the use of AVX-512 extensions. Fur-
thermore in many common implementations, threads within
a GPU warp operate over the same instruction queue in
lock step, meaning that branching can produce sub-optimal
performance among other threads in the warp. In contrast,
KNL does not have this constraint as each core supports 4-
way simultaneous multithreading (SMT) and is accompanied
by 2 vector processing units. This makes it more likely to be an
advantage to sparse problems where there is a lot of irregular,
unaligned accesses. In this study, it did reduced computation
time over that of Xeon servers without it.

C. Workload Imbalance

In general, the effect of matrix structure on performance
arises due to work load imbalance among participating com-
putational elements. The benchmark matrices selected (see
Section IV) were chosen in an effort to provide a wide array of
structural patterns on which to evaluate performance at scale.

In [8] we evaluated the impact of decreased communication
overhead as a result of near uniform workload balancing.
However one challenge for many-core architecture systems
is utilizing the increased per-process compute capacity. De-
termining optimal load balancing schemes is vital to perfor-
mance, however determining true optimality is beyond the
scope of this paper.

D. Communication Overhead

Communication overhead impact is a complex issue and is
rooted in the system hardware, interconnection hardware, as
well as communication and user level protocols being used.
Both GPUs and KNL experience increased overhead thanks to
greater volumes of data required for each device, due to the
greater level of concurrency afforded by the hardware. MPI
overhead is a well researched area and continues to be of
importance as we look towards future HPC systems.

Studies [20], [21] have shown that message latency and
effective message bandwidth when using MPI is dependant
on many factors such as message size, interconnect type,
protocol selection, etc. These studies observed that larger
messages can obtain higher network bandwidth utilization
due to amortization of their overhead. It is possible that this
has increased impact on many-core platforms due to larger
messages and reduced process and/or node counts.

Computing paradigms using offloading and onloading work
similarly. In Offloading communication is pushed onto the
interconnect hardware for completion, allowing the process
to continue. Conversely with onloading; communication over-
head is handled by a selected number of threads, cores, or
sockets in an effort to alleviate the impact of high bandwidth
communication on the NIC or interconnect interface [21].
Onloading is often used on KNL systems in which sacrificing



Fig. 2: Conversion of sparse matrix into compressed vectorization-
oriented sparse row format. (a) illustrates the packing of contiguous
rows into SIMD lanes, while (b) shows the compute pattern of SpMV
using a CVR matrix. Conversion visualization obtained from [14].

cores for communication handling rather than computation
may actually increase overall computational performance [22],
[23].

III. COMPRESSED VECTORIZED SPARSE ROW (CVR)

CVR is a method developed for the KNL to take advan-
tage of the larger instruction width and increased parallelism
possible. Specifically designed for use on KNL systems, CVR
targets the efficient vectorization of SpMV computation. Sim-
ilar to a previous study (ELLPACK Sparse Block (ESB) [20],
[21]), CVR addresses memory locality issues experienced with
SpMV [14] and it is capable of computing over multiple rows
concurrently thereby reducing cache miss percentage and its
associated performance penalty.

As with most SpMV solvers, the sparse matrix undergoes
pre-processing in which it is converted to the desired format
for that method. As seen in Fig 2, CVR packs contiguous
rows, when possible, into a single column for processing on a
single SIMD lane. The number of columns in the CVF format
is equivalent to the number of SIMD lanes, 8 in the case of
double precision non-zero values. The 8 SIMD lanes permit
simultaneous multiply and accumulation to be applied to 8
rows at a time. Besides pre-processing the matrix, CVR must
also re-arrange the dense vector to present appropriate vector
elements to the correct lanes at the time they are required.

SIMD lanes are packed evenly with the same nnz, perform-
ing work stealing when necessary to spread larger rows across
multiple lanes. While this process does require the introduction
of zero elements for padding, the total volume of padding

(a) atmosmodd (b) parbolic fem
Fig. 3: Varying Matrix Non-Zero Structure was selected for the
benchmark matrices chosen in our experiments. Distribution visu-
alization provided from [24].

is kept to a minimum and facilitates increased performance.
We notice then, that this pre-processing step represents a non-
trivial amount of time, however the first portion of our study
we assume that SpMV is part of a larger solver in which this
pre-processing is only performed once .

CVR has been shown to outperform other commercially
available and state-of-the-art methods, including MKL and
ESB [20], [21]. In light of these findings we selected the CVR
SpMV [14] method as the basis for the intra-node processing
in our hybrid implementation on a multi-node KNL platform.

IV. MATRIX BENCHMARK SUITE

Similar to our previous study we have chosen 25 matrices
from the SuiteSparse Matrix Collection1 [24]. Emphasis was
on matrices with either extreme sparsity or irregular patterns.
Table I lists their characteristics. Matrices were selected based
on their average non-zeros per row nnzrow, as well as overall
non-zeros. At least two matrices from each nnz range were
chosen with similar size or nnz per row but different structure.

Fig. 3 highlights the structure disparity between two of
these matrices: atmosmodd and parabolic fem. The non-
zeros in atmosmodd cluster along the main diagonal, whereas
parabolic fem has a wider dispersion. We focused on struc-
tural differences to evaluate the impact of matrix structure on
communication volume and message size across different load
balancing methods. Additionally we chose matrices in a quasi
logarithmic fashion to ensure a wide spectrum of sparsities.

Not only where these matrices selected due to the rationale
outlined previously, but also because these matrices provide a
wide range of characteristics while still being small enough
to perform rapid file I/O and load balancing for each test. We
are aware of much larger matrices which must be evaluated on
distributed systems due to their immense size requirements.
However evaluating such matrices is often cumbersome due
to lengthy matrix read and partitioning times along with
increasing cluster allocation sizes. Full scale tests to confirm
our findings in this study will be completed but are beyond
the scope of this paper.

1Currently hosted at https://sparse.tamu.edu/



TABLE I: BENCHMARK MATRIX SUITE
matrix rows nnz nnz % nnz row Symmetry

atmosmodd 1270432 8814880 5.46E-06 6.93 non-symmetric
parabolic fem 525825 3674625 1.33E-05 6.98 symmetric
rajat30 643994 6174244 1.49E-05 9.58 non-symmetric
CurlCurl 3 1219574 13544618 9.11E-06 11.10 symmetric
offshore 259789 4242673 6.29E-05 16.33 symmetric
Fem 3D thermal2 147900 3489300 1.60E-04 23.59 non-symmetric
nlpkkt80 1062400 28192672 2.50E-05 26.53 symmetric
CO 221119 7666057 1.57E-04 34.66 symmetric
gsm 106857 589446 21758924 6.26E-05 36.91 symmetric
msdoor 415863 19173163 1.11E-04 46.10 symmetric
bmw3 2 227632 11288630 2.18E-04 49.59 symmetric
BenElechi1 245874 13150496 2.10E-04 53.48 symmetric
t3dh 79171 4352105 6.94E-04 54.97 symmetric
F2 71505 4294285 8.40E-04 60.05 symmetric
consph 83334 6010480 8.65E-04 72.12 symmetric
SiO2 155331 11283503 4.68E-04 72.64 symmetric
torso1 116158 8516500 6.31E-04 73.31 symmetric
dielFilterV3real 1102824 89306020 7.34E-05 80.97 symmetric
RM07R 381689 37464962 2.57E-04 98.15 non-symmetric
m t1 97578 9753570 1.02E-03 99.95 symmetric
crankseg 2 63838 14148858 3.47E-03 221.63 symmetric
nd24k 72000 28715634 5.54E-03 398.82 symmetric
TSOPF RS b2383 38120 16171169 1.11E-02 424.21 non-symmetric
mouse gene 45101 28967291 1.42E-02 642.27 symmetric
human gene1 22283 24669643 4.97E-02 1107.10 symmetric

V. EXPERIMENTAL IMPLEMENTATION

A. Hybrid CVR

In order to evaluate the performance impact of communica-
tion on distributed SpMV using KNL we developed a hybrid
implementation of the CVR method. Our hybrid code disperses
application functionality across multiple KNL sockets, effec-
tively performing several sub problems simultaneously. First
the sparse matrix is converted to CSR format while being read
in from file. We then perform workload balancing, discussed
in greater detail in section V-B, to insure uniform non-zero
count for all processes. After distributing work allotments
to all processes, the temporary CSR format is converted
to the packed CVR format as discussed in section III and
computation begins. Once SpMV computation has completed
we collect localized results back at the global master process
to form the single result vector.

Collecting each sub problem’s result to the global master
process occurs at the end of SpMV CVR computation, and
is the inter-process communication we analyze. We used
MPI to enable multiple KNL-equipped nodes, thereby greatly
increasing total thread concurrency as well as total memory
bandwidth at the expense of communication overhead.

We tested our hybrid code on Voltrino, a 24 node KNL
cluster at Sandia National Laboratories. Voltrino is based on
the Cray XC40 design as used in the Trinity system [10], [25].
For interconnect purposes, Voltrino is effectively an Aries [26],
[27] single group in a Dragonfly topology, where a single Aries
NIC is shared among 4 nodes.

For comparison to our previous work, only square numbers
of MPI processes have been chosen, with only one process
being assigned to a single KNL chip on a single KNL equipped
node. This allows us to make direct comparisons to the
notional process matrix used for workload distribution in [8],
yet meant that only a maximum of 16 out of Voltrino’s 24

TABLE II: SYSTEM CHARACTERISTICS
Voltrino Prior System

per Socket Characteristics
Socket Type Intel Phi 7250 Intel E5–2650v2

Cores per Socket 68 8
Core Clock Rate 1.4 GHz 2.6 GHz

Peak Flops per Core 44.6 GF/s 20.8
Total Main Memory 96 GB 16 GB
Main Memory Type DDR4 DDR4

Main Memory Channels 6 4
Bandwidth per Channel 19.2 GB/s 14.9 GB/s

Peak Memory B/W 115.2 GB/s 59.7 GB/s
Total Intermediate Memory 16 GB N/A
Intermediate Memory Type MCDRAM None

Peak Memory B/W 490 GB/s N/A
Single Node Characteristics

Node Type Cray XC40 Phi IBM nx360 M4
Sockets per Node 1 2

Peak Flops per Node 3.04 TF/s 332.8 GF/s
Network Interface Cray Aries Mellanox FDR IB

Peak Injection B/W 16 GB/s2 8 GB/s
System Characteristics

MPI Processes per Node 1 2
Total Nodes 24 72
Total Cores 1632 1024

Interconnect Topology DragonFly Switched IB (2 lvl)
Peak Flops per Process 3046.4 GF/s 166.4

Peak Memory B/W per Process 115 or 490 59.7
Peak N/W Injection Rate per Process 16 8
Both systems communicate with NICs over PCIe 3.0 from socket.
Voltrino topology appears to have all-to-all among all 16 nodes.
The “Prior System” traverses one switch for up to 64 processes,
and three switches for more.

nodes were utilized for the largest runs.
Table II compares the characteristics of the Voltrino cluster

to the cluster used in our prior evaluation. On a “per process”
basis, Voltrino has about 18X the peak floating point perfor-
mance, up to 8X the memory bandwidth, and up to 2X the
network injection bandwidth.

B. Work Balancing and Distribution

Workload balancing and data distribution for the hybrid
CVR method is similar to that of the balanced distribution
method used in our previous study [8]. Some alterations to that
method have been performed to simplify its implementation
and increase workload balance uniformity. In this work we
elected to keep entire rows contiguous and assign them in
their entirety to a single MPI process. Rows are sorted based
on their nnzrow count. After sorting we perform a greedy bin
packing by assigning the next row, and its non-zeros, to the
process with the lowest number of currently assigned non-
zeros. As such, we are able to achieve a near uniform nnz
distribution across processes, despite processes having varying
row count assignments. A mapping of these assignments is
kept by the global master process to facilitate result collection.

Data is then distributed to the MPI processes in the same
fashion as the balanced method from our previous study. Once
each process has received its work allotment, it performs a
local CVR prepossessing on its own data. The CVR pre-
processing step reduces the impact of matrix structure by
reordering data to improve locality. Additionally our work
distribution method performs a 1D row-wise partitioning in



Fig. 4: Observed SpMV computation speedup for single MPI process
with varying OpenMP thread counts. Each line represents a different
benchmark matrix from the chosen suite discussed in Section IV.
Single node multithreaded tests include no communication since
OpenMP uses a shared memory model and only one node is in use.

which complete rows are assigned to processes based on their
nnz in order to create a near uniform nnz per process. This
mitigates the impact of matrix structure on computational
performance.

All processes then perform localized multi-threaded CVR
SpMV, saving results to a local vector. Once all processes
are ready, they all participate in an MPI Gatherv to collect
localized row results back to the global master. Similar to our
previous study, the variable gather collective was chosen in an
effort to minimize total message volume.

VI. EVALUATION

A. Multithreaded SpMV Performance

To show the impact that communication from a distributed
memory model has on Hybrid SpMV, we first analyzed a
single MPI process running on a single node, with increasing
numbers of OpenMP threads. Fig. 4 shows that as thread
count increases, SpMV computation speedup increases, up
until around the maximum concurrent thread limit of 272. As
thread counts increase core count, SIMD lane, and cache use
increase correspondingly providing additional performance.

For most matrices evaluated, computation time reduction
slows or stagnates completely after as we approach 4 threads
per core. Therefore given speedup stagnation was seen at
around 4 threads per core, subsequent experiments used 1 MPI
process per node, and 272 OpenMP threads per process.

B. Hybrid SpMV Performance

We tested our hybrid CVR implementation while record-
ing computation and communication times separately. Tim-
ing measurements for SpMV computation include only the
time required to perform a hybrid SpMV using the CVR
format and do not include data distribution or matrix pre-
processing times. However the measured SpMV time does
include the preparation time necessary for data gathering,

3For Fig. 4 and 5 the plotted values are the average fo 10 runs, with a
maximum variance between runs of less than 5%. Therefore we opted to
exclude error bars on these figures.

Fig. 5: Observed SpMV computation time for each benchmark matrix
with varying MPI process count. We distribute a single MPI process
per KNL node such that process count is equal to KNL node
count. At 4 MPI processes a group of matrices achieve better than
expected speedup. Continued super-linearity is observed for with 9
MPI processes but across fewer matrices. At 16 MPI processes we
see that speedup for all matrices has fallen to sub-linear.3

alignment, and populating of SIMD lanes. As seen in Fig. 5,
we observed computational speedup for all matrices, with the
greatest speedup occurring for between 1 and 9 MPI processes.
Additionally we saw that all matrices become sub-linear by P
= 16.

We note that the behavior observed for all matrices is similar
due to the CVRs pre-processing and computation. CVR’s pre-
processing effectively nullifies the impact of non-zero structure
during computation, leaving only non-zero and row counts as
major contributors to performance behavior.

Approximately 10 out of 25 matrices in our benchmark
suite achieved super-linear speedup for the SpMV computa-
tion phase. We believe this occurs for several reasons, most
significantly of which is improved cache performance as core
counts increase [28]. Fig 6 shows the nnz per MPI process
as well as the number of rows per process. The vertical
dashed line represents the maximum number of 8-byte doubles
(approximately 4.4million) which can be stored in L2 cache
on a KNL chip. This value was used as the threshold for
determining if local problem size will fit entirely in L2 cache.

In Fig 6b we can see that all super-linear matrices were
beneath the L2 threshold after P = 4. These matrices represent
the smallest nnz for all matrices tested. Correspondingly their
associated local problem size will shrink beneath the cache
threshold the fastest. We then saw speedup slow for these
matrices until all matrices exhibit sub-linear performance at
P = 16.

As seen in Fig 7 increasing total nnz causes a decrease in
compute time per non-zero. Previous research on SpMV has
shown higher non-zero counts equate to greater performance,
however our hybrid implementation observes super-linear per-
formance among matrices with the lowest number of non-
zeros. This indicates that boost from greater cache efficiency



(a) 1 Node (b) 4 Nodes

(c) 9 Nodes (d) 16 Nodes

Fig. 6: Non-Zeros Per Process vs Rows Per Process: Each matrix evaluated is represented by a single point, and is colored based on the
speedup observed by that matrix at the given process count. The vertical dash line represents the maximum number of 8-byte doubles that
can fit into L2 cache across all tiles on a single KNL device. (a) For 1 process we see several matrices fit into L2 cache already, while the
remaining matrices fall below this threshold as process count increases (b to d).

Fig. 7: Computational Time Per Non-Zero: for each matrix evaluated
the SpMV computation time vs nnz in the matrix is shown for 1
MPI process (1 node). We can see that those matrices for which
superlinear speedup was observed, have the fewest non-zeros as well
as the highest time per-non zero.

Fig. 8: Computational Time Per Row: The time it takes to compute
a row vs total number of rows in the corresponding matrix. Those
matrices that achieved super-linear speedup posses more rows, how-
ever time per row is between 1 and 2 orders of magnitude lower than
matrices that did not achieve super-linearity.



exceeds the decreased time per non-zero of larger matrices.
Additionally, we believe performance of the hybrid code

to also be influenced by the number of rows in a sparse
matrix. Fig 8 shows the observed computation time per row for
each matrix tested. We found that greater row counts achieved
the lowest time per row, and that these matrices were also
those which achieved super-linear computational speedup. The
difference between the two groups approaches 5 orders of
magnitude.

Matrices experiencing super-linear speedup possessed a
mean nnz, row count, and average nnzrow of 3.27E5, 7.27E6,
and approximately 36 respectively. It is worth noting however
that for all matrices tested, speedup eventually dropped to
sub-linear as P continued to increase. This is likely due
to increased parallelism overhead, as well as the lack of
additional benefit from increased cached efficiency since local
problem sizes had already fallen below the L2 threshold.

C. MPI Communication Overhead

As can be seen in Fig. 5, hybrid strong scaling does result
in computational speedup of SpMV, however this does not
reflect true performance achieved as communication overhead
is not accounted for. We assign a single MPI process to
each node, thereby making all MPI communication inter-node.
Fig. 9 shows communication and computation times, averaged
over 10 runs, for all matrices and process counts examined.
We saw SpMV computation times decrease as process count
increases, however communication time did not follow suit.
This is because as process count increases, the number of
rows being assigned to an arbitrary process decreases in rough
proportionality. Therefore at lower process counts each process
must send greater amounts of data to the master process,
increasing its transmission time. In contrast, as process counts
increase, message size decreases, yet overhead is exacerbated
by the larger number of participating processes. From Fig. 9
we clearly see that the cost of communication vastly outweighs
the additional computation performance gained.

We observed communication to computation ratios between
200 for P = 4 and 2600 for P = 16. Reviewing results
from the previous study we found that the ratios observed on
Voltrino were between 100x and 650x greater than those of
conventional Intel Xeon system for the same process counts
[8].

Subsequently while the Cray Aries interconnect provided
an optimized MPI Gather, our tests using MPI Gatherv were
2x-3x slower than on Infiniband used in [8]. Voltrino’s in-
terconnect configuration insured that all nodes existed in the
same network group and therefore lacked influence from the
additional network effects such as switching observed in our
earlier study [8].

D. Communication Overhead Impact

It is clear that as soon as a second KNL node is utilized to
perform SpMV on extremely sparse matrices, MPI communi-
cation becomes the dominant factor in overall runtime.

Interestingly, we found that all matrices exhibited similar
scaling behavior regardless of matrix properties. As intended
this indicates that our hybrid implementation normalizes distri-
bution and computation to a function of only the total number
of non-zeros and rows. Fig. 10 illustrates the immediate
impact the addition of MPI communication has on overall
performance. As soon as P > 1 the addition of communication
overhead, which grows increasingly larger than computation
time, outweighs performance gains from strong scaling. The
degree of performance degradation was anticipated given the
communication to computation ratios observed, and are likely
to continue as P −→∞.

Fig 11 compares our current findings with those of our
previous study. As Fig 11 shows the KNL implementation
received approximately a reduction in performance of nearly
2 orders of magnitude when compared to than the Intel
Xeon cluster. These results do not illustrate the entire picture
however since the Intel Xeon system’s computational times are
considerably higher than those of Voltrino thereby decreasing
the overall impact of communication overhead on overall
performance for the process counts shown.

Our hybrid implementation of the KNL CVR method
achieves greater SpMV computational performance, however
it also experiences greater communication overhead. In Fig.
12 we compare the message latency for MPI Gatherv on
both systems. The Voltrino system experienced an order of
magnitude larger latency for all message sizes below 4096
bytes, compared to the conventional system. This means that
as message sizes decrease due to strong scaling the larger
latency experienced by Voltrino leads to overall performance
degradation.

Additionally we evaluated the aggregated bandwidth of both
systems for 2 through 16 MPI processes and display these
results in Fig. 13. Both systems were able to obtain bandwidth
saturation, for all process counts tested. We saw that the
conventional Xeon system achieved saturation at a message
size of approximately 2048 bytes. In comparison Voltrino
required a much larger message size of nearly 65536 bytes in
order to obtain bandwidth saturation. This indicates that Cray
Aries has a higher peak bandwidth than that the Mellanox
FDR Infiniband. However, this bandwidth is shared among 4
nodes.

The KNL based Voltrino system and its Cray Aries inter-
connect possess greater maximum bandwidth but at the cost
of much higher per message latency. This means that the
interconnect is not able to achieve sufficient link saturation
necessary to hide the significantly higher message latency.
Combined these two network characteristics account for the
overall performance degradation of 2 orders of magnitude
observed during our tests. It is important to note that our
analysis does not include any additional network effects,
therefore continued scaling would likely degrade performance
further due to the addition of topological anomalies.



Fig. 9: Observed computation time and communication time from MPI Gatherv is shown for all process counts (1,4,9, and 16) and benchmark
matrix. Benchmark matrices are listed left-to-right in ascending order by avg nnz per row.

Fig. 10: Combined performance for SpMV computation and commu-
nication of result, in terms of speedup. Each line represents a different
benchmark matrix for the given number of MPI Processes.

E. Communication Overhead Amortization

Xie et al [14] analyzed the impact of pre-processing time
on SpMV performance measurements. They assumed that for
an arbitrary matrix, pre-processing would take time α, while
SpMV computation required time β. They then calculated
the number of SpMV iterations required to offset the pre-
processing time.

Similar to [14] we will use the term iteration to refer to
one complete SpMV operation on the entirety of a matrix
and its dense vector component. In this study we evaluated
computation time for only a single iteration of SpMV thereby
making iteration time = SpMV computation time.

Fig. 11: Overall speedup, incorporating computation and commu-
nication of final result, are shown for both the CVR method on
Voltrino, and the conventional Intel Xeon system tested in [8]. Overall
performance of our hybrid code on Voltrino is on average 2 orders
of magnitude lower than those observed on the conventional system.

While much of our study is conducted under the assumption
that this SpMV code is but a portion of a larger solver,
if we visualize that solver to be iterative in nature we can
see exactly how poignant communication overhead actually
is. Reducing the impact of communication overhead can be
accomplished by performing multiple SpMV iterations, such
that the performance enhancement provided by our hybrid
method outweighs the accompanying overhead. For our imple-
mentation the number of SpMV iterations necessary to offset
MPI overhead is equivalent to the ratio of communication-
to-computation. Therefore we can see that for relatively low



Fig. 12: Average message latency for the variable length gather
(MPI Gatherv) collective for varying MPI process counts are shown.
Voltrino system has on average an order of magnitude greater latency
for message sizes below 4096 bytes than the conventional system.

Fig. 13: Average aggregated bandwidth for the MPI process counts
shown. The conventional system with its Inifiband FDR interconnect
bandwidth saturation begins by a message size of 2048 bytes, com-
pared to approximately 65536 bytes on the Cray Aries interconnect
used by the Voltrino system.

values of P potentially thousands of communication-less lo-
cally updating iterations are required. Interestingly, the number
of SpMV iterations needed for our hybrid implementation
to overcome communication overhead is greater than those
required by the conventional system due to increased pre-
processing requirements.

VII. FUTURE WORK

While our work has shown that performance degradation
created by communication overhead dominates on KNL clus-

ters for SpMV on extremely sparse matrices, further ex-
ploration is needed. Sparse problems will be evaluated on
additional architectures such as GPUs and emerging architec-
tures, as will the communication impact these architectures
experience in a multi-node environment.

Our tests thus far have required that at least at the beginning,
the entirety of a sparse matrix and its accompanying dense
vector fit on a single node. We are currently investigating the
use of communication avoiding algorithms and the ability to
reduce overhead at scale. The issues associated with larger
data sets incapable of residing on individual nodes, as well as
the ability to handle streaming updates to the sparse matrix
and or the dense vector are also of interest.

Furthermore while this study and [8] helped to identify
performance behavior of SpMV at the extreme end of strong
scaling, we are interested in evaluating much larger matrices
that do not initially fit within the memory space of a single
node. Evaluating such matrices will allow us to work towards
our goal of generating a model for forecasting the point at
which hybrid codes stop scaling.

VIII. CONCLUSIONS

This study evaluated a hybrid implementation of the CVR
SpMV method on KNL systems. We focused primarily on
the strong scaling of SpMV computation over extremely
sparse matrices with the intent of identifying extreme scaling
behavior while utilizing more manageable data set and cluster
sizes.

We demonstrated that single process performance does im-
prove as thread counts increase, but flattens out as we approach
the total possible concurrent threads for single KNL device. In
addition, this paper demonstrates that overall scalability in a
message passing environment is overwhelmingly driven by its
communication pattern. Our findings suggest SpMV possesses
an inability to strong scale beyond some point, even with
cutting edge network interconnects or architectures, and that
this scaling limit is tightly tied to the performance impact of
communication overhead.

Furthermore as we have shown, optimizing SpMV on exist-
ing many-core architectures using hybrid design does achieve
a computational performance boost, yet does not address the
dominant communication overhead factor at scale. Our studies
indicates that as P −→ ∞ communication overhead is by far
the dominant factor and cannot be discarded. For extremely
sparse matrices once strong scaling insures that problem size
fits within a single node, as was the case with using smaller
matrices from the start, we saw a huge degradation due to
inter-node communication regardless of matrix properties.

CVR and KNL were chosen in an effort to provide an opti-
mal SpMV computation method on an architecture capable of
increased parallelism. We expected to see much greater strong
scaling using the KNL system than was actually achieved.
Comparing this study to our previous hybrid SpMV implemen-
tation on a conventional system both implementations share
similar scaling behavior.



As the level of on device parallelism is driven higher, so
to is message size per device and with it communication
overhead.This would suggest a need to shift efforts away from
reducing SpMV computation time in favor of eliminating the
bulk of communication within sparse applications. Alternative
schemes for remote aggregation, or the avoidance of their
requirement, will be essential for obtaining superior perfor-
mance.
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