
Scalability of Streaming on Migrating Threads
Brian A. Page

Dept. of Computer Science and Engr.
Univ. of Notre Dame

Notre Dame, IN, USA
bpage1@nd.edu

Peter M. Kogge
Dept. of Computer Science and Engr.

Univ. of Notre Dame
Notre Dame, IN, USA

kogge@nd.edu

Abstract—Applications where streams of data are passed
through large data structures are becoming of increasing impor-
tance. Unfortunately, when implemented on conventional archi-
tectures such applications become horribly inefficient, especially
when attempts are made to scale up performance via some sort
of parallelism. This paper discusses the implementation of the
Firehose streaming benchmark on a novel parallel architecture
with greatly enhanced multi-threading characteristics that avoids
the conventional inefficiencies. Results are promising, with both
far better scaling and increased performance over previously
reported implementations, on a prototype platform with consid-
erably less intrinsic hardware computational resources.

Index Terms—Emerging Architectures, Streaming, Scalability,
Communication Overhead, HPC

I. INTRODUCTION

Applications where streams of data are passed through
large data structures are of increasing importance. Particular
areas include graphs and big data [4], [5], [3], [15], [11],
[12]. Prior studies of streaming include [6], [14], with a
small but growing suite of software support packages [8],
[17], [16]. Unfortunately, when implemented on conventional
architectures such applications become horribly inefficient,
especially when attempts are made to scale up performance
via some sort of parallelism.

This paper focuses on the Firehose [2], [7], [10] benchmark
as a framework for study. The benchmark is a stand-in for
streaming applications where information from different in-
coming internet packets (called “datums”) must be aggregated
in some way so that different kinds of “events” can be
recognized, and potential “anomalies” detected. Much of the
data reported on the Firehose website1 demonstrates a variety
of issues with scaling it to use multiple cores. If an architecture
cannot do well on Firehose, then its unlikely to do well on
more complex apps. This makes it a good target for attempt
similar solutions on alternative architectures2.

One novel architectural approach that avoids the scaling
limitations found in conventional architectures uses a suite of
advanced multi-threading in a highly scalable parallel archi-
tecture, including the ability for a thread handling a particular
stream datum to migrate with the datum to whatever hardware

1https://firehose.sandia.gov
2An earlier version of this paper was presented as an extended abstract at

the 2020 Int. Workshop on Innovative Architectures (IWIA), in Feb. 2020.
The implementation in this paper is a major revision with a much deeper
analysis.

node holds the part of the data structure to be accessed.
Such migrations are handled directly in the hardware, without
any intervening software, and provide very efficient support
for mobile atomic memory operations. Our results show this
architecture obtains vastly superior performance while using
less traditional ”horsepower” than conventional systems.

This paper discusses initial scaling results from the imple-
mentation of a variation of the Firehose benchmark on such
a new architecture. Section II provides background. Section
III discusses the algorithms. Section IV reviews the experi-
mental setup. Section V evaluates the results, and Section VI
concludes.

II. BACKGROUND

A. Firehose Streaming Benchmark

Firehose resembles a cyber-security like streaming function
where incoming IP packets are to be monitored. When some
number of packets with the same IP address have been de-
tected, the payload fields are examined for potential anomalies,
and if detected, a report issued. The benchmark has three
versions. The first two assume incoming packets have three
fields formatted as ASCII strings. The first, the key, is an IP
address that when converted from ASCII represents a 64-bit
unsigned integer. The second, the payload, is a value of “1” or
“0.” The third is a truth flag that indicates if this packet is part
of an “anomaly” sequence. This field is only used when the
implementation makes a call to verify if the call was correct.

For the first two versions, the key field is used to look
for matches in a giant hash table. At each match, a “match
count” field is incremented in the table entry. In addition if
the payload is a “1,” a separate payload count is incremented.
When the match count reaches 24, the payload field is tested.
If it is 4 or less, an anomaly report is generated. No IP matches
in the hash table causes a new hash entry to be created.

The first benchmark variant is primarily for testing, and the
data generator ensures that there will never be more than 128K
unique key values. The second is similar in that at one time
there will not be more than 128K unique keys, but it has no
constraint in the total number of unique keys over time. The
third version is a more complex two-phase process described
in the website.



Fig. 1: The Firehose Data Flow.

1

10

100

1000

10000

1 10 100 1000 10000

Da
tu
m
s/
se
c 
(M

ill
io
ns
/s
ec
)

Cores

Variant 1 Perfect
Variant 1
Variant 2 Perfect
Multi‐Thread V2
Cluster V2

Fig. 2: Reported Scaling Numbers (Mostly from Variant 2).

For all three benchmarks, a “biased power law” data
generator3 creates synthetic data streams. The datum stream
associated with a key may have two distributions of payload
values. In the normal case, the payload is chosen equally
randomly from a “1” or a “0”. In the anomalous case, the
payload values are biased toward “0.”

Fig. 2 diagrams scaling results obtained in previous Firehose
studies [1], [2], [10] and which we used from comparison
against our implementation. Table I summarizes the major
characteristics of the microprocessors used in the studies
shown in Fig. 2. The curves for small core counts represent
scaling data for multi-threaded implementations of both Vari-
ant 1 and 2 as taken from the Firehose website. The system
for the Variant 1 result was a dual socket node where each
socket was an Intel X5690 six-core processor. This data shows
relatively poor scaling, with 7 cores providing 10 million
datums per sec, less than twice that of a single core (5.6
million datums/s). The discrepancy is most likely due to a
combination of coherency traffic and the need for expensive
guaranteed atomic memory operations when the hash table
entries are to be updated.

The Variant 2 data has two parts: data from the same system
as the Variant 1, and data from a multi-node dual 6-core socket
Cray CS-300 using Intel E5-2670 processors [7]. The former
achieves 1.9 million datums/s on one core. The latter curve
shows good weak scaling, but at an equivalent performance
level per core of 0.6-0.1 million datums/s per core. This is up
to 30X less than what perfect scaling from one core would
have brought. The reason for the huge loss in efficiency per
core is the software stack needed to handle the queuing and
streaming of data from one physical node to another.

3see https://firehose.sandia.gov/doc/generators.html\#bias

2019-09-11-LPS

Memory
Channel

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Network

Nodelet: New unit of parallelism

Threads execute here

Until they make a non-local reference
And then moved to correct nodelet

. . .

And they are free to spawn
independent children

All memory in single
global address space

Smart Memory 
Controllers
that also do atomics Spawned threads include fixed function remote atomics

129

Fig. 3: The Migrating Thread Architecture.

B. Migrating Thread Architecture

A migrating thread architecture [13] is one where the un-
derlying hardware, not software, moves the state of a thread as
required during execution. Fig. 3 diagrams such an architecture
as implemented by Emu Solutions [9] (now Locata, Inc.). The
basic unit, a nodelet, is a memory module, its controller and
some number of multi-threaded cores. All the memory in the
collection of nodelets reside in a common address space. A
network connects all nodelets. A thread runs in a core until
it makes a memory reference that is not contained in that
nodelet’s memory. The hardware then puts the thread to sleep,
packages it, and moves it over the network to the correct
nodelet, where it is unpacked and restarted. A thread can
spawn independent child threads. Also, the memory controller
can perform directly atomic operations as close to memory as
possible. Finally, very lightweight threads can be spawned to
perform remote memory operations without moving the parent.

The current prototype used in this study is housed at Georgia
Tech’s CRNCH center4. It has up to 64 nodelets, each with
8GB of memory and one 175MHz multi-threaded core. These
nodelets are packaged 8 to a node board which supports a
RapidIO-based network. A dual core POWER microprocessor
(called an SC) on each node board runs Linux, manages a
local SSD, and launches migrating threads into the system.
The nodelet logic on each board is implemented in an FPGA.
The last row of Table I summarizes the characteristics of a
node board. A larger system is in development.

In comparison to either of the two microprocessors used
in the reference data, the aggregate compute cycles (number
cores times clock rate) of the nodelet cores on a node card
is 1/14’th of either the other two. The actual comparison
is probably lower than this as the nodelet cores are single
issue and both the Intel cores are multi-issue. The node
board aggregate memory bandwidth is about 1/3 to 1/4’th
the others, but, because of the memory channel design used

4https://crnch.gatech.edu/rogues-emu



Memory Per Channel Total per Module
Processor Cores Core Clock Channels Bandwidth GB/s Access Rate G/s Bandwidth GB/s Access Rate G/s

Intel Xeon X5690 6 3.46 GHz 3 10.7 GB/s 0.166 G/s 32 GB/s 0.5 G/s
Intel E5-2670 8 2.6 GHz 4 12.8 GB/s 0.200 G/s 51.2 GB/s 0.8 G/s

Emu Chick Node Card 8 0.175 GHz 8 1.6 GB/s 0.2 G/s 12.8 GB/s 1.6 G/s

TABLE I: Processor Characteristics.

in the nodelets, the ability of a node board to handle different
independent memory accesses is between 2X to 3X higher that
of either microprocessor.

The programming tool chain is based on Cilk, C with a
prefix to function calls to spawn new threads, a sync primitive
to wait for a set of children to complete, and a parallel forall
to have a set of independent threads cooperate on a loop.
Supported intrinsics include a rich set of atomic operations.
Threads may spawn either child threads of equal capabilities to
themselves, or remote atomic threads that migrate to target
memory locations independent of the parent thread, but can
only perform a limited set of atomic operations at the target.

III. ALGORITHMS

We developed two implementations of the Firehose bench-
mark variant 1 analytic engine. Our first implementation was
based on the C++ version from the Firehose website. Our
second version significantly reduced migrations. In both cases,
because of limitations in the prototype’s I/O, the incoming data
is placed in nodelet memories exactly as it would have if the
data can come in externally through the SCs.

A. Baseline Implementation

Alg. 1 assumes each nodelet has a share of the datums
which have been stored into a local datums array on each
nodelet. A single shared hash table called state is visible to
all threads and nodelets. It also assumes T threads are spawned
on each nodelet, with each thread having a thread id i from
the range 0 to T − 1. state is an open address hash table
which is represented via a 1-Dimensional array striped across
all nodelets. Open address hash tables rectify hash collisions
by performing linear probing until an empty entry is located.
However in our current implementation we set the size of
state equal to that of the max possible number of unique
keys generated. In doing so we guarantee every possible key
has a unique hash table entry and therefore no collisions are
possible. This is consistent with variant 1 rules, but will change
when the code is upgraded to variant 2 of the benchmark.

Each thread processes a single datum at a time in the while
loop on line 2. During processing, a thread accesses the datum
array on the nodelet the thread was spawned and acquires the
key, payload, and bias flag values for the current datum. The
state entry for the current key is determined by computing
the hash function hash = key % sizeof(state). This is again
consistent with variant 1 rules, but will change when the code
is upgraded to variant 2 of the benchmark.

Once the state table entry has been determined the state
stored within state[hash] must be updated. Updating a key
state requires incrementing the hit counter as well as adding

the payload value of the current datum to the payload sum for
the given key as these values are used to check if an event
and or anomaly are to be triggered. All of these updates are
done atomically, preventing race conditions between threads
handling different datums. The hit counters and the payload are
combined in a single 64b word to allow simultaneous updating.

Upon updating the state for the current key, line 8 checks
if any key is seen 24 times. When such an event is triggered,
the payload sum is checked for a value less than 4, and if
so a true anomaly has been triggered. The flag field in each
datum is then used to check the accuracy of the analysis by
indicating if the report agreed with the expected results. Lines
11 to 14 update (again atomically) global statistics based on
what the datum’s bias flag indicated was the true answer.

Algorithm 1 Multithreaded FireHose variant 1:
T = number of worker threads spawned
i = thread id (initially i < T )
datumCount = num datums assigned to nodelet
datums = array storing all datums assigned to nidelet
key = key value for current datum
p = payload value for current datum
f = bias flag for current datum
hash = state element id for current datum’s key
state = array containing payload and hit counts for all keys
hits = observed key occurrences

1: procedure ANALYZEDATUMS(i)
2: while i < datumCount do
3: key ← datums[i].key; p← datums[i].payload
4: f ← datums[i].bias; hash← key%100000
5: if state[hash]=empty() then initstate(hash)

6: state[hash].hits++
7: state[hash].pSum += p
8: if state[hash].hits = 24 then
9: events++

10: if state[hash].pSum < 4 then
11: if b = true then truePositives++
12: else falsePositives++
13: else if b = true then falseNegatives++
14: else trueNegatives++
15: i += T
16: end while

B. Prefiltering Implementation

The major remaining issues with Alg. 1 lie in the updates
to the hash table. Given the range of possible IP values, it
is likely that a large percentage of updates from any thread
will be to parts of the hash table that are on a that is on a



physically different nodelet. Additionally the data generator
utilizes a power law distribution to produce the keys, meaning
approximately 20% of keys will be present in 80% of all
datums generated. Given the number of datums generated
along with the number of nodelets used, it may be possible to
flood a nodelet with updates to high occurrence keys.

To decrease the likelihood of this overloading we devel-
oped Alg. 2, which limits updates to the global hash table
globalState by first checking a local hash table localState.
Prefiltering remote updates has been used in previous studies,
such as breadth first search in which the graph contains ver-
tices with very high out-degree. Both tables are implemented
in the same manner as striped state table used in Alg. 1,
except that each nodelet’s localState table is only accessible
from the nodelet on which it resides.

Finally, it is possible that threads on nodelets other than the
one that found the = 24 event will not have their deadF lag
set, and try to update the global state. When they do, they
will find the global count > 24 (line 20), and instead of
continuing the update simply set their own local state entry
to dead (line 21). For keys that may be at the far end of the
power law distribution, this means that any global entry is
modified at most 24 plus the number of threads times, and
probably closer to 24 plus the number of nodelets. As will be
seen this has a dramatic effect on performance.

IV. EXPERIMENTAL SETUP

A. Program Execution

The EMU system we evaluated consists of 8 node cards,
each containing 8 nodelets and a dual-core SC capable of
performing higher level OS functions. When an application
is run, a single thread is spawned on nodelet 0 which begins
instruction execution as per the program’s design. This thread
then spawns a single thread on each nodelet. These threads
then spawn any number of additional worker threads locally.
The number of threads generated on each nodelet does not
need to be the same, however only 64 threads may execute
concurrently on any nodelet, with additional threads placed
into an execution queue.

Threads migrate throughout the system as described in Sec.
III until all datums have been exhausted. At this point they
return control back to the original thread on n0, where statis-
tical information is gathered and output. This final migrating
thread then signals the SC that execution has completed.

B. Dataset Generation and Placement

Because of the lack of string handling instructions in the
current prototype, the key, value, and flag fields for each
datum generated are implemented as 8 byte integers. Space is
allocated for datumCount number of datums on every nodelet
utilized. For our strong scaling tests we used 250 million
datums, the maximum number that can fit on a single nodelet,
and them spread uniformly across all nodelets used in the
given run. While the stock maxium key range is 100,000 for
a single generator we chose to set the key range to 6,400,000,
or 100,000 per nodelet. This max unique key range was used

Algorithm 2 Filtered FireHose:
Same parameters as Algorithm 1, with additions:
globalState = global payload and hit counts for all keys
localState = local status of each key
dead = key exhaustion status

1: procedure ANALYZEDATUMSFILTERED(i)
2: while i < datumCount do
3: key ← datums[i].key; p← datums[i].payload
4: f ← datums[i].bias; hash← key%100000
5: if globalState[hash] = empty() then

initglobal(hash)

6: if localState[hash] = empty() then
initlocal(hash)

7: deadF lag ← localState[hash]
8: i += T
9: if deadF lag 6= 0 then continue

10: globalState[hash].hits++
11: globalState[hash].pSum += p
12: if globalState[hash].hits = 24 then
13: localState[hash]++
14: events++
15: if globalState[hash].pSum < 4 then
16: if b = true then truePositives++
17: else falsePositives++
18: else if b = true then falseNegatives++
19: else trueNegatives++
20: else if globalState[hash].hits > 24 then
21: localState[hash]++
22: end while

for all runs and all nodelet counts tests to insure consistency
throughout. Each nodelet received 250Mil/nc datums, where
nc is nodelet count.

During the initialization phase nodelet 0 spawns nc number
of threads locally on nodelet 0. Each thread is then given
a distinct seed value which is used to generate randomized
datum key values thereby ensuring that each thread does not
generate identical keys. When generating random keys each
thread inputs the same power law distribution so that all keys
generated, though from disjoint seeds, still abide by the global
power law distribution. As threads generate datums they are
written to remote addresses corresponding to the nodelet on
which the datums were assigned.

C. Scaling Tests

For our scaling tests we vary the number of nodelets from
between 1 and 64 in powers of 2, as well as the number of
threads spawned on each nodelet for datum processing again
between 1 and 64 in powers of 2. For the reference case we
utilize a single nodelet with a single thread processing all
datums. The upper limit of our tests is 64 nodelets with 64
threads each, generating a total of 4096 concurrent threads.

Generation and placement of datums onto their associated
nodelet occurs during the un-timed initialization phase. Run
time measurements are started before the recursive spawn



which generates worker threads on each nodelet. A Cilk sync
prevents further program execution until all nodelets have
completed, upon which the stop time is measured and total
runtime determined. The time required by the asynchronous
updates to statistic counters is included, as discussed in the
benchmark specification.

To gain insight into the improvement from performing key
filtering, we gathered information regarding the number of
migrations that occur by making separate un-timed runs, with
measurements taken that allowed counting migrations.

V. EVALUATION

A. Strong Scaling Performance

Fig. 4 shows the multi-threaded speedup for Alg. 1 over a
single thread. Each line represents a different nodelet count,
while the x-axis represents the increase in threads spawned
on each nodelet. The best performance is achieved by using 1
nodelet and increases as thread count increases until approx-
imately 32 where performance begins to flatten. Overall as
the number of nodelets increases the thread count at which
performance stagnation occurs decreases with 64 nodelets
flattening after 2 threads per nodelet.

The power law distribution used to generate datums is the
primary reason for this behavior. As the number of nodelets
increases the number of globalState table entries that are local
to a arbitrary nodelet decreases proportionally. Because of this
as we increase system size we also increase the likelihood that
a thread must migrate to a remote processing element in order
to update a key’s state. Greater migration counts means greater
communication overhead and therefore reduced performance.

Additionally for Alg. 1 due to the power law distribution a
small subset of keys will be ”hit” with much greater frequency
than others. As we increase the likelihood of migration as
nodelet counts increase, we also increase the probability that
threads will be inundating the nodelets which control the
globalState entries for these high occurrence keys. Since
all globalState entry updates are performed using atomic
operations, threads must wait until they are able to perform
their update. Thus as thread migrations intended to update the
same memory locations pile up, their associated execution wait
time also increases. In our tests the max occurrence of any key
was 83,359,938 meaning that the number of thread migrations
for this key was upwards of 65 million depending on nodelet
count. Fig. 4 illustrates the impact excessive thread migration
had on performance.

Fig. 5 displays overall speedup vs sequential (1 nodelet with
1 thread). Perfect speedup was observed for all thread counts
as the number of nodelets used increased up to the point after
which speedup flattens. Tests using 1 and 2 threads per nodelet
experienced the longest period of perfect scaling up through
32 nodelets. Higher thread counts saw speedup stagnation
much sooner, with 64 threads per nodelet flattening out after
2 nodelets. Despite this, the maximum speedup obtained was
110.1X using 64 nodelets and 64 threads per nodelet.

Throughput for Firehose is measured as the number of
datums processed per second, and is the key comparison

Fig. 4: Speedup for Alg 1 using 250M datums. Calculated as varying
thread counts per nodelet vs a single thread per nodelet.

Fig. 5: Overall computational speedup compared to results observed
for use of 1 nodelet with 1 thread for Alg 1 using 250M datums.

characteristic. Fig. 6 shows the throughput achieved by Alg.
1 as we scale strongly. While throughput for the 1 nodelet
sequential tests is low at 102,100 datums per second the
maximum achieved throughput was 11.2 million datums per
second. Throughput behavior follows that of overall speedup
seen depending on nodelet and thread counts despite the
increased thread migration count as system size increases. As
explained in Sec. V-B the number of migrations required does
not vary enough as nodelet counts increase beyond nc = 2 to
be a significant factor.

Alg. 2 was designed to eliminate meaningless migrations
by checking a localState table prior to performing any
atomic operation for updating a key’s state. Fig. 7 shows
the multithreaded speedup for Alg. 2 with each nodelet count
comparing runtimes to the single thread run times for the same
nodelet count. Each line represents a different nodelet count,
while the x-axis represents the increase in threads spawned on
each nodelet. We observed that all nodelet counts experienced



Fig. 6: Observed throughput for Alg 1 using 250M datums measured
in datums per second.

Fig. 7: Mutlithreaded speedup for Alg 2 using 250M datums is
calculated as varying thread counts per nodelet vs a single thread
per nodelet.

nearly identical behavior as threads were increased.
Additionally, speedup is nearly perfect for all nodelet counts

until approximately 16 threads per nodelet, continuing to
increase though at a reduced rate through 32, and finally
flattening at 64. The dramatic reduction in thread migrations is
the primary factor causing this behavior. Since the number of
migrations has been reduced so to has the the corresponding
overhead. Along with this, once a key has been marked
”dead” in the localState table, no further ATOMIC ADDM
operations to update the global state will be conducted.

The overall scaling performance of Alg. 2 can be seen
in Fig. 8. All thread counts increase near perfectly until
nodelet count reaches 32 after which speedup flattens. Here 64
nodelets with 64 threads per nodelet obtained the maximum
speedup over the sequential case of 1458.8X!

Similar to overall speedup, Alg. 2 achieved superior
throughput. Fig. 9 outlines the near perfect scaling of through-

Fig. 8: Overall computational speedup compared to results observed
for use of 1 nodelet with 1 thread for Alg 2 using 250M datums.

Fig. 9: Observed throughput for Alg 2 using 250M datums measured
in datums per second.

put as system size increases. Datums per second increases
near perfectly for all nodelet counts, as threads per nodelet
increases. As can be seen the rate at which through increases
begins to decline at 16 threads per nodelet, followed by
flattening after 32 threads per nodelet. Thanks to the increased
performance of Alg. 2 the maximum throughput observed was
222.89 Million datums per second, or approximately 20X
that of Alg. 1.

Performance improvement due to the filtering performed
in Alg. 2 compared to its non-filtered counterpart Alg. 1 is
shown in Fig. 10. The performance for Alg. 2 was greater
than that of Alg. 1 regardless of the number of nodelets or
threads used during testing. Thread counts of 1 and 2 did
begin to experience a downturn in comparative speedup after
as nodelet counts increased beyond 16 but remained positive.

In general as the number of threads increased the level
of comparative speedup obtained increased. Maximum al-
gorithmic improvement of 20.42X was achieved using 32



Fig. 10: Comparative algorithmic performance for Alg. 1 and 2

Fig. 11

nodelets with 64 threads per nodelet. This is likely due to
the impact filtering has on performance as the probability of
thread migration increases with system size. It is clear that
eliminating migrations and atomic operations while they would
otherwise be increasing in quantity allowed for significant
throughput and overall speedup gains.

B. Migration Reduction

Fig. 11 shows the effectiveness of Alg. 2 at reducing the
number of thread migrations. For 1 nodelet all hash table
entries reside on nodelet 0, therefore no migrations take
place regardless of algorithm. However for all other nodelet
counts, some portion of datum evaluations will require thread
migration. As shown in Fig. 11 Alg. 2 experienced an average
of 3 orders of magnitude fewer thread migrations than Alg.
1 for the same nodelet count. This pattern held true regardless
of nodelet count tested.

VI. CONCLUSION

Streaming is of growing importance, and understanding
what architectural features affect scalability (both positive and
negative) is important. Firehose, while a small benchmark, is
an excellent vehicle for focusing on the core of streaming
applications.

The results of this experiment indicate that the migrating
thread architecture has much better scalability than the previ-
ous reported data, and even significantly better performance
(well over 100 million datums/s vs 5.6 for one core or 10 mil-
lion datums/s for 7 cores), even given the lower computational
performance present in the nodelet cores. There are of course
caveats: this experiment pre-placed the data in nodelet memory
and did not include the ASCII keys, but a fixed length binary
version. The former was because the current prototype did
not have sufficient real I/O capability, and the latter because
of the limitations of the nodelet cores and the need to keep
experimental run times down to a manageable level. Even so,
the observed performance gains are significant. It is not hard
to imagine that the performance would be at least similar even
with the ASCII keys if the nodelet cores were replaced with
realistic ASIC versions running 10X or faster than the current
FPGA.

In looking at the implementation the gains seem to come
from a variety of aspects of the migrating thread architecture.
First is the lack of cache coherency traffic and the need
for complex routines to perform atomic updates to the hash
table, either locally or remotely. Second is the multi-threading
that allows the memory channels of each nodelet to be fully
utilized, regardless of the non-memory computations needed
for each datum. Last but not least is the avoidance of explicit
messaging software needed to communicate between physi-
cally separate nodes.

Near-term future work will focus on Variant 2 of the
benchmark, where more complex interactions at the hash table
are needed to weed-out entries that are too old. The observed
performance drops in the website-reported data (roughly a
factor of 2.5X) indicates there are even more issues present
with conventional architectures. Additionally, modifications to
the code can insert fake “writes” to simulate memory cycles
needed in a real system to accept data from an input port. Also,
performance runs will be made on the larger system under
development that has a different and more even interconnect
topology that the 8-node CRNCH system. Finally, as the core
technology improves, going back to the ASCII keys will be
included.

ACKNOWLEDGEMENTS

This work was supported in part by the Department of
Energy, NNSA, under the Award No. DE-NA0002377 as part
of the Predictive Science Academic Alliance Program II, in
part by NSF grant CCF-1642280, and in part by the University
of Notre Dame. We would also like to acknowledge the
CRNCH Center at Georgia Tech for allowing us to use the
Emu system there, and for aiding in helping us the learning
curve of using the available tool chains.



REFERENCES

[1] Firehose benchmarks. http://firehose.sandia.gov/.
[2] K. Anderson. Streaming benchmarks firehouse and experiences with

waterslide. In Chesapeake Large Scale Data Analytics Conf., 2016.
[3] D. A. Bader, J. Berry, A. Amos-Binks, D. Chavarra-Miranda, C. Hast-

ings, K. Madduri, and S. C. Poulos. Stinger: Spatio-temporal interaction
networks and graphs (sting) extensible representation. Georgia Institute
of Technology, Tech. Rep, 2009.

[4] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming
algorithms, with an application to counting triangles in graphs. In Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’02, pages 623–632, Philadelphia, PA, USA, 2002.
Society for Industrial and Applied Mathematics.

[5] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-
streaming algorithms for local triangle counting in massive graphs. In
Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’08, pages 16–24, New
York, NY, USA, 2008. ACM.

[6] P. A. Bernstein and N. Goodman. Timestamp-based algorithms for
concurrency control in distributed database systems. In Proceedings of
the Sixth International Conference on Very Large Data Bases - Volume
6, VLDB ’80, pages 285–300. VLDB Endowment, 1980.

[7] J. Berry and A. Porter. Stateful streaming in distributed memory
supercomputers. In Chesapeake Large Scale Data Analytics Conf., 2016.

[8] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink: Stream and batch processing in a single
engine. In Bulletin of the Technical Committee on Data Engineering,
Dec. 2015.

[9] T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs, J. B. Brockman,
K. Jacobsen, Y. Juan, S. Kuntz, R. Lethin, J. McMahon, C. Pawar,
M. Perrigo, S. Rucker, J. Ruttenberg, M. Ruttenberg, and S. Stein.
Highly scalable near memory processing with migrating threads on the
emu system architecture, Nov. 2016.

[10] J. Eaton. Firehose, pagerank, and nvgraph: Gpu accelerated analytics.
In Chesapeake Large Scale Data Analytics Conf., 2016.

[11] D. Ediger, K. Jiang, J. Riedy, and D. Bader. Massive streaming data
analytics: A case study with clustering coefficients. pages 1 – 8, 05
2010.

[12] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On
graph problems in a semi-streaming model. Theor. Comput. Sci.,
348(2):207–216, Dec. 2005.

[13] P. Kogge. Of piglets and threadlets: Architectures for self-contained,
mobile, memory programming. Innovative Architecture for Future
Generation High-Performance Processors and Systems, pages 130–138,
Jan. 2004.

[14] P. M. Kogge, N. Butcher, and B. Page. Introducing streaming into linear
algebra-based sparse graph algorithms, July 2019.

[15] A. McGregor. Graph stream algorithms: A survey. SIGMOD Rec.,
43(1):9–20, May 2014.

[16] S. J. Plimpton and T. Shead. Streaming data analytics via message
passing with application to graph algorithms. Journal of Parallel and
Distributed Computing, 74(8), 5 2014.

[17] J. Riedy and D. Bader. Stinger: Multi-threaded graph streaming. 05
2014.


