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Abstract

Web services rely on caching at nearly every layer of the
system architecture. Commonly, each cache is implemented
and maintained independently by a distinct team and is highly
specialized to its function. For example, an application-data
cache would be independent from a CDN cache. However, this
approach ignores the difficult challenges that different caching
systems have in common, greatly increasing the overall effort
required to deploy, maintain, and scale each cache.

This paper presents a different approach to cache devel-
opment, successfully employed at Facebook, which extracts
a core set of common requirements and functionality from
otherwise disjoint caching systems. CacheLib is a general-
purpose caching engine, designed based on experiences with
arange of caching use cases at Facebook, that facilitates the
easy development and maintenance of caches. CacheLib was
first deployed at Facebook in 2017 and today powers over 70
services including CDN, storage, and application-data caches.

This paper describes our experiences during the transition
from independent, specialized caches to the widespread adop-
tion of CacheLib. We explain how the characteristics of pro-
duction workloads and use cases at Facebook drove important
design decisions. We describe how caches at Facebook have
evolved over time, including the significant benefits seen from
deploying CacheLib. We also discuss the implications our ex-
periences have for future caching design and research.

1. Introduction

Large web services rely on caching systems to achieve high
performance and efficiency. For example, at Facebook, CDN
caches serve 70% of web requests, reducing latency by an or-
der of magnitude. A single caching server can replace tens of
backend database servers by achieving 20 x higher throughput
and hit ratios exceeding 80%.

At Facebook, a wide variety of caching systems form an in-
tegral part of the system architecture. Facebook’s architecture
includes CDN caches, key-value application caches, social-
graph caches, and media caches (Figure 1). Caching plays a
similar role at Amazon [26], Twitter [42,92], Reddit [33, 89],
and many other large web services.

Caching systems at Facebook. Historically, each caching
system at Facebook was implemented separately. For example,
Facebook separately designed CDN caches [86], key-value
caches [72], social-graph caches [17], storage caches [71],
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Figure 1: Large web services rely on caching in many subsystems
to improve system performance and efficiency.

database caches [2], and many others. The belief was that
each of these highly specialized systems required a highly
specialized cache in order to implement complex consistency
protocols, leverage custom data structures, and optimize for a
desired hardware platform.

Although these caching systems serve different workloads
and require different features, they share many important en-
gineering and deployment challenges (Section 2). All of these
systems process millions of queries per second, cache working
sets large enough to require using both flash and DRAM for
caching, and must tolerate frequent restarts due to application
updates, which are common in the Facebook production envi-
ronment. As the number of caching systems at Facebook in-
creased, maintaining separate cache implementations for each
system became untenable. By repeatedly solving the same
hard engineering challenges, teams repeated each other’s ef-
forts and produced redundant code. Additionally, maintaining
separate caching systems prevented the sharing of efficiency
gains from performance optimizations between systems.

Hence, Facebook was faced with a tradeoff between gen-
erality and specialization. A more general-purpose caching
solution might lose some domain-specific optimizations for
individual systems, but it could reduce development over-
head and increase synergistic efficiency between systems.
The desire to balance this tradeoff gave rise to CacheLib, the
general-purpose caching engine.

This paper describes Facebook’s solution for scalable
cache deployment: CacheLib. CacheLib is a C++ library
that provides a common core of cache functionality, including
efficient implementations of cache indexes, eviction policies,
and stability optimizations for both DRAM and flash caches.
CacheLib exposes its features via a simple, thread-safe API
that allows programmers to easily build and customize scal-
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Figure 2: The number of Facebook services built using CacheLib
over time. For example, one service is Facebook’s key-value caching
system. Initial growth was due to migration of existing systems, but
more recently, many new systems are built using CacheLib.

able, highly concurrent caches. CacheLib is used both to build
standalone caching systems and to add in-process caches to
applications. Facebook’s CDN, social-graph cache, applica-
tion look-aside cache, and block-storage system all use caches
built and customized using CacheLib.

CacheLib has been deployed in production since 2017
and today powers over 70 different services. Figure 2 shows
CacheLib’s growth during this period. Initially, CacheLib re-
placed existing caches, but since mid-2018 it has facilitated
an explosive growth in caches throughout Facebook, leading
to a significant reduction in backend load.

1.1. Lessons Learned from CacheLib

Developing an effective general-purpose caching framework
has required not only understanding common caching use
cases within Facebook, but also understanding more general
trends in how caches will be deployed in the future. This
section describes instances where the conventional wisdom
about caching does not match our experience with Facebook’s
production environment.

Specialized caching systems can and should be built using
a general-purpose caching engine. At Facebook, CacheLib
has replaced existing specialized caches in several major ser-
vices and has spurred the adoption of caches in many new
applications. CacheLib offers a broader feature set than any
single specialized caching system. Having a common core of
features saves tens of thousands of lines of redundant code,
improves system stability, and makes it easy for developers to
deploy and tune new caches. Moreover, CacheLib serves as
an aggregation point for optimizations and best practices. As
a result, systems built on CacheLib achieve peak throughputs
of a million requests per second on a single production server
and hit ratios between 60 and 90%. To achieve this perfor-
mance, each caching system customizes its cache to use their
desired subset of CacheLib’s features. To accommodate as
many systems as possible, CacheLib’s feature set has grown
over time. As a result, features that once justified the construc-
tion of a specialized caching system are now available to any
CacheLib-based system.

Production workloads require caching at massive scale.
Prior workload studies of production systems [4, 5] have not
shared the popularity distribution of keys. Consequently, pop-

ular benchmarking tools [24, 59] and academic papers [19,
36,41,49,53,65,66,68,74,90,94] assume a Zipf popularity
model with shape parameter o /= .9. This leads to the conclu-
sion that DRAM-based caches are sufficient in most situations.
We provide strong evidence that prior models have been too
optimistic about the cacheability of production workloads.
Because workloads at Facebook are less cacheable than
is generally assumed, caches at Facebook require massive
capacities to achieve acceptable hit ratios. Caching systems
at Facebook often comprise large distributed systems where
each node has hundreds of gigabytes of cache capacity. This
makes the use of flash for caching attractive. However, most
caching systems have historically targeted DRAM and do not
achieve acceptable performance using flash.
Caching is not a solved problem. CacheLib has continu-
ously added features since its initial deployment in 2017 as
new use cases and feature requests have come to light. These
new features have seen rapid, widespread adoption from both
existing CacheLib users and new systems developed using
CacheLib, so that the common core of CacheLib features has
grown with applications over time.

1.2. Bridging the Gap between Research and Production
Caching Systems
Just as developers at Facebook had historically developed spe-
cialized caching systems, we note that the caching literature
has often targeted specialized caching systems. This presents
an obstacle to the uptake of ideas from the research commu-
nity by industry, since the assumptions made by a specialized
research system rarely align perfectly with the realities of
a production environment. Our hope is that CacheLib can
reduce these obstacles by providing a platform for the explo-
ration of new ideas developed outside of Facebook. CacheLib
and a selection of Facebook workloads will be open-sourced !.

2. Motivation: Caching Use Cases

Large web services rely on hundreds of specialized services,
which contain diverse use cases for caching. This section
describes the caching needs of a sample of six production
systems at Facebook.

Hierarchical and geo-distributed caches. Facebook’s
CDN focuses on serving HTTP requests for static media ob-
jects such as photos, audio, and video chunks from servers in
user proximity. Specifically, a goal of CDN servers deployed
outside of Facebook’s network is to reduce the number of
bytes sent over the wide-area network (byte miss rate). There
are also CDN servers within Facebook’s data centers; their
goal is to reduce the number of backend and storage queries
(object miss rate). Each CDN server uses a local cache, span-
ning both DRAM and flash.

Application look-aside caches. Web applications have a
wide range of caching needs. For example, applications must
cache database queries, user data, and usage statistics. Provid-

'For more information, visit www.cachelib. org



ing a specialized caching service for each application would
be inefficient and hard to maintain. Thus, applications use
RPCs to access a set of shared caching services. Each caching
service consists of a large distributed system of caches.

In-process caches. Many applications cannot tolerate the
RPC overhead of a remote cache. CacheLib makes it easy for
these applications to include high-performance, in-process
caches that are decoupled from the application logic.

For example, some backend applications use a CacheLib
cache to store client session information which is used to
rate-limit clients. Specifically, these applications cache flow
counters that see very high bursts in request rates but can be
evicted once a flow slows down. In this case, the latency and
bandwidth requirements of the cache make remote caches
infeasible. Instead, applications instantiate a CacheLib cache
which provides zero-copy access to cached flow counters.
Machine-learning-model serving systems. User-facing
machine-learning applications benefit from caching in multi-
ple places. First, models often use inputs based on how users
interact with content (e.g., liking a piece of content). Con-
tent interaction counters are thus cached so applications can
quickly access the inputs required to generate a prediction
(e.g., ranking content). Second, because repeatedly generat-
ing predictions based on the same inputs is computationally
expensive, model predictions are also cached.

Storage-backend cache. Facebook uses large clusters of
servers with spinning disks to store blocks of persistent data.
Even with several caching layers in front of the block storage
servers, some blocks remain popular enough to exceed the
target IOPS of the disks. Storage servers use flash drives to
cache popular blocks and shield the spinning disks from load.
To support byte-range requests and append operations, these
flash caches are tightly integrated in the storage-system stack.

Database page buffer. Data structures and small objects are
stored in a variety of database systems. Database systems use
page caches to increase their throughput and decrease access
latencies. To support consistency and transactional operations,
page caches are tightly integrated with database logic.

Across Facebook, we find hundreds of different services
which implement a cache or whose efficiency could benefit
from a caching layer. These use cases span all layers of the
data-center stack and administrative domains. Research on
caching spans operating systems [16,52], storage systems [20,
58], distributed systems [8,22,66], network systems [9, 65],
databases [30], and computer architecture [7,56,91].

CacheLib handles these diverse use cases by providing a /i-
brary of components that makes it easy to rapidly build perfor-
mant caches. In many cases, CacheLib caches have replaced
highly specialized caching systems at Facebook. CacheLib
is currently used in dozens of production systems, spanning
five of the six examples described above. Notably, CacheLib
is not currently used as a database page buffer (see Section
6). Hence, while CacheLib will not replace every special-
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Figure 3: Many services are hard to cache. Each graph plots the
number of requests per object as a function of object popularity rank
(log-log) for four production caching systems at Facebook. The green
dashed line shows the best-fit Zipf distribution for each workload.
Lower values of o indicate that a workload is harder to cache, hence
SocialGraph and CDN are harder to cache. Storage is not Zipfian.
Each sample consists of requests taken over 24 hours. The black
dashed vertical lines along the x-axis show the cumulative size of
the popular objects to the left of the line.

ized caching system, we have seen significant adoption of a
general-purpose caching engine at Facebook.

3. Shared Challenges Across Caching Systems
at Facebook

Despite the diversity of use cases for caching, our experience
scaling and maintaining caching systems has revealed a set
of core challenges that frequently overlap between use cases.
This section describes the common challenges at Facebook.

The data in this section was gathered between December
2019 and May 2020 from 4 important workloads from a va-
riety of caching use cases (Section 2). The Lookaside and
SocialGraph systems are both from application-data caches.
Lookaside is a service which provides on-demand caching to
a variety of applications. SocialGraph is specifically used to
cache information from the Facebook social graph. The Stor-
age system is a storage backend cache, and CDN is a cache
in Facebook’s CDN. Each workload represents the traffic to
one machine within its respective service.

3.1. Massive Working Sets

One central challenge at Facebook is massive working sets. A
working set describes the set of objects in a workload which
are popular enough to benefit from caching. A workload with
a larger working set requires a larger cache to produce the
same hit ratio as a workload with a smaller working set.

To measure working sets, one must account for both the
amount of popular data seen over time and the rate of change
in the popularity of data over time. Therefore, we present both
popularity distributions and churn rates at Facebook.
Popularity. The popularity distribution of a workload mea-
sures the frequency of each key over some time horizon
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Figure 4: Object popularity changes rapidly over time. Each graph
plots the probability that the top 10%-most-requested objects remain
popular after x hours. Across all workloads, there is a significant
drop off in popularity after even a single hour.

in a sampled trace. These frequencies indicate the relative
popularity of different objects in the system. Prior mea-
surements of CDN and web workloads indicate that highly-
skewed Zipf distributions are a common popularity distribu-
tion [5, 14,24,38,41,48, 83, 85]. Informally, in a Zipf distri-
bution “the most popular 20% of objects account for 80% of
requests”. Formally, in a Zipf distribution the i-th most popu-
lar object has a relative frequency of 1/i% While some studies
indicate o as low as 0.56 [38,40], most prior measurements
indicate 0.9 < a < 1[5, 14,24,41, 48, 85]. This parameter
range has become the standard evaluation assumption in many
recent system papers [19,36,41,49,53,65,66,68,74,90,94].

Figure 3 shows the popularity distributions on log-log scale
for four workloads at Facebook. At this scale, a Zipf distri-
bution would be a straight line with negative slope (—o).
Lookaside is the only system of the four whose popularity
distribution is Zipfian with o close to 1. Storage’s distribution
is much flatter at the head of the distribution, even though the
tail follows a Zipf distribution. Furthermore, although Zip-
fian, SocialGraph and CDN’s distributions exhibit ot = 0.55
and o = 0.7, respectively. Lower o means that a significantly
higher proportion of requests go to the tail of the popularity
distribution, which leads to a larger working set.

Churn. Churn refers to the change in the working set due
to the introduction of new keys and changes in popularity
of existing keys over time. The popular YCSB [24] work-
load generator assumes that there is no churn, i.e., each key
will remain equally popular throughout the benchmark. This
benchmark and the no-churn assumption is used widely in the
evaluation of system papers [19,36,49,53,65,66,68,74,90,94].

In Facebook production workloads, we find a high degree
of churn. We define an object to be popular if it is among
the 10% of objects that receive the most requests. Figure 4
shows how the set of popular objects changes over time. For
example, the blue bar at x = 3 shows the probability that an
object which was popular 3 hours ago is still in the top 10%-
most-requested objects. Across all workloads, over two-thirds
of popular objects in a given hour fall out of the top 10% after
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Figure 5: Object sizes vary widely and small objects are common.
Distribution of value sizes for all four workloads. Object size is
shown on the X-axis on a log scale. The Y-axis shows a complimen-
tary CDF — the fraction of requests for objects which are less than a
given size. Object sizes are small in the Lookaside and SocialGraph
workloads. Storage and CDN split objects greater than 64 KB and
128 KB, respectively, across multiple keys.

just one hour. Such high churn applies independent of which
hour we use as the baseline, for different percentiles (e.g.,
top 25%), and with different time granularities (e.g., after 10
minutes, 50% of popular objects are no longer popular). This
high churn rate increases the importance of temporal locality
and makes it harder for caching policies to estimate object
popularity based on past access patterns.

3.2. Size Variability

In addition to popularity and churn, object sizes play a key
role in cache performance. Figure 5 shows the object size
distribution for four large use case. For Storage and CDN, we
find that 64KB and 128KB chunks, respectively, are very com-
mon, which result from dividing large objects into chunks. For
Lookaside and SocialGraph, we find object sizes spanning
more than seven orders of magnitude. Note the preponderance
of small objects, which arise from graph edges/nodes, RPC
computation results, and negative caching (see Section 4.3).

These findings restrict the design space for a general
caching system. For example, many existing caching sys-
tems [3,32,35,37,70,75,79, 87] store at most a single object
per cache line (64B). For a system such as SocialGraph, where
a significant fraction of objects are between 10B and 20B, this
approach wastes space. Another challenge is in-memory data
structures which are used as an index for objects on flash. The
per-object overhead differs across existing systems between
8B and 100B [32,37,70,79, 86, 87]. For a system with a me-
dian object size of 100B, such as Lookaside, this means that
80GB - 1TB of DRAM is needed to index objects on a 1TB
flash drive. It is imperative to handle highly variable object
sizes while limiting memory and storage overhead.

3.3. Bursty Traffic

Another common theme is that Facebook’s traffic is quite
bursty. Figure 6 shows the actual request arrival rate com-
pared to a Poisson arrival sequence, which is often assumed
in system evaluations [53,66,73,74, 84]. Figure 6 shows that
the actual arrival rate varies much more than Poisson suggests.
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Figure 6: Requests are very bursty. Number of requests (blue) for
every two minutes over the 2 hour horizon compared to a Poisson
arrival sequence (orange) with the same mean number of arrivals.
The two hour window covers the peak traffic time within a day for
each service. CDN has particularly high short-term bursts.

This is particularly apparent for CDN, which has sharp bursts
of traffic on top of a fairly steady request rate. Variable arrival
rates make it hard to provision caching systems with sufficient
resources to maintain low latencies during a load spike.

3.4. Resource Management

To be efficient, caches should make use of all available re-
sources without exceeding them. This is particularly impor-
tant for DRAM. A common deployment scenario includes
CacheLib as well as application processes, and the kernel,
all of which consume DRAM. As the workload composition
or intensity changes, the memory available for caching can
vary widely. For example, caches which handle variable-sized
objects often have unpredictable levels of memory usage. At-
tempting to provision all available memory for caching can
therefore lead to memory over-commitment, a well known
challenge for in-process caches [78]. Specifically, a memory
spike in the application might lead to the cache being dropped
due to the kernel’s out-of-memory (OOM) killer. Many open-
source caching systems are not OOM-aware [87], leading
to significant operational challenges [77]. CacheLib dynami-
cally allocates and frees memory used by the cache to avoid
these crashes without leaving too much unused memory.

3.5. Computationally Costly Query for Empty Results

Caching systems typically focus on tracking and storing re-
sults for valid backend queries. However, some use cases
frequently send queries that have empty results, indicating
that the requested object does not exist. This occurs often in
database systems that track associations between users, where
a user might query for the set of acquaintances they have in
common with another user. Such queries are typically com-
putationally costly for the backend database. For example,
when querying the social graph, users frequently ask to see
the set of associations they share with another user, and find
that these associations do not exist. Hence, in SocialGraph’s
workload, we measure that 55.6% of requests are for keys that
do not exist. The remaining 44.4% of requests ask for valid
objects, and the corresponding cache hit ratio among these

requests is 86.5%. Failure to cache empty results would thus
lower the cache hit ratio significantly.

3.6. Updating Cached Data Structures

Caches should efficiently support structured data. This is par-
ticularly important for in-process caches that directly interact
with application data structures. For instance, the rate lim-
iter described in Section 2 stores multiple fields in a single
cache object. Applications often want the ability to update
specific fields in a cached data structure without deserializing,
updating, and re-serializing the object.

3.7. Frequent Restarts

Finally, production caches frequently restart in order to pick
up code fixes and updates. This happens because engineering
teams require the ability not only to roll out new code quickly,
but to roll back changes quickly as well. For example, 75% of
Lookaside caches and 95% of CDN caches have an uptime
less than 7 days. Even systems such as Storage and Social-
Graph which have longer uptimes on average follow a regu-
lar monthly maintenance schedule which requires restarting
cache processes. Most caching systems are transient, meaning
that their content is lost upon application restart [37,55]. Tran-
sience is problematic because large caches take a long time to
warm up. It would take hours or even days for cache hit ratios
to stabilize following the restart of a transient cache at Face-
book. Prior work has suggested the alternative of warming a
cache after restart, but this requires an explicit warm-up phase
as part of routing [33,72] or requires slow deployments [42].

3.8. Summary

While not every caching use case exhibits every challenge
above, each use case does exhibit multiple of these challenges.
We describe how CacheLib addresses these issues next in
Section 4. The power of using a general-purpose caching
engine to address these challenges is that all applications
which use CacheLib have access to every CacheLib feature if
and when it is needed.

4. Design and Implementation

CacheLib enables the construction of fast, stable caches for a
broad set of use cases. To address common challenges across
these use cases as described in Sections 2 and 3, we identify
the following features as necessary requirements for a general-
purpose caching engine.

Thread-safe cache primitives: To simplify programming
for applications that handle highly bursty traffic, CacheLib
provides a thread-safe API for reads, writes, and deletes. In
addition, thread-safety simplifies the implementation of con-
sistency and invalidation protocols. Concurrent calls to the
CacheLib API leave the cache in a valid state, respect lineariz-
ablility [47] if referencing a common key, and incur minimal
resource contention.

Transparent hybrid caching: To achieve high hit ratios
while caching large working sets, CacheLib supports caches
composed of both DRAM and flash, known as hybrid caches.



Hybrid caches enable large-scale deployment of caches with
terabytes of cache capacity per node. CacheLib hides the
intricacies of the flash caching system from application pro-
grammers by providing the same byte-addressable interface
(Section 4.1) regardless of the underlying storage media. This
transparency allows application programmers to ignore when
and where objects get written across different storage me-
dia. It also increases the portability of caching applications,
allowing applications to easily run on a new hardware config-
urations as they become available.

Low resource overhead: CacheLib achieves high through-
put and low memory and CPU usage for a broad range of
workloads (Section 2). This makes CacheLib suitable for in-
process use cases where the cache must share resources with
an application. Low resource overheads allow CacheLib to
support use cases with many small objects.

Structured items: CacheLib provides a native implemen-
tation of arrays and hashmaps that can be cached and mu-
tated efficiently without incurring any serialization overhead.
Caching structured data makes it easy for programmers to
efficiently integrate a cache with application logic.

Dynamic resource monitoring, allocation, and OOM pro-
tection: To prevent crashes from temporary spikes in system
memory usage, CacheLib monitors total system memory us-
age. CacheLib dynamically allocates and frees memory used
by the cache to control the overall system memory usage.
Warm restarts: To handle code updates seamlessly, Cache-
Lib can perform warm restarts that retain the state of the
cache. This overcomes the need to warm up caches every
time they are restarted.

4.1. CacheLib API

The CacheLib API is designed to be simple enough to allow
application programmers to quickly build in-process caching
layers with little need for cache tuning and configuration.
At the same time, CacheLib must scale to support complex
application-level consistency protocols, as well as zero-copy
access to data for high performance. Choosing an API which
is both simple and powerful was an important concern in the
design of CacheLib.

The API centers around the concept of an Item, an ab-
stract representation of a cached object. The Item enables
byte-addressable access to an underlying object, independent
of whether the object is stored in DRAM or flash. Access to
cached Items is controlled via an ItemHandle which enables
reference counting for cached Items. When an ItemHandle
object is constructed or destroyed, a reference counter for
the corresponding Item is incremented or decremented, re-
spectively. An Item cannot be evicted from the cache unless
its reference count is 0. If an Item with a non-zero reference
count expires or is deleted, existing ItemHandles will remain
valid, but no new ItemHandles will be issued for the Item.

Figure 7 shows the basic CacheLib API. To insert a new
object into the cache, allocate may first evict another Item

ItemHandle allocate(PoolId id, Key key,
uint32_t size, uint32_t ttlSecs = 0)

bool insertOrReplace (const ItemHandle& handle)
ItemHandle find(Key key)

void* Item::getMemory ()

void* Item::markNvmUnclean ()

bool remove (Key key)

Figure 7: The CacheLib API uses an Item to represent a cached
object, independent of whether it is cached in DRAM or on flash.

(according to an eviction policy) as long as there are no out-
standing ItemHandles that reference it. The new Item can be
configured with an expiration time (TTL). It is created within
the given memory “pool” (see below), which can be individu-
ally configured to provide strong isolation guarantees. Any
new Items only become visible after an insertOrReplace
operation completes on a corresponding ItemHandle.

To access cached Items, find creates an ItemHandle
from a key, after which getMemory allows unsynchronized,
zero-copy access to the memory associated with an Item.
To atomically update an Item, one would allocate a new
ItemHandle for the key they wish to update, perform the
update using getMemory, and then make the update visible
calling insertOrReplace with the new ItemHandle. Be-
cause CacheLib clients access raw memory for performance,
CacheLib trusts users to faithfully indicate any mutations us-
ing the method markNvmUnclean. Finally, remove deletes the
Item identified by a key, indicating invalidation or deletion
of the underlying object.

struct MyType {int foo; char bar[10];}
TypedHandleImpl<Item, MyType> typedHandle(
cache->find(..)};

Figure 8: Typed TtemHandles allow CachelLib to natively store
structured objects. In addition to statically sized Ttems, CacheLib
also supports variably sized Items. For example, CacheLib imple-
ments a hashmap that can dynamically grow, offer zero-copy access
to its entries, and is treated as an evictable cache Item.

Figure 8 shows a simple example of CacheLib’s native
support for structured data. Structured Items are accessed
through a TypedHandle, which offers the same methods as an
ItemHandle. TypedHandles enable low-overhead access to
user-defined data structures which can be cached and evicted
just like normal Items. In addition to statically sized data
structures, CacheLib also supports variably-sized data struc-
tures; for example, CacheLib implements a simple hashmap
that supports range queries, arrays, and iterable buffers.

CacheLib implements these APIs in C++, with binding to
other languages such as Rust.

4.2. Architecture Overview

CacheLib is designed to be scalable enough to accommodate
massive working sets (Section 3.1) with highly variable sizes
(Section 3.2). To achieve low per-object overhead, a single
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Figure 9: The find and allocate paths for a hybrid cache con-
structed using CacheLib.

CacheLib cache is composed of several subsystems, each of
which is tailored to a particular storage medium and object
size. Specifically, CacheLib consists of a DRAM cache and
a flash cache. The flash cache is composed of two caches:
the Large Object Cache (LOC) for Items >2KB in size and
Small Object Cache (SOC) for Items <2KB in size.

An allocate request is fulfilled by allocating space in
DRAM, evicting Items from DRAM if necessary. Evicted
Items are either admitted to a flash cache (potentially caus-
ing another eviction) or discarded. A find request succes-
sively checks for an object in DRAM, then LOC, then SOC.
This lookup order minimizes the average memory access
time [46] of the cache (see Appendix A). A find call re-
turns an ItemHandle immediately. If the requested object is
located on DRAM, this ItemHandle is ready to use. If the re-
quested object is located on flash, it is fetched asynchronously
and the ItemHandle becomes ready to use once the object
is in DRAM. An empty ItemHandle is returned to signify a
cache miss. These data paths are summarized in Figure 9.

We now describe CacheLib’s subsystems in more detail.

DRAM cache. CacheLib’s DRAM cache uses a chained hash
table to perform lookups. The DRAM cache can be parti-
tioned into separate pools, each with its own eviction pol-
icy. Programmers select a particular PoolId when calling
allocate (see Figure 7), allowing the isolation of different
types of traffic within a single cache instance.

For performance, cache memory is allocated using slab
classes [6,22,37] which store objects of similar sizes. Cache-
Lib uses 4MB slabs and implements a custom slab allocator.
Each slab requires 7B of DRAM (3B of internal metadata +
4B to identify the size of objects in the slab). Because Cache-
Lib workloads often include many objects of a specific size
(e.g., 80B), the sizes corresponding to each slab class are con-
figured on a per-workload basis to minimize fragmentation.
Further optimizations for objects smaller than 64B or larger
than 4MB are described in Section 4.3.

Each slab class maintains its own eviction policy state.
CacheLib is designed to support the continual development
of new eviction policies, and currently supports LRU, LRU
with multiple insertion points, 2Q [54,93], and TinyLFU [31].
These eviction policies differ in their overheads and their

Item Metadata DRAM Overhead Data Type

Eviction policy state 12B 1x4B timestamp,
2x4B pointers

Item creation timestamp 4B 4B timestamp

Expiration time (for TTLs) 4B 4B timestamp

Key size + object size 4B 4B size_t

Reference counting 2B 13b public ref count,
3b internal ref count

Hash table chaining 4B 4B pointer

Flags 1B 8 binary flags

Table 1: CacheLib’s DRAM cache uses 31B of metadata per ITtem.

biases towards either recency or frequency, and are thus con-
figured on a per-workload basis as well. To approximate a
global eviction policy, memory is rebalanced between slab
classes using known rebalancing algorithms [72]. To support
these policies, among other features, CacheLib dedicates 31B
of DRAM overhead per item. Table 1 describes the metadata
which comprises this DRAM overhead.

To guarantee atomic metadata operations, CacheLib relies
on a variety of known optimization techniques [35, 62, 64],
including fine-grained locking, user-space mutexes, and C++
atomics. This is particularly important for eviction policies,
where naive implementations lead to lock contention and limit
throughput [6,9, 10, 61]. For example, under LRU, popular
Items frequently compete to be reset to the most-recently-
used (MRU) position. This is particularly common at Face-
book due to our high request rates (see Figure 6). CacheLib
adopts a simple solution to reduce contention: Items that
were recently reset to the MRU position are not reset again
for some time 7' [9,87]. As long as T is much shorter than the
time it takes an object to percolate through the LRU list (i.e.,
eviction age), this simplification does not affect hit ratios in
practice. CacheLib also uses advanced locking mechanisms
such as flat combining [45] to reduce resource contention.
Flash cache. When Items are evicted from the DRAM cache,
they can optionally be written to a flash cache. Due to high
popularity churn (Section 3), the content cached on flash
changes continually. Hence, in addition to maintaining low
per-object overhead, CacheLib must contend with the limited
write endurance of flash cells.

To reduce the rate of writes to flash, CacheLib selectively
writes objects to the flash cache. If an object exists on flash
and was not changed while in DRAM, it is not written back to
flash. Otherwise, CacheLib admits objects to flash according
to a configurable admission policy. CacheLib’s default admis-
sion policy is to admit objects to the flash cache with a fixed
probability p [57]. Adjusting the probability p allows fine-
grained control over write rate to flash. Section 5 describes
our experience with more complex admission policies.

Another consideration for flash endurance is write amplifi-
cation which happens when the number of bytes written to
the device is larger than the number of bytes inserted into
the cache. For instance, CacheLib performs extra writes to



store metadata and is forced to write at block granularities.
We distinguish between application-level write amplification,
which occurs when CacheLib itself writes more bytes to flash
than the size of the inserted object, and device-level write
amplification, which is caused by the flash device firmware.
CacheLib’s flash caches are carefully designed to balance
both sources of write amplification and DRAM overhead.

The Large Object Cache (LOC) is used to store objects
larger than 2KB on flash. Because LOC objects are larger
than 2KB, the number of unique objects in a LOC will only
number in the millions. It is therefore feasible to keep an
in-memory index of the LOC. The LOC uses segmented B+
trees [23, 34,63] in DRAM to store the flash locations of
Items. Items are aligned to 4KB flash pages, so the flash
location is a 4B, 4KB-aligned address. This allows the LOC
to index up to 16TB of flash storage space.

The LOC uses flash to further limit the size of the DRAM
index. Keys are hashed to 8B. The first 4B identify the B+-
tree segment, and the second 4B are used as a key within in a
tree segment to lookup a flash location. A hash collision in
the DRAM index will cause CacheLib to believe it has found
an object’s flash location. Hence, LOC stores a copy of each
object’s full key on flash as part of the object metadata and val-
idates the key after the object is fetched off flash. Each flash
device is partitioned into regions which each store objects of
a different size range. Hence, the object size can be inferred
from where it is located on flash, without explicitly storing ob-
ject sizes in DRAM. CacheLib can then retrieve the object via
a single flash read for the correct number of bytes. To reduce
the size of addresses stored in DRAM, every 4KB flash page
stores at most a single object and its metadata. This is space-
efficient because LOC only stores objects larger than 2KB.
Objects larger than 4KB can span multiple pages. Because
the LOC reads and writes at the page level, any fragmentation
also causes application-level write amplification.

To amortize the computational cost of flash erasures, the
LOC’s caching policy evicts entire regions rather than indi-
vidual objects. (Region size is configurable, e.g., 1l6MB.) By
default, FIFO is used so that regions are erased in strictly
sequential order [60]. Writing sequentially improves the per-
formance of the flash translation layer and greatly reduces
device-level write amplification (see Section 5.2). If FIFO
eviction evicts a popular object, it may be readmitted to the
cache [86]. Alternatively, LOC supports a pseudo-LRU pol-
icy which tracks recency at region granularity. A request for
any object in a region logically resets the region to the MRU
position. Evictions erase the entire region at the LRU position.

The Small Object Cache (SOC) is used to store objects
smaller than 2KB on flash. Because billions of small objects
can fit on a single 1TB flash device, an exact lookup index
(with associated per-object metadata) would use an unrea-
sonably large amount of DRAM [32]. Hence, SOC uses an
approximate index that scales with the number of flash pages.

SOC hashes keys into sets.Each set identifies a 4KB flash
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Figure 10: SOC alloc proceeds by hashing into sets (I). CacheLib
then rewrites the page (1l), possibly evicting an object (following
FIFO order). Finally, CachelLib recalculates the bloom filter with
the Ttems currently stored in this set’s 4KB page (111).
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Figure 11: SOC find proceeds by hashing into sets (I) and then
checking a bloom filter, which indicates whether an object is likely
to be stored on flash (Il). If the bloom filter does not contain the key,
the object is definitely not present on flash. Otherwise, CacheLib
reads the 4KB flash cache and searches for the key (II).

(I11) Read flash page, i.f present in filter.

page which is used to store multiple objects. Objects are
evicted from sets in FIFO order. A naive implementation
of this design would always read a set’s page off flash to
determine whether it contains a particular object. As an opti-
mization, CacheLib maintains an 8B Bloom filter in DRAM
for each set, each with 4 probes. This filter contains the keys
stored on the set’s flash page and prevents unnecessary reads
more than 90% of the time [11, 12]. Figure 10 shows the
alloc path, and Figure 11 shows the find path.

Controlling write amplification in the SOC is particularly
challenging. Admitting an object to the SOC requires writing
an entire 4KB flash page, and is thus a significant source of
application-level write amplification. This also applies to the
remove operation, which removes an object from flash. Simi-
larly, because keys are hashed to sets, admitting a stream of
objects to the SOC causes random writes that result in higher
device-level write amplification. Furthermore, the SOC only
supports eviction policies that do not require state updates on
hits, such as FIFO, since updating a set on a hit would require
a 4KB page write. These challenges highlight the importance
of advanced admission policies (see Section 5.2).

4.3. Implementation of Advanced Features

CacheLib supports many applications with demanding re-
quirements. To support these applications efficiently, Cache-
Lib implements several advanced features, making them avail-
able to all CacheLib-based services under the same, general-
purpose CacheLib API. We describe the implementation of
four important features: structured items, caching large and
small objects, warm restarts, and resource monitoring, corre-
sponding to challenges already discussed in Section 3.
Structured items. Because CacheLib provides raw access to
cached memory, flat data structures can be easily cached using
the CacheLib API. In addition, CacheLib natively supports
arrays and maps. CacheLib supports an Array type for fixed-
size objects at no additional overhead for each entry in the
array. The Map type supports variable object sizes, and comes



in ordered and unordered variants. The overhead for each Map
entry is 4B to store its size.

Caching large and small objects in DRAM. To store ob-
jects larger than 4MB in size, CacheLib chains multiple
DRAM Itens together into one logical large item. This chain-
ing requires an additional 4B next pointer per object in the
chain. The most common use case for large objects is the
storage of structured items. While it is uncommon for a sin-
gle, logical object to be larger than 4MB, we frequently see
Arrays or Maps that comprise more than 4MB in aggregate.

CacheLib also features compact caches, DRAM caches
designed to cache objects smaller than a cache line (typically
64B or 128B). Compact caches store objects with the same
key size and object size in a single cache line [18,29,46, 80].
Compact caches are set-associative caches, where each cache
line is a set which is indexed by a key’s hash. LRU eviction is
done within each set by repositioning objects within a cache
line. Compact caches have no per-object overhead.

One prominent example of using compact caches is Cache-
Lib’s support for negative caching. Negative cache objects in-
dicate that a backend query has previously returned an empty
result. Negative cache objects are small, fixed-size objects
which only require storing a key to identify the empty query.
As discussed in Section 3.5, negative caching improves hit
ratios drastically in SocialGraph. Negative caching is not
used by Lookaside, Storage, or CDN, but it is employed by 4
of the 10 largest CacheLib-based systems.

Both of these features reinforce CacheLib’s overarching
design, which is to provide specialized solutions for objects
of different sizes in order to keep per-object overheads low.
Dynamic resource usage and monitoring. CacheLib mon-
itors the total system memory usage and continuously
adapts the DRAM cache size to stay below a specified
bound. CacheLib exposes several parameters to control
the memory usage mechanism. If the system free mem-
ory drops below lowerLimitGB bytes, CacheLib will iter-
atively free percentPerIteration percent of the differ-
ence between upperLimitGB and lowerLimitGB until sys-
tem free memory rises above upperLimitGB. A maximum
of maxLimitPercent of total cache size can be freed by this
process, preventing the cache from becoming too small. Al-
though freeing memory may cause evictions, this feature is
designed to prevent outright crashes which are far worse for
cache hit ratios (see Figure 15). As system free memory in-
creases, CacheLib reclaims memory by an analogous process.
Warm restarts. CacheLib implements warm restarts by allo-
cating DRAM cache space using POSIX shared memory [76].
This allows a cache to shut down while leaving its cache state
in shared memory. A new cache can then take ownership of
the cache state on start up. The DRAM cache keeps its index
permanently in shared memory by default. All other DRAM
cache state is serialized into shared memory during shutdown.
The LOC B-tree index and SOC Bloom filters are serialized
and written in a dedicated section on flash during shutdown.
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Figure 12: A comparison of CacheLib to Memcached for a range
of cache sizes. CacheLib and Memcached achieve similar hit ratios,
but CacheLib achieves much higher throughput.

5. Evaluation

In evaluating CacheLib, we aim to show that CacheLib’s
API and feature set is flexible enough to implement common
use cases both inside and outside Facebook. Specifically, we
show that CacheLib-based systems can easily achieve perfor-
mance that is competitive with specialized solutions without
requiring any specialization of the core caching engine. We
also show how CacheLib’s widespread adoption has had a
significant impact on the Facebook production environment.

5.1. System Comparisons

We drive our experiments using CacheBench, the cache bench-
marking tool that ships with CacheLib. For the sake of compar-
ison, we extend CacheBench to target an in-process version
of Memcached [37], as well as HTTP proxy (CDN) caches.

CacheBench provides a modular request generator by sam-
pling from configurable popularity, key size, and object size
distributions. To emulate churn, CacheBench continuously
introduces new keys at a configurable rate. We instantiate
these parameters from the measurements for the application
look-aside and CDN use cases presented in Section 3.
Application look-aside cache. Before CacheLib was devel-
oped, several teams at Facebook used an internal variant of
Memcached as a look-aside cache. However, applications now
use a CacheLib-based look-aside cache. We therefore com-
pare CacheLib to a minimally changed Memcached v1.6.6,
which is the latest version and incorporates many recent op-
timizations. For fairness, we configure CacheLib and Mem-
cached to both use their implementations of LRU eviction.
To implement the look-aside pattern, CacheBench configures
CacheLib to implement a “set” as an allocate followed by
insertOrReplace and a “get” by find and a subsequent
access to the ItemHandle’s getMemory method.

We evaluate CacheLib and Memcached on a range of cache
sizes using 32 threads each. When the cache is small, the hit
ratio is low, which stresses the eviction code paths (set oper-
ations). When the cache is large, the hit ratio is high, which
stresses the LRU-head update code paths (get operations).

Figure 12 shows the hit ratios and throughputs for cache
sizes between 8 and 144GB and a typical working set of 100
million objects. Memcached and CacheLib achieve similar hit
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Figure 13: Comparison of CacheLib to ATS and NGINX HTTP flash
caching systems for different object sizes. CacheLib significantly
improves throughput for most object sizes.

ratios, with Memcached slightly higher at small cache sizes
and slightly lower at large cache sizes. Across all cache sizes,
CacheLib achieves higher throughputs than Memcached, pro-
cessing up to 60% more requests per second than Memcached.

CacheLib’s higher throughput is largely due to optimiza-
tions that reduce lock contention. For example, CacheLib uses
flat combining (see Section 4.2) to reduce contention on the
LRU list head. Also, CacheLib uses T = 60 seconds (see Sec-
tion 4.2) in this experiment. For T = 10 seconds, CacheLib
consistently outperforms Memcached’s hit ratio, at the cost of
lower throughput. In production, most deployments use the
default T = 60 seconds.

HTTP server cache. Hybrid DRAM-flash caches are preva-
lent at Facebook. For example, hybrid caches are used as CDN
proxy caches. We compare a CacheLib-based HTTP server
cache to NGINX and Apache Traffic Server (ATS), which
are widely used to build flash-based CDNs [1, 44, 69, 82].
The CacheLib implementation is a FastCGI server with an
NGINX frontend. Each system uses its default configuration
for a 512GB flash cache. The systems fetch misses from a
high-performance origin backend that is never the bottleneck.

To illustrate the effect of object size on flash cache perfor-
mance, we configured all object sizes to be equal and then
repeated the experiment for a range of object sizes. To keep
hit ratios constant across trials, we adjusted the number of
unique objects to maintain a constant working set size.

Figure 13 shows that CacheLib’s explicit handling of
small objects for flash caching provides a sizable advantage
over NGINX and ATS. As the object size becomes larger,
this advantage wanes. Eventually object sizes become large
enough that all three systems become network-bound and
their throughputs drop precipitously.

We observe that NGINX performs particularly well when
object sizes are between 4KB and 16KB, outperforming
CacheLib slightly when objects sizes are 8KB. We were un-
able to pinpoint the cause of this trend. Nonetheless, CacheLib
compares favorably to both NGINX and ATS across a wide
range of object sizes.

LSM tree-based stores. It is natural to ask whether existing
storage systems that target flash devices could be used as flash
caching systems. In particular, Facebook’s RocksDB [13] key-
value store provides hybrid DRAM and flash storage by using

a Log-Structured Merge-Tree (LSM Tree). We investigated
whether RocksDB could be used as a hybrid look-aside cache
for application data by deploying RocksDB in production to
cache data from the SocialGraph workload.

RocksDB trades off higher space usage in favor of lower
write and delete latencies, using tombstones to defer deletes
operations until compaction time [13]. However, most com-
paction methods are computationally expensive and must be
done sparingly. It is therefore infeasible to use RocksDB’s
Delete method to perform targeted evictions of objects, since
compaction does not happen frequently enough for deletes
to control the flash footprint of the cache. If RocksDB fills a
flash device, it begins failing write and delete operations. This
is particularly problematic in the SocialGraph system, which
relies on deletes to maintain cache consistency. If a Social-
Graph cache fails a certain number of deletes, the policy is to
perform a cold restart (see Figure 15) to restore consistency.

As an alternative, we tested RocksDB using FIFO com-
paction, which simply evicts the oldest data when the size of
the store exceeds its desired size. This compaction method
is lightweight enough to run constantly and effectively limit
RocksDB’s flash usage. Evicting the oldest data will tend to
evict the least recently updated objects, but these are gener-
ally not the same as the least recently used objects. RocksDB
does not provide facilities for tracking which blocks con-
tain recently used objects. Due to its simple eviction policy,
RocksDB achieved only a 53% hit ratio compared to Cache-
Lib’s 76% hit ratio when tested with a production SocialGraph
workload. Additionally, RocksDB under FIFO compaction
suffers from severe read amplification and thus required 50%
higher CPU utilization than CacheLib in order to meet produc-
tion throughput levels. Hence, although some of the principles
of LSM tree-based solutions can be carried over to the de-
sign of flash caches, we conclude that RocksDB itself is not
suitable for caching at Facebook.

5.2. Characterizing CacheLib in Production

We quantify the impact that CacheLib has had on the Face-
book production environment by considering the notable
caching improvements that CacheLib has introduced.
DRAM overhead. By design, the DRAM overheads of the
LOC and SOC are small; in production we measure less than
0.1% and 0.2%, respectively. The DRAM Cache has gen-
erally low (< 7%) overhead. There are two main sources
of DRAM overhead: slab class fragmentation and metadata
overhead (Section 4.2). Tuning CacheLib’s slab classes is
crucial to limit fragmentation. Tuning currently happens man-
ually. Without tuning, fragmentation overhead would more
than double in many clusters. Unfortunately, we are not aware
of automated tuning algorithms for slab-class boundaries®. A
detailed analysis of DRAM overhead appears in Appendix B.

ZPrior work has considered how to partition cache space between fixed
slab classes [22] but not how to optimally define boundaries in the first place.
Conceptually, this problem resembles the facility placement problem on a
line [15], but we are not aware of optimal algorithms.



Flash endurance. CacheLib is designed to limit the rate of
writes to flash in order to prolong flash device lifetimes (see
Section 4.2). We now evaluate the effectiveness of this design.

The LOC incurs application-level write amplification due
to fragmentation from the use of 4KB pages and size classes.
Fragmentation is generally small, but Storage and CDN
caches have 4.9% and 7% fragmentation overhead, respec-
tively. To further reduce write amplification, CacheLib has
recently introduced a new feature which buffers all writes to
a region before flushing it to disk. This allows the applica-
tion to write in sizes aligned to as low as 512 bytes, reducing
fragmentation in CDN caches from 7% to 2%.

The LOC'’s use of FIFO eviction instead of LRU allows
CacheLib to write to flash sequentially. Writing sequentially
reduced device-level write amplification from 1.5 to 1.05x
at the expense of slight increase in application-level write
amplification. The net effect was a 15% reduction in the
number of NAND writes to the flash device per second.

The SOC incurs application-level write amplification due
to always writing 4KB (even as object sizes < 2KB). On aver-
age, we measure this to be around 6.5 x the number of inserted
bytes. The SOC also incurs significant device-level write am-
plification from writing random 4KB pages [43]. We measure
this overhead to be between between 1.1 x (for Lookaside)
and 1.4 x (for Storage) depending on the workload.

To achieve these levels of device-level write amplification,
flash is typically overprovisioned by 50%. This overprovision-
ing is offset by the space efficiency of the SOC and the low
cost of flash relative to DRAM, but reducing flash overprovi-
sioning while maintaining the current level of performance is
an open challenge at Facebook.

To further limit the number of bytes written to a flash de-
vice, CacheLib uses admission policies for flash caches. The
default CacheLib admission policy, which admits objects with
a fixed probability, prolongs flash device lifetimes, but also
decreases hit ratios by rejecting objects at random. Cache-
Lib also includes reject first admission policies, which reject
objects the first n times they are evicted from DRAM.

Recently, CacheLib was updated to include a more ad-
vanced admission policy, similar to the Flashield policy pro-
posed in [32], which makes flash admission decisions by
trying to predict an object’s future popularity. Flashield’s pre-
dictions are based on how many hits an object receives while
in DRAM. At Facebook, however, many objects do not stay
in DRAM long enough to get multiple hits. Thus, CacheLib
implements efficient tracking of object request frequencies be-
yond their DRAM-cache lifetimes. These frequencies are then
used to predict how many hits an object would receive if ad-
mitted to flash. Our experience with this advanced admission
policy is described in detail in Appendix C. The advanced
admission policy reduced the rate of writes to flash by 44%
in SocialGraph without decreasing hit ratios.

Hit ratios. CacheLib’s DRAM cache initially used a variant
of the LRU eviction policy. A notable improvement in hit
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ratios across systems occurred when we deployed a 2Q-based
eviction policy [54]. For example, the hit ratio for SocialGraph
caches increased by 5 percentage points and the hit ratio for
CDN caches increased by 9 percentage points.

An even larger improvement in hit ratios resulted from the
deployment of high-capacity hybrid DRAM-flash caches. Ser-
vices requiring massive cache capacities generally consist of
a two-layer hierarchy where “L1” DRAM-only cache forward
misses to “L2” hybrid DRAM-flash caches. To see the im-
provement due to hybrid caches, we compare SocialGraph’s
L2 caches from a deployment which uses hybrid caches to
SocialGraph’s L2 caches from a deployment which still uses
DRAM-only caches. The DRAM-only L2 caches for Social-
Graph currently achieve a 25% hit ratio. The hybrid-cache
L2 offers 20x more cache capacity, achieves a 60% hit ratio,
and costs 25% less than the DRAM-only deployment.

Figure 14 shows hit ratio distributions for L1 and L2 caches

for Lookaside, SocialGraph, and CDN clusters, some of
the largest CacheLib deployments. L1 caches achieve much
higher hit ratios than L2 caches, with median hit ratios rang-
ing from 75% (CDN) to 92% (SocialGraph) while median
L2 cache hit ratios range from 67% (CDN) to 75% (Social-
Graph). The combined hit ratios of these systems are very
high: ranging between 95-99%.
Impact of warm restarts. Figure 15 shows the hit ratios of
L1 and L2 SocialGraph caches restarting without performing
a warm restart. Without this feature enabled, a cache restart
causes a dip in hit ratio, which slowly returns to normal. This
is particularly damaging in L2 hybrid caches where large-
capacity caches can take several days to “warm-up”. Such a
hit ratio dip can translate into temporary overload on backend
systems, which assume a relatively stable arrival rate.



6. Experience and Discussion
Facebook’s experience with CacheLib reveals a great deal
about the trajectory of modern caching systems.

New features are adopted by many systems. One might
expect that many CacheLib features end up being suitable for
only a small number of services. However, our experience
shows a trend in the opposite direction: features developed
for one particular service are frequently adopted by many
other CacheLib-based services. For example, hybrid caches
and efficient object expirations (TTLs), were both added after
the initial deployment of CacheLib. Today, hybrid caches are
used by five large CacheLib use cases. Object expirations
were originally added to enforce fair sharing in look-aside
caches, but were later adopted by CDN caches, which need
to refresh static content periodically. Nevertheless, not every
feature is used by every system. Using a general-purpose
caching engine is not equivalent to developing a single, one-
size-fits-all approach to caching. Instead, we aim to benefit
from extracting common caching functionality while still
allowing a high degree of flexibility for cache customization.

Performance improvements help many systems. Even
small performance improvements in CacheLib (see Sec-
tion 5.2) have an outsized impact due to the broad deployment
of CacheLib-based systems at Facebook. Deploying new fea-
tures typically involves a simple code update or configuration
change. The ability to make centralized improvements mo-
tivates a continuous effort to optimize the CacheLib code
base. For example, while writing this paper, the LOC index
implementation (see Section 4) changed to use a new sparse
hashmap implementation, lowering CPU utilization by 0.5%
with no change in memory overhead. While a 0.5% CPU de-
crease in a single system may not be worth the development
cost, a 0.5% decrease across all of Facebook’s hybrid caches
amounts to a massive resource savings. This highlights the
advantage of a common engine over specialization.

Improved stability. Another benefit of a common caching
engine is improved stability due to the reduction of previ-
ously disjoint implementations to a single mature, well-tested
platform. As new systems are built, using CacheLib greatly re-
duces the number of new lines of code that must be introduced
into the production environment. This reduces the potential
for production incidents and outages. CacheLib also provides
explicit mechanisms for stability informed by years of experi-
ence deploying caches in the production environment.

No single caching system dominates. One can ask
whether it might be sufficient to focus CacheLib engineer-
ing efforts on accommodating a small set of use cases instead
of deploying CacheLib widely. To answer this question, we
compare the total amounts of DRAM cache used by each sys-
tem>. Figure 16 shows that the top ten users account for 89%
of all DRAM cache usage, but no single service dominates.
For example, the top two services account for only 25% and

3Not all services use hybrid caches, especially throughput-focused L1
caches.

20% of DRAM usage, respectively. Hence, unless CacheLib
can accommodate many diverse use cases, the overall gains
from optimizing CacheLib would be limited.

Figure 16: A wide range of Face-
// book services are built using Cache-
Lib. We measure a service’s deploy-
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Flash caching signals a paradigm shift. One might think
that cache hit ratios are generally high, and hence expect little
benefit from the additional cache capacity afforded by flash.
While this is true in some cases, high hit ratios do not always
imply that additional cache capacity is futile. Specifically,
engineers provision caches to equalize the marginal cost of the
next byte of DRAM with the marginal benefit of the ensuing
increase in hit ratio. Flash caches alter this cost calculation,
lowering the marginal cost of additional cache capacity by
an order of magnitude. This makes it worthwhile to not only
increase cache capacities dramatically, but to deploy new
hybrid caches that did not make sense with DRAM alone.

Additionally, the benefit of a cache hit is no longer strictly
a latency proposition for most systems. While a classical
view of caching suggests that caching is only worthwhile if
it reduces average memory access time [46], this ignores the
knock-on effects of a cache miss such as increased network
congestion, backend load, and backend power usage. From
this perspective, a cache hit in flash is as valuable as a DRAM
hit, even though flash is several orders-of-magnitude slower
than DRAM. This again tips the scales of the marginal cost
calculation in favor of deploying flash caches.

CacheLib does not always lead to performance gains.
CacheLib-based systems have not always outperformed the
specialized systems they replaced from the outset. For ex-
ample, the first CacheLib-based implementation of the CDN
system was not able to match the performance of the original
CDN system, which optimized for flash caching by imple-
menting advanced eviction policies with low flash write rates.
The first CacheLib-based implementation of CDN achieved a
10% lower hit ratio and 20% higher flash write rate than the
specialized system in testing.

Before the CacheLib-based implementation of CDN was
deployed, optimizations were added to CacheLib to improve
the hybrid caching mechanism. The LOC eviction policy was
expanded from pure FIFO eviction to include a readmission
policy which can readmit frequently requested objects when
they are evicted. Write buffers were also added between the
DRAM and flash caches. These buffers reduce application-
level write amplification by reducing the internal fragmenta-
tion due to 4KB aligned writes. The write buffers also allow
CacheLib to issue fewer, larger writes to flash, which reduces
device-level write amplification.



The improved LOC eviction policy achieved a hit ratio
close to that of the specialized system while performing 10%
fewer writes to flash than the specialized system. Both of
these optimizations add almost no overhead if turned off, and
ended up improving the performance of other CacheLib-based
systems as well. Lookaside, for example, saw a 25% reduction
in P99 flash read latency, and a 2% reduction in flash write
rate after these changes.

The CDN example illustrates the common case in balanc-
ing the generalization-versus-specialization tradeoff: Cache-
Lib does not always address the needs of every use case from
the outset. However, the features needed by specialized sys-
tems are often not fundamentally incompatible with the design
of CacheLib. If one is willing to invest time into building the
necessary features into CacheLib, they will gain access to
CacheLib’s full feature set while exporting new optimizations
to the rest of the Facebook’s caching systems.

CacheLib does not work for every use case. Although
CacheLib handles many use cases, we are aware of limita-
tions that have prevented some from adopting CacheLib. For
instance, some ad-serving systems rely on caching nested data
structures. In order to control its memory usage and quickly
serialize Items from DRAM into flash, CacheLib only sup-
ports data structures that map into a flat address space. These
ad-serving systems were thus unable to adopt CacheLib.

Another example is RocksDB, which wanted to use Cache-
Lib to implement its internal page buffer. CacheLib’s C++
API leverages object constructors and destructors to per-
form reference counting for ItemHandle objects. This ul-
timately prevented programmers from integrating CacheLib
with RocksDB’s C-style code base. However, the ease of au-
tomatic reference counting has led to widespread adoption of
CacheLib for C++- and Rust-based use cases.

7. Related Work

There is vast body of research on caching systems including
in-depth descriptions of individual production caches. We
review prior work from industry and academia relevant in the
context of web and data center caches.

Production caching systems. Caching systems are found
within many major web services. Akamai’s geo-distributed
CDN [9, 28, 39, 67, 81, 85], Microsoft’s web caching sys-
tems [8], Amazon’s use of aggregation caches [26], and Face-
book’s many individual caching systems [5,48,71,72,86] are
all documented in the literature. Similarly, Twitter [42,92]
and Reddit [33, 89] frequently talk about their DRAM caches
based on open-source caching systems. CacheLib addresses a
superset of the challenges faced by these individual systems,
providing a single, general-purpose caching engine.
Research caching systems. Academic research has consid-
ered optimizing many different aspects of caching systems.
These include building highly concurrent systems [6,9, 35,
62,64] and improving hit ratios [6,9,10,21,50,51,61,88].
Facebook’s goal is to use CacheLib as a platform to more

easily evaluate and deploy systems based on this research.
While the literature mainly focuses on DRAM caching,
there is some prior work on flash caching [32, 57, 60, 86].
CacheLib incorporates ideas from [86] and [60] to reduce
write amplification by doing FIFO eviction on flash. Likewise,
CacheLib includes the admission policy of [57] and a variant
of the admission policy from [32] (see Appendix C).
Although dynamic cache partitioning is possible in Cache-
Lib, the impact of existing research on cache partitioning
policies is limited at Facebook. Partitioning can be used to
eliminate performance cliffs in a cache’s hit ratio as a function
of size [7,22,88], but performance cliffs are not a major issue
at Facebook. As the authors of RobinHood [8] note in their
work, the RobinHood partitioning scheme is limited when
infrastructure is shared between different backend systems,
which is the case at Facebook. Additionally, the computa-
tional overhead of retrieving the size of objects stored on
flash is too high to use size-aware sharding [27] in practice.

8. Conclusions

Caching is an important component of modern data-center
applications, and this paper has only scratched the surface
of its many challenges and opportunities. CacheLib shows
that it is feasible to build a general-purpose caching engine
to address a wide variety of caching use cases. In sharing
our experience of building and deploying CacheLib, we hope
to solicit ideas and feedback from the growing community
of caching researchers and to encourage other production
systems to share their architectures and workloads. We hope
that CacheLib will serve as an aggregation point for best
practices in industry and academia, enabling a continual im-
provement in performance and facilitating the deployment
of caches in many new applications. There are many excit-
ing directions to explore in future caching systems, including
(i) better resource-management policies (e.g., eviction/admis-
sion policies, memory management); (ii) emerging hardware
platforms (e.g., FPGA acceleration, non-volatile memories,
zoned-namespace SSDs); and (iii) novel application features
(e.g., as seen in negative caching). We look forward to grow-
ing CacheLib to address these challenges and many others.

Appendix

A. Cache Lookup Order and Latency

CacheLib uses the lookup sequence 1) DRAM cache, 2) LOC,
3) SOC. Note that an object’s size is not known in advance. So,
after a DRAM cache miss, CacheLib does not know whether
the object is stored in the LOC or the SOC. Thus, it has to
query one of them first, and on a miss, query the other.

The order for CacheLib’s lookup order is motivated by the
following analysis of average lookup penalties (also known
as average memory access time, AMAT [46]). We consider
the lookup penalty for each cache component as the time
to determine that an object is not cached in this component.
Our key assumption is that reading from DRAM is orders of
magnitude faster than flash reads (e.g., 100ns compared to



16us [25]). Thus, the lookup penalty for the DRAM cache is
a few memory references (say 500ns).

To calculate the penalty for the LOC, recall that the LOC
stores neither an object’s key nor the object’s exact size in
memory to reduce DRAM metadata overhead. The LOC is
indexed via 4-byte hash-partitioned B-trees, which each use
4-byte hashes to identify an object’s offset. If the overall
8-byte-hash does not have a hash collision, then the LOC’s
lookup penalty constitutes a few memory references (say lus,
due to hash operations). If there is a hash collision, the LOC
requires a flash read (16us) to compare the object key and
determine the miss status. Assuming the smallest LOC object
size (2KB) and 1TB of flash, at most 536 million objects are
stored in the LOC. Thus, the probability of an 8-byte-hash
collision can be calculated to be less than one in a million and
the LOC’s average lookup penalty is slightly more than lus.

To calculate the penalty for the SOC, recall that the SOC
does not use an in-memory index. The SOC uses a per-page
Bloom filter (say 1us) to opportunistically determine the miss
status. However, as these Bloom filters are small, their error
rate is 10%. In case of a Bloom filter error, the SOC requires
a flash read (16us) to compare the object key. The SOC’s
average lookup penalty is thus 2.6us.

The average latency (AMAT) of CacheLib with the default
order (1) DRAM cache, (2) LOC, (3) SOC is as follows, where
L denotes lookup latency and H hit ratio: L(DRAM) + (1 —
H(DRAM)) x (L(Loc) + (1 - H(LOC)) x L(soc)). With the
order of SOC and LOC inverted, the average latency would

increase by several microseconds, depending on the LOC and
SOC hit ratios. Thus CacheLib queries the SOC last.

B. Details on DRAM Overheads

DRAM Cache. We measure CacheLib’s DRAM cache
overhead as the ratio between its total memory footprint
and the sum of cached key and value sizes. We fur-
ther break up overheads into slab-class fragmentation and
metadata. Across Lookaside, Storage, and SocialGraph,
we find that overall overheads are between 2.6 and 7%
and evenly divided between fragmentation and metadata.

Lookaside  Storage  SocialGraph
Fragmentation 3.9% 3% 1.6%
Metadata 3% 4% 1%
Overall overhead 6.9% 7% 2.6%

Large Object Cache. Recall that, while the LOC uses an
8-byte hash, 4-bytes are used to partition B-tree and thus do
not need to be counted. So, the LOC stores 4-bytes for key
hashes, 4-bytes for flash offsets, and an average of 2.5-bytes
per item for B-tree pointers. For the small LOC object, this
is 0.61%. In production systems, this overhead is low and
ranges from to 0.01% (Storage) to 0.1% (Lookaside).

C. Advanced Admission Policies for Flash

One significant challenge in using flash for caching is respect-
ing the limited write endurance of flash devices. If all DRAM
evictions in a hybrid cache were admitted to flash, we would
observe write rates 50% above the rate which allows flash de-
vices to achieve their target life span. A flash admission policy
thus plays an important role in CacheLib’s performance.

Flashield [32] is a recently proposed flash admission policy.
Flashield relies on observing an object as it traverses the
DRAM portion of a hybrid cache. When an object is evicted
from DRAM, Flashield makes a flash admission decision
based on how often the object was accessed while in DRAM.

Unfortunately, DRAM lifetimes at Facebook are too short
for Flashield to be effective. A significant number of objects
are popular enough to produce hits if stored on flash, but do
not receive DRAM cache hits. In fact, for an L2 Lookaside
cache, only 14% of objects being considered for flash admis-
sion have received either a read or a write while in DRAM.

To adapt the main idea behind Flashield to Facebook’s en-
vironment, CacheLib explicitly gathers features about objects
beyond their DRAM-cache lifetime. We use Bloom filters
to record the past six hours of accesses*. Additionally, we
change the admission policy’s prediction metrics from the
abstract notion of “flashiness” to instead directly predict the
number of reads an object is expected to receive in the future.

Our advanced admission policy was trained and deployed
in production for SocialGraph. The default admission policy
for CacheLib flash caches is to admit objects with a fixed
probability that keeps flash write rates below a target rate in
expectation. Compared to this default admission policy, the
advanced admission policy wrote 44% fewer bytes to the flash
device without decreasing the cache hit ratio. Hence, while
training the models required for the advanced admission pol-
icy can be cumbersome, this policy gain significantly extend
the lifetime of flash devices in production.
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