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The strong force which binds hadrons is described by the theory of Quantum Chromodynamics (QCD). Determining
the character and manifestations of QCD is one of the most important and challenging outstanding issues necessary for
a comprehensive understanding of the structure of hadrons. Within the context of the QCD parton picture, the Parton
Distribution Functions (PDFs) have been remarkably successful in describing a wide variety of processes. However,
these PDFs have generally been confined to the description of collinear partons within the hadron. New experiments
and facilities provide the opportunity to additionally explore the transverse structure of hadrons which is described
by Generalized Parton Distributions (GPDs) and Transverse Momentum Dependent Parton Distribution Functions
(TMD PDFs). In our previous report (Lin et al., 2018d), we compared and contrasted the two main approaches used
to determine the collinear PDFs: the first based on perturbative QCD factorization theorems, and the second based
on lattice QCD calculations. In the present report, we provide an update of recent progress on the collinear PDFs,
and also expand the scope to encompass the generalized PDFs (GPDs and TMD PDFs). We review the current state
of the various calculations, and consider what new data might be available in the near future. We also examine how
a shared effort can foster dialog between the PDF and Lattice QCD communities, and yield improvements for these
generalized PDFs.

The authors welcome comments and suggestions regarding the report content.
†Corresponding author: Huey-Wen Lin hwlin@pa.msu.edu
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I. INTRODUCTION AND MOTIVATION

The Standard Model (SM) of particle physics has
been remarkably successful in describing the nature of
the elementary constituents and their interactions. Of
the four fundamental forces, the strong interaction as
described by the theory of quantum chromodynamics
(QCD) is particularly intriguing, as it exhibits a wealth of
phenomena (confinement, spontaneous chiral symmetry
breaking, anomalies, instantons) and binds the quarks
and gluons that form the observable hadrons. However,
it is precisely these properties of QCD that make it
challenging to characterize the structure of the strongly
interacting hadrons in the context of conventional
perturbation theory.

On the experimental front, there are a number of
planned and proposed new facilities on the horizon which
can provide a wealth of new data to help us better
characterize the strong interaction; this will improve our
knowledge of the fundamental forces and constituents of
nature and lead to new discoveries. To fully utilize this
new experimental information, it is imperative that our
theoretical tools advance to keep pace; this is the focus
of our report.

The QCD-based parton picture has provided a reliable
computational framework for describing the physics
of hadrons. However, an essential ingredient for
these calculations are the parton distribution functions
(PDFs), which encode the properties of quarks and
gluons inside the hadrons. Ultimately, the accuracy of
any calculation based on the QCD parton model depends
on the accuracy of the PDFs; thus, the PDFs are crucial
for current LHC measurements as well as future HL-LHC,
LHeC, and EIC investigations.

Unfortunately the PDFs are, at present, often the
element that limits the precision. For example, the focus
of the upcoming LHC runs will be to improve the event
statistics with increased luminosity; thus, the path to
future discoveries will be delineated with high-precision
comparisons as we search for discrepancies between the
data and the Standard-Model predictions. Hence, our
ability to fully characterize the Higgs boson and constrain
any new-physics signatures ultimately comes down to
how accurately we can determine the underlying PDFs.

We also note here that the PDFs are imperative for
some astrophysical studies, including high-energy cosmic
rays which are used to compute atmospheric neutrino
backgrounds.

At present, the computation of PDFs from first
principles is complex, computationally intensive, and
it requires diligence and ingenuity to minimize
uncertainties.

There are two main communities with complementary
approaches to determining the PDFs: 1) determination
by global analysis of experimental measurements, and
2) direct computation using lattice QCD. The global
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QCD analyses use large experimental data sets in
the context of the QCD parton model (along with
factorization theorems) to extract process-independent
PDFs. The lattice-QCD approach directly computes
the QCD path integral on a discretized finite-volume
Euclidean space-time grid to extract moments of PDFs,
quasi-PDFs, and other quantities.

A general overview of these approaches was presented
in the 2017 PDFLattice report (Lin et al., 2018d); this
work grew out of a 2017 workshop1 which brought
the two communities together to address common
questions and followed up on the very fruitful discussions
and interactions that took place during the workshop.
That first document served as a common reference
to standardize notation and conventions to facilitate
communication between these communities.

This current report grew out of a follow-up 2019
workshop;2 it updates and extends the scope of the
previous studies in a number of dimensions.

In particular, the prospect of future LHeC and EIC
facilities enables us to contemplate expanding beyond
the collinear PDF framework and considering also
generalized parton distributions (GPDs) and transverse-
momentum–dependent (TMD) PDFs. Together with
the collinear PDFs, we can obtain a complete three-
dimensional description of the hadron structure.

The conventional PDFs f(x) describe the probability
of finding a parton with momentum fraction x inside
a hadron moving in the infinite momentum frame; in
this case, the parton is assumed to be moving collinear
to the hadron with zero transverse momentum. If
we desire additional information about the parton, we
could ask about the transverse momentum kT and the
impact parameter bT of the parton relative to the parent
hadron. Both kT and bT are 2-dimensional vectors
measured relative to the axis defined by the hadron
momentum. Combining this information together yields
the 5-dimensional Wigner distribution W (x,kT,bT)
which, in a sense, provides complete information on the
parton. If we integrate the Wigner distribution over the
transverse momentum, we obtain a Generalized Parton
Distribution (GPD) fGPD(x,bT), while if we integrate
over the impact parameter we obtain a Transverse
Momentum Dependent (TMD) PDF fTMD(x,kT). Thus,
by expanding the scope of our investigations beyond
collinear PDFs to include GPDs and TMD PDFs we can
extract more detailed information on the partons which
comprise the hadron.

1 Parton Distributions and Lattice Calculations in the LHC era
(PDFLattice2017) 22–24 March 2017, Oxford University, UK.
http://www.physics.ox.ac.uk/confs/PDFlattice2017

2 Parton Distributions and Lattice Calculations
(PDFLattice2019) 25–27 September 2019, Michigan
State University (MSU) Kellogg Biological Station, USA.
https://indico.cern.ch/event/804857/

Not only do the GPDs describe the spatial
distributions of quarks and gluons in the plane transverse
to the hadron momentum, but they also provide a
mechanism to study the rich spin structure of the
hadrons. Together with the collinear information
encoded in the x momentum fraction variable, the GPDs
provide a three-dimensional (3D) tomographic image of
the structure of hadrons in terms of QCD’s quarks and
gluons.

Likewise, the TMD PDFs encode not only the
transverse momentum distribution of the hadronic
components, but can also provide the polarization
degrees of freedom. The information about transverse
degrees of freedom is essential in the context of
QCD factorization theorems for multiscale, noninclusive
collider observables. The transverse momentum degrees
of freedom of partons can be addressed within so called
transverse-momentum–dependent factorization, where
essentially the transverse momentum is much smaller
than the hard scale of the final state. A typical
process where one applies this factorization is Drell-
Yan production. Another approach (valid at low x)
is addressed within the color-glass condensate (CGC)
model, which is an effective model formulated within
QCD.

The broad objective of our work is to advance tools
that can perform detailed comparisons between data and
QCD theory, as well as combine information from the
two sides, to gain an enhanced understanding of the
various PDFs. This work is ongoing and forms the basis
for next-generation PDF input to facilitate precision
measurements and new discoveries at the future hadron
facilities, as we validate our understanding of the SM and
search for deviations which might signal evidence of new
physics.

The outline of this paper is as follows. In Section 2
we review the essential elements of the global QCD
analysis and lattice-QCD methods for collinear PDFs,
and highlight some of the recent developments. In
Section 3 we introduce the GPDs and discuss areas where
lattice QCD and machine learning (ML) can contribute.
In Section 4 we introduce TMD PDFs, including the new
lattice quasi-TMD PDFs, and discuss recent advances.
In Section 5 we discuss future interactions between the
global-analysis and lattice-QCD communities and offer
some conclusions.

This document presents work that appears in the
literature until June 1, 2020 (published, or on the arXiv).
The discussion is extended to conference proceedings for
recent work that has not been published elsewhere. To
keep this document at a reasonable length, we present
selected aspects of each publication discussed in the main
text and we encourage the interested reader to consult
the referred work.

http://www.physics.ox.ac.uk/confs/PDFlattice2017
https://indico.cern.ch/event/804857/
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II. PARTON DISTRIBUTION FUNCTIONS

In the framework of leading-twist collinear
factorization (Collins et al., 1989), PDFs are the
momentum densities of partons carrying a fraction x of
the momentum of their parent nucleon. Depending on
the polarization of the parton with respect to that of
the nucleon, three collinear PDF species can be defined:
the unpolarized PDF, f , for an unpolarized parton in
an unpolarized nucleon; the helicity PDF, ∆f , for the
net amount of partons polarized along or opposite a
longitudinally polarized nucleon; and the transversity
PDF, δf = hf1 , for the net amount of quarks polarized
along or opposite a transversely polarized nucleon. In
canonical field theory, PDFs are equivalently defined in
terms of matrix elements of bi-local operators, e.g. for
quarks

f(x) =
1

4π

∫
dy−e−ixP

+y−〈P, S|ψ̄fγ+Wψf |P, S〉 ,

∆f(x) =
1

4π

∫
dy−e−ixP

+y−〈P, S|ψ̄fγ+γ5Wψf |P, S〉 ,

hf1 (x) =
1

4π

∫
dy−e−ixP

+y−〈P, S|ψ̄f iσ1+γ5Wψf |P, S〉 ,

(1)

where ψ̄f = ψ̄f (0, 0,0⊥) and ψf = ψf (0, y−,0⊥) are
the (quark) fields, y± = 1

2 (y0 ± y3) are the spacetime
coordinates along the lightcone direction, γ are the Dirac
matrices, σ are the Pauli matrices, W is the Wilson line
ensuring the Gauge invariance of the operator, and P
and S are the momentum and spin of the proton. All
four-vectors are expressed using light-cone coordinates.

Expressions similar to those in Eq. (1) also hold
for upolarized and helicity gluon PDFs. They all
include renormalization of all fields and coupling in the
MS scheme (see (Kovař́ık et al., 2019) for details), a
fact that makes PDF depend on the (renormalization)
scale µ. This dependence is purely perturbative,
and can be computed by means of DGLAP evolution
equations (Altarelli and Parisi, 1977; Dokshitzer, 1977;
Gribov and Lipatov, 1972). Nuclear modifications,
occurring when a nucleon is bound in a nucleus, do
not alter these definitions: nuclear and nucleon PDFs
are defined by the same leading-twist operators entering
Eq. (1) (though acting on different states), therefore it is
customary to assume that nuclear modifications can be
absorbed into PDFs.

In this Section, we review recent progress in the
determination of unpolarized, helicity and transversity
PDFs from the two methods delineated in the
Introduction: global QCD analyses of experimental data,
on the one hand; and lattice QCD, on the other hand.
We focus on updates occurred since the publication of
the 2017 PDFLattice report (Lin et al., 2018d). We
then investigate possible intersections between the two

methods, specifically three aspects that we deem of
particular relevance: moments of PDFs, the use of lattice
data in global fits, and the unpolarized and helicity
strange PDF.

II.1. Global PDFs Updates

A global QCD analysis of PDFs consists in
modeling PDFs by means of a suitable parametrization,
which is then optimized by comparing PDF-dependent
predictions for one or more physical scattering processes
involving initial-state nucleons to (multiple sets of)
their actual measurements. In this sense, a PDF
determination can be considered a nonlinear-regression
problem, in which one has to learn the relative
weights of a set of functions from data. Key to
this procedure are QCD factorization theorems (Collins
et al., 1989), according to which the cross section for
a class of sufficiently inclusive hadronic processes can
be determined by folding the PDFs with perturbatively
computable partonic cross sections.

The accuracy and precision of a PDF determination
largely depend on the data set and on the theoretical
and statistical sophistication of the analysis. The input
data sets are remarkably different across the three PDF
species defined in Eq. (1); while there are thousands
of measurements available to determine the unpolarized
PDFs, there are typically only hundreds of them for the
helicity, and tens for the transversity. The kinematic
coverage and the variety of hadronic processes decreases
accordingly: unpolarized and helicity PDFs benefit,
although to a different extent, from measurements
in inclusive and semi-inclusive deep-inelastic scattering
(DIS and SIDIS), Drell-Yan (DY), and a variety
of proton-proton (pp) scattering processes (including
gauge-boson, jet, and heavy-particle production). The
transversity PDF, instead, is limited by its nature to
processes coupled to a chiral-odd final state; in a purely
collinear framework, that is di-hadron production in
SIDIS or in pp collisions (Di). This state of affairs is
summarized in Fig. 1, where we display the kinematic
coverage, in the (x,Q2)-plane (Q = µ is the characteristic
scale of the data), of the hadronic cross section data
for the processes commonly included in modern QCD
analyses of unpolarized, helicity and transversity PDFs.
The dashed line is at Q = 1 GeV. Data below this
value are usually not included in QCD analyses of PDFs
because QCD becomes largely non-perturbative, due
to the growth of the strong coupling. The extended
kinematic ranges attained by a future Large Hadron-
electron Collider (LHeC) (Abelleira Fernandez et al.,
2012) or a polarized Electron-Ion Collider (EIC) (Accardi
et al., 2016b) are also displayed. A corresponding plot
for unpolarized nuclear PDFs can be found in Fig. 1 of
Ref. (Ethier and Nocera, 2020).
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Unpolarized Helicity Transversity

FIG. 1 The kinematic coverage in the (x,Q2) plane of the hadronic cross-section data for the processes commonly included in
global QCD analyses of collinear unpolarized, helicity, and transversity PDFs. The extended kinematic ranges attained by the
LHeC and the EIC are also displayed. See Fig. 1 of Ref. (Ethier and Nocera, 2020) for unpolarized nuclear PDFs.

The remainder of this section will present a summary of
recent developments in the determination of unpolarized,
helicity and transversity PDFs, and will outline their
respective features. We refer the interested reader
to Ref. (Ethier and Nocera, 2020) for a recent, more
extended review of the subject.

II.1.1. Unpolarized PDFs

The continued excellent performance of the CERN
Large Hadron Collider (LHC) (Evans and Bryant, 2008)
has brought the determination of unpolarized PDFs
in a precision era. The recent completion of Run II
has accumulated data from an integrated luminosity of
approximately 150 fb−1, a fact that shrank the statistical
uncertainty of the measurements to unprecedented small
values, typically 1% or less. This state of affairs
challenges PDFs as a tool to perform precision tests
of the SM and searches of new physics; PDFs must
become comparably precise. Next-to-next-to-leading
order (NNLO) accuracy has become standard, and
large efforts were also devoted to update PDF sets
with an increasing amount of LHC measurements, to
develop statistical tools to investigate the impact and/or
inconsistencies of the data, and to represent residual
theoretical uncertainties (e.g. beyond NNLO) in the
PDFs. On the other hand, PDFs remain key to
understand the nonperturbative structure of the proton,
for instance to investigate the role of higher-twist terms
in the operator product expansion, or the shape of the
ratio of d to u flavor at large x. In the following, we
discuss these aspects by summarizing the progress of the

leading PDF sets.

The CTEQ-TEA collaboration has recently released
their new CT18 PDF set (Hou et al., 2019b), accurate up
to NNLO. More than 700 data points from 12 new LHC
data sets were included in the new fits. Among them, the
most important data sets that drove changes in the quark
and antiquark PDFs are the LHCb W - and Z-boson
data at 7 and 8 TeV. Very mild changes in the fitted
PDFs were observed with the addition of the ATLAS
8-TeV and CMS 7- and 8-TeV W - and Z-boson data.
Changes in the gluon PDF were instead driven by the
inclusion of CMS and ATLAS jet data, and of ATLAS 8-
TeV Z-boson transverse-momentum distributions, which
both made the central value and the uncertainty of the
gluon decrease in the region 0.1 < x < 0.4. The
subsequent inclusion of top-pair–production data from
ATLAS and CMS, in particular of single- and double-
differential distributions, was demonstrated to have little
impact in the CT18 fit. Finally, the central value of the
sea-quark ratio (s+ s̄) /

(
ū+ d̄

)
increased in the small-x

region, due predominantly to the inclusion of LHCb data.
A methodology to study the sensitivity and the impact
of specific data sets to the PDFs without the need of
performing a fit was also developed (Hou et al., 2019a;
Schmidt et al., 2018; Wang et al., 2018). A variant of
the baseline CT18 fit, called CT18Z, was determined
with the additional inclusion of the ATLAS 7-TeV W±/Z
rapidity distributions and by taking the factorization
and renormalization scales in the DIS process to be x-
dependent. The fit represents the maximal deviation
from the nominal CT18 fit, notably in the gluon and
strange-quark PDFs. The resulting PDFs for the CT18
set, which are representative of the qualitative status of
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FIG. 2 The CT18 PDFs at µ2 = 10 GeV2 for the xu, xū, xd,
xd̄, xs = xs̄, and xg PDFs. Error bands correspond to the
68% confidence level. Figure from (Kovař́ık et al., 2019).

current unpolarized PDFs, are shown in Fig. 2.

The latest general-purpose PDF determination from
the MMHT collaboration is MMHT14 (Harland-
Lang et al., 2015), which was later extended to
include HERA I–II legacy measurements (Harland-Lang
et al., 2016), jet-production measurements (Harland-
Lang et al., 2018), and differential measurements in top-
pair production (Bailey and Harland-Lang, 2020) from
the LHC. These intermediate updates demonstrated that
experimental correlations across systematic uncertainties
have been improperly estimated for some of the ATLAS
jet and differential top data sets. The features of a new
preliminary general-purpose PDF set were presented in
Ref. (Thorne et al., 2019), which included new LHC data
sets, notably the particularly precise 7-TeV ATLAS W -
and Z-boson measurements, which increase the ratio of
strange to non-strange light sea quarks at low x, whilst
still allowing for a positive light-sea-quark asymmetry,
albeit with a maximum at slightly lower x. The MMHT
fit has also been updated with an improved and extended
parametrization based on Chebyshev polynomials.

The NNPDF collaboration released their latest
general-purpose PDF set in Ref. (Ball et al., 2017). This
was later extended to include direct photon (Campbell
et al., 2018), single-top (Nocera et al., 2019), and dijet-
production measurements (Abdul Khalek et al., 2020)
from the LHC. A reassessment of the impact of top-
pair differential distributions measured by ATLAS at
8 TeV was also presented in Ref. (Amoroso et al., 2020),
which demonstrated the different impact of absolute and
normalized distributions in the fit, and the importance
of fitting charm in their description. The NNPDF
collaboration has also developed a statistical procedure
to represent theory uncertainties in PDFs (Ball and
Deshpande, 2019), and applied it to missing higher-order
corrections (MHOU) in the strong-coupling expansion of

theoretical predictions (Abdul Khalek et al., 2019b,c),
and to nuclear uncertainties in observables obtained from
scattering off nuclear targets (Ball et al., 2019). The
procedure consists in supplementing the experimental
covariance matrix with a theoretical covariance matrix
estimated by way of an educated guess. In the case of
MHOU, correlated uncertainties were estimated at next-
to-leading order (NLO) by varying the factorization and
renormalization scales according to various prescriptions;
in the case of nuclear corrections, correlated uncertainties
were estimated as the difference between theoretical
predictions obtained either with a free-proton or nuclear
PDF. The representation of such uncertainties in PDFs
is likely to become mandatory in the future, because
their size is comparable to that determined from
the uncertainty of the data. The inclusion of such
theoretical uncertainties was demonstrated to improve
the description of the data, while increasing PDF
uncertainties only mildly.

In Fig. 3 we compare the CT18, MMHT14 and
NNPDF3.1 PDF sets at a scale Q = µ = 2 GeV.
Specifically, we display the following PDF combinations
from top to bottom and left to right: uv + dv = u −
ū + d − d̄, u − d, ū + d̄, d̄ − ū, s + s̄, s − s̄, c + c̄
and g. Note the special scale on the x axis. While
the three global analyses produce similar total valence
distributions uv+dv for 0.05 . x . 0.5, their predictions
on other flavor combinations could differ by 10% or more,
as in ū − d̄, ū + d̄, s + s̄, c + c̄ and g. In particular,
the c + c̄ PDF combination is largely different between
NNPDF3.1 and the other sets, given that charm is
parametrized on the same footing as other PDFs in the
NNPDF3.1 set, while it is generated perturbatively in
the others. Finally, note that the difference s − s̄ is
not displayed for CT18 because they assume s = s̄;
MMHT14 and NNPDF3.1 determine s and s̄ PDFs
independently.

Beside the three general-purpose PDF sets described
above, other unpolarized PDF determinations have been
produced or updated recently, namely ABMP, CJ, JAM
and HERAPDF. These PDF sets are based on a reduced
set of measurements and/or on peculiar theoretical
assumptions. As such, they are more limited in scope.

The ABMP16 (Alekhin et al., 2017) PDF set is
the only unpolarized PDF set determined in a schemes
with a fixed number of flavors: for 3, 4 and 5 active
flavors separately. It was recently supplemented with
an extended set of single-top and top-pair measurements
from the Tevatron and the LHC and an increasing
number of DY data, notably recent ATLAS gauge-boson–
production distributions at 5 and 7 TeV and double-
differential distributions for Z-boson production from
ATLAS and CMS. More stringent kinematic cuts have
been applied, which reduce the impact of higher-twist
terms included in the analysis.

The CJ15 (Accardi et al., 2016a) analysis determined
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FIG. 3 The CT18, MMHT14 and NNPDF3.1 PDFs at Q =
2 GeV for various flavor combinations.

the ratio d/u at NLO by including fixed-target DIS data
at low Q and high x, which are otherwise excluded by
kinematic cuts in other PDF analyses. In order to reduce
theoretical bias, higher-twist contributions and nuclear
effects important in this kinematic region were included
in the analysis. In Fig. 4 the d/u ratio obtained from the
CJ15 analysis at NLO is compared to the result obtained
from the CT14HERA2 (Hou et al., 2017) and CT18
analyses at NNLO. The plot shows that the CT18 and
CJ15 central predictions converge to different values at
large x, respectively 0.1 and 0.2. Nevertheless, the CT18
and CJ15 results are compatible within uncertainties,
although the CJ15 error band is much smaller than the
CT18 one, possibly because the tolerance criterion is not
adopted in the CJ15 analysis.

The JAM collaboration performed the first universal
fit, JAM19 (Sato et al., 2020), a simultaneous
determination of PDFs and fragmentation functions
(FFs) at NLO from a global analysis of DIS, DY,
SIDIS and electron-positron annihilation data. This
fit is unique in its kind, as it allows investigation
of the unpolarized sea-quark PDFs from semi-inclusive
processes, whereby bias from the unknown FFs is
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FIG. 4 The u/d ratio for the CT18, CT14HERA2 and CJ15
PDFs at Q = 10 GeV.

minimised as much as possible. The fit revealed in
particular a strong suppression of the strange PDF
from kaon production, in contrast to what is found in
all other PDF determinations, which deserves further
investigation.

Finally, the HERAPDF2.0 set was updated (Cooper-
Sarkar, 2019) with the HERA legacy inclusive DIS data
set supplemented with (multi-)jet production data in
DIS from ZEUS and H1. Theoretical predictions were
computed at NNLO with NNLOJET (Gehrmann et al.,
2018) for the first time. The new NNLO fit favors a
value of the strong coupling αs(MZ) = 0.1150 which
is lower than that found at NLO, αs(MZ) = 0.1183.
Consequently, two new HERA2PDF2.0Jets NNLO fits,
with different αs values were made available.

As a general remark, we note that the small-x region
of unpolarized PDFs is phenomenologically relevant
for the production of final states, for example dijets
in the forward-rapidity region of HERA, RHIC and
LHC. In pp collision, a final state of rapidity around
4 can probe momentum regions as low as x ∼ 10−4.
Furthermore, in heavy-ion collisions it is believed that
the small-x gluons form an over-occupied system needed
for later thermalization of quark-gluon plasma. A
precise understanding of the gluon PDF at low x is
therefore of uttermost importance, and represents a
domain where all of the analyses discussed above can
be improved, for instance along th elines of Ref. (Ball
et al., 2018). The current approach to studying the
small-x gluon density is formulated upon the Balitsky-
Kovchegov equation (Balitsky, 1996; Kovchegov, 1999)
and its finite-Nc generalization (Jalilian-Marian et al.,
1997, 1998a,b). The former can be solved using standard
methods for integro-differential equations, while the
latter, being a functional equation, can be solved by
means of lattice-QCD methods, after reformulation as an
Langevin equation (Rummukainen and Weigert, 2004).
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The two equations are both nonlinear and lead to a
saturation scale which signals the strong process of
recombination of gluons and gluon saturation. Both
equations describe the perturbative evolution of Wilson
lines; therefore, they are valid strictly in the perturbative
regime of QCD. However, one needs to regulate the
nonperturbative large sizes of the Wilson lines, which
are eventually probed during the evolution. This is one
of the limitations of the approach. It would be of great
advantage to further develop the lattice-QCD approach
to attack the small-x behaviour of the gluon PDF.

II.1.2. Nuclear PDFs

Should the unpolarized hard-scattering processes occur
off nuclei instead of free nucleons, it is customary to
assume that they can still be described in terms of
factorization theorems (Barshay et al., 1975). Nuclear
effects are then reabsorbed into PDFs, which differ from
the unpolarized PDFs discussed in the previous section,
and which are called nuclear PDFs. Recent progress in
the phenomenological determination of nuclear PDFs has
been mainly driven by the availability of hard probes
in proton-lead collisions at the LHC. Representative
examples of such processes include dijet (Eskola et al.,
2019) and D-meson production (Kusina et al., 2018)
to constrain the gluon nuclear PDFs at small and
large x, respectively, and W,Z production to constrain
nuclear modifications to quark flavor separation (Kusina
et al., 2017). These observables complement the existing
information from neutral-current and charged-current
DIS structure functions as well as from proton-lead
collision data from RHIC (see Ref. (Ethier and Nocera,
2020) for an overview). Several other processes could be
added to global nuclear PDF fits in the future, such as
photon production (Campbell et al., 2018), low-mass DY,
and possibly even top-quark pair production.

Several groups have presented phenomenological
determinations of nuclear PDFs. These differ in the input
data set, in the accuracy of the theoretical computations,
in the flavor assumptions, and in the methodological
details of the analysis, such as the parametrization
of the nucleus dependence, and the representation of
uncertainties. The nuclear-PDF analysis including the
most extensive data set to date is EPPS16 (Eskola
et al., 2017), which is the only one to take into
account jet- and W,Z-production data from proton-lead
collisions at the LHC. Other recent nuclear PDF sets,
based on a more limited data set than EPPS16, are
nCTEQ15 (Kovarik et al., 2016), TuJu19 (Walt et al.,
2019), and nNNPDF1.0 (Abdul Khalek et al., 2019a).

We refer the interested reader to Refs. (Ethier and
Nocera, 2020; Kovař́ık et al., 2019) for a detailed
comparison of all of these nuclear PDF sets. Here,
we note that the determination of nuclear PDFs is less

advanced than that of their free-proton counterparts
at least in four respects. First, the limited amount
of experimental measurements, which results in large
uncertainties on nuclear PDFs, especially for the gluon
and the individual quark flavors. Second, the use,
to some extent, of model-dependent assumptions, in
particular to mimic shadowing and anti-shadowing effects
as a function of x and of the atomic number A.
Third, the consistency between nuclear PDFs and their
A = 1 limit (that is, the free-proton PDFs) both in
terms of central values and uncertainties, as well as the
treatment of correlations between nuclear and proton
PDFs. Fourth, possible data inconsistencies, for example
between neutral- and charged-current structure functions
and between some of the LHC observables.

Future facilities, specifically the EIC, will address the
first of these limitations by extending the kinematic
reach of the measurements down to x ∼ 10−9, as
anticipated in several impact studies (Abdul Khalek
et al., 2019a; Aschenauer et al., 2017; Paukkunen,
2018). Reliable calculations from lattice QCD could add
valuable information to address some of the remaining
limitations. The calculation of nuclear PDFs using lattice
QCD is in general more demanding than the computation
of free-proton PDFs, in a way that grows with the
number of nucleons in the nucleus. For this reason, only
few pioneering results on very light nuclei are currently
available. In particular, the NPLQCD collaboration
computed the first moment of the unpolarized gluon
distribution in nuclei up to A = 3 (Winter et al., 2017)
(for deuteron and 3He). These results are obtained at a
higher-than-physical quark mass; as such, they should be
viewed as a starting point for future developments.

II.1.3. Helicity PDFs

Helicity PDFs describe the net amount of momentum
densities of partons aligned along or opposite a
longitudinally polarized nucleon. Their relevance is
related to the fact that the contribution of quarks,
antiquarks and gluons to the nucleon spin is quantified
by the first moments of the corresponding helicity PDFs,
according to the canonical decomposition of the proton’s
total angular momentum (Leader and Lorcé, 2014).

The most recent analyses of polarized
PDFs are DSSV14 (de Florian et al., 2014),
NNPDFpol1.1 (Nocera et al., 2014) and
JAM17 (Ethier et al., 2017). Since publication,
the DSSV14 analysis was updated with a Monte-
Carlo variant (De Florian et al., 2019), which also
studied the impact of recent dijet measurements from
STAR (Adam et al., 2018; Adamczyk et al., 2017). The
NNPDFpol1.1 PDF set was also updated with STAR
measurements, including the same dijet measurements
and additional W -boson production data (Nocera,
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FIG. 5 The helicity PDFs from the NNPDFpol1.1 parton
set at µ2 = 10 GeV2. Figure from (Tanabashi et al., 2018).

2017). The JAM17 analysis is unique in its kind,
because it realises a universal fit, that is, a simultaneous
determination of the helicity PDFs and of the FFs of
pions and kaons by means of an analysis of the SIDIS
data. Because of this fact, theoretical assumptions on
the SU(Nf ) symmetry, which relate the first moments
of the isotriplet and octet helicity PDF combinations to
the weak decays of hadrons, can be relaxed. Therefore,
theoretical bias in the determination of helicity sea-quark
distributions is alleviated, in particular on strangeness
(see Sect. II.3.3).

All of these analyses are accurate to NLO. The PDFs
from the NNPDFpol1.1 sets are displayed, at a scale
µ2 = 10 GeV2 in Fig. 5 for illustration purposes. The
up quark valence distribution is the most constrained
helicity PDF, primarily thanks to measurements of the
proton structure function g1 over a relatively broad range
of x and Q2; see Fig. 1. The corresponding down-
quark distribution, which is opposite in sign, is smaller
in magnitude and shows somewhat larger uncertainties.
Nevertheless, a fair agreement between various PDF sets
has been achieved for the valence polarizations, with
differences originating from theoretical, experimental,
and methodological choices generally being smaller than
the PDF uncertainty (representing the uncertainty of
the data). The polarization of the sea quarks is
significantly smaller than the polarization of the valence
quarks. It is also more dependent on the measurements
included in each PDF set, and on the flavor assumptions
with which the data are analyzed. Specifically,
while all PDF sets show a fairly consistent anti-down
polarization, the anti-up distribution is positive in the
NNPDFpol1.1 PDF set, due to W -boson production
data, while it changes sign in the DSSV14 PDF

set, due to SIDIS data. This difference is somewhat
relieved in the JAM17 result, where the simultaneous
determination of helicity PDFs and FFs generally leads
to PDFs with larger uncertainties. The situation is
more involved for the strange helicity PDF, which
remains largely unconstrained from DIS data alone (see
Sect. II.3.3). Finally, the gluon helicity distribution
has been established to be consistently sizable and
positive in both the DSSV14 and NNPDFpol1.1
analyses thanks to the availability of precise jet, dijet,
and pion-production spin-asymmetry measurements at
RHIC. Such evidence, however, is limited to the region
0.02 . x . 0.4, outside of which the gluon helicity PDF is
affected by large extrapolation uncertainties that prevent
any definitive conclusion about its role in the proton spin
decomposition. The extended kinematic region attained
by a future polarized EIC (see Fig. 1) will be pivotal to
clarify this picture, as demonstrated by several impact
studies (Aschenauer et al., 2013, 2012, 2015; Ball et al.,
2014).

II.1.4. Transversity PDFs

Transversity describes the correlation between the
transverse polarizations of the nucleon and of its
constituent partons. Because of its chiral-odd nature,
it can be measured only in processes where it pairs to
another chiral-odd object (Artru and Mekhfi, 1990; Jaffe
and Ji, 1991). Historically, transversity was extracted
for the first time in the framework of TMD factorization,
by exploiting the Collins effect (Anselmino et al., 2007)
in SIDIS measurements, whereby transversity couples
to the chiral-odd Collins FF H⊥1 (Collins, 1993). This
procedure may be prone to theoretical bias, because
TMD evolution depends on nonperturbative parameters
that are not very well constrained by experiment.
Furthermore, it cannot be extended to pp collision
measurements, for which TMD factorization is explicitly
broken (Rogers and Mulders, 2010). This limitation can
be overcome by considering the Collins effect for a hadron
detected inside a jet (Adamczyk et al., 2018). A hybrid
framework can be established (Kang et al., 2017), where
the TMD FF H⊥1 is paired to the collinear PDF h1.

An alternative method was proposed to determine
transversity in a fully collinear framework: it is based
on the semi-inclusive production of two hadrons inside
the same current jet with small invariant mass (Bianconi
et al., 2000; Jaffe et al., 1998). The elementary
mechanism consists in the correlation between the
transverse polarization of the quark directly fragmenting
into the two hadrons and their transverse relative
momentum (Collins and Ladinsky, 1994). In this
case, the dihadron SIDIS cross section (once integrated
over partonic transverse momenta) contains a specific
azimuthal modulation in the orientation of the plane
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containing the momenta of the two hadrons. The
coefficient of this modulation is the simple product
h1H

^
1 , where H^

1 is a chiral-odd dihadron FF (DiFF)
quantifying the above correlation (Bacchetta and Radici,
2003; Bianconi et al., 2000; Radici et al., 2002). The
function H^

1 can be independently determined from
correlations between the azimuthal orientations of two
hadron pairs in back-to-back jets produced in electron-
positron annihilation (Bacchetta et al., 2009; Boer
et al., 2003; Courtoy et al., 2012; Matevosyan et al.,
2018). Because of collinear factorization, it is possible
to isolate the same combination h1H

^
1 also in pp

collisions (Bacchetta and Radici, 2004), a fact that gives
rise to an asymmetric azimuthal distribution of the final
hadron pair when one of the two initial protons is
transversely polarized (Radici et al., 2016).

Experimental measurements of the asymmetric
azimuthal distribution of π+π− pairs in SIDIS have
been collected by the HERMES collaboration for
a proton target (Airapetian et al., 2008) and by
the COMPASS collaboration for both proton and
deuteron targets (Adolph et al., 2012, 2014), summing
up to 22 independent data points. The azimuthal
asymmetry in the distribution of back-to-back π+π−

pairs in e+e− annihilation was firstly measured by
the Belle collaboration (Vossen et al., 2011), a fact
that opened the way to the first parametrization of
H^

1 (Courtoy et al., 2012). In turn, this result was
used in combination with the SIDIS data to extract the
valence components of h1 (Bacchetta et al., 2011, 2013;
Radici et al., 2015) at leading-order (LO) accuracy. The
STAR collaboration recently released results for the
predicted asymmetry of π+π− pairs produced from pp
collisions with a transversely polarized proton at the
center-of-mass energy of

√
s = 200 GeV (Adamczyk

et al., 2015). The first extraction of transversity
from a global analysis of all of these data sets was,
therefore, carried out in Ref. (Radici and Bacchetta,
2018) at LO, where the bootstrap method (Bacchetta
et al., 2013; Radici et al., 2015) was used to propagate
the data uncertainty into the PDF uncertainty. We
will call this analysis PV18 in the remainder of the
paper. The STAR collaboration subsequently released
measurements at

√
s = 500 GeV (Adamczyk et al.,

2018), that need to be included in future updates of the
fit. The overall experimental information amounts to
approximately 50 independent data points covering the
range 0.008 < x < 0.35, about two orders of magnitude
less than for the analysis of unpolarized PDFs, see
Fig. 1.

From the theoretical point of view, the decomposition
on the helicity basis of the quark-hadron helicity
amplitude in terms of the three leading-twist PDFs
(unpolarized, helicity and transversity) leads to the so-

called Soffer inequality (Soffer, 1995)

|hq1(x,Q2)| ≤ 1

2

[
q(x,Q2) + ∆q(x,Q2)

]
= F qSB(x,Q2) ,

(2)
for each quark q and antiquark q̄ separately. For valence
quarks qv = q − q̄, the Soffer inequality reads

|hqv1 | ≤ F
q
SB + F q̄SB ≡ F

q+q̄
SB , (3)

and is conserved under QCD evolution (Goldstein et al.,
1995; Vogelsang, 1998). Because the experimental
data cover a limited range in x, Eq. (3) is a bound
that limits the allowed parameter space in any reliable
determination of transversity.

The global analysis of Ref. (Radici and Bacchetta,
2018) assumed the following functional form at the initial
scale Q2

0 = 1 GeV2:

xhqv1 (x,Q2
0) = F q(x) F q+q̄SB (x,Q2

0) , (4)

where F q(x) contained five fitting parameters for each
valence flavor qv. Imposing the constraint |F q(x)| ≤ 1
for all x automatically enforces the Soffer inequality at
any scale. The low-x behavior of hqv1 (x) was further
constrained by requiring that its zeroth Mellin moment,
the tensor charge, is finite. The MSTW08 (Martin et al.,
2009) and DSSV08 (de Florian et al., 2009) parton sets
were used as input for the unpolarized (at LO) and the
helicity (at NLO) PDFs entering Eq. (3). Using other
parametrizations, for instance CT18 (Hou et al., 2019b)
for the unpolarized PDF, or JAM15 (Sato et al., 2016)
or JAM17 (Ethier et al., 2017)) for the helicity PDF, was
shown to leave the fit of the transversity unaltered (Benel
et al., 2020; Radici and Bacchetta, 2018).

The dependence of the transversity PDF on the Soffer
bound implicit in Eq. (4) may result in a saturation of
said bound at large x. If so, one may wonder whether
the data is in tension with the bound itself, or whether
the account of the Soffer bound is not flexible enough.
This issue was investigated in the fit of Ref. (Benel
et al., 2020), which we call MEX19, based only on SIDIS
dihadron production data and on the bootstrap method.
Four functional forms were considered, all consisting of
sums of selected Bernstein polynomials of four different
degrees that spanned almost the entire x range and
that were multiplied by x1.25. An estimate of the
statistical compatibility between the valence transversity
distributions and the bound was performed through the
reweighting of the data in the minimization procedure.
Given the uncertainty on the deuteron data, the hdv1 had
to be constrained to an envelope designed based on the
fall-off of PDFs at large x using the Lagrange multiplier
method.

In Fig. 6 we show xh1(x) at Q2 = 2.4 GeV2. The
upper (lower) panel refers to its valence up (down)
component. The shaded (pink) band is the result of
the PV18 global fit of Ref. (Radici and Bacchetta,
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FIG. 6 The transversity xh1(x) at 90% CL. Upper (lower)
plot for valence up (down) component. Gray lines represent
the Soffer bound. Darker (pink) band for the PV18 global fit
of (Radici and Bacchetta, 2018) at Q2 = 2.4 GeV2. Lighter
(cyan) band for the MEX19 constrained analysis of (Benel
et al., 2020) at the average scale of the data.

2018). The error band corresponds to the 90% confidence
level (CL), and includes also a systematic theoretical
error induced by the currently unconstrained gluon
contribution to DiFF (Radici and Bacchetta, 2018). It
turns out that the transversity for the valence down
quark is very sensitive to this uncertainty. The plain
(cyan) band is the result of the MEX19 constrained
fit of Ref. (Benel et al., 2020); error bands correspond
to the 90% CL. The Soffer bound is represented in a
limited range by a gray line using the unpolarized and
helicity PDFs from the LO MSTW08 (Martin et al.,
2009) and the NLO DSSV08 (de Florian et al., 2009)
sets, respectively. At small x, the error on the bound
(still negligible in comparison to the current overall
uncertainties on the transversity PDF) increases due
to the uncertainties in both parametrizations. This
is, however, inconsequential for valence distributions,
which are suppressed by evolution. From Fig. 6 we
observe that the two determinations are consistent within
uncertainties, although the larger uncertainty on the
valence down quark at large x can be appreciated in the
fit of Ref. (Benel et al., 2020) as a consequence of the
Soffer bound.

Nevertheless, PDF shapes and uncertainties are
comparable to those determined in TMD analyses of the
Collins effect (Anselmino et al., 2013; Kang et al., 2016),
including in a dedicated studies on the role of the Soffer
bound on the tensor charge (D’Alesio et al., 2020). The
Soffer bound was completely released in (Cammarota
et al., 2020). In all cases, the uncertainty bands remain
large; future developments will depend on a detailed
study of flavor dependence of DiFFs by using BELLE
data for dihadron multiplicities (Seidl et al., 2017), and
on including in the global fit also the STAR data at
higher center-of-mass energy (Adamczyk et al., 2018).
From the theoretical point of view, work is in progress to
update the analyses to NLO accuracy.

II.2. Lattice PDFs Updates

Lattice QCD regularizes QCD on a finite Euclidean
lattice by means of numerical computations of QCD
correlation functions in the path-integral formalism,
using methods adapted from statistical mechanics. Of
particular interest for this report, are novel methods to
access information on PDFs using lattice QCD. This is a
very challenging task, as distribution functions are light-
cone quantities and cannot be calculated on a Euclidean
lattice. A few methods have been proposed, some as
early as the 1990s, and others very recently. This
includes, studies based on the hadronic tensor (Liu, 2000;
Liu and Dong, 1994; Liu et al., 1999), auxiliary quark
field approaches (Braun and Müller, 2008; Detmold
and Lin, 2006), Large-Momentum Effective Theory
(LaMET) (Ji, 2013, 2014; Ji et al., 2020) (quasi-PDFs),
pseudo-PDFs (Radyushkin, 2017a), a method based on
OPE (Chambers et al., 2017), and the Good Lattice
Cross Sections approach (Ma and Qiu, 2015, 2018a,b).
We refer the reader to Ref. (Cichy and Constantinou,
2019; Ji et al., 2020; Lin et al., 2018d) for a thorough
description of the methods. In this section we review
recent progress on some of these methods that have
been studied extensively within lattice QCD. The current
stage of the field and the limited data for some methods,
does not permit one to quantitatively compare the lattice
results extracted from different methods. Having more
data, in particular simulations at the physical point,
will improve the current understanding of the sources of
systematic uncertainties. This way, we can assess what
are the cavities and technical limitations of each method,
such as, the region of x for which the lattice results are
reliably extracted.

II.2.1. PDFs at the physical point with quasi-distributions

Pioneering works have shown great promise in
obtaining quantitative results for the unpolarized,
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helicity and transversity quark and antiquark
distributions (Alexandrou et al., 2014, 2015; Chen
et al., 2016; Lin, 2014a,b; Lin et al., 2015) using
the quasi-PDFs approach (Ji, 2013), which utilized
Large Momentum Effective Theory (LaMET) (Ji,
2014) to match lattice calculable matrix elements, to
their light-cone counterparts. The groups working on
extracting x-dependent PDFs from lattice QCD have
significantly improved their calculations. A recent
review on the theory and lattice calculations can be
found in Refs. (Cichy and Constantinou, 2019; Ji et al.,
2020). There are several theoretical developments
related to the renormalizability of quasi-PDFs (Chen
et al., 2017; Ishikawa et al., 2016; Ji and Zhang, 2015;
Ji et al., 2017, 2018), and the appropriate matching
formalism (Izubuchi et al., 2018; Stewart and Zhao,
2018; Xiong et al., 2014). One of the major developments
for the lattice calculation concerns the understanding
of the renormalization pattern on the lattice (Chen
et al., 2019a; Constantinou and Panagopoulos, 2017), as
well as the development of a complete nonperturbative
renormalization procedure (Alexandrou et al., 2017a;
Chen et al., 2018a) that removes all divergences of
nonlocal operators.

The first unpolarized PDFs at the physical pion
mass (Alexandrou et al., 2018a; Lin et al., 2018a) using
the quasi-PDFs approach were determined using small
momentum. This, in addition with the challenges in
the reconstruction of the x dependence, may lead to
the wrong sign of sea-flavor asymmetry to be seen
following Fourier transformation. The upper plot of
Fig. 7 shows the newer PDF results on ensembles at
the physical pion mass with momenta above 2 GeV,
and then renormalized at 3 GeV (Lin et al., 2018b)
(denoted as matched PDF). The associated error band
includes systematic errors coming from variations in
the renormalization scale, from the choice of zPz in
the Fourier transform, from an estimation of lattice-
spacing and finite-volume effects, from other nucleon
matrix corrections, and from approximations made in
the matching formula. As expected from the Fourier-
transform study, the sea-flavor asymmetry is recovered
with increased momentum. In the positive isovector
quark region, the lattice results agree with CT14 (Dulat
et al., 2016), which is consistent with NNPDF3.1 (Ball
et al., 2017) and CJ15 (Accardi et al., 2016a), up to
the small-x region, where even larger zPz data are
required for lattice calculations to have control over these
regions. The middle plot of Fig. 7 shows LP3’s isovector
quark helicity PDF (Lin et al., 2018b) matched in the
MS-scheme at the scale µ = 3 GeV, extracted from
LaMET at the largest proton momentum (3 GeV). The
inner band denotes the statistical error, while the outer
band also includes systematic uncertainties similar to
those determined in the case of unpolarized PDFs. The
lattice result is compared to two phenomenological fits,

NNPDFpol1.1 (Nocera et al., 2014) and JAM17 (Ethier
et al., 2017). The bottom plot in Fig. 7 shows the
LP3’s proton isovector transversity PDF (Liu et al.,
2018) at the renormalization scale µ =

√
2 GeV (MS

scheme), extracted from lattice QCD and LaMET at
Pz = 3 GeV. The error band includes statistical errors
(which fold in the excited-state uncertainty) and the
same systematics mentioned in the unpolarized PDF
case. The lattice result is compared to global fits by
JAM17 and LMPSS17 (Lin et al., 2018c).

The ETMC Collaboration has also improved their
calculations of PDFs, and refined the matching procedure
by proposing a modified MS scheme, which satisfies
particle number conservation. Note that this scheme
corresponds to the quasi-PDFs, while the light-cone
PDFs (see Eq. (1)) are always renormalized in the
MS scheme. The modified MS scheme was applied to
the unpolarized and helicity PDFs in Ref. (Alexandrou
et al., 2018b) and for the transversity PDF. The latter
was presented for the first time at the physical point
in Ref. (Alexandrou et al., 2018c). The ensemble
used has Nf = 2 twisted-mass fermions with clover
improvement (Abdel-Rehim et al., 2017). The ensemble
has a lattice spacing 0.093 fm, lattice spatial extent
4.5 fm, and pion mass 130 MeV. Three values were used
for the momentum boost: 0.83, 1.11, and 1.38 GeV. In
this work, increasing the momentum to values higher
than 1.5 GeV led to an unreliable extraction of the
ground state. The final PDFs are displayed in Fig. 7
at scale 1.38 GeV and are compared with a selection
of results from global fits. The unpolarized PDF has
slope similar to the phenomenological one in the positive-
x region, but lies above it. The lattice results for
the helicity PDF are compatible with phenomenological
PDFs for x . 0.4–0.5. The lattice result for the
transversity PDF is in agreement with the global fits,
as well as with those constrained using the lattice
determination of the tensor charge as input, for x .
0.4–0.5. Interestingly, the statistical accuracy of the
aforementioned lattice results is better than either
phenomenological determination.

Furthermore, ETMC studied several sources of
systematic uncertainties directly at the physical
point (Alexandrou et al., 2019d). This is essential,
because the pion mass dependence is sizable for the
nonlocal matrix elements (see, for example, Fig. 6
of Ref. (Alexandrou et al., 2018b)). All sources of
systematic uncertainties that can be studied were
included in Ref. (Alexandrou et al., 2019d), that
is: excited-state contamination, renormalization,
reconstruction of the x-dependence, effects of truncating
the Fourier transform, and different matching
prescriptions. This in-depth study revealed that
excited-state contamination is not negligible for fast-
moving nucleons and should be properly reduced. The
work also demonstrated that the discrete and limited
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FIG. 7 Summary of the lattice calculation of isovector unpolarized (top), helicity (middle) and transversity (bottom) with
LP 3 and ETMC isovector quark (left column) and antiquark (right column) taken from (Alexandrou et al., 2019d, 2018b,c;
Bhat et al., 2020; Chen et al., 2018b; Lin et al., 2018b; Liu et al., 2018), JLab/W&M valence unpolarized distribution results
from (Joó et al., 2020), and global fits from (Accardi et al., 2016a; Alekhin et al., 2017; Ball et al., 2017) (unpolarized), (Ethier
et al., 2017; de Florian et al., 2009; Nocera et al., 2014) (helicity), and (Benel et al., 2020; Lin et al., 2018c; Radici and
Bacchetta, 2018) (transversity). Note that none of the current lattice calculations have taken the continuum limit (a→ 0) and
have remaining lattice artifacts (such as finite-volume effects); disagreement in the obtained distributions is not unexpected.

number of data for nonzero z are not sufficient for a
reliable reconstruction of the x-dependence of PDFs.
Antiquarks were particularly affected, because the sign
of the sea asymmetry is highly prone to systematic
uncertainties.

The first study of systematic uncertainties arising

from finite-volume effects for the quasi-distributions was
reported in Ref. (Lin and Zhang, 2019) using a 220-MeV
pion mass with Mval

π L ≈ 3.3, 4.4 and 5.5, respectively.
After a careful extraction of the bare matrix elements
for the unpolarized and polarized distributions (see the
right-hand side of Fig. 8), no volume dependence was
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Ref. Sea quarks Valence quarks N∆t method Pmax (GeV) a (fm) Mπ (MeV) MπL
ETMC’20 2f twisted mass twisted mass 4 pseudo-PDF 1.38 0.09 130 3.0

JLab/W&M 2+1 clover clover n/a pseudo-PDF 3.29 0.09 172–358 5.08–5.47
ETMC’18 2f twisted mass twisted mass 4 quasi-PDF 1.38 0.09 130 3.0

LP3’18 2+1+1f HISQ clover 4 quasi-PDF 3 0.09 135 4.0
LP3’17 2+1+1f HISQ clover 2 quasi-PDF 1.3 0.09 135 4.0

TABLE I The lattice parameters used in calculations of x-dependent PDFs near or extrapolated to physical pion mass. N∆t

indicates the number of source-sink separation used in the lattice calculation to control the excited-state systematics which can
be significant for nucleon structure. The work of the JLab/W&M (Joó et al., 2020) group uses the Feynman-Hellmann theorem,
where the matrix elements are extracted from two-point–like lattice correlators, and N∆t does not apply in their approach. The
references for each work are as follows: ETMC’20 (Bhat et al., 2020), JLab/W&M (Joó et al., 2020), ETMC’18 (Alexandrou
et al., 2019d, 2018b,c), LP3’18 (Chen et al., 2018b; Lin et al., 2018b; Liu et al., 2018), LP3’17 (Lin et al., 2018a).
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FIG. 8 The normalized isovector nucleon matrix elements for
unpolarized PDFs Pz ≈ 1.3 GeV as functions of z at the three
volumes (MπL = 3.3, 4.4 and 5.5 indicated by red, green and
blue, respectively) (Lin and Zhang, 2019).

observed in these ensembles within the statistical error.
It was therefore concluded that finite-volume dependence
does not play a significant role for the boosted nucleon
matrix elements (Pz ≈ 1.3 GeV larger) used for quasi-
distributions within the range Mval

π L ∈ {3.3, 5.5}.
To calculate the small-x (x < 0.01) behavior of the

PDFs using existing lattice x-dependent methods, one
needs to pursue boost momenta Pz an order of magnitude
higher than those currently being used. The minimum x
obtainable from lattice QCD is connected to the product
of the length of the Wilson line and momentum boost,
zPz. It is also expected that the size of the momentum
boost is connected to the reliability of the lattice results
in the various x regions. For example, higher values
of Pz result in fast decay of the matrix elements, and
therefore, the truncation of the maximum value of z
in the Fourier transform matters less. There are a
number of proposals to avoid to Fourier transformation
by working in position space; this would work in an ideal
world where there is arbitrarily precise data throughout
the large-zPz region. However, in reality, the lattice data
taken in the small-zPz region are not precise enough to
even discern whether the parton distribution is flat across

all x; one loses sensitivity to very distinct distributions
in x-space, which appear very similar in zPz space.
Furthermore, one still needs large boost momenta zPz
to reliably obtain the distribution in the small-x region,
and very fine lattice spacing, a < 0.02 fm to reduce
the lattice discretization systematic error that goes like
(Pza)n. There have been some exploratory studies of how
to get around the problem: Ref. (Zhang et al., 2020a)
applied machine-learning algorithms to make predictions
for different types of lattice LaMET data, such as
kaon PDFs, meson distribution amplitudes and gluon
PDFs. The data correlation and predictions of higher
momenta and their dependence on the amount of training
and bias-correction data, and machine-learning model
parameters were studied in great detail. More studies
done in this direction are mandatory to revolutionize the
investigation of the small-x nucleon structure.

II.2.2. PDFs at the physical point with pseudo-distributions

Besides quasi-PDFs, additional novel methods
have been proposed for the extraction of lightcone
distributions (Aglietti et al., 1998; Bali et al., 2018;
Braun and Müller, 2008; Chambers et al., 2017; Detmold
et al., 2018; Detmold and Lin, 2006; Liang et al., 2019;
Liu and Dong, 1994; Ma and Qiu, 2018a,b; Sufian
et al., 2019). One of these methods is the so-called
pseudo-distributions approach, originally proposed
by Radyushkin (Radyushkin, 2017a,b, 2018a, 2017c,
2018b, 2019a,b,c). The raw data are the same as
in the quasi-PDFs approach, but the analysis differs
in several ways. In the pseudo-PDFs approach, the
matrix elements are expressed in terms of z2 and of
the Ioffe time (Ioffe, 1969) ν ≡ −p · z (where p is the
nucleon momentum boost), and are called Ioffe-time
distributions. One of the main differences between
quasi- and pseudo-PDFs is the reconstruction of the x-
dependence of the distributions: quasi-PDFs are defined
as the Fourier transform of the matrix elements in z,
while pseudo-PDFs as the transform in Ioffe time. As
a consequence, pseudo-distributions have only canonical
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support (x ∈ [−1 : 1]), while quasi-PDFs are allowed
to be nonzero outside the canonical x-range. Another
major difference of practical value is that the Ioffe time
can increase by either increasing z or p. Thus, lattice
data at small values of the momentum boost are also
desirable.

The pseudo-distribution approach was investigated on
the lattice soon after it was proposed. The valence
unpolarized PDF of the nucleon was studied first in the
quenched setup (Orginos et al., 2017), and later using
dynamical simulations at mπ = 400 MeV (Joó et al.,
2019a). The pion PDFs were also studied in Ref. (Joó
et al., 2019b). Other work related to the pseudo-PDFs
approach on the lattice can be found in Ref. (Karpie
et al., 2019, 2018). A recent calculation including an
ensemble near physical pion mass (170 MeV) is presented
in Ref. (Joó et al., 2020). The maximum value of P3 used
for the ensembles with pion mass 358, 278, and 179 MeV
is 2.46, 3.29, and 2.12 GeV, respectively. In Fig. 7 we
show the valence PDF extrapolated to the physical pion
mass using the aforementioned ensembles, as explained
in Ref. (Joó et al., 2020). It is important to emphasize
that, unlike the case of quasi-PDFs, the final PDFs do
not rely on a sole value of P3. The relevant parameter for
the reconstruction of the PDFs is the Ioffe time, which
can be increased by increasing either z or P3. Typically,
the data at large P3 are more noisy, and, therefore, do
not drive the values of the final PDFs. The lattice results
are compared to various determinations from global fits.
The agreement of the former with the latter is excellent
in the region x < 0.25, while it deteriorates at large
x. This discrepancy may be due to an underestimation
of systematic uncertainties in the lattice result, which
deserves further investigation.

Another notable lattice calculation using the pseudo-
distribution approach, with simulations directly at the
physical point, was presented in Ref. (Bhat et al., 2020).
A novel aspect is the extraction not only of the valence
distribution qv(x), but also of the combination with
antiquarks qv(x) + 2q̄(x). This led to the extraction of
the total and sea-quark distributions, q(x) = qv(x)+ q̄(x)
and qs(x) = q̄(x). The lattice results are presented
in Fig. 7. The purple band represents the statistical
uncertainties of the lattice result, and the cyan band the
combination of statistical and systematic uncertainties.
Some of these uncertainties were computed explicitly (for
example, the reconstruction of the x-dependence), while
others (for example, for volume and discretization effects)
an estimate was given, see Ref. (Bhat et al., 2020) for
details. The lattice result is compared to a global fit of
unpolarized PDFs, NNPDF3.1, with which it is in very
good agreement. This fact demonstrates that a realistic
determination of unpolarized PDFs from the lattice is
possible.
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FIG. 9 Comparison of gT (x) from lattice (red band) with
its WW approximations: lattice-extracted gWW

T (blue band)
and calculated from global fits (NNPDF1.1pol (Nocera et al.,
2014) orange band, JAM17 (Ethier et al., 2017) purple band).
The proton momentum is P3 = 1.67 GeV.

II.2.3. Twist-3 PDFs

A new direction is currently being pursued with lattice
calculations of the x-dependence of twist-3 PDFs, which
are important to characterize the structure of hadrons
beyond the leading twist (they contain information
on quark-gluon-quark correlations (Balitsky and Braun,
1989; Kanazawa et al., 2016)). The first calculation was
completed recently (Bhattacharya et al., 2020a) for the
twist-3 gT (x) distribution, including the computation
of the one-loop matching kernel (Bhattacharya et al.,
2020b). The quasi-distribution approach is used with
three values of the momentum boost (0.83, 1.25, and
1.67 GeV). The pion mass of the ensemble is 260 MeV.
This calculation not only predicts the x-dependence of
gT (x) but serves as a test of the Wandzura-Wilczek
(WW) approximation (Wandzura and Wilczek, 1977). In
this approximation, the twist-3 gT (x) distribution may
be obtained from its twist-2 counterpart g1(x)

gWW
T (x) =

∫ 1

x

dy

y
g1(y) . (5)

In Ref. (Bhattacharya et al., 2020a), gWW
T is evaluated

using the lattice data as a function of x, as shown in
Fig. 9 for P3 = 1.67 GeV. It is also compared to the
actual data of gT (x), and is found to be consistent for a
large range of x. The large-x region reveals some tension,
which may be due to systematic uncertainties. It is also
possible that this is an indication of violations of the
WW approximation. It is also interesting to compare
the lattice result with the WW approximation obtained
using g1 from global fits (Ethier et al., 2017; Nocera et al.,
2014). Good agreement is observed up to x ≈ 0.3, while
the discrepancy for larger x values indicates possible
systematic effects.
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II.2.4. Gluon PDFs

The unpolarized gluon PDF is defined by the Fourier
transform of the lightcone correlation in the hadron,

g(x, µ2) =

∫
dy−

πx
e−ixy

−P+

×

×
〈
P |F+

µ (y−)W(y−, 0)Fµ+(0)|P
〉
, (6)

where y± = 1
2 (y0 ± y3) is the spacetime coordinate

along the lightcone direction, |P 〉 is the hadron state
with momentum Pµ = (P0, 0, 0, Pz) and normalization
〈P |P 〉 = 1, µ is the renormalization scale, Fµν =
T aGaµν = T a(∂µA

a
ν − ∂νA

a
µ − gfabcAbµA

c
ν) is the gluon

field tensor, andW(y−, 0) = P exp(−ig
∫ y−

0
dη−A+(η−))

is the lightcone Wilson link from y+ to 0 with A+

as the gluon potential in the adjoint representation.
Unfortunately, these time-separated and nonlocal
operators cannot be directly calculated using lattice
QCD.

In the first exploratory study which applied the quasi-
PDF approach to the gluon PDFs (Fan et al., 2018),
ensembles with unphysically heavy quark masses were
used. Since gluon quantities are much noisier than quark
disconnected loops, calculations with very high statistics
are necessary to reveal a signal. The calculations were
done using overlap fermions on gauge ensembles with
2+1 flavors of domain-wall fermion and spacetime volume
243 × 64, a = 0.1105(3) fm, and M sea

π = 330 MeV.
The gluon operators were calculated for all volumes and
high statistics: 207,872 measurements were taken of
the two-point functions with valence quarks at the light
sea and strange masses (corresponding to pion masses
340 and 678 MeV, respectively). The coordinate-space
gluon quasi-PDF matrix element ratios are plotted in
Fig. 10, and compared to the corresponding Fourier
transform of the gluon PDF based on two global fits
at NLO: the PDF4LHC15 combination (Butterworth
et al., 2016) and the CT14 set (Dulat et al., 2016).
Up to perturbative matching and power corrections
O(1/P 2

z ), the lattice results are compatible with global
fits within the statistical uncertainty at large z. The
results at the lighter pion mass (at the unitary point)
of 340 MeV are also shown in Fig. 10. These are
consistent with those from the strange point but have
larger uncertainties. The gluon quasi-PDFs in the pion
were also studied for the first time in Ref. (Fan et al.,
2018) and features similar to those observed for the
proton were revealed. Finally, there have been recent
developments in improving the operators for the gluon-
PDF lattice calculations (Balitsky et al., 2019; Wang
et al., 2019b; Zhang et al., 2019b), which will allow us
to take the continuum limit for the gluon PDFs in future
lattice calculations.
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FIG. 10 The final results of gluon PDF matrix elements
at 678 MeV (top) and 340 MeV (bottom) pion mass as
functions of zPz, compared with the FT of the gluon PDF
from the global fits PDF4LHC15 (Butterworth et al., 2016)
and CT14 (Dulat et al., 2016).

II.2.5. Hadronic Tensor

The hadronic tensor

Wµν =
1

4π

∫
d4zeiq·z

〈
P, S

∣∣[J†µ(z)Jν(0)
]∣∣P, S〉 (7)

characterizes the nonperturbative nature of the nucleon
in scattering processes involving nucleons such as
DIS. It can be further decomposed into structure
functions (Blumlein, 2013), which are commonly used to
determine the PDFs in global fits through factorization
theorems. A lattice calculation of the hadronic tensor
provides a first-principle method to study PDFs as well
as physical processes like the low-energy neutrino-nucleon
scattering (Liang et al., 2020, 2018a; Liu, 2000, 2016; Liu
and Dong, 1994). This approach has several advantages.
The hadronic tensor is scale independent, such that no
renormalization is needed except for the finite lattice
normalization, if local vector and axial currents are used
for the lattice calculation. Furthermore, the structure
functions are frame independent, therefore, no highly
boosted nucleons are needed.

In the hadronic tensor approach, additional parton
degrees of freedom are revealed graphically, among
which, the connected sea (CS) antipartons which account



2020 PDFLattice Report 17

0.0 0.2 0.4 0.6 0.8 1.0
Q2 (GeV2)

0.50

0.75

1.00

1.25

1.50

1.75

2.00
G

E(
CI

)
d 3PF
u 3PF
d 4PF
u 4PF

FIG. 11 The electric form factors (connected insertions only)
calculated by means of normal 3-point functions (3PF) and
4-point functions (4PF) for both u and d quarks.

for the Gottfried sum-rule violation (Liu et al., 2012;
Liu and Dong, 1994). It is worthwhile pointing out
that the quasi-PDF in the negative x region in the
connected insertion is the CS antiparton in the hadronic
tensor approach due to the fact that it is the antiparton
in the connected insertion which is not affected by
the gluon and disconnected sea (DS) distributions in
evolution. Besides, in the practical lattice calculation,
some diagrams (Wick contractions) contain only higher
twist contributions, a fact that offers the possibility of
studying higher twist effects on the lattice.

Numerically, a substantial challenge of this approach is
to convert the hadronic tensor from the Euclidean space
back to the Minkowski space, which involves solving
an inverse problem of a Laplacian transform (Liang
et al., 2020, 2018a; Liu, 2016). In order to tackle
this problem, three methods (i.e., the Backus-Gilbert
method (Backus and Gilbert, 1968, 1970; Hansen et al.,
2017), the maximum entropy method (Asakawa et al.,
2001; Rietsch, 1977) and the Bayesian reconstruction
method (Burnier and Rothkopf, 2013)) have been
implemented and tested (Liang et al., 2020, 2018a). It is
believed that the Bayesian reconstruction method and its
further improved version (Fischer et al., 2018; Kim et al.,
2018) is the best method so far to solve the problem. On
the other hand, the inverse problem is a common problem
in PDF calculations, and can be simplified or avoided by
using model-inspired fitting functions.

Another challenge of this approach is to access high
momentum and energy transfers in such a way that
the calculation can be extended into the DIS region.
Numerical tests (Liang et al., 2020) show that small
lattice spacings are essential for this purpose. The need
of fine lattices appears to be a common problem faced
by the lattice PDF community. For the hadronic tensor

calculation, one important point is that it works in all
the energy ranges (from elastic scattering to inelastic
scattering and on to DIS). Before lattices with very fine
spacing are available, the hadronic tensor can be used
to study the nucleon elastic form factors and low-energy
scatterings such as the neutrino-nucleon scattering which
is of significant physical importance. Fig. 11 shows a
numerical check of this approach in terms of form factors
on the RBC-UKQCD 32Ifine lattice (Blum et al., 2016).
The structure function of the elastic scattering from
the hadronic tensor, a 4-point function, is the product
of the elastic nucleon form factors for the currents
involved. Fig. 11 shows that the the electric form factors
(connected insertions only) calculated by means of the
3-point functions for both u and d quarks are found to
be consistent with errors with those deduced from the
hadronic tensor.

This lays a solid foundation for further calculations.
Currently, lattices with lattice spacing ∼0.04 fm are
suitable, for instance, to study the neutrino-nucleus
scattering for DUNE experiments where the neutrino
energy is between ∼ 1 to ∼ 7 GeV. At the same
time, these lattices can also be used to explore the
pion PDFs.In the future, working on lattices with lattice
spacing of 0.03 fm or even smaller would be desirable for
studying the nucleon substructure.

II.3. Intersection of Lattice and Global PDF Fits

In this Section, we review some aspects of potential
interplay between lattice QCD computations and PDF
fits. First, we update the benchmark of lattice QCD and
global fit results for the lowest moments of unpolarized
and helicity PDFs, in continuity with the previous (Lin
et al., 2018d), and extend it to transversity. Second,
we investigate the usage of lattice QCD data in fits
of unpolarized PDFs. Third, we discuss how lattice
QCD computations can shed light on the poorly known
unpolarized and helicity strange PDFs.

II.3.1. Moments

One of the main outcomes of the 2017 PDFLattice
white paper was a detailed comparison between lattice
QCD and global fit results for the (lowest) moments
of unpolarized and helicity PDFs. Specifically, we
identified a set of benchmark moments, we appraised the
various results available for them in the literature, and
we provided corresponding benchmark values for lattice
QCD and global fits. In the following, we present an
update of this exercise.

We consider the following benchmark moments of
unpolarized, helicity and transversity PDFs, respectively

〈x〉u+−d+ , 〈x〉u+ , 〈x〉d+ , 〈x〉s+ , 〈x〉g ; (8)



2020 PDFLattice Report 18

F ◦ �
DE At least three lattice spacingsa with at least two lattice

spacings below 0.1 fm and a range of lattice spacings
that satisfies [amax/amin]2 ≥ 2

At least two lattice spacingsa with at least one point
below 0.1 fm and a range of lattice spacings that satisfy
[amax/amin]2 ≥ 1.4

Otherwise

CE One ensemble with a physical pion massb or a chiral
extrapolation with three or more pion masses, with at
least two pion masses below 250 MeV and at least one
below 200 MeV

A chiral extrapolation with three or more pion massesb,
two of which are below 300 MeV.

Otherwise

FV Ensembles with Mπ,minL ≥ 4 or at least three volumes
with spatial extent L > 2.5 fmc

Ensembles with Mπ,minL ≥ 3.4 or at least two volumes
with spatial extent L > 2.5 fmc

Otherwise

RE Non-perturbative renormalizationd Perturbative renormalization (one loop or higher) Otherwise
ES At least three source-sink separations or a variational

method to optimize the operator derived from at least
a 3×3 correlator matrix, at every pion mass and lattice
spacing

Two source-sink separations at every pion mass
and lattice spacing, or three or more source-sink
separations at one pion mass below 300 MeV. For
the variational method, an optimized operator derived
from a 2×2 correlator matrix at every pion mass and
lattice spacing, or a 3×3 correlator matrix for one pion
mass below 300 MeV

Otherwise

a We assume that the lattice actions are O(a)-improved, i.e. that the discretization errors vanish quadratically with the lattice
spacing. For unimproved actions, an additional lattice spacing is required. These criteria must be satisfied in each case for
at least one pion mass below 300 MeV. To receive a F or a ◦ either a continuum extrapolation must be performed, or the
results must demonstrate no significant discretization effects over the appropriate range of lattice spacings.
b We define a physical pion mass ensemble to be one with Mπ = 135± 10 MeV for the above criteria.
c For calculations that use a mixed-action approach, i.e. with different lattice actions for the valence and sea quarks, we apply
these criteria to the valence quarks; Mπ,min is the lightest pion mass employed in the calculation.
d For gA we award aF also to calculations that use fermion actions for which ZA/ZV = 1 or employ combinations of quantities
for which the renormalization is unity by construction.

TABLE II Summary of the rating criteria for lattice QCD computations of PDF moments, see also (Lin et al., 2018d).

gA ≡ 〈1〉δu−−∆d+ , 〈1〉δu− , 〈1〉∆d+ , 〈1〉∆s+ ,
(9)

〈x〉∆u−−∆d− ;

gT ≡ 〈1〉δu−−δd− , 〈1〉δu− , 〈1〉δd− . (10)

The moments of unpolarized and helicity PDFs, Eqs. (8)-
(9), correspond to the benchmark quantities already
identified in the 2017 PDFLattice white paper, and are
expressed using the conventional notation described in
Appendix A of (Lin et al., 2018d). We now define the
moments of transversity PDFs in a similar way

gT ≡ 〈1〉δu−−δd− =

∫ 1

0

dx
[
hu
−

1 − hd
−

1

]
, (11)

〈1〉δu− =

∫ 1

0

dxhu
−

1 , 〈1〉δd− =

∫ 1

0

dxhd
−

1 , (12)

where hu
−

1 = hu1 − hū1 and hd
−

1 = hd1 − hd̄1. We do not
focus on quantities other than those listed above, because
current lattice calculations of higher moments and/or
moments of other PDF combinations are not sufficiently
mature to allow for a meaningful comparison between
lattice QCD and global fit results.

In the 2017 PDFLattice white paper we appraised
each source of systematic uncertainty in the lattice

QCD results by means of a rating system, defined
in Sect. (3.1.2) of (Lin et al., 2018d). Specifically,
we considered the following sources of systematic
uncertainties: discretization effects and extrapolation
to the continuum limit (DE); chiral extrapolation
to unphysical pion masses (CE); finite-volume effects
(FV); choice of renormalization (RE); and excited state
contamination (ES). The rating system, which is inspired
to that adopted by the Flavor Lattice Averaging Group
FLAG) (Aoki et al., 2020), awards a blue star (F) for
sources of uncertainty that are well controlled or very
conservatively estimated, a blue circle (◦) for sources
of uncertainty that have been controlled or estimated
to some extent, and a red square (�) for uncertainties
that have not met our criteria or for which no estimate
is given. The details of the rating system are further
summarized in Tab. II for the reader’s convenience. Our
criteria and the corresponding ratings are chosen to
provide as fair an assessment of the various calculations
as possible, and are not intended to discredit the merits
of any of them. In this respect, our criteria are
aspirational: where lattice QCD results do not meet
these standards, we hope that the lattice community
will work towards improved calculations and greater
precision. Modifications to this rating system will occur
as the lattice QCD results evolve.
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II.3.1.1. Moments of unpolarized PDFs. Modern analyses
of unpolarized PDFs benefit from a wide data set
(see Fig. 1) and are performed at NNLO perturbative
accuracy in the strong coupling as standard in most
cases. For this reason, the phenomenological knowledge
of lattice-calculable quantities — including unpolarized
PDF moments — is well established. The pulls of a
typical phenomenological analysis of unpolarized PDFs
on the corresponding moments was comprehensively
evaluated and mapped in Ref. (Hobbs et al., 2019).

In comparison to the 2017 PDFLattice white paper,
some new lattice QCD computations were performed,
which we summarize in Tab. III and rate according to the
criteria defined in Tab. II. New results, mostly for Nf =
2+1+1 and Nf = 2+1 dynamical flavors, were computed
at a scale µ = 2 GeV, including for 〈x〉g. On the global
fit front, two new analyses of unpolarized PDFs were
released, as discussed in Sect. II.1: CT18 (Hou et al.,
2019b) and JAM19 (Sato et al., 2020). We therefore
compute the corresponding values for the benchmark
moments 〈x〉u+−d+ , 〈x〉u+ , 〈x〉d+ , 〈x〉s+ and 〈x〉g with the
highest perturbative accuracy allowed by each analysis,
NNLO and NLO, respectively. We report these values
at µ = 2 GeV in Tab. IV, where we also display the
PDFLattice17 benchmark value (Lin et al., 2018d) for
comparison. We recall that this value was determined
as the unweighted average of the NNPDF3.1 (Ball et al.,
2017), CT14 (Dulat et al., 2016), MMHT14 (Harland-
Lang et al., 2015), ABMP16 (Alekhin et al., 2017) (with
Nf = 4 flavors), CJ15 (Accardi et al., 2016a) and
HERAPDF2.0 (Abramowicz et al., 2015) analyses (see
Tab. 3.5 of Ref. (Lin et al., 2018d) for their values).

The results for the benchmark moments 〈x〉u+−d+ ,
〈x〉u+ , 〈x〉d+ , 〈x〉s+ and 〈x〉g, obtained either from
lattice QCD (Tab. III) or from a global analysis of the
experimental data (Tab. IV), are graphically compared
in Fig. 12 at µ = 2 GeV. In each case, we also determine
benchmark values by combining various lattice QCD
results, on the one hand, and global fit results, on the
other hand. For lattice QCD computations, whenever
more than one result is available, we take the envelope
of all of the available results, separately for each number
of dynamical flavors. This choice is conservative, but
seems optimal to us: it will not overestimate too much
the uncertainty of the benchmark values in the cases in
which lattice moments are in good mutual agreement
(such as for 〈x〉u+−d+), but at the same time will avoid
bias in the cases in which systematic uncertainties on
the individual values had not been completely controlled.
For global analyses of experimental data, given the
overall consistency of the various results and the limited
progress, we follow the same prescription adopted in
the 2017 PDFLattice white paper, but we update it by
replacing the CT14 values with their CT18 counterparts
in the unweighted average. We do not include the
JAM19 values in it, because the analysis is unique

in its kind, given that it determines PDFs and FFs
simultaneously. Our benchmark values are summarized
in Tab. V.

As is apparent from Fig. 12 and Tabs. III-V, the
overall picture described in the 2017 PDFLattice white
paper is somewhat confirmed: there is a fair agreement
between lattice QCD and global fit results, with previous
tension for 〈x〉s+ and 〈x〉g relieved by the new lattice
results from ETMC20 and χQCD18. The uncertainty
of lattice calculations is in general larger by one order
of magnitude than for global fits, also because the
constraint of momentum sum rule is usually imposed on
the latter but not on the former. All these remarks are
still valid if individual results for the benchmark moments
are taken in lieu of averages.

II.3.1.2. Moments of helicity PDFs. The nucleon axial
charge gA has long been considered as one of the
most important benchmark quantities for lattice QCD
computations, given that it is experimentally well
determined through neutron weak decays (Tanabashi
et al., 2018). Also, gA is of central importance to QCD,
as it is related to the Bjorken sum rule (Bjorken, 1966,
1970).

In comparison to the 2017 PDFLattice white paper,
several new lattice QCD computations of gA and of the
flavor-diagonal axial charges appeared in the literature,
which we summarize in Tab. VI and rate according to
the criteria defined in Tab. II. A pool of new results
for Nf = 2 + 1 and Nf = 2 + 1 + 1 dynamical flavors
were computed. Conversely, the determination of helicity
PDFs in global fits did not witness significant changes
since the publication of the 2017 PDFLattice white
paper. We therefore refer the reader to the numbers
reported in Tab. 3.6 of Ref. (Lin et al., 2018d).

The results for the benchmark moments gA, 〈1〉∆u+ ,
〈1〉∆d+ , 〈1〉∆s+ , and 〈x〉∆u−−∆−d

, obtained either from

lattice QCD (Tab. VI) or from the PDFLattice17 average
of global fits (Lin et al., 2018d), are graphically compared
in Fig. 13 at µ = 2 GeV. In each case, we also determine
the benchmark values from the various results. For
lattice QCD computations, we use the same prescription
adopted in the case of unpolarized moments: whenever
more than one result is available, we take the envelope
of all of the available results, separately for each number
of dynamical flavors. For global analyses of experimental
data, given the lack of new results, we take the 2017
PDFLattice average. We recall that it was determined as
the unweighted average of the NNPDFpol1.1 (Nocera
et al., 2014), DSSV08 (de Florian et al., 2009) and
JAM15 (Sato et al., 2016) analyses. Our benchmark
values are summarized in Tab. VII at µ = 2 GeV.

As is apparent from Fig. 13 and Tabs. VI-VII
there is an overall fair agreement between lattice QCD
computations and phenomenological fits, except for some
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FIG. 12 The lattice QCD (in blue) and global fit (in green) values for the benchmark moments defined in Eq. (8), as collected
in Tabs. III and IV. Lattice QCD results with stars or circles for all of the sources of systematic uncertainties in Tab. II are
denoted with filled squares, otherwise with empty squares. All values are at µ = 2 GeV.
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FIG. 13 Same as Fig. 12, but for the benchmark moments of helicity PDFs. See Tab. VI for references.
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FIG. 14 Same as Fig. 12, but for the benchmark moments of transversity PDFs.
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Moment Collaboraton Reference Nf DE CE FV RE ES Value
〈x〉u+−d+ ETMC 20 (Alexandrou et al., 2020b) 2+1+1 � F ◦ F F ∗∗ 0.171(18)

PNDME 20 (Mondal et al., 2020) 2+1+1 F F F F F 0.173(14)(07)
ETMC 19 (Alexandrou et al., 2020c) 2+1+1 � F ◦ F F ∗∗ 0.178(16)
Mainz 19 (Harris et al., 2019) 2+1 F ◦ F F F 0.180(25)(+14

−6 )
χQCD 18 (Yang et al., 2018b) 2+1 ◦ F ◦ F F 0.151(28)(29)
ETMC 19 (Alexandrou et al., 2020c) 2 � F ◦ F F ∗∗ 0.189(23)
RQCD 18 (Bali et al., 2019b) 2 F F ◦ F F 0.195(07)(15)

〈x〉u+ ETMC 20 (Alexandrou et al., 2020b) 2+1+1 � F ◦ F F ∗∗ 0.359(30)
χQCD 18 (Yang et al., 2018b) 2+1 ◦ F ◦ F F 0.307(30)(18)

〈x〉d+ ETMC 20 (Alexandrou et al., 2020b) 2+1+1 � F ◦ F F ∗∗ 0.188(19)
χQCD 18 (Yang et al., 2018b) 2+1 ◦ F ◦ F F 0.160(27)(40)

〈x〉s+ ETMC 20 (Alexandrou et al., 2020b) 2+1+1 � F ◦ F F ∗∗ 0.052(12)
χQCD 18 (Yang et al., 2018b) 2+1 ◦ F ◦ F F 0.051(26)(5)

〈x〉g ETMC 20 (Alexandrou et al., 2020b) 2+1+1 � F ◦ F F ∗∗ 0.427(92)
χQCD 18 (Yang et al., 2018b) 2+1 ◦ F ◦ F F 0.482(69)(48)
χQCD 18a (Yang et al., 2018a) 2+1 � F F F � 0.47(4)(11)

∗∗ No quenching effects are seen.

TABLE III Lattice QCD values of the benchmark moments of unpolarized PDFs 〈x〉u+−d+ , 〈x〉u+ , 〈x〉d+ , 〈x〉s+ and 〈x〉g,
rated according to the criteria in Tab. II. The numbers in parentheses refer to the statistical and systematic uncertainties,
respectively, or to the combination of the two, if a single value is provided. All values are obtained at µ = 2 GeV.
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Moment PDFLattice17 CT18 JAM19
〈x〉u+−d+ 0.161(18) 0.156(7) 0.157(2)
〈x〉u+ 0.352(12) 0.350(5) 0.363(1)
〈x〉d+ 0.192(6) 0.193(5) 0.206(2)
〈x〉s+ 0.037(3) 0.033(9) 0.018(2)
〈x〉g 0.411(8) 0.413(8) 0.403(2)

TABLE IV Values for global fit determinations of the
benchmark moments of unpolarized PDFs (see text for
details) for the PDFLattice17 average (Lin et al., 2018d), and
for the CT18 (Hou et al., 2019b) and JAM19 (Sato et al.,
2020) analyses. All values are shown at µ = 2 GeV.

Moment Lattice QCD Global Fit

〈x〉u+−d+

0.153 — 0.194a

0.161(18)0.111 — 0.209b

0.166 — 0.212c

〈x〉u+
0.359(30)a,†

0.353(12)
0.307(35)b,†

〈x〉d+
0.188(19)a,†

0.192(6)
0.160(48)b,†

〈x〉s+
0.052(12)a,†

0.037(3)
0.051(26)b,†

〈x〉g
0.427(92)a,†

0.411(8)
0.353 — 0.587b

a Nf = 2 + 1 + 1 b Nf = 2 + 1 c Nf = 2
† Single lattice result

TABLE V Benchmark values for lattice QCD calculations
and global fit determinations of the benchmark moments of
unpolarized PDFs (see text for details). All values are shown
at µ = 2 GeV.

discrepancies in the results for the individual flavor
components of the axial charge. Contrary to the case of
unpolarized moments, the uncertainties of the two are of
comparable size. We note however that the uncertainties
on the global fit result might be underestimated because
of extrapolation into the small- and large-x regions,
where data are less abundant. We also remark that
current uncertainties on gA do not discriminate among
lattice QCD results obtained with a different numbers
of dynamical flavours, thus confirming that SUf (2) is a
good symmetry of QCD.

II.3.1.3. Moments of Transversity PDFs. The nucleon
isovector tensor charge gT has recently received much
attention, namely as a probe of beyond-the-Standard-
Model (bSM) effects. On the one hand, it can contribute
to neutron β decay through a possible tensor coupling
not included in the SM Lagrangian (Bhattacharya et al.,
2012). On the other hand, it affects the contribution
of quark electric dipole moments to the neutron electric
dipole moment in a way which is relevant for searches
of bSM sources of CP-violation (Dubbers and Schmidt,
2011; Yamanaka et al., 2017). A precise determination of
gT has therefore become crucial (Courtoy et al., 2015).

Lattice calculations of the isovector tensor charge are
currently the most precise lattice estimates of isovector
charges because of small statistical fluctuations and a
mild dependence on extrapolation parameters. Results
from several collaborations are available, including for
the flavor-diagonal charges 〈1〉δu− , 〈1〉δd− and 〈1〉δs− ,
which are summarized (and rated according to the
criteria in Tab. II) in Tab. VIII at µ = 2 GeV.

The values of the tensor charge gT and of its
flavor components 〈1〉δu− and 〈1〉δd− obtained from the
determination of transversity PDFs from experimental
data are summarized in Tab. IX. As discussed in
Sect. II.1.4 two of these analyses are performed in a
purely collinear framework, namely PV18 (Radici and
Bacchetta, 2018) and MEX19 (Benel et al., 2020),
while the others are performed by means of the TMD
formalism (see Sect. IV). All of these analyses do not
include information on the tensor charge from the lattice,
except for JAM18 (Lin et al., 2018c), where the fit
is constrained by the average lattice value of gT . All
values in Tab. IX are computed at a scale µ = 2 GeV,
except for the TO13 (µ = 1 GeV) and for the TMD15
(µ =

√
10 GeV) analyses; error bars on the PV18 (Radici

and Bacchetta, 2018) and JAM20 (Cammarota et al.,
2020) results represent 90% confidence levels.

The results for the tensor charge gT and for its flavor
components, obtained ether from lattice QCD or from a
global analysis of the experimental data, are graphically
compared in Fig. 14 at µ = 2 GeV. In each case, we
also determine benchmark values by suitably combining
various lattice QCD results, on the one hand, and
global fit results, on the other hand. For lattice QCD
computations, we use the same prescription adopted
in the case of unpolarized moments: whenever more
than one result is available, we take the envelope of all
of the available results, separately for each number of
dynamical flavors. For global analyses of experimental
data, the spread of values is such that any combination,
e.g. in the form of their unweighted average, seems
unjustified; more conservatively, we therefore take the
envelope of the various results. Note that no global fit
results are available for the strange component of the
tensor charge, 〈1〉δs− due to the lack of data sensitive to
it. All these values are summarized in Tab. X at µ = 2
GeV.

As is apparent from Fig. 14 and Tabs. IX-X, the
results obtained from a global analysis of experimental
data are affected by uncertainties which are significantly
larger than those of their lattice counterparts as well as
than those of their unpolarized and helicity companions.
The reason for this state of affairs is the severe lack
of data (see Fig. 1), and the consequent difficulty in
estimating the extrapolation uncertainty that affects
transversity outside the region covered by data. For
instance, in the PV18 analysis, the Mellin moment was
computed in the range [xmin, 1], where xmin = 10−6
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Moment Collaboration Reference Nf DE CE FV RE ES Value
gA ETMC 19 (Alexandrou et al., 2019b) 2+1+1 � F ◦ F F ∗∗ 1.286(23)

CalLat 18 (Chang et al., 2018) 2+1+1 ◦ F F F F 1.271(13)
PNDME 18 (Gupta et al., 2018) 2+1+1 F F F F F 1.218(25)(30)
LHPC 19 (Hasan et al., 2019) 2+1 ◦ F F F F 1.265(49)
Mainz 19 (Harris et al., 2019) 2+1 F ◦ F F F 1.242(25)(0

−31)
PACS 19 (Shintani et al., 2019) 2+1 ◦ F F F F 1.273(24)(5)(9)
χQCD 18 (Liang et al., 2018b) 2+1 ◦ � F F F 1.256(16)(30)
ETMC 19 (Alexandrou et al., 2019b) 2 � F ◦ F F ∗∗ 1.268(36)

〈1〉∆u+ ETMC 19 (Alexandrou et al., 2019b) 2+1+1 � F ◦ F F ∗∗ 0.858(17)
PNDME 18 (Gupta et al., 2018) 2+1+1 F F F F F 0.777(25)(30)
PACS 19 (Shintani et al., 2019) 2+1 ◦ F F F F 0.967(30)(16)
χQCD 18 (Liang et al., 2018b) 2+1 ◦ � F F F 0.847(18)(32)

〈1〉∆d+ ETMC 19 (Alexandrou et al., 2019b) 2+1+1 � F ◦ F F ∗∗ −0.428(17)
PNDME 18 (Gupta et al., 2018) 2+1+1 F F F F F −0.438(18)(30)
PACS 19 (Shintani et al., 2019) 2+1 ◦ F F F F −0.306(19)(21)
χQCD 18 (Liang et al., 2018b) 2+1 ◦ � F F F −0.407(16)(18)

〈1〉∆s+ ETMC 19 (Alexandrou et al., 2019b) 2+1+1 � F ◦ F F ∗∗ −0.0450(71)
PNDME 18 (Gupta et al., 2018) 2+1+1 F F F F F −0.053(8)
χQCD 18 (Liang et al., 2018b) 2+1 ◦ � F F F −0.035(6)(7)

〈x〉∆u−−∆d− PNDME 20 (Mondal et al., 2020) 2+1+1 F F F F F 0.208(19)(24)
ETMC 19 (Alexandrou et al., 2019b) 2+1+1 � F ◦ F F ∗∗ 0.193(19)
Mainz 19 (Harris et al., 2019) 2+1 F ◦ F F F 0.221(25)(+10

−0 )
∗∗ No quenching effects are seen.

TABLE VI Same as Tab. III, but for the axial charge gA = 〈1〉δu−−δd− and the moments of helicity PDFs 〈1〉δu− , 〈1〉δd− , and
〈1〉δs− . All values are obtained at µ = 2 GeV. Note that gA is scale invariant.

Moment Lattice QCD Global Fit

gA

1.179 — 1.309a

1.258(28)1.202 — 1.314b

1.268(36)c,†

〈1〉∆u+
0.738 — 0.875a

0.813(25)
0.810 — 1.001b

〈1〉∆d+
-0.473 — -0.403a

-0.462(29)
-0.431 — -0.278b

〈1〉∆s+
-0.0538 — -0.0379a

-0.114(43)
-0.0035(9)b,†

〈x〉∆u−−∆d−
0.174 — 0.239a

0.199(16)
0.221(27

−25)b,†

aNf = 2 + 1 + 1 bNf = 2 + 1 cNf = 2
† Single lattice result

TABLE VII Same as Tab. V, but for helicity PDFs.

for the adopted MSTW08LO parametrization (Martin
et al., 2009) of the unpolarized PDF in Eq. (2). This
constraint avoided extrapolation errors below xmin and
ensured that the tensor charge is evaluated at 1%
accuracy (Radici and Bacchetta, 2018). In the MEX19
analysis, extrapolation was controlled by choosing a
parametrization that ensured the integrability of h1 by
construction.

From Fig. 14, we also conclude that most
determinations of the tensor charge from global fits
are compatible with each other. The compatibility
with lattice results is a little more involved. While it is
obvious for gdT (within large uncertainties), there is a
clear tension (up to 2σ) for guT and, consequently, for gT .

In particular, the JAM18 result is compatible with the
lattice prediction for gT by construction, but it is largely
incompatible for the flavor-diagonal tensor charges. The
JAM20 result is the only one that is compatible with
all of the lattice tensor charges; it clearly supersedes
JAM18 and confirms how crucial is to pursue global fits
from large independent data sets. However, the JAM20
analysis has some relevant limitations (for example, it
does not include effects from TMD evolution, which
might be important when connecting SIDIS data to
e+e− and hadronic collision data at much higher scales);
because of the still large error bars, this result is also
compatible with other phenomenological outcomes, and
in particular with the global fit PV18. In conclusion,
the issue of compatibility of tensor charges obtained
from lattice calculations and from phenomenological fits
still requires further studies.

II.3.2. Lattice data in global fits

In order to extract PDFs from a set of experimental
measurements, a factorization theorem connecting the
theoretical predictions for these data to the PDFs is
needed. For example, in the case of unpolarized DIS, the
measured structure functions F are expressed in terms of
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Moment Collaboration Reference Nf DE CE FV RE ES Value
gT ETMC 19 (Alexandrou et al., 2019b) 2+1+1 � F ◦ F F ∗∗ 0.926(32)

PNDME 18 (Gupta et al., 2018) 2+1+1 F F F F F ∗ 0.989(32)(10)
χQCD 20 (Horkel et al., 2020) 2+1 � F ◦ F F † 1.096(30)
LHPC 19 (Hasan et al., 2019) 2+1 ◦ F ◦ F F ∗ 0.972(41)
Mainz 19 (Harris et al., 2019) 2+1 F ◦ F F F 0.965(38)(+13

−41)
JLQCD 18 (Yamanaka et al., 2018) 2+1 � ◦ ◦ F F 1.08(3)(3)(9)
ETMC 19 (Alexandrou et al., 2019b) 2 � F ◦ F F ∗∗ 0.974(33)
ETMC 17 (Alexandrou et al., 2017d) 2 � F � F F 1.004(21)(02)(19)
RQCD 14 (Bali et al., 2015) 2 ◦ F F F � 1.005(17)(29)

〈1〉δu− ETMC 19 (Alexandrou et al., 2019b) 2+1+1 � F ◦ F F ∗∗ 0.716(28)
PNDME 18 (Gupta et al., 2018) 2+1+1 F F F F F ∗ 0.784(28)(10)
JLQCD 18 (Yamanaka et al., 2018) 2+1 � ◦ ◦ F F 0.85(3)(2)(7)
ETMC 17 (Alexandrou et al., 2017d) 2 � F � F F 0.782(16)(2)(13)

〈1〉δd− ETMC 19 (Alexandrou et al., 2019b) 2+1+1 � F ◦ F F ∗∗ -0.210(11)
PNDME 18 (Gupta et al., 2018) 2+1+1 F F F F F ∗ -0.204(11)(10)
JLQCD 18 (Yamanaka et al., 2018) 2+1 � ◦ ◦ F F -0.24(2)(0)(2)
ETMC 17 (Alexandrou et al., 2017d) 2 � F � F F -0.219(10)(2)(13)

〈1〉δs− ETMC 19 (Alexandrou et al., 2019b) 2+1+1 � F ◦ F F ∗∗ -0.0027(58)
PNDME 18 (Gupta et al., 2018) 2+1+1 F F F F F ∗ -0.0027(16)
JLQCD 18 (Yamanaka et al., 2018) 2+1 � ◦ ◦ F F -0.012(16)(8)
ETMC 17 (Alexandrou et al., 2017d) 2 � F � F F -0.00319(69)(2)(22)

∗∗ No quenching effects are seen.
∗ Not fully O(a) improved by requiring an additional lattice spacing.
† The rating comes from the valence pion mass used in the calculation. In other calculations, valence an sea pions are the same.

TABLE VIII Same as Tab. III, but for the tensor charge gT = 〈1〉δu−−δd− and the transverse flavor diagonal charges 〈1〉δu− ,
〈1〉δd− , and 〈1〉δs− . All values are obtained at µ = 2 GeV.

Collaboration gT 〈1〉δu− 〈1〉δd−
PV18 0.53(25) 0.39(10) −0.11(26)
MEX19 0.57(42) 0.28(+31

−42) −0.40(+87
−57)

TO13 0.64(+25
−34) 0.375(+18

−12) −0.25(+30
−10)

TMD15 0.61(+26
−51) 0.385(+16

−20) −0.22(+31
−10)

JAM18 1.0(1) 0.30(16) −0.70(15)
JAM20 0.87(11) 0.72(19) −0.15(16)

TABLE IX The values of the tensor charge gT and of its flavor
components 〈1〉δu− and 〈1〉δd− obtained from the following
determinations of transverssity PDFs: PV18 (Radici and
Bacchetta, 2018), from a global fit of data on inclusive di-
hadron production in SIDIS and pp; MEX19 (Benel et al.,
2020), from the same mechanism but on SIDIS data only;
TO13 (Anselmino et al., 2013), from a parton-model analysis
of Collins effect in SIDIS and e+e− data; TMD15 (Kang et al.,
2016), from the same data set but analyzed in the TMD
framework including evolution effects; JAM18 (Lin et al.,
2018c), as in TO13, but constrained to reproduce the lattice
average value for gT ; and JAM20 (Cammarota et al., 2020)
from a global fit of inclusive single-hadron production data.
All values are computed at µ = 2 GeV, except for TO13
(µ = 1 GeV) and TMD15 (µ =

√
10 GeV).
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)
=
∑
q

∫ 1

x

dξ

ξ
Cq

(
x

ξ
,
Q2

µ2
, αs

)
fq
(
ξ, µ2

)
≡
∑
q

Cq

(
x,
Q2

µ2
, αs

)
⊗ fq

(
x, µ2

)
, (13)

Moment Lattice QCD Global Fit

gT

0.894 — 1.023a

0.10 — 1.10.909 — 1.175b

0.941 — 1.039c

〈1〉δu−
0.688 — 0.814a

-0.14 — 0.910.85(8)b,†

0.782(21)c,†

〈1〉δd−
-0.221 — -0.189a

-0.97 — 0.47-0.24(3)b,†

-0.219(17)c,†

〈1〉δs−
-0.0085 — 0.0031a

—-0.012(18)b,†

-0.00319(72)c,†

aNf = 2 + 1 + 1 bNf = 2 + 1 cNf = 2
† Single lattice result

TABLE X Same as Tab. V, but for transversity PDFs.

where Cq are the perturbatively computable Wilson
coefficients and the symbol ⊗ denotes the convolution
integral. One can parametrize the unknown PDFs at a
given scale Q0, and express the theoretical predictions as
a function of the PDF parameters (called θ henceforth)
after performing DGLAP evolution of the PDF to the
scale of the data Q via the Altarelli-Parisi kernel Γ:

fq
(
x,Q2; θ

)
= Γ

(
Q2, Q2

0, αs
)
⊗ fq

(
x,Q2

0; θ
)
. (14)

In a global fit, the procedure is applied simultaneously
to every process for which experimental data and
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a factorization theorem are available. The PDF
parameters are then determined by optimizing an
appropriate figure of merit, usually the log-likelihood χ2.

The steps described above can be equally applied to
the extraction of PDFs from lattice data, as described
and implemented in Refs. (Cichy et al., 2019; Karpie
et al., 2019; Ma and Qiu, 2018a,b). Since lattice QCD
cannot calculate PDFs directly, a factorization theorem
is necessary in order to connect some lattice observable
to parton distributions, just like how the factorization
formula in Eq. (13) connects theoretical predictions for
DIS experimental data to PDFs. By lattice observable
we mean a quantity which in practice can be computed
on the lattice: here we will consider the position-space
matrix element between proton states of the vector bi-
local operator underlying the definition of quasi- and
pseudo-PDFs

MA

(
ν, z2

)
= 〈P |ψ̄(z)λAγ0 U(z, 0)ψ(0)|P 〉 , (15)

where ν = P ·z, λA denotes the flavour structure and the
separation between fields is purely spatial z = (0, 0, 0, z).
This factorization formula has been worked out up to 1-
loop order in perturbation theory, in several independent
ways. In the case of quasi-PDFs, the factorization is
realized in momentum space, in the limit of large proton
momentum, giving

f̃A(x, µ2) =

∫ 1

−1

dy

|y|
CA

(
x

y
,
µ

Pz
,
µ

µ′

)
fA(y, µ′

2
)

+O

(
M2

P 2
z

,
Λ2

QCD

P 2
z

)
, (16)

f̃A(x, µ2) and CA being the quasi-PDF and the
momentum space matching coefficients respectively.
Considering the case of the unpolarized isovector parton
distribution, starting from Eq. (16) we can take the
real and imaginary part of its inverse Fourier transform,
introducing the two following lattice observables

Re
[
M
(
ν, z2;µ

)]
=

∫ 1

0

dx CRe
3

(
νx, z,

µ

Pz

)
V3 (x, µ)

= CRe
3

(
z,

µ

Pz

)
~ V3

(
µ2
)
, (17)

Im
[
M
(
ν, z2;µ

)]
=

∫ 1

0

dx CIm
3

(
νx, z,

µ

Pz

)
T3 (x, µ)

= CIm
3

(
z,

µ

Pz

)
~ T3

(
µ2
)
, (18)

where V3 and T3 are the nonsinglet distributions

V3(x) = u (x)− ū (x)−
[
d (x)− d̄ (x)

]
, (19)

T3(x) = u (x) + ū (x)−
[
d (x) + d̄ (x)

]
. (20)

Eqs. (17) and (18) can then be used to build, together
with the corresponding values from the lattice, a

χ2 function, whose minimization would lead to the
determination of V3 and T3. In order to define
a meaningful χ2, the statistical and systematical
uncertainties over each data point, together with their
correlations, have to be known. Once these two pieces
of information are provided, a fit to lattice data can
be performed using the same fitting framework adopted
for experimental data, without any major modification.
This exercise was performed in Ref. (Cichy et al., 2019),
using data for the quasi-PDFs matrix element computed
by the ETMC collaboration (Alexandrou et al., 2019d,
2018b), within the NNPDF fitting framework. Various
assumptions for the systematic uncertainties on the
lattice data were considered, corresponding to optimistic,
realistic and pessimistic scenarios, respectively. A
representative result of this exercise is displayed in
Fig. 15, where two lattice results obtained in realistic
scenarios (labelled as S2 and S5) are compared to the
NNPDF3.1 global analysis for the T3 and V3 nonsiglet
distributions at a scale µ = 1.6 GeV. As can be seen from
Fig. 15, the lattice result is affected by large uncertainties
in comparison to its phenomenological counterpart, and
displays a fairly shifted shape.

The same steps can be repeated for any lattice
observable, e.g. lattice computable hadron matrix
elements, like the one in Eq. (15) but with different
parton operators, as long as the observables can
be factorized into perturbatively calculable coefficient
functions convoluted with the same PDFs (Ma and Qiu,
2018a,b). Here, the data of these lattice observables play
the same role as experimental data that can be used for
extracting PDFs. Although current lattice data cannot
cover a kinematic range as wide as experimental data can,
lattice calculations could be advantageous for extracting
PDFs, or partonic structure in general, of hadrons that
are difficult to do experiments with, such as free neutrons,
pions (Sufian et al., 2020, 2019), and kaons.

II.3.3. Unpolarized and helicity strange PDFs

The strange and antistrange PDFs remain the least
known PDFs among all of the unpolarized and helicity
distributions. This state of affairs is determined by the
lack of experimental data sensitive to this flavor, and is
further aggravated by apparent inconsistencies between
different data sets. In the unpolarized case, discrepancies
have arisen in analyses of inclusive W±/Z production
from ATLAS with respect to charged-current neutrino
DIS measurements. While the former support a ratio
of the strange to non-strange light sea quarks around
unity, the latter give a result around one half at a scale
of 1.9 GeV2 (Aad et al., 2014). This state of affairs
is illustrated in Fig. 16, where we compare the ratio
(s(x,Q) + s̄(x,Q)) /

(
ū(x,Q) + d̄(x,Q)

)
for the CT18,

MMHT14 and NNPDF3.1 PDF sets at Q = 2 GeV.
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FIG. 15 A comparison of two lattice results (labelled S2 and
S5), obtained from an analysis of lattice data with a realistic
estimate of systematic uncertainties, with the result of the
NNPDF3.1 global analysis. Results are displayed for the V3

(top) and T3 (bottom) nonsiglet PDF combinations at a scale
µ = 1.6 GeV. Figure from (Cichy et al., 2019).

In all of the three PDF sets, the ratio is dominated by
neutrino DIS data. The lack of higher-order massive
corrections or nuclear uncertainties (Ball et al., 2019) in
the description of these data or a sub-optimal estimate of
experimental correlations in the ATLAS W±/Z data may
be reasons for the discrepancy between the two, which
are currently being investigated. The picture is further
complicated if measurements of kaon production in SIDIS
are added in the QCD analyses, a fact that suppresses the
ratio even more (Sato et al., 2020).

In the helicity case, the strange distribution is
entirely unconstrained unless measurements of SIDIS
asymmetries for kaon production are incorporated in
the analyses or if SUf (3) constraints from weak baryon
decays are assumed. In both cases, the strange helicity
PDF is prone to a theoretical bias difficult to quantify,
coming respectively from missing uncertainties in the
fragmentation of an s quark into a kaon or from the
violation of SUf (3) symmetry.

Exploratory studies using lattice QCD to determine
the unpolarized strange PDFs are ongoing. A first
lattice calculation of the strange quasi-PDFs (Zhang
et al., 2020b) is compared to the Fourier transform of
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FIG. 16 A comparison of 68% C.L. uncertainties on
the ratio (s(x,Q) + s̄(x,Q)) /

(
ū(x,Q) + d̄(x,Q)

)
, for CT18,

MMHT2014 and NNPDF3.1 PDFs at Q = 2 GeV.

the global fitting results from NNPDF3.1 (Ball et al.,
2017) and CT18 (Hou et al., 2019b) at NNLO in
Fig. 17 at a scale of 4 GeV2. The quasi-PDF matrix
elements are extracted from correlators computed on
the a ≈ 0.12 fm, 243 × 64 ensemble with 2 + 1 + 1
flavors of highly improved staggered quarks (Follana
et al., 2007) and Mπ ≈ 310 MeV was generated
by the MILC collaboration (Bazavov et al., 2013).
Hypercubic smearing (Hasenfratz and Knechtli, 2001) is
applied to the configurations. To approach the light-
cone distribution, the nucleon operator is constructed
with momentum smeared quark sources (Bali et al.,
2016) and boosted to momenta up to Pz = 2.18 GeV.
The matrix elements are renormalized with non-
perturbative renormalization factors in the RI/MOM
scheme (Martinelli et al., 1995) at µR = 2.4 GeV, pzR =
0. Due to the assumption s(x) = s̄(x) in the CT18
PDF set, the Fourier transformed matrix elements have a
vanishing real part. It is observed that the real part of the
renormalized quasi-PDF matrix elements are consistent
with zero at large momentum. The imaginary matrix
elements are proportional to the sum of the quark and
antiquark distribution; the magnitude is consistently
smaller than those from CT18 and NNPDF, possibly
due to missing the contributions from other flavor
distributions in the matching kernel. A full analysis
of lattice-QCD systematics, such as finite-volume effects
and discretization, is not yet included, and plans to
extend the current calculations are underway.
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FIG. 17 The quasi-PDF matrix element renormalized in
the RI/MOM scheme at µR = 2.4 GeV, pzR = 0 on the
lattice compared with the Fourier transform of the NNLO
NNDPF3.1 and CT18 PDF sets. The upper (lower) plot is
the real (imaginary) part. The real part of the CT18 PDF is
exactly zero because of the s(x) = s̄(x) assumption entering
the fit. The imaginary part of the lattice result grows slower
at large z, and the real part is consistent with zero at large
momentum.
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III. GENERALIZED PDFS (GPD)

III.1. Introduction

More than half a century after the first discovery of the
nucleon’s internal structure, we still know little about
its three-dimensional structure, which is described in
terms of the generalized parton distributions (GPDs).
Interest in GPDs has grown rapidly since they were
first introduced in the late 90’s (Ji, 1997; Müller et al.,
1994; Radyushkin, 1996), because of the unique insight
they provide into the spatial distribution of quarks
and gluons inside the proton (Burkardt, 2000), as
well as its mechanical properties, including angular
momentum, pressure, and shear forces (Polyakov, 2003)
(for extensive reviews on the subject see Refs. (Belitsky
and Radyushkin, 2005; Diehl, 2003; Kumericki et al.,
2016)). While the latter are encoded in the QCD energy-
momentum tensor which is canonically probed through
gravity, it was realized by Ji (Ji, 1997) that its matrix
elements between proton states can be described through
Mellin moments of GPDs. GPDs, therefore, bring
the energy-momentum tensor matrix elements within
experimental grasp through electromagnetic scattering.
GPDs can be viewed as a hybrid of parton distributions

(PDFs), form factors and distribution amplitudes.
Experimentally, they can be accessed in exclusive
processes such as deeply virtual Compton scattering
or meson electroproduction. Determining GPDs is an
important mission of the US Department of Energy
(DOE) drawing global scientific interest. Experimental
collaborations and facilities worldwide have been devoted
to searching for these last unknowns of the nucleon,
including HERMES at DESY, COMPASS at CERN,
GSI in Europe, BELLE and JPAC in Japan, Halls A,
B and C at Jefferson Laboratory, and PHENIX and
STAR at RHIC (Brookhaven National Laboratory) in
the US. The study of GPDs and their imaging, or
nucleon femtography, has led both the QCD and hadronic
physics community worldwide to propose building an
Electron-Ion Collider (EIC) to further explore these
quantities (Accardi et al., 2016b). In Europe, CERN
has plans for the LHeC, adding an electron accelerator
to the existing LHC hadron accelerator. There are also
Chinese plans for similar electron-ion colliders.

Analogous to the usual PDFs, GPDs parametrize the
quark and gluon correlation functions involving matrix
elements of operators at a lightlike separation between
the parton fields,

W
[γ+]
ΛΛ′ =

1

2

∫
dy

2π

−
eik

+y−〈p′,Λ′ | ψ̄
(
−y
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)
γ+ U

(
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,
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2P+
〈p′,Λ′ | γ+γ5H̃(x, ξ, t) +

γ5∆+

2M
Ẽ(x, ξ, t) | p,Λ〉.

(22)

Two additional kinematic variables enter their definition
besides the quark light cone longitudinal momentum
fraction, x = k+/P+ (with P = (p + p′)/2): the light
cone component of the longitudinal momentum transfer
between the initial and final proton, ξ = −∆+/(2P+) ≈
xBj/(2− xBj) > 0 (with ∆ = p′ − p), and the transverse
component, ∆T = p′T − pT ; the latter is taken into
account through the invariant, t = ∆2 = M2ξ2/(1 −
ξ2) − ∆2

T /(1 − ξ2), t < 0). At leading (twist-two) level,
four quark chirality conserving (chiral even) GPDs, H,

E, H̃ and Ẽ, defined in Eqs. (21) and (22), parametrize
the quark-proton correlation functions.

Like the PDFs, GPDs are nonperturbative parton-
hadron correlation functions. They are not direct
physical observables, since no quark or gluon has been
observed in isolation, owing to QCD color confinement.

Lattice QCD cannot calculate GPDs directly, since they
are defined in terms of operators with lightlike separation
between the parton fields. GPDs are connected to
various physical observables through QCD factorization.
For example, the deeply virtual Compton scattering
(DVCS) cross section can be expressed in terms of
Compton form factors (CFFs) which are factorized into
GPDs convoluted over the variable x with perturbatively
calculated short-distance coefficient functions (Belitsky
and Radyushkin, 2005; Diehl, 2003; Goeke et al., 2001;
Kumericki et al., 2016). In addition to the four chiral
even GPDs, we have four more quark-flip/chiral odd

GPDs, HT , ET , H̃T and ẼT and four gluon GPDs, Hg,

Eg, H̃g and Ẽg. The latter can be singled out in deeply
virtual meson-production experiments.

While several deeply virtual exclusive experiments
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performed in the past decade are affected by large
theoretical and experimental uncertainties on the CFFs
(see (Kumericki et al., 2016) for a detailed list), the
experimental program of Jefferson Lab at 12 GeV will
allow us, in the next decade, to map out the complete
helicity structure of the cross section (Kriesten et al.,
2020), making it possible to extract GPDs in the quark
sector with sufficiently high precision. Looking into the
future, the upcoming EIC will be instead focused on low
x, providing a unique probe of the gluon GPDs.

Deeply virtual exclusive processes are measured in
coincidence experiments where all the particles in the
final state are either directly or indirectly detected.
Extracting GPDs from data involves a much larger
number of variables than extracting PDFs. Furthermore,
each experiment can only add a small piece to the picture.
This makes it very difficult, if not impossible, to extract
GPDs from experiment with the high-precision required
to obtain images at the femtoscale (femtography), using
traditional global-fitting methods. More sophisticated
analyses are being developed working towards this goal,
and a major research effort has been focused on applying
machine-learning tools to the extraction of GPDs from
data (Sec. III.5).

III.2. Status of GPD calculations

A lot of activity and progress has been recently
dedicated to extracting information on GPDs from lattice
QCD calculations as reported in detail in Sections
III.3, III.4. In addition, several models/parametric
forms have been developed that, on one side, facilitate
the comparison with experimental data and, on the
other, allow us to identify new deeply virtual exclusive
observables that can be factorized in terms of GPDs.
The main efforts in this direction include the light-front
overlap representation (Chouika et al., 2017a) used in the
PARTON analysis (Berthou et al., 2018), the reggeized
diquark model (Gonzalez-Hernandez et al., 2013) used in
the recent effort in Ref.(Kriesten et al., 2020), conformal
moments based models (Müller et al., 2014) used in
the analysis of Refs.(Kumericki et al., 2011; Kumerički
and Müller, 2016), as well as parametrizations based on
double distributions (Goloskokov and Kroll, 2008).

To be able to rely on a variety of models is
particularly important for the study of GPDs because
of the additional constraints that have to be satisfied as
compared to PDFs and other one-dimensional quantities.
Time reversal and Parity conservation generate discrete
symmetries obeyed by GPDs for ξ → −ξ, x →
−x; Lorentz invariance generates the property of
polynomiality, namely that the xj moments of quark
GPDs are even polynomials in ξ, and that xj−1

moments of gluon GPDs are even polynomials in ξ
(see also Section III.4.3); finally, from the norm of

the Hilbert space one obtains positivity constraints, or
inequalities between GPDs and the corresponding PDFs
(Belitsky and Radyushkin, 2005; Diehl, 2003; Kumericki
et al., 2016). The behavior of GPDs, including their
perturbative evolution, under these constraints can be
tracked down and monitored using models.

The wealth of GPD phenomenology combined with its
intrinsic difficulty has pushed several groups of theorists
and phenomenologists to develop frameworks dedicated
to the extraction of GPDs and of the 3D structure of
the nucleon from experimental data. In Section III.5 we
describe platforms that are currently been used for data
interpretation.

III.3. Moments of GPD from lattice QCD

A widely-used approach to extract information of
GPDs on the lattice is via an operator product expansion.
Based on this approach, the resulting local operators can
be inserted between hadronic matrix elements, which
are calculable in lattice QCD. The Mellin moments,
obtained from such matrix elements, provide important
information on the structure of the hadron under study,
and can be compared against phenomenological fits
of experimental data. The moments of GPDs are a
generalization of the moments of PDF with a nonzero
momentum transfer between the initial and final state:
form factors and generalized form factors, expressed in
terms of the momentum transferred squared, Q2. Form
factors (FFs) have been studied intensively for many
years in lattice QCD due to many decades of scattering
experimental results that one can compare with, and
recent interests in proton radius puzzles with all possible
theoretical calculations. On the other hand, there are
less interests in the generalized form factors (GFFs)
which can be challenging to extract and reduce the
systematic uncertainties. Lack of reliable extraction
of GFF experimental data has also put many lattice
collaboration to diverge their resources elsewhere. With
the exciting results coming out of JLab 12GeV program
and other future colliders, one expect more GFFs lattice
calculations in the near future.

III.3.1. Nucleon electromagnetic form factors

The most commonly calculated form factors are the
nucleon isovector electromagnetic form factors, defined
by

〈N(pf )|V +
µ (x)|N(pi)〉 =

ūN
[
γµF1(q2) + iσµν

qν

2MN
F2(q2)

]
uNe

iq·x, (23)

where the isovector current is V +
µ (x) = uγµu − dγµd

and F1 and F2 are Dirac and Pauli form factors,
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respectively. The Sachs electric and magnetic form
factors can be obtained from F1,2 as GE(q2) = F1(q2) +
q2F2(q2)/(2MN )2 and GM (q2) = F1(q2) + F2(q2),
which correspond to the Fourier transforms of nucleon
charge and magnetization density distributions in the
Breit frame. Inspired by the decades of continuous
experimental measurements, there are many calculations
at physical pion mass for the electromagnetic form factors
In Fig. 18, only selected results from near-physical pion
masses are shown. PACS has the largest volume among
these calculations and is able to probe the smallest
Q2. The parameters of the lattice calculations are
summarized in Table XI. Overall, the lattice-QCD results
among different collaborations are in good agreement
within 1-2 standard deviations. The magnetic form
factors have reasonable agreement with the experimental
ones, but the electric form factors, depending on the
analysis approach, have a small tension. With more
precision experimental electric form factors on their way
to resolve the proton radius puzzle, it would be desirable
to have lattice form factors at the percent level. To
achieve this, one will need to include QED and isospin
symmetry breaking in the lattice calculation, which will
require significantly more computational resources, as
well as new techniques.

Besides the progress in the calculation of the connected
contributions to the electromagnetic form factors,
there have been advances in the evaluation of their
disconnected (light and strange quark) contributions.
The latter result from the self-contractions of the inserted
operator, that is, its quark and anti-quark of same flavor
contract with each other. Approximately speaking, the
operator couples to the hadron via gluons, and are often
viewed as sea quark contributions. This allows a u- and
d-quark decomposition and the proper extraction of the
proton and neutron electromagnetic form factors via:

Gp(Q2) =
1

2

(
1

3
Gu+d(Q2) +Gu−d(Q2)

)
, (24)

Gn(Q2) =
1

2

(
1

3
Gu+d(Q2)−Gu−d(Q2)

)
. (25)

The isoscalar combination in the above equations
should be the sum of both connected and disconnected
contributions. The electric and magnetic proton form
factors including both connected and disconnected
diagrams have been calculated by ETMC using twisted
mass fermions (TM) ensembles (Nf = 2 and Nf =
2 + 1 + 1) with different volumes and can be found
in Ref. (Alexandrou et al., 2019a). Here we show the
neutron form factors in Fig. 19 for the most accurate
data of ETMC at a volume with L = 5.12 fm (red
circles), which are compared against experimental data
shown with black crosses. The data are taken from
Refs. (Becker et al., 1999; Bermuth et al., 2003; Eden
et al., 1994; Glazier et al., 2005; Golak et al., 2001;
Herberg et al., 1999; Madey et al., 2003; Meyerhoff
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FIG. 18 Selected nucleon isovector electric (left) and
magnetic (right) form factor results from near physical
pion mass as functions of transferred momentum Q2.
The references corresponding to the above works are: 2f
ETMC18 (Alexandrou et al., 2017c) 2+1f LHPC14 (Green
et al., 2014), LHPC17 (Hasan et al., 2018), PACS18 (Shintani
et al., 2019); 2+1+1f ETMC18 (Alexandrou et al., 2019a),
PNDME19 (Jang et al., 2018) with 2 lattice spacings of 0.06
and 0.09 fm.

et al., 1994; Ostrick et al., 1999; Passchier et al., 1999;
Plaster et al., 2006; Rohe et al., 1999; Schiavilla and
Sick, 2001; Warren et al., 2004; Zhu et al., 2001) for
the electric form factor and from Refs. (Alarcon, 2007;
Anderson et al., 2007; Anklin et al., 1994, 1998; Gao
et al., 1994; Kubon et al., 2002) for the magnetic form
factor. There is a very good agreement between lattice
and experiment, with exception the small-Q2 for GnM .
Note that the experimental data have, in general, larger
uncertainties as compared to the lattice data. We want to
emphasize that, such comparison is considered a success
for lattice QCD, as it is the first time that the proton
and neutron electromagnetic form factors include both
connected and disconnected contributions. Such a plot is
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Ref. Sea quarks Valence quarks Renormalization N∆t a (fm) Mπ (MeV) MπL
ETMC’18 (Alexandrou et al., 2019a) 2f & 2+1+1f TM twisted mass RI’-MOM 3 0.080, 0.094 130-139 MeV 3.0–4.0
ETMC’17 (Alexandrou et al., 2017c) 2f TM twisted mass RI’-MOM 3 0.094 130 MeV 3.0

LHPC’14 (Green et al., 2014) 2+1f clover clover Schrödinger functional 3 0.09–0.116 149–356 3.6–5.0
LHPC’17 (Hasan et al., 2018) 2+1f clover clover vector charge 3 0.093 135 4.0

PACS’18 (Shintani et al., 2019) 2+1f clover clover Schrödinger functional 4 0.085 146 8.0
PNDME’19 (Jang et al., 2018) 2+1+1f HISQ clover RI-MOM 4 0.09 138 3.9

TABLE XI The lattice parameters used in calculations of the electromagnetic form factors near physical pion mass. N∆t

indicates the number of source-sink separation used in the lattice calculation to control the “excited-state” systematics which
can be significant for nucleon structure.

a representative example of the state-of-the-art of lattice
QCD for calculation of form factors.
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FIG. 19 Neutron electric (top) and magnetic (bottom) form
factors as a function of Q2. Lattice data are shown with
red circles obtained by ETMC (Alexandrou et al., 2019a).
Experimental data are shown with black stars.

The contributions of strange sea quarks to the
nucleon electromagnetic form factors has been of high
interest in the last decades. Experimentally, strange
electromagnetic form factors can be extracted through
the parity-violating asymmetry in the elastic scattering
of polarized electrons on unpolarized protons. However,
these experimental measurements are difficult and
precision determinations of the form factors are not
yet available. This is one place where lattice-QCD
calculations can provide better results with currently
available computational resources. A number of
collaborations have studied the strange electromagnetic
form factors with lattice QCD (Alexandrou et al., 2020a,
2018d; Babich et al., 2012; Djukanovic et al., 2019;

Doi et al., 2009; Green et al., 2015; Sufian et al.,
2017); the details of these calculations can be found
in Table XII. Using the form factors’ dependence on
transfer-momentum (Q), the electric and magnetic radii,
as well as the magnetic moment, are obtained via

〈r2
E,M 〉s = −6

dGsE,M (Q2)

dQ2

∣∣∣
Q2=0

, µs ≡ GsM (0). (26)

We summarize the calculations using dynamical sea
quarks in Fig. 20. Early studies only used only
one ensemble with heavy pion masses to reduce
computational costs. There has been great progress made
in recent years, including calculations made directly at
physical pion mass, such as ETMC’s Nf = 2+1+1 work
in Ref. (Alexandrou et al., 2020a). χQCD (Sufian et al.,
2017) used four ensembles of valence overlap fermions on
Nf = 2 + 1 domain wall configurations with multiple
volumes, lattice spacings, and pion masses to investigate
systematic uncertainties. The Mainz group (Djukanovic
et al., 2019) used Nf = 2 + 1 flavors of O(a)-improved
Wilson fermions, and they also employed an O(a)-
improved vector operator, with lattice spacing as small
as 0.05 fm. Overall, there is agreement among the
lattice data, demonstrating that systematic uncertainties
are under control. However, the χQCD result for the
magnetic moment disagrees with the other lattice results,
and this tension should be further investigated.

III.3.2. Nucleon isovector axial form factors

There has been also rapidly increasing interest
in lattice-QCD nucleon axial form factors (GA)
calculations, a key input from the SM for neutrino
physics; these form factors can be calculated in terms
of the isovector axial current

〈N(pf )|A+
µ (x)|N(pi)〉 =

ūN
[
γµγ5GA(q2) + iqµγ5GP (q2)

]
uNe

iq·x. (27)

Here, q = pf − pi is the momentum transfer between
the initial and final state of nucleon; and the isovector
current is A+

µ (x) = uγµγ5u − dγµγ5d. GA(q2) and
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FIG. 20 Summary of lattice calculations of 〈r2
E〉s (left), µs (middle) and 〈r2

M 〉s (right) from lattice ensembles with dynamical
strange degrees of freedom in the sea. The green symbols show results using multiple ensembles to take the continuum limit
a→ 0. Details of the lattice input can be found in Tab. XII.

Ref. Sea quarks Valence quarks a (fm) Mπ (MeV) MπL
χQCD’09 (Doi et al., 2009) 2+1f clover clover 0.12 600–840 5.97
BU’10 (Babich et al., 2012) 2+1f clover clover 0.11 416 4.79

LHPC’15 (Green et al., 2015) 2+1f clover clover 0.11 317 5.97
χQCD’16 (Sufian et al., 2017) 2+1f DWF overlap 0.08–0.14 135–400 3.89–4.82

ETMC’18 (Alexandrou et al., 2018d) 2f twisted mass twisted mass 0.09 130 2.98
Mainz’19 (Djukanovic et al., 2019) 2+1f clover clover 0.05–0.09 200–360 4.14–5.35

ETMC’19 (Alexandrou et al., 2020a) 2+1+1f twisted mass twisted mass 0.080 139 3.62

TABLE XII List of references and details of the lattice-QCD calculations of the nucleon strange form factors. Here, we omit
the calculations using quenched approximation, perturbatively renormalized results, and conference proceedings.

GP (q2) are known as nucleon axial and induced-
pseudoscalar form factors, and ūN and uN are the
associated nucleon spinors. In the limit |~q| → 0,
GA(q2 = 0) should recover the nucleon axial charge
gA = −1.2723(23), which is well determined from
neutron β-decay experiments (Tanabashi et al., 2018).
Contrariwise, the axial-charge radius squared r2

A is less
known; once GA(q2) is obtained, one can obtain the
radius via

r2
A ≡

6

GA(0)

dGA
dq2

∣∣∣∣
q2=0

. (28)

Although the first lattice-QCD calculation of the
isovector nucleon axial form factors can be traced back
to the early ’90s, there has been significant progress and
improvement by the global lattice community. One of
the systematics, excited-state contamination, was not
consistently addressed 10 years ago, which resulted in
a lower nucleon axial coupling gA and the wrong form
factors. Removing this systematic has become essential
for any lattice-QCD nucleon calculation. Another
exciting breakthrough in the past decade is the increasing
number of lattice nucleon calculations at the physical
pion mass, mostly due to recent advances in both
algorithms and a worldwide investment in pursuing the
first exascale computing machine. Many calculations
now comes with high statistics (O(100k) measurements)

and some with multiple lattice spacings and volumes to
control lattice artifacts. Such programs would have been
impossible 5 years ago. Figure 21 gives a summary of the
recent nucleon axial form factors done near the physical
pion mass, and the status of lattice-QCD calculations
and examples of the phenomenological determinations of
r2
A are shown on the right-hand side of Fig. 21. The

parameters for each ensemble employed are given in
Table XIII. The analysis with the z expansion (Meyer
et al., 2016) eliminates the uncertainty estimates of
determinations predicated on the dipole form. The
model-independent results (red; between the horizontal
lines) illustrate the best estimate of r2

A without such
strong assumptions.

III.3.3. Nucleon isovector generalized form factors

There has been lattice-QCD efforts in moments of
GPDs calculations in the past few decades, and in
recent years, there has been emerging direct physical
pion mass calculation. A common lattice approach is to
use the operator product expansion to local operators
with the nucleon matrix. Most calculations focusing
on the leading-twist operators, computing isovector
nucleon matrix elements of the one-derivative operators
to obtained the generalized form factors (A20, B20 , C20,
Ã20, B̃20,C̃20) though:
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FIG. 21 Left: nucleon isovector axial form factor as functions of q2. Right: summary of r2
A from calculations on ensembles

near physical pion mass (Alexandrou et al., 2017b; Bali et al., 2019a; Capitani et al., 2019; Gupta et al., 2017; Hasan et al.,
2018; Shintani et al., 2019), together with non-lattice determinations. The color code for r2

A is adapted from the Flavor Lattice
Averaging Group (Aoki et al., 2017), as specified in the Appendix of Ref. (Bhattacharya et al., 2015). The legends and references
for r2

A are as follows: νd (dipole) and eN → eN ′π (Bodek et al., 2008), νd (z expansion) (Meyer et al., 2016), “MuCap” (Hill
et al., 2018).

Ref. Sea quarks Valence quarks Renormalization N∆t a (fm) Mπ (MeV) MπL
ETMC ’17 (Alexandrou et al., 2017b) 2f twisted mass twisted mass RI’-MOM 3 0.094 130 MeV 3.0

LHPC ’17 (Hasan et al., 2018) 2+1f clover clover RI’-MOM 3 0.093 135 MeV 4.0
Mainz ’17 (Capitani et al., 2019) 2f clover clover Schrödinger functional 4–6 0.05–0.08 193– 73 4.0–6.0
PACS ’18 (Shintani et al., 2019) 2+1f clover clover Schrödinger functional 4 0.085 146 8.0
PNDME ’17 (Gupta et al., 2017) 2+1+1f HISQ clover RI’-MOM 3–4 0.06–0.12 130–320 3.7–5.5

RQCD ’18 (Bali et al., 2019a) 2f clover clover RI’-MOM 2–6 0.06–0.08 150–490 3.4–6.7

TABLE XIII The lattice parameters used in the near physical pion mass axial form-factor calculations

〈N(p′, s′)|OµνV |N(p, s)〉 = ūN (p′, s′)
1

2

[
A20(q2) γ{µP ν} +B20(q2)

iσ{µαqαP
ν}

2mN
+ C20(q2)

1

mN
q{µqν}

]
uN (p, s),

〈N(p′, s′)|OµνA |N(p, s)〉 = ūN (p′, s′)
i

2

[
Ã20(q2) γ{µP ν}γ5 + B̃20(q2)

q{µP ν}

2mN
γ5
]
uN (p, s), (29)

where uN are nucleon spinors, q = p′−p is the momentum
transfer, P = (p′ + p)/2, mN is the nucleon mass, and
operators

OµνV =ψ̄γ{µ
←→
D ν} τ

3

2
ψ,

OµνA =ψ̄γ5γ
{µ←→D ν} τ

3

2
ψ, and (30)

where ψ (ψ̄) are (anti-)light quark flavor, τ3 as
Pauli matrix, and the curly (square) brackets denote
symmetrization (antisymmetrization)

←→
D µ =

1

2
(
−→
Dµ −

←−
Dµ), Dµ =

1

2
(∇µ +∇∗µ) (31)

with ∇µ (∇∗µ) denoting the forward (backward)
derivatives on the lattice. For space limitations, we
do not include the decomposition of the tensor current
(OµνρT ), which leads to the GFFs AT20, BT20, CT20, as
we do not present any results here.

These nucleon matrix elements can be expanded in
terms of generalized form factors (GFFs), which are
Lorentz invariant functions of the momentum transfer
squared. At zero momentum transfer, these nucleon
matrix elements yield the second Mellin moments of
the unpolarized, helicity and transversity PDFs. There
are very limited calculations on the generalized form
factors, as can be seen in Table XIV. In this summary
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we exclude calculations using quenched approximation,
perturbatively renormalized results, as well as conference
proceedings. In Fig. reffig:LatGFF we give the results
obtain with simulations at the physical point by ETMC
using three ensembles (Alexandrou et al., 2020c), and
the near physical point calculation or RQCD (Bali et al.,
2019b). We show the unpolarized GFFs (A20, B20) and
the linearly polarized GFFs (Ã20, B̃20). The unpolarized
GFF C20 is found consistent with zero and, thus, not
shown here. It is interesting to observe that the two
data sets for A20 in the ETMC calculation exhibit
some tension. This is an indication of systematic
uncertainties. Given that the blue points correspond to
finer lattice spacing, and larger volume and larger mπL
value, we expect that the blue points have suppressed
systematic uncertainties. Both ensembles of ETMC lead
to compatible results for the remaining GFFs. The
comparison between the Nf = 2 ETMC data and Nf = 2

RQCD data reveals agreement for A20, B20 and B̃20.
However, the RQCD data have a different slope than the
ETMC data, which is attributed to the different analysis
methods, and systematic uncertainties.

III.4. x-dependent GPDs from lattice QCD

Information on GPDs from lattice QCD has been
available via their form factors and generalized form
factors, using Operator Product Expansion (OPE). As
in the case of PDFs, such information is limited due
to suppression of the signal as the order of the Mellin
moments increases, but also as the momentum transfer
between the initial and final state increases.

Significant progress has been made towards new
methods to access the x- and t-dependence of GPDs (t =
−Q2), which is driven by the advances in the calculations
of PDFs presented in Sec. II.2. Here we present the
methodology for obtaining GPDs from the lattice using
the quasi- and pseudo-distributions approach, as well as
first results for the nucleon and pion GPDs.

III.4.1. GPDs using the quasi-distribution approach

In the quasi-distribution approach, GPDs can be
extracted in the same way as extracting PDFs, except
that one needs to take into account the off-forward
kinematics. For the unpolarized quark GPDs in the
nucleon defined by Eq. (21) for the unpolarized case. On
the lattice we can calculate the so-called quasi-GPDs

F̃ (x, ξ̃, t, P̄3) =
P̄3

P̄ 0

∫
dz

4π
eixzP̄3〈P ′|Õγ0(z)|P 〉

=
ū(P ′)

2P̄ 0

{
H̃(x, ξ̃, t, P̄3)γ0 + Ẽ(x, ξ̃, t, P̄3)

iσ0µ∆µ

2M

}
u(P ) ,

(32)

as Eq. (21) is not accessible on a Euclidean lattice. The
skewness is replaced by the quasi-skewness

ξ̃ = −P
′
3 − P3

P ′3 + P3
= − ∆3

2P̄3
= ξ +O

(
M2

(P̄3)2
,

t

(P̄3)2

)
(33)

differs from the light-cone skewness ξ by power
suppressed corrections. It can be replaced by ξ̃ with the
difference being attributed to generic power corrections.
Then the quasi-GPDs can be factorized into the GPDs
as (Ji et al., 2015a; Liu et al., 2019)

F̃ (y, ξ, t, P̄3, µ)

=

∫ 1

−1

dx

|ξ|
C

(
y

ξ
,
x

ξ
,
µ

ξP̄3

)
F (x, ξ, t, µ) + . . . , (34)

where . . . denotes power corrections of the form
O(M2/P̄ 2

3 , t/P̄
2
3 ,Λ

2
QCD/(y

2P̄ 2
3 )).

Prior to lattice calculations, quasi-GPDs
have been studied in models, which provides a
qualitative qualitative understanding of GPDs. In
Ref. (Bhattacharya et al., 2019b) the quasi-GPDs
are studied in the scalar diquark spectator model.
Among other, some robust features of quasi-GPDs
were revealed concerning the behavior at large x, the
behavior around the cross-over points x = ±ξ, as well
as their behavior in the ERBL region. In the follow-up
work presented in Ref.(Bhattacharya et al., 2019a)
the Authors findings include two model-independent
results that are interesting for lattice calculations. This
regards a discussion of the moments of quasi-GPDs (and
quasi-PDFs), and the behavior of quasi-GPDs under
ξ → −ξ. While for light-cone GPDs the ξ-symmetry has
been of academic interest, for the quasi-GPDs this point
could potentially be of practical relevance to decrease
statistical uncertainties in lattice calculations.

In lattice QCD, there are several challenges in
calculating quasi-GPDs. In contrast with the PDFs,
the extraction of GPDs is more challenging because
they require momentum transfer, Q2, between the initial
(source) and final (sink) states. Another complication is
the fact that the GPDs are defined in the Breit frame, in
which the momentum transfer is equally distributed to
the initial and final states.

Working in the Breit frame has no conceptual
difficulty, however, it increases the computational cost,
as separate calculations are necessary for each value of
the momentum transfer. The bare matrix element

N(P3+Q/2)|ψ̄ (z) ΓW (0, z)ψ (0) |N(P3−Q/2)〉 (35)

is calculated using the techniques developed for PDFs,
and the use of momentum smearing method (Bali et al.,
2016),

Another factor that increases the computational cost is
the need of an optimized ratio of 3pt- and 2pt-functions,
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Ref. Sea quarks Valence quarks Renormalization N∆t a (fm) Mπ (MeV) MπL
ETMC ’19 (Alexandrou et al., 2020c) 2f & 2+1+1f TM twisted mass RI’-MOM 3 0.080, 0.094 130–139 MeV 3.0–4.0
ETMC ’13 (Alexandrou et al., 2013) 2+1+1f twisted mass twisted mass RI’-MOM 1 0.06–0.08 210,370 3.4–5.0
ETMC ’11 (Alexandrou et al., 2011) 2f twisted mass twisted mass RI’-MOM 1 0.056–0.089 262–470 3.3–5.3

LHPC ’10 (Bratt et al., 2010) 2+1f Astad domain wall RI’-MOM 1 0.124 293–596 3.7–7.5
LHPC ’07 (Hagler et al., 2008) 2+1f staggered domain wall RI’-MOM 1 0.124 350–760 4.4–9.6
RQCD ’19 (Bali et al., 2019b) 2f clover clover RI’-MOM 1–6 0.060–0.081 150–490 2.8–6.7

TABLE XIV List of references and details of the lattice-QCD moments of generalized form factors calculations. Here we omit
the calculations using quenched approximation, perturbatively renormalized results, and conference proceedings.
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FIG. 22 Unpolarized (left) and linearly polarized (right) nucleon isovector GFFs from near physical pion mass as functions of
transferred momentum Q2. The references corresponding to the above works are: 2+1+1f ETMC19 (Alexandrou et al., 2020c),
2f ETMC19 (Alexandrou et al., 2020c) (only the larger-volume results is quoted here), 2f RQCD19 (Bali et al., 2019b).

that is:

RO(Γ; ~p′, ~p; ts, tin) =
C3pt(Γ; ~p′, ~p; ts, tin)

C2pt(Γ0; ~p′, tin)
×√

C2pt(Γ0; ~p, ts−tin)C2pt(Γ0; ~p′, tin)C2pt(Γ0; ~p′, ts)

C2pt(Γ0; ~p′, ts−tin)C2pt(Γ0; ~p, tins)C2pt(Γ0; ~p, ts)
.(36)

As can be seen, one needs to calculate the 2pt-functions
with momentum boost equal to the source momentum,
as well as, the sink momentum. The momentum
smearing method is applied on the 2pt-functions, with
the exponent of the additional phase, being in parallel
to the direction of the momentum boost. In addition to
the above, different projectors are needed (for baryons)
to disentangle the GPDs.

The aforementioned matrix elements decompose into
two form factors, which after the Fourier transform and
the matching lead to the light-cone GPDs H, E for
the unpolarized case, and H̃, Ẽ for the helicity case.
Therefore one can extract their x dependence at each
value of P3 and momentum transfer. For GPDs, so-
called ERBL region is defined for ξ 6= 0, via |x| < ξ.
As discussed in Ref. (Liu et al., 2019), the matching for
ξ = 0 is the same as the one for PDFs, while ξ 6= 0
requires different matching, which is derived in Ref. (Liu
et al., 2019) using an RI-type scheme.

To date there has been one calculation for the nucleon
GPDs by ETMC, and one for the pion GPDs (Chen
et al., 2019b). The former uses one ensemble of Nf =
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FIG. 23 H-GPD for P3 = 1.67 GeV, Q2 = 0.69 GeV2, and
ξ = 0, obtained by the ETM Collaboration.
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FIG. 24 H̃-GPD for P3 = 1.67 GeV, Q2 = 0.69 GeV2, and
ξ = 0, obtained by the ETM Collaboration.

2 + 1 + 1 gauge configurations at a pion mass of 260
MeV. Part of these results have been presented in
Ref. (Alexandrou et al., 2019c). This work presents
results of the unpolarized and helicity GPDs, for both
ξ = 0 and ξ 6= 0. Here we give results for the GPDs
at ξ = 0. Note that Ẽ-GPD cannot be accessed in
this case, as its kinematic factor becomes zero. Fig. 23
compares the H-GPD at Q2 = 0.69 GeV2 with the
unpolarized PDF, in order to see the effect of nonzero
Q2. The momentum boost is 1.67 GeV2 for both cases.
One can see that the H-GPD is suppressed as compared
to the PDF, especially in all regions of x. A similar
comparison can be seen in Fig. 24 for the H̃-GPD and the
helicity PDF, for P3 = 1.67 GeV. Similar to the case of
the H-GPD, the introduction of the momentum transfer
suppresses the GPD, as expected from the behavior of
the form factors and generalized form factors. For the
intermediate- to large-x region we find that the H-GPD
is compatible with the helicity PDF.

In (Chen et al., 2019b), the pion valence quark GPD
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FIG. 25 The zero-skewness pion valence quark GPD

Hπ+

v (x, ξ = 0, t, µ = 4GeV) for t = {0,−2,−5}(2π/L)2 after
one-loop matching and the meson-mass correction. “PDF”
denotes the pion PDF result in Ref. (Zhang et al., 2019a).

at zero skewness was calculated using clover valence
fermions on an ensemble of gauge configurations with
2 + 1 + 1 flavors (degenerate up/down, strange and
charm) of highly improved staggered quarks (HISQ) with
lattice spacing a ≈ 0.12 fm, box size L ≈ 3 fm and
pion mass mπ ≈ 310 MeV. The result is shown in
Fig. 25. It turns out that, with current uncertainties, the
result does not show a clear preference among different
model assumptions about the kinematic dependence of
the GPD. To disentangle different models, further studies
using higher-statistics data will be crucial.

III.4.2. GPDs using pseudo-distribution approach

The generalization of the pseudo-distributions
approach to include GPDs was developed
recently (Radyushkin, 2019a). For lattice applications,
and the discussion presented here we choose z = z3

without loss of generality. Decomposing the hadron
momenta p1 and p2 into p1 = {E1,∆1,⊥, P1} and
p2 = {E2,∆2,⊥, P2}, one deals with two Ioffe-time
invariants ν1 = P1z3 and ν2 = P2z3.

The choice of operator γ0 (instead of the alternative
γ3) eliminates the z0 and ∆0

⊥ parts from the
parametrization

〈p2|ψ̄(−z3/2)γ0 . . . ψ(z3/2)|p1〉 = 2P0M(ν1, ν2, t; z
2
3)
(37)

defining the double Ioffe-time pseudodistribution
M(ν1, ν2, t; z

2
3). After denoting ν = (ν1 + ν2)/2,

the latter converts into the generalized Ioffe-time
pseudodistribution (pseudo-GITD) M(ν, ξ, t; z2

3). To
remove link-related UV divergences, one may introduce
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the reduced pseudo-GITD (Radyushkin, 2019a)

M(ν, ξ, t; z2
3) ≡ M(ν, ξ, t; z2

3)

M(0, 0, 0; z2
3)

. (38)

For small z2
3 , it may be expressed (see Ref. (Radyushkin,

2019a)) in terms of the light-cone ITD

I(ν, ξ, t;µ2) ≡
∫ 1

−1

dx eixν H
(
x, ξ, t;µ2

)
(39)

by a perturbative matching relation that has the usual
pQCD factorization form

M(ν, ξ, t; z2
3) =

∫ 1

−1

dwC(w, ξ, z2
3µ

2) I(wν, ξ, t;µ2)

+O(z2
3) . (40)

III.4.3. Extraction of GPDs from data using pseudo-distribution
approach

To extract GPDs, it is proposed to model I(wν, ξ, t;µ2)
from some parametrization for H(x, ξ, t;µ2)
(Radyushkin, 2019a), and fit its parameters using
lattice data on M(ν, ξ, t; z2

3). The polynomiality property
(Ji, 1997; Müller et al., 1994; Radyushkin, 1997) of
GPDs may be efficiently taken into account by using the
double distribution Ansatz (Radyushkin, 1999) in the
GPD modeling.

An equivalent strategy is to convert (40) into a kernel
relation (Cichy et al., 2019; Radyushkin, 2019a,c)

M(ν, ξ, t; z2
3) =

∫ 1

−1

dxR(xν, ξ, z2
3µ

2)H(x, ξ, t;µ2)

+O(z2
3) (41)

obtained by writing I(wν, ξ, t, µ2) in terms of
H(x, ξ, t;µ2) using Eq. (39). Note that Eq. (41) directly
relates the light-cone GPD H(x, ξ, t;µ2) with the lattice
data on M(ν, ξ, t; z2

3) through a perturbatively calculable
kernel R(xν, ξ, z2

3µ
2). Hence, no intermediaries (like

quasi-PDFs) are needed in this approach.
To aid a quantitative analysis one can draw

information from models. Building a relatively simple
model to evaluate GPDs can help understanding some
of the essential features of the pseudo-pdfs approach.
For example, the reggeized diquark model (Gonzalez-
Hernandez et al., 2013) can be used to have a better
understanding of the “off-the-light-cone” behavior of the
PDFs/GPDs, and to put more stringent constraints on
the onset of perturbative behavior in coordinate space. In
models one has the flexibility to perform calculations that
mimic the equal time constraint on the lattice. Instead
of obtaining the usual light cone PDF, f(x), using this
procedure, one obtains the off-the-light-cone PDFs which
are a function of k3 and P3. Upon performing the Fourier
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FIG. 26 The proton unpolarized u quark pseudo distribution
normalized to one is shown for different values of quark field
separation z in GeV−1. P3 is tagged from 0 to 32 GeV
according to color. We see that at small Ioffe time ν, for
lower values of P3, the pseudo pdf deviates substantially from
the expected Ioffe time behavior of the light cone parton
distribution. The momentum space GPD used to evaluate the
curves in this figure was obtained using the reggeized diquark
model from Ref. (Gonzalez-Hernandez et al., 2013).

transform in k3 one obtains the Ioffe time distributions
which are now a function of z and P3 or, equivalently,
the two Lorentz scalars P · z and z2. One expects that
as z2 tends to zero and P3 increases the pseudo Ioffe
time distribution approaches the light cone Ioffe time
distribution. This is illustrated in Figure 26.

Moving off forward, a similar exercise can be repeated
for the GPDs. The presence of an additional vector
∆ introduces, in coordinate space, the dependence on
another Lorentz scalar ∆ · z. For zero skewness, this
quantity is zero for GPDs on the lightcone. For pseudo
GPDs, however, this is no longer true. Hence, in addition
to z2, in the case of PDFs, which captures the “off the
light-coneness” of pseudo PDFs, in the case of GPDs,
one also sees the dependence on ∆ · z for pseudo GPDs
at zero skewness. Model calculations of pseudo GPDs at
zero skewness reveal that the dependence on ∆ ·z is more
pronounced at larger t.

III.4.4. Evaluation of GPDs from their Mellin Moments and
Ioffe Time Behavior

Complementary to the effort of calculating non-local
operators on the lattice is the evaluation of Mellin
moments of PDFs. While having their own set of
complications in the evaluation of higher moments, they
provide valuable input for a completely independent way
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FIG. 27 The GPD H for the u quark at t = −0.1GeV 2

reconstructed using the Generalized Form Factors calculated
on the lattice.

of obtaining the PDFs. In the target rest frame, Ioffe
time ν ≡ P ·z quantifies the distance along the light-cone
that the quark fields describing the PDF are separated by.
In this sense, it is a natural candidate for separating the
short distance from the long distance physics. Using the
Mellin moments, one can map out the Ioffe time behavior
of the PDF for smaller values of Ioffe time. Having more
moments allows one to describe the Ioffe time behavior
of the PDF for higher and higher values of ν. The large
Ioffe time behavior, on the other hand, is described by
a term of the form ν−α which essentially captures the
small x physics.

In the case of GPDs, polynomiality governs the
behavior of the Mellin moments for non-zero skewness.
The calculation of Generalized Form Factors on the
lattice allows one to reconstruct the GPD in Ioffe time
space for a given skewness similar to the case of PDFs
as described above. By varying ξ, one obtains the x
and ξ dependence of the GPD for a given t. In Fig. 27
we show the GPD H for the u quark evaluated by
Fourier transformation from coordinate space. The Ioffe
time dependence of the GPD was evaluated using the
first three Mellin moments calculations from the lattice
(see Section III.3), and assuming Regge behavior for the
asymptotic z− dependence.

III.5. Machine Learning for GPDs

Deeply virtual exclusive processes are measured in
coincidence experiments where all the particles in the
final state are either directly or indirectly detected.
Therefore, extracting GPDs from data involves a much
larger number of variables than in inclusive deep inelastic
scattering. Furthermore, each experiment can only
add a small piece to the picture characterized by a
specific polarization configuration. This makes our
problem virtually impossible to solve with traditional
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FIG. 28 The computation of an observable in terms of
GPDs is generically layered in three basic steps: description
of the hadron structure with nonperturbative quantities,
computation of coefficient functions, and evaluation of cross
sections.

methods: for high precision femtography which is
required to obtain proton images, we need to develop
more sophisticated analyses. Working towards this
goal, recent efforts have focused on developing Machine
Learning (ML) tools for the extraction of GPDs from
data.

Three different groups have been attacking the
problem.

III.5.1. The PARTONS framework

PARTONS (PARtonic Tomography of Nucleon
Software) is a platform that handles multiple
experimental channels where most of the tasks are
automated, allowing the users to set physics assumptions
at various point of the computation (Berthou et al.,
2018). This is achieved by splitting experimental
channels into three pieces (see fig. 28), accordingly to the
framework of collinear factorization. The large distance
part contains the physics related to GPDs themselves.
Various models (Goloskokov and Kroll, 2008; Mezrag
et al., 2013) are provided, together with leading-order
evolution routines (Vinnikov, 2006). The second step
consists in the computations of amplitudes from GPDs.
Next-to-leading order computations of Compton Form
Factors (CFFs) are also available. Finally, CFFs are
connected to observables. PARTONS has been used
in recent extractions of CFF from experimental data,
using both functional parametrizations (Moutarde et al.,
2018) and Artificial Neural Networks (ANNs) (Moutarde
et al., 2019). This analysis focuses on the suppression
of any model dependence, and on a careful estimation
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of uncertainties. This was achieved by using separate
neural networks for the real and imaginary parts of
each CFF, and by avoiding any pre-factors driving the
functional forms of CFFs. The replica method was
used for the propagation of uncertainties, while the
early-stopping regularisation method was utilised to
provide the anticipated growth of uncertainties in the
unconstrained kinematic domains. The networks were
trained to nearly all available DVCS data with the
genetic algorithm.

Work within the PARTONS framework has been
also recently extended to estimate time-like Compton
scattering (TCS) observables taking advantage of the
complementarity between he Leading Order (LO) and
Next to Leading Order (NLO) descriptions (Grocholski
et al., 2020); for a model free extraction of the subtraction
constant entering the dispersion relations approach to
GPDs (Diehl and Ivanov, 2007) and its impact on the
energy momentum tensor matrix elements (Polyakov,
2003). It is also currently used to model light nuclei
GPDs, and to develop a DVCS event generator for
the future EIC. This software is free and open-source,
released on GPLv3. The code and its documentation
can be found on the PARTONS website3.

III.5.2. Stepwise Regression Method

In a series of papers (Kumericki et al., 2011; Kumerički,
2019a; Kumerički and Müller, 2016; Kumerički et al.,
2014), the authors propose to use the stepwise regression
method in conjunction with an ANN analysis to address
the question of which of the four leading order chiral-
even CFFs, H, E , H̃, Ẽ can be reliably extracted from
exclusive photon electroproduction data. In stepwise
regression, the number of real and imaginary components
of the CFFs is gradually increased and all combinations
are tried, until there is no statistically significant
improvement in the description of the data. It was found
(Kumerički, 2019a) that the DVCS data available so far

are only sensitive to =mH, <eE and =mH̃. This method
was used recently to extract the energy momentum tensor
pressure form factor from DVCS data. A different
conclusion from the one reported in (Burkert et al.,
2018) was found using the same set of experimental data
(Kumerički, 2019b).

III.5.3. Femtography effort at Jefferson Lab

An ongoing effort at Jefferson Lab follows the
footpath of a successful pilot project launched in the
Summer 2019 where the physics community was asked

3 http://partons.cea.fr

to address femtography within collaborative projects.
These projects are now a reality: computer scientists,
data scientists, mathematicians, visualization experts
are collaborating to build a platform addressing the
computational and theoretical challenges in mapping out
the proton’s 3D structure. The existent platform will
allow us to refine our focus and to take further steps into
providing both machine learning based and virtual reality
shareable tools for the physics community.

III.6. Towards global fits for GPDs

The cleanest probe of GPDs is DVCS, which is
measured in exclusive production of a hard photon in
lepton-hadron scattering, ep→ e′p′γ. The virtual photon
four-momentum squared, Q2 = −(ke − k′e)

2, with ke
(k′e) being the initial (final) electron four-momentum,
provides a hard scale in the one photon exchange
approximation. The presence of a hard scale allows us
to single out the perturbative, short distance reaction
from the non-perturbative, long distance matrix elements
according to the factorization property of QCD (proofs of
factorization for deeply virtual exclusive processes can be
found in (Collins et al., 1997; Ji and Osborne, 1998a,b)).
Since the DVCS observable is not sensitive to flavor of the
parton participating in the hard collision, probed proton
GPD is written in terms of a sum of all quark flavor
GPDs as,

H =
∑
q

e2
qHq (42)

eq being the quark charge. Gluon GPDs can also
contribute to DVCS cross section at high orders. The
neutron GPD can be obtained using isospin symmetry.

The exclusive hard photon can also be produced via
the Bethe-Heitler (BH) scattering, where the photon is
emitted from the electron. The BH process provides a
means towards a cleaner extraction of the QCD matrix
elements since these appear as linear combinations in
the interference contribution to the cross section between
the BH and DVCS scattering amplitudes, at variance
with their bilinear counterparts in the pure DVCS
contribution.

Experimental information on GPDs is also obtained
from related channels, namely exclusive photon proton
scattering, or timelike Compton scattering, exclusive
Drell-Yan processes, and exclusive meson production.
GPDs enter the cross section encoded in Compton
Form Factors (CFFs) which, using QCD factorization,
are defined as convolutions over the parton light cone
momentum fraction x, of GPDs and QCD Wilson
coefficient functions (Belitsky and Radyushkin, 2005;
Diehl, 2003; Goeke et al., 2001; Kumericki et al., 2016).
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At leading order one has, in the chiral-even sector,

Fq(ξ, t) = C
(
C+ Fq

)
≡
∫ 1

−1

dxC+(x, ξ)Fq(x, ξ, t),

(43)

F̃(ξ, t) = C
(
C− F̃q

)
≡
∫ 1

−1

dxC−(x, ξ) F̃q(x, ξ, t)

. (44)

where Fq = (Hq, Eq), and F̃q= (H̃q Ẽq), respectively,
with leading order coefficients functions given by,

C±(x, ξ) =
1

x− ξ − iε
∓ 1

x+ ξ − iε
. (45)

GPDs observe crossing symmetry relations with
respect to x → −x, which allow us to introduce
valence (symmetric) and quark singlet (anti-symmetric)
distributions.

Traditional QCD global fits to extract GPDs from data
are particularly challenging because of the complexity of
the higher order Wilson coefficient functions (replacing
C± in Eqs. (43) and (44)), and of the fact that the relative
momentum fraction, x, of GPDs is not directly accessible
from experiment but only indirectly relevant through the
ξ-dependence of CFFs. In particular, it is very difficult
to extract GPDs with an accurate flavor separation and
determination of the scale dependence, with a similar
accuracy level to what has been accomplished for PDFs.
With the present kinematic coverage of experiments
worldwide, at the best of our knowledge, it has not been
possible to perform global fits of GPDs that span from
the valence region measured in fixed target experiments,
to the small-x which is accessible at high energy colliders.
What makes such a global analysis very demanding is
first of all, as mentioned above, that GPDs need to
fulfill a set of properties derived from the symmetries
of QCD, such as positivity and polynomiality. Fulfilling
both at the same time has been a long issue for GPD
phenomenologists. Recently, new modeling techniques
have been introduced that might solve this longstanding
issue (Chouika et al., 2017b), but have not been applied
in practical fits. Another important difference with PDFs
is that the CFFs from which GPDs are extracted, enter
the cross section in bilinear forms. Therefore, GPDs
corresponding to different polarization configurations
all contribute to specific helicity states of the various
observables: for example, in DVCS, the unpolarized
structure function, FUU,T (Kriesten et al., 2020), contains

both the vector, H,E, and axial-vector, H̃, Ẽ, GPDs
(the other polarization configurations behave similarly).
As a result, in order to extract information from
experiment, many more observables need to be analyzed
simultaneously. This is what motivated, for instance,
the first attempts to global fits in (Kumerički, 2019b;
Kumerički and Müller, 2016). To determine the various

observables that are necessary to extract GPDs from
data, current experimental programs at Jefferson Lab,
COMPASS at CERN and J-PARC are set to measure
DVCS and the crossed channel reactions to DVCS,
namely both TCS, γp → p′µ+µ− (Berger et al., 2002b;
Boër et al., 2015; Moutarde et al., 2013), and the
exclusive Drell-Yan process, π±p → p′µ+µ− (Sawada
et al., 2016). On the other side, GPDs can also
be extracted from deeply virtual meson production
although this requires a clear understanding of the meson
distribution amplitudes.

NLO corrections in αS to CFFs and evolution of GPDs
are also challenging in a global fit. Gluon GPDs are,
in fact, expected to bring a significant contribution to
both DVCS and TCS CFFs (Moutarde et al., 2013). In
the perspective of the upcoming EIC, NLO studies will
become more and more pressing. Furthermore, many
available data present a virtuality Q2 of few GeV2, i.e. of
the same order of magnitude as the square of the proton
mass. Therefore, target mass corrections, but also finite
t corrections (Braun et al., 2012) need to be taken into
account. They could be responsible for half of the signal
measured at some kinematical bins at JLab (Defurne
et al., 2015), and may, therefore, be an essential piece
to connect the lower Q2 data (few GeV2) with higher
ones at the EIC.

The four additional GPDs appearing in the chiral-odd
sector, HT , ET , H̃T , ẼT , can be measured in processes
that allow for quark helicity flip at the amplitude level,
for instance in πo and η photoproduction (Ahmad et al.,
2009; Goldstein et al., 2015; Goloskokov and Kroll,
2011) (πo electroproduction also constitutes the main
background process for DVCS). It should also be noticed
that factorization has not been proven for transversely
polarized virtual photon exchange which dominates the
process in this case, and that the quark flip process
involves a beyond leading-twist pion lightfront wave
function. Exclusive π0 production data seem to indicate
that standard colinear factorization might not be working
at JLab kinematics (Defurne et al., 2016). A similar
situation has been found for the Q2 dependence of recent
DVCS data (Georges, 2018). Future experiments will
help clarifying the issue of the scale dependence in both
processes.

Chiral-odd gluon GPDs, contribute to DVCS at NLO,
generating a cos 2φ modulation in the cross section.
Although a hint of this modulations is consistent with
the data in Ref.(Defurne et al., 2017), the experimental
precision remains too low to disentangle it from possible
higher-twist contributions.

In summary, at a time when the US EIC project
is getting off the ground, GPD phenomenologists are
facing many challenges, both theoretical and in setting
up an appropriate computational framework. The
solutions that will be brought forward to the various
issues mentioned in this report will certainly impact our
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understanding of the future EIC measurements, but first
and foremost they will be key to interpreting the data
that are already being taken at fixed target facilities. A
better control of the cross section structure for DVCS
and its crossed channels, TCS and exclusive Drell Yan,
of higher-twist terms and their factorization, of kinematic
and target mass corrections and NLO evolution, will
allow for significant steps towards mapping out the 3D
structure of the nucleon.
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IV. TRANSVERSE MOMENTUM DEPENDENT PDFS
(TMD PDFS)

IV.1. Introduction to TMD PDFs

The TMD PDF concept, in the most basic sense,
directly extends the ordinary PDF concept to incorporate
dependence on the parton’s transverse momentum.
That is, instead of having a number density f(x)
of partons per unit of lightcone momentum fraction
x, one has a density f(x,kT ) of partons per unit
of both the momentum fraction x and the (small)
transverse momentum components. A similar relation
exists between standard fragmentation functions and
TMD fragmentation functions. Standard factorization
theorems involve collinear PDFs (and fragmentation
functions) only, whereas situations that use TMD
PDFs require a different kind of “TMD” factorization
theorem (Collins et al., 1985).

Collinear factorization relies on processes being rather
inclusive, such that the details of small variations
in parton transverse momentum are not important.
Transverse-momentum–dependent PDFs (TMD PDFs),
by contrast, arise in less inclusive processes, particularly
where low, and especially nonperturbative, transverse
momentum transfer is important. There are a number
of processes where a complete QCD treatment calls for
the TMD PDF concept. These include especially cross
sections differential in a measured transverse momentum
— so-called multiscale processes, where there is an
overall physical hard scale (usually labeled Q) and a
transverse momentum which may also be hard in some
regions but is typically very different from Q. Drell-
Yan scattering is a classic example of this. There, the
overall hard scale is set by the invariant energy Q of
the produced dilepton pair, while the total transverse
momentum of the pair qT provides the transverse
momentum dependence. For a cross section integrated
over qT, collinear factorization is relevant, whereas
cross sections differential in qT require a form of TMD
factorization, especially in the region qT � Q (we
denote |qT| ≡ qT here and in the following). More
on this example follows below. The information about
transverse degrees of freedom is essential in many non-
inclusive collider observables (Angeles-Martinez et al.,
2015). The sensitivity to a nonperturbative intrinsic
transverse momentum is especially exciting from the
perspective of hadron structure also because the intrinsic
transverse momentum may couple in nontrivial ways with
spin degrees of freedom. Early classic work on TMD
structures (Mulders and Tangerman, 1996) enumerated
the large number of TMD PDF structures that can arise
once a transverse momentum degree of freedom is allowed
for the parton.

The TMD PDF concept also arises in many other areas
of QCD physics. Another approach to determine the

transverse momentum dependence, valid at low x, can be
developed within the color-glass condensate (Gelis et al.,
2010) framework, an effective model formulated within
QCD. A special limit, so-called improved transverse-
momentum–dependent (Altinoluk et al., 2019; Kotko
et al., 2015) factorization, addresses the situation where
one of the colliding hadrons is dilute and is characterized
by collinear PDFs, and the other one (the target) is
dense and is parametrized by a set of gluon densities
dependent on longitudinal and transverse momentum.
The processes where this factorization applies are
limited to forward production. There is also a Monte
Carlo approach to obtain TMD distributions called
Parton Branching TMD(Bermudez Martinez et al., 2019;
Hautmann et al., 2018). It is essentially based on
DGLAP dynamics.

In this section, we elaborate on the TMD PDF concept,
giving a brief introduction to situations where TMD
PDFs appear instead of collinear PDFs, leaving technical
details of their definition to Sec. IV.2.

It is instructive to contrast TMD PDFs with the
collinear PDFs studied in Sec. II, and so we consider
the specific case of the Drell-Yan process, the production
of a lepton pair with momentum qµ through the process
pp → Z/γ∗ → `+`− at a hadron collider, while noting
that a similar situation also arises in semi-inclusive DIS
and electron-positron annihilation such as will be studied
at a future EIC (Accardi et al., 2016b).

First, consider the case that one is only interested in
measuring the invariant mass Q =

√
q2 of the lepton pair,

but not its transverse momentum qT. This is described
by collinear factorization, which allows one to factorize
the cross section as

dσ

dQ2
=
∑
i,j

∫ 1

0

dξadξb fi/Pa
(ξa)fj/Pb

(ξb)
dσ̂ij(ξa, ξb)

dQ2

×
[
1 +O

(
ΛQCD

Q

)]
. (46)

Here, fi/P (ξ) is the PDF for a parton of type i carrying
the fraction ξ of the momentum of its parent hadron
P , we sum over all possible flavors i and j, and σ̂ij is
the partonic cross section for the Drell-Yan process. In
an observable like (46), that has been averaged over all
allowed transverse momenta qT of the lepton pair, it is
reasonable to assume that the intrinsic transverse motion
of partons in the proton is numerically not relevant,
and thus the PDFs in (46) are functions of longitudinal
momentum components only. Note that (46) receives
corrections in ΛQCD/Q, which are typically negligible at
high-energy experiments, but may become important at
low-energy colliders.

The aim of TMD factorization is to generalize Eq. (46)
to also measure the transverse momentum qT of the
produced lepton pair. For very large qT, it is again
reasonable to assume that the intrinsic motion of partons
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inside the hadrons is small, and collinear factorization
applies:

qT ∼ Q� ΛQCD : (47)

dσ

dQ2d2qT
=
∑
i,j

∫ 1

0

dξadξb fi/Pa
(ξa)fj/Pb

(ξb)
dσ̂ij(ξa, ξb)

dQ2d2qT

×
[
1 +O

(
ΛQCD

Q
,

ΛQCD

qT

)]
.

In this case, qT is dominantly generated by the hard
partonic process σ̂ij , which is perturbatively calculable,
while the only nonperturbative input to (47) is through
the standard PDFs. Compared to (46), (47) also receives
corrections in ΛQCD/qT , signaling that it breaks down
for small qT . Indeed, the situation becomes drastically
different if one considers transverse momenta much
smaller than the invariant mass of the lepton pair, qT �
Q. This is the realm of TMD factorization, where one
has

qT � Q : (48)

dσ

dQ2d2qT
=
∑
i,j

Hij(Q)

∫ 1

0

dξadξb

∫
d2bT e

ibT·qT

× fi/P (ξa,bT)fj/P (ξb,bT)

×
[
1 +O

(
ΛQCD

Q
,
qT
Q

)]
.

Here, the hard factor Hij(Q) describes the underlying
partonic process qiqj → Z/γ∗ → `+`−, and the
fi/P (ξ,bT) are TMD PDFs in Fourier space, describing
the probability to find a parton of type i with
a longitudinal momentum fraction ξ and transverse
momentum conjugate to4 bT. Upon taking the inverse
Fourier transform in (48), one then recovers the qT

distribution of the lepton pair. (48) is valid both in the
nonperturbative regime, where qT ∼ ΛQCD � Q and
the TMD PDFs are intrinsically nonperturbative objects,
and in the perturbative regime where ΛQCD � qT � Q
and the TMD PDFs can be perturbatively calculated. It
also receives corrections in qT /Q, which in the literature
are often included as the so-called Y term. These
corrections are important to smoothly transition between
the regimes described by (47) and (48).

4 The unfortunate overlapping use of the notation bT for two
distinct objects in the TMD PDF and GPD literatures should be
noted. In the GPD literature, bT denotes the impact parameter
of the struck quark with respect to the center of momentum of the
hadron; it is Fourier conjugate to the momentum transfer ∆T .
In the TMD PDF literature, bT denotes the Fourier conjugate to
the transverse momentum kT of the struck quark, corresponding
to a relative separation in the relevant quark bilinear operator,
cf. the definition (51) below. Put succinctly, the relation between
the conventions in the two literatures is akin to the relation
between center-of-mass and relative coordinates. In the present
section, the impact parameter will instead be denoted by rT,
cf. the discussion at the end of section IV.3.

IV.2. Definitions of TMD PDFs

Setting up consistent definitions for TMD PDFs,
useful beyond the most basic parton model approaches,
involves a significant number of subtleties beyond what
are encountered directly in the more standard collinear
factorization. The history of these efforts is long (Collins,
2003) and we will not be able to cover all aspects here.
See, however, reviews in (Diehl, 2016; Rogers, 2016) for
somewhat broader summaries that highlight some of the
more subtle aspects.

In this section, we provide more details on the
definition of TMD PDFs.

Classification of TMD PDFs. First, we note
that TMD PDFs can be classified according to the
scheme used for the hard factor Hij in (48). In the
original formulation by Collins, Soper and Sterman,
often referred to as CSS1, one has Hij = 1 such that
the hard factor is effectively absorbed into the TMD
PDFs (Collins et al., 1985). In its revised formulation
(CSS2) due to Collins (Collins, 2011), see also (Aybat
and Rogers, 2011), Hij is defined as the form factor
of the Drell-Yan process in the MS scheme. This
scheme choice is also adopted by formulations of TMD
factorization employing soft-collinear effective theory
(SCET) (Becher and Neubert, 2011; Chiu et al., 2012;
Echevarŕıa et al., 2013; Li et al., 2016). Lastly, TMD
PDFs as introduced by Ji, Ma and Yuan (JMY) (Ji
et al., 2005) employ a scheme where Hij depends not
only on the MS-renormalization scale µ, but also on
an additional parameter ρ related to the regulation of
rapidity divergences, which we discuss below. All of these
formulations are perturbatively related to each other, and
explicit relations are given in (Collins and Rogers, 2017;
Prokudin et al., 2015).

Definitions of TMD PDFs. Consider a hadron p
with momentum Pµ = (

√
M2 + P 2

z , 0, 0, P
z). It is useful

to introduce a basis of lightlike vectors

nµ =
1√
2

(1, 0, 0, 1) , n̄µ =
1√
2

(1, 0, 0,−1) , (49)

such that p is moving close to the n direction. The TMD
PDF can then be defined as

fi/P (x,bT, µ, ζ) = lim
ε→0
τ→0

Ziuv(µ, ζ, ε)
f

0 (u)
i/P

(
x,bT, ε, τ, xP

+
)

S0 sub
nn̄ (bT, ε, τ)

×
√
S0
nn̄(bT, ε, τ) . (50)

Here, i denotes the parton flavor, x is its longitudinal
momentum fraction, bT is Fourier-conjugate to the
transverse momentum of the struck quark, µ denotes the
MS-renormalization, and ζ is the so-called Collins-Soper
scale (Collins and Soper, 1982). On the right-hand side, ε
is the UV regularization parameter, and UV divergences

in 1/ε are absorbed by the MS-counterterm Ziuv. f
0 (u)
i/P
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is the bare unsubtracted TMD PDF, S0
nn̄ is the bare soft

function, and the factor S0 sub removes overlap between

f
0 (u)
i/P and S0

nn̄.5 All these functions are plagued by

additional so-called rapidity divergences (Becher and
Neubert, 2011; Chiu et al., 2012; Collins, 2008; Collins
and Soper, 1981; Collins and Tkachov, 1992; Echevarria
et al., 2012), which are regulated by τ . There are many

different rapidity regulators τ employed in the literature,
leading to different results for the individual ingredients
on the right-hand side of (50), but the final TMD PDF
is well-defined and unique up to choice of scheme for Hij

as discussed above.
The unsubtracted TMD PDF f

0 (u)
i/P is defined as a

hadron matrix element, and as such is sensitive to both
x and bT, while the soft factor S0

nn̄ is a vacuum matrix
element only sensitive to bT. Their definitions read

f
0 (u)
i/P (x,bT, ε, τ, xP

+) =

∫
db−

2π
e−ib

−(xP+)
〈
p(P )

∣∣∣[q̄(bµ)Wn̄(bµ;−∞, 0)
γ+

2
W †n⊥(−∞n̄,bT, 0)W †n̄(0;−∞, 0)q(0)

]
τ

∣∣∣p(P )
〉
,

S0
nn̄(bT, ε, τ) =

1

Nc

〈
0
∣∣Tr
[
W †n(bT;−∞, 0)Wn̄(bT;−∞, 0)W †n⊥(−∞n̄; bT, 0)

×W †n̄(0;−∞, 0)Wn(0;−∞, 0)Wn⊥(−∞n; bT, 0)
]
τ

∣∣0〉 . (51)

with Tr denoting the color trace. Here, bµ = b−n̄µ + bµT ,

lightcone coordinates are defined as x± = (x0 ± x3)/
√

2,
and the Wn are path-ordered Wilson lines defined as

Wn(x; a, b) = P exp

[
−igs

∫ b

a

ds n·A(xµ + snµ)

]
. (52)

The paths of the Wilson lines in (51) are illustrated in
Fig. 29. They form a closed path between the quark fields
in the TMD PDF and a closed loop in the soft function,
thereby rendering these functions gauge invariant.

In (51), the regulator τ is not specified, but is typically
implemented to modify the Wilson line structure. The
regulator most closely connected to the lattice studies
presented in section IV.3 is that of Collins, which is
implemented by taking the lightlike reference vectors n
and n̄ off the lightcone as (Collins, 2011)

nµ → nµyA ≡ n
µ − e−2yA n̄µ ,

n̄µ → n̄µyB ≡ n̄
µ − e+2yBnµ . (53)

The regulator is removed through the limit yA →
∞, yB → −∞. Concretely, in this regulator scheme the
TMD PDF is obtained as

fi/P (x,bT, µ, ζ) = lim
yB→−∞

Zuv

f
0 (u)
i/P (x,bT, ε, yB , xP

+)√
S0
nyn n̄yB

(bT, ε)
.

(54)

Here, yn is a free parameter appearing only in the Wilson
lines of the soft function, and the Collins-Soper (CS) scale

5 In the SCET-based literature, the combination f
0 (u)
i/P

/S0 sub
nn̄ is

often referred to as the beam function.

is defined as ζ = (xP+e−yn)2. In the TMD PDF for a
proton moving along the n̄ direction, the roles of yA and
yB will be reversed.

Evolution equations. The TMD PDF defined in
the MS-scheme depends on two scales, namely the MS-
renormalization scale µ and the Collins-Soper scale ζ.
The all-order form of its evolution is given by

d ln fi/P (x,bT, µ, ζ)

d lnµ
= γiµ(µ, ζ)

= Γicusp[αs(µ)] ln
µ2

ζ
+ γiµ[αs(µ)] , (55)

d ln fi/P (x,bT, µ, ζ)

d ln ζ
=

1

2
γiζ(µ, bT )

= −2

∫ µ

1/bT

dµ′

µ′
Γicusp[αs(µ

′)] + γiζ [αs(1/bT )] . (56)

Here, Γicusp is the so-called cusp anomalous dimension,

and the γi[αs] denote the non-cusp anomalous
dimensions. Note, however, that the CS kernel γζ , which
in the literature is also often referred to as K, becomes
nonperturbative when qT ∼ b−1

T ∼ ΛQCD, independent
of the choice of µ. In perturbation theory, γζ is known
at three loops (Li and Zhu, 2017; Vladimirov, 2017).

A solution to Eqs. (55) and (56) is given by

fi/P (x,bT, µ, ζ) = fi/P (x,bT, µ0, ζ0) (57)

× exp

[∫ µ

µ0

dµ′

µ′
γiµ(µ′, ζ0)

]
exp

[
1

2
γiζ(µ, bT ) ln

ζ

ζ0

]
.

Note that the Collins-Soper evolution in ζ governs the
energy dependence of the TMD PDF, as ζ ∝ (xP+)2

corresponds to the momentum of the struck quark. Thus,
since γζ itself becomes nonperturbative, TMD PDFs at
different energies are related through a nonperturbative
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T

FIG. 29 Illustration of the Wilson-line structures of the
unsubtracted TMD PDF (top) and soft function (bottom), as
defined in Eq. (51). Figure taken from (Ebert et al., 2019b),
with slight adjustment of the b-component labeling to match
the notation used in the present work.

evolution, and hence calculating γζ from lattice QCD is
of major interest to TMD physics.

Spin-dependent TMD PDFs. For simplicity, we
have so far restricted ourselves to unpolarized processes.
However, due to the vector nature of qT, or equivalently
bT, TMD PDFs are sensitive to both the polarization of
the hadron and the spin of the struck parton. This is
especially useful and can be exploited when nucleon or
hadron structure is the target topic of interest.

In the language and notation of Mulders, Tangerman,
and collaborators (Bomhof and Mulders, 2008; Mulders
and Tangerman, 1996; Tangerman and Mulders, 1995),
the leading TMD PDFs arise through the following
decomposition,

Φ(x,kT , P, S) =
1

2

{
f1(x, k2

T )/P +
1

2
h1T (x, k2

T )γ5 [/ST , /P ]

+SLg1L(x, k2
T )γ5/P +

kT · ST
M

g1T (x, k2
T )γ5/P

+SLh
⊥
1L(x, k2

T )γ5
[/kT , /P ]

2M
+

kT · ST
M

h⊥1T (x, k2
T )γ5

[/kT , /P ]

2M

+ih⊥1 (x, k2
T )

[/kT , /P ]

2M
−
εkTST

T

M
f⊥1T (x, k2

T )/P

}
, (58)

where Φ is, up to normalization conventions, the
momentum space version of the unsubtracted TMD

PDF definition on the first line of Eq. (51), but
with a general Dirac structure rather than the
trace over Γ. Equation (58) displays the eight
different TMD PDF functions that parametrize the
range of possible combinations of correlations between
parton polarization, hadron polarization, and transverse
momentum. Their contribution to, for example,
the SIDIS cross section can be seen directly in
(Bacchetta et al., 2007). By contrast, only three
correlation functions survive the reduction to the
collinear factorization case.

Several of the polarization-dependent TMD correlation
functions have attracted particular attention for having
novel properties unique to QCD with TMD factorization.
For example, the Sivers function f⊥1T (x, k2

T ) vanishes
in naive definitions of the TMD PDF by PT
invariance (Collins, 1993). A nonzero contribution is
only made possible by the nontrivial Wilson line in
Fig. 29 (Brodsky et al., 2002). The Wilson line introduces
a pattern of non-universality in the form of a sign
change of the Sivers TMD function between Drell-Yan-
like processes and SIDIS-like processes (Collins, 2002).

Large Transverse Momentum. The TMD
factorization treatment discussed above is derived
for the limit that parton transverse momentum is
much smaller than the overall hard scale of the
problem. Approximations made in this limit are
no longer valid when qT becomes of order or larger
than the hard scale Q. There, a purely fixed-
order collinear perturbative treatment that takes into
account nonfactorizable transverse momentum behavior
is the appropriate approach. Understanding the
transition between these two different types of transverse-
momentum dependence is important for understanding
the TMD PDFs in particular, especially at moderate
Q, where there is higher sensitivity to nonperturbative
transverse momentum but a less-clear demarcation
between large and small transverse momentum.

Schematically, the contributions from small and large
transverse momentum are combined in the following
additive way:

dσ

dQ2d2qT
= W + Y , (59)

where the “W -term” is the factorization formula
involving TMD PDFs, Eq. (48), while the second “Y -
term” is the correction for large transverse momentum,
perturbatively calculable using collinear factorization
techniques. Achieving a robust matching between
the two regions is critical for establishing that each
region is under theoretical control. A current
challenge is that calculations done with existing collinear
parton distribution and fragmentation functions produce
significant tension with data in the Y -term region
of transverse momentum (Bacchetta et al., 2019b;
Gonzalez-Hernandez et al., 2018; Moffat et al., 2019;
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Wang et al., 2019a). Work is needed to understand and
resolve this tension.

One consequence of the large transverse momentum
contribution is that the relationship between the TMD
and collinear versions of factorization is not a simple
integration over transverse momentum. That is, from
Eq. (59), ∫

d2qT
dσ

dQ2d2qT
6=
∫
d2qTW . (60)

Ultra-violet divergences in the transverse momentum
integrals of TMD functions are one symptom of
the absence of a Y term in the treatment. The
sensitivity to the ultraviolet transverse momentum can
be nontrivial (Qiu et al., 2020). More work in
the direction of quantifying and understanding these
ultraviolet effects is needed.

When the large transverse momentum qT becomes
even larger than Q, both observed momentum scales are
in the perturbative regime. In the case of the Drell-Yan
process, since the transverse momentum of the colliding
partons is sufficiently smaller than both Q and qT , the
Drell-Yan cross section can be factorized in terms of
PDFs convoluted with a perturbatively calculable short-
distance hard part. However, due to the large difference
of the two observed momentum scales, qT � Q, the
large logarithms log(qT /Q) of the short-distance hard
part need to be resummed, and can be systematically
subsumed into an effective fragmentation function for a
parton to fragment into a Drell-Yan lepton pair (Berger
et al., 2002a; Fai et al., 2003).

IV.3. TMD observables from lattice QCD

An ongoing program of evaluating transverse-
momentum–dependent observables in hadrons within
lattice QCD has been reported in Refs. (Engelhardt,
2017; Engelhardt et al., 2018, 2016; Hagler et al., 2009;
Musch et al., 2012, 2011; Yoon et al., 2017). These
studies are based on calculating hadron matrix elements
of the type

Φ̃[Γ] ≡ 1

2
〈P ′, S′|q̄(−b/2)ΓU [−b/2, b/2]q(b/2)|P, S〉 ;

(61)

Φ̃ is a version of the unsubtracted TMD PDF defined in
the first line of (51) cast purely in terms of spacetime
separations, i.e., even the dependence on momentum
fraction x has been replaced by a dependence on the
Fourier-conjugate longitudinal separation b− (cf. also
the complementary definition (58), which instead is cast
purely in momentum space). Several generalizations
and adjustments are made to arrive at a formulation
suitable for lattice calculations. An arbitrary Dirac
structure Γ is allowed for, and the states can also carry

definite spin in addition to momentum. Also off-forward
matrix elements, P ′ 6= P , are of interest, as will be
detailed further below. In a concrete lattice calculation,
the staple-shaped gauge connection between the quark
operators q̄, q, summarized here by U , has finite extent;
in the following, the vector v specifies the direction of the
staple legs, with their length scaled by the parameter η.
For η = 0, the path becomes a straight link between
the quark operators. Standard TMD observables are
obtained by extrapolating the obtained data to η →∞.

As discussed further above, unsubstracted matrix
elements of the type (61) contain divergences, which
have to be absorbed into corresponding multiplicative
soft factors. The TMD observables considered in the
following are, however, appropriate ratios in which the
soft factors cancel. As a result, the soft factors do not
need to be specified in detail for present purposes. To
regulate rapidity divergences, the staple direction v is
taken off the lightcone into the spacelike domain (Collins,
2011). This scheme is particularly suited for the
connection to lattice QCD, as will become clear presently.
A useful parameter characterizing how close v is to the
lightcone is the Collins-Soper type parameter ζ̂ = v ·
P/(|v||P |), in terms of which the lightcone is approached

for ζ̂ →∞.
The application of standard lattice QCD methods to

evaluate (61) requires the operator in (61) to exist at
a single time; given that b and v are spacelike (the
latter by virtue of the rapidity regulator scheme), there
is no obstacle to boosting the problem to a Lorentz
frame in which this is the case. The transformation
of the results back to the original frame is facilitated
by a decomposition of (61) into Lorentz invariants that
parallels the decomposition (58) of the momentum space
correlator into TMD PDFs. For example, in the Γ = γ+

channel, for a proton (Musch et al., 2012),

1

2P+
Φ̃[γ+] = Ã2B + imN εijbiSjÃ12B (62)

The invariants ÃiB essentially correspond to Fourier-
transformed TMD PDFs. Through them, one can
finally define observables such as the generalized Sivers
shift (Musch et al., 2012),

〈kT 〉TU (b2, b · P, ζ̂, ηv · P, . . .) =

−mN
Ã12B(b2, b · P, ζ̂, ηv · P, . . .)
Ã2B(b2, b · P, ζ̂, ηv · P, . . .)

. (63)

In the bT → 0 limit, (63) formally represents the
average transverse momentum kT of unpolarized (“U”)
quarks orthogonal to the transverse (“T”) spin of the
proton, normalized to the corresponding number of
valence quarks. Note that any multiplicative soft factors
renormalizing the ÃiB are canceled by forming this type
of ratio.
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FIG. 30 Left: Proton Sivers shift as a function of staple length for fixed bT and ζ̂; η → ∞ defines the SIDIS limit. Right:
Extrapolation of the SIDIS-limit data for the pion Boer-Mulders shift to large ζ̂ at fixed bT (Engelhardt et al., 2016). Open

symbols represent a partial contribution that dominates at large ζ̂, providing further insight into the approach to the asymptotic
regime.

Lattice calculations to date have predominantly
focused on the special case b · P = 0, corresponding
to evaluating integrals of the TMD PDFs in question
over the longitudinal quark momentum fraction x, and
thus concentrating purely on the transverse-momentum
dependence. Some example results are exhibited below.
Generalizing these calculations to a scan of the (b · P )-
dependence allows one to access also the dependence on
x, which is Fourier conjugate to b · P . Note that, since
soft factors do not depend on b · P , they can be factored
outside the corresponding Fourier transforms and still
canceled in ratios. Cast in Lorentz-invariant form, the
lattice geometries relevant for TMD observables must
obey the relation (Musch et al., 2012)

v · b
v · P

=
b · P
m2
N

(
1−

√
1 + 1/ζ̂2

)
, (64)

which forces one to use general off-axis directions on
the lattice, significantly complicating the analysis. Data
from a preliminary scan of the (b·P )-dependence indicate
that it is feasible to obtain also the x-dependence of TMD
ratios such as (63). A corresponding comprehensive
data production effort is currently in progress. A
complementary approach to the x-dependence of TMD
PDFs based on quasi-TMD PDFs is presented in detail
in the next section.

In a concrete lattice calculation, one must extrapolate
the data to the η → ∞ limit in order to make
contact with standard TMD PDFs. This extrapolation
is typically under good control, as shown in Fig. 30
(left), exhibiting first data recently obtained directly
at the physical pion mass. Moreover, the lattice data
need to be extrapolated to the regime of large ζ̂. This
presents a considerable challenge, since it requires data
at sufficiently high hadron momenta. Figure 30 (right)
displays results of a corresponding dedicated study of

the Boer-Mulders shift in a pion (Engelhardt et al.,
2016); the Boer-Mulders shift is a counterpart to the
Sivers shift in which the hadron is unpolarized, but the
quark is transversely polarized. A further question to
be faced is whether the multiplicative renormalization
pattern of continuum TMD PDFs carries over to the
lattice formulation. This issue was explored in Ref. (Yoon
et al., 2017) by varying the discretization scheme and
testing for violations of a multiplicative renormalization
pattern; a sample comparison is shown in Fig. 32
(left), corroborating that soft factors cancel in the
Sivers shift ratio to the accuracy accessible in the
calculation. Note that, for selected Dirac structures
and discretization schemes, operator mixing has been
shown to occur for quark bilinear operators with staple-
shaped gauge connections (Constantinou et al., 2019;
Green et al., 2020; Shanahan et al., 2020b), invalidating
simple multiplicative renormalization. Fig. 31 illustrates
the mixing pattern in the RI’/MOM scheme for quark
bilinear operators constructed using improved Wilson
fermions with staple-shaped gauge connections in the
case of a purely transverse quark operator separation
b (Shanahan et al., 2020b).

Finally, by extending calculations of (61) to nonzero
transverse momentum transfer ∆T = P ′ − P , one can
correlate quark transverse momentum with position; ∆T

is Fourier conjugate to the quark impact parameter
rT. This allows one to directly access longitudinal
quark orbital angular momentum (OAM), 〈rT × kT〉.
The choice of gauge link U corresponds to different
decompositions of proton spin. A staple link extending
to infinity, such as used in standard TMD PDF
studies, yields Jaffe-Manohar OAM, whereas the η = 0
limit yields Ji OAM (Burkardt, 2013; Hatta, 2012; Ji
et al., 2012; Rajan et al., 2016, 2018). By varying η
within a lattice calculation, a continuous, gauge-invariant
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White circles indicate mixings already obtained in one-loop lattice perturbation theory (Constantinou et al., 2019).

interpolation between the two is obtained (Engelhardt,
2017). Fig. 32 (right) displays corresponding results
reported in Ref. (Engelhardt et al., 2018). Jaffe-Manohar
orbital angular momentum is enhanced in magnitude
compared to its Ji counterpart.

IV.4. Quasi-TMD PDFs

An alternative approach to calculating TMD PDFs
from lattice QCD using so-called quasi-TMD PDFs (Ji,
2013, 2014) has been been explored recently by several
groups (Ebert et al., 2020a, 2019a,b, 2020b; Ji et al.,
2019a,b,c, 2020, 2015b; Vladimirov and Schäfer, 2020).
Here, the key idea is to construct an equal-time correlator
by replacing lightlike separations in (51) by a spacelike
separation along the z direction alone. Under a Lorentz
boost, these spacelike directions approach the lightcone,
with the mismatch being accounted for by a perturbative
matching.

Following the notation of Ref. (Ebert et al., 2019b), we
define the quasi-TMD PDF analogous to (50) as

f̃i/P (x,bT, µ, P
z) = lim

a→0
η→∞

Z̃iuv(µ, a)

× f̃0 (u)
i/P

(
x,bT, a, η, P

z
)
∆̃q
S(bT, a, η) . (65)

Here, the lattice spacing a acts as UV regulator, η limits
the length of the Wilson lines, and ∆̃q

S is a quasi-soft
factor required to cancel divergences as η/bT → ∞.
While it has been shown in Ref. (Ebert et al., 2019b)
that there is no straightforward construction of a quasi-
soft factor directly related to the soft functions appearing
in (50), Ref. (Ji et al., 2019b) recently proposed to
calculate it within lattice QCD, employing a formulation
based on heavy-quark effective theory. Importantly,
this factor cancels in ratios of quasi-TMD PDFs, and

hence, similarly to the method discussed in IV.3, a
determination of ∆̃q

S is not needed to access such ratios.
The unsubtracted quasi-TMD PDF is defined as

f̃
0 (u)
i/P (x,bT, a, η, P

z) =

∫
dbz

2π
eib

z(xP z)NΓ̃

×
〈
P
∣∣q̄(b/2) Ũ Γ̃

2 q(−b/2)
∣∣P〉 , (66)

where bµ = (0,bT, b
z), and the Wilson line path Ũ

is chosen such that it connects b/2 → (0,bT/2, η) →
(0,−bT/2, η)→ −b/2. For unpolarized TMD PDFs, the
Dirac structure can be chosen as Γ̃ = γ0, γ3, with the
normalization factor Nγ0 = 1, Nγ3 = P z/P 0.

For polarized quarks and protons, one can generalize
(66) using different Dirac structures Γ̃. However, the
relation between quasi-TMD PDFs and TMD PDFs has
been argued to be spin-independent (Ebert et al., 2020a;
Vladimirov and Schäfer, 2020), and hence the following
results also apply to the polarized case.

The key relation between quasi-TMD PDFs and TMD
PDFs is (Ebert et al., 2019b; Ji et al., 2019c, 2020;
Vladimirov and Schäfer, 2020)

f̃ns(x,bT, µ, P
z) = Cns(µ, xP

z)gSq (bT , µ)

× exp

[
1

2
γqζ (µ, bT ) ln

(2xP z)2

ζ

]
fns(x,bT, µ, ζ) , (67)

which holds up to corrections in bT /η, 1/(bTP
z) and

1/(P zη). In (67), the quasi-TMD PDF f̃ns in the
nonsinglet ns = u − d channel is related to the TMD
PDF fns through a perturbative kernel Cns, which is
known at one loop (Ebert et al., 2019b). It also
involves a nonperturbative factor gSq because the quasi-
TMD PDF was not defined with the physical soft
function. In the approach of Ref. (Ji et al., 2019b), it
corresponds to the reduced soft factor, gSq =

√
Sr, see also
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Ref. (Ji et al., 2020). Once calculations of this reduced
soft factor become available, quasi-TMD PDFs can be
formulated without this nonperturbative factor (Ji et al.,
2019b,c). Lastly, (67) also involves the nonperturbative
CS evolution kernel, see (56), which relates the hadron
energies P z and ζ.

The Collins-Soper kernel γζ is required to relate
TMD PDFs at different hadron energies, and thus its
nonperturbative determination from lattice QCD is of
key interest. Based on (67), Refs. (Ebert et al., 2019a,b)
proposed to determine it from ratios of quasi-TMD PDFs
at different momenta P z1 6= P z2 ,

γqζ (µ, bT ) =
1

ln(P z1 /P
z
2 )

ln
Cns(µ, xP

z
2 ) f̃ns(x,bT, µ, P

z
1 )

Cns(µ, xP z1 ) f̃ns(x,bT, µ, P z2 )
,

(68)

see also Ref. (Vladimirov and Schäfer, 2020) for a related
proposal. In the ratio in (68), the quasi-soft factor
∆̃q
S cancels, and thus the Collins-Soper kernel can be

obtained from a ratio of unsubtracted (but renormalized)
quasi-TMD PDFs alone. Another key advantage is the
independence of (68) on the hadron state, and hence it
can be calculated in a pion state rather than a proton
state.

Without ∆̃q
S , both numerator and denominator in

(68) suffer from divergences associated with Wilson-
line self energies, that is, divergences in η/bT . These
divergences cancel in the ratio, but in practice it can
be numerically more reliable to enforce this cancellation
separately in numerator and denominator. In Ref. (Ebert
et al., 2020b), it was suggested to insert a common
renormalization factor determined nonperturbatively in
the RI’/MOM scheme on the lattice, and its conversion
to the MS scheme was calculated at one loop. The
first lattice studies of this renormalization factor were

explored in Ref. (Shanahan et al., 2020b), revealing
significant operator mixing on the lattice, cf. Fig. 31,
which was treated by diagonalizing the renormalization
and matching matrices for the RI’/MOM scheme.

The feasibility of the above method of determining the
Collins-Soper kernel was demonstrated in Ref. (Shanahan
et al., 2020a) using a lattice of size L3 × T = (2 fm)3 ×
4 fm and lattice spacing a = 0.06 fm with a heavy
pion mass mπ = 1.2 GeV. Taking advantage of (68)
being independent of the hadron state, the Collins-Soper
kernel for nf = 0 quark flavors was extracted from
a quenched calculation of quasi TMD PDFs in a pion
state with momenta P z ∈ {1.29, 1.94, 2.58} GeV. The
study found that the extrapolation of the position-space
matrix element to bz → ∞ poses a key challenge in
the Fourier transform in (66). Two different fits to the
lattice data were performed using Bernstein and Hermite
polynomials, and strong sensitivity to the finite size of
the lattice was observed by comparing the extrapolations
of the two polynomial fits to bz > L/2. Additional
systematic effects from the power corrections mentioned
below (67) could not be resolved with the limited data
from the employed lattice simulation. Nevertheless,
promising results were obtained, demonstrating that
lattice results for the CS kernel in the nonperturbative
region up to bT ∼ 1 fm are tractable provided that future
calculations are performed on significantly larger lattice
volumes.

Figure 33 shows the result of Ref. (Shanahan
et al., 2020a) for the bT -dependence of the CS kernel,
comparing their two extractions using Bernstein and
Hermite polynomials to perturbative predictions of the
same quantity. The perturbative results diverge at bT ≈
0.25 fm due to the Landau pole of the strong coupling,
while the lattice calculation yields encouraging results for
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FIG. 33 Results of Ref. (Shanahan et al., 2020a) for the
bT -dependence of Collins-Soper evolution. The red and
purple data exhibit results using two different interpolations
of the unsubtracted quasi-TMD PDF. The dashed and solid
lines indicate perturbative results for the same quantity,
which break down at the Landau pole at bT ≈ 0.25 fm.
Both in the small-bT limit as well as in the large-bT region
there are additional systematic uncertainties owing to power
corrections that have not been estimated in the figure.

all values of bT , except for very small bT where 1/(bTP
z)

power corrections become important.
It will also be interesting to consider other ratios of

TMD PDFs obtained from lattice QCD, for example
ratios of (quasi-)TMD PDFs in different hadron states, or
ratios of spin-dependent (quasi-)TMD PDFs. Such ratios
of quasi-TMD PDFs are independent of the soft factor,
and, when evaluated at equal momenta, are furthermore
independent of the CS evolution in (67); they can thus be
related perturbatively to corresponding ratios of TMD
PDFs. Of particular value will be lattice results of
sufficient quality, and in the relevant kinematical regimes,
to be useful as auxiliary input to phenomenological fits
of TMD PDFs, discussed in the next section.

IV.5. Status of global TMD fits

TMD PDFs carry rich information on parton confined
motion inside a bound hadron, as well as on correlations
between the motion of quarks and gluons and the
direction of hadron spin. Their information can be
extracted from data on QCD factorizable hadronic
cross sections or lattice observables (such as quasi- or
pseudo-TMD PDFs), and their properties could also be
studied in terms of model calculations. The limited
kinematic coverage for the differential cross sections
provided by experimental data leads to a challenging
inverse problem; it is unlikely, if not impossible, that
one can completely fix the TMD PDFs as continuous
functions over the full range of kinematics. To pin
down TMD PDFs to the best possible accuracy, we need
data from multiple observables, experimentally measured
or calculated within Lattice QCD, that are related to

the same universal set of TMD PDFs, covering a wide
kinematic regime, and to perform QCD global analyses
and fits, similar to what is done to extract the PDFs as
described in Sec. II.3.

However, there are fundamental differences between
global fits to extract PDFs and the global fits for
extracting TMD PDFs. With the linear DGLAP
evolution equations, PDFs are uniquely determined once
we have a set of input PDFs as a function of x at a lowest
possible input hard scale Q0 ∼ GeV, since all DGLAP
evolution kernels are perturbatively calculable for scales
larger than Q0. Then, PDFs at Q > Q0 can be generated
by the DGLAP evolution, which is the predictive power
of QCD dynamics and its factorization formalism.

For TMD PDFs with two momentum scales, Q and kT
(or its Fourier conjugate bT ), QCD evolution involves
two coupled evolution equations and covers a two-
dimensional phase space, e.g., (Q, bT ), where bT ∈
[0,∞) (Collins et al., 1985). As a consequence, the
path used in solving these two coupled equations is
not unique, which could affect the size of higher order
corrections, leading to an additional scheme dependence
of the TMD PDFs (Scimemi and Vladimirov, 2019).
However, the fundamental and most important difference
from DGLAP evolution is that evolution kernels for
evolving TMD PDFs from an input scale Q0 to any higher
observed scale Q, referred as the Collins-Soper kernels
(cf. Sec. IV.2), depend on the value of bT , and are not
perturbatively calculable for the region where bT > 1/Q0.
That is, if the Fourier transform to obtain momentum
space kT -dependent TMD PDFs, which are needed for
evaluating momentum-space cross sections, is sensitive
to the large bT -region of the evolved bT -distributions,
QCD perturbation theory and its factorization formalism
cannot uniquely generate TMD PDFs at a large scale Q
from input TMD PDFs at Q0 as a function of x and kT
(or bT in Fourier space) (Collins et al., 1985).

In high energy collisions, a parton shower develops
following the breaking up of the colliding hadron(s), and
the characteristics of the shower depend on the hard scale
of the collision Q and the available phase space for the
shower, which is sensitive to probed parton momentum
fraction x (Grewal et al., 2020). Consequently, the
probed active parton’s kT in hard collisions, described
by the measured TMD PDFs, is not the same as the
intrinsic transverse momentum kT0 of the same parton
inside a bound hadron. The difference is encoded
in the QCD evolution of TMD PDFs. For physical
observables whose momentum transfer Q is large and
active parton x is effectively small, such as the transverse
momentum qT-dependence of W/Z or Higgs production
at collider energies, QCD evolution (or the effect of
the shower) is dominated by perturbatively calculable
large logarithms, or equivalently, the bT-dependence of
the relevant TMD PDFs in Fourier space is completely
dominated by the perturbative small-bT region (Grewal
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et al., 2020; Qiu and Zhang, 2001b). In this case, non-
perturbative evolution kernels from the large-bT region
are effectively irrelevant, the extracted kT -dependence
of TMD PDFs for these observables is perturbatively
generated (by the calculable part of the shower), and the
only relevant non-perturbative information is given by
normal collinear PDFs. Physically, for such observables
and the corresponding TMD PDFs, the information
on non-perturbative partonic motion (or intrinsic kT0 -
dependence) inside a bound hadron was diluted by the
tremendous shower developed during the collision (or
the effective 〈kT0

2〉 � 〈qT
2〉). In this case, QCD

perturbation theory and its TMD factorization formalism
should have excellent predictive power similar to that
of collinear factorization (Berger and Qiu, 2003; Grewal
et al., 2020; Qiu and Zhang, 2001a). QCD global analyses
and fits of data on this kind of observable at high
energy colliders should provide excellent precision tests of
QCD factorization and resummation of large logarithms,
and additional opportunities or channels to explore new
physics; they should be pursued for LHC physics.

On the other hand, for extracting information on the
motion of quarks and gluons inside a bound hadron,
a fundamental emergent QCD phenomenon, we need
to probe TMD PDFs through scattering processes
with relatively less dilution from partonic showers,
and observables with a relatively smaller momentum
transfer Q. In this case, QCD evolution (or the
connection between the measured kT -dependence at the
hard collision scale Q and the intrinsic kT0

dependence
inside a bound hadron) is very much sensitive to the
non-perturbative large bT region (Grewal et al., 2020;
Qiu and Zhang, 2001b; Scimemi and Vladimirov, 2019).
Any global analyses of TMD PDFs and fits of data from
this kinematic regime have to clearly define how the non-
perturbative evolution in the large bT -regime is treated
(Collins and Rogers, 2015).

There have been three types of approaches to treating
the non-perturbative evolution in the large-bT regime.
As originally proposed in the pioneering paper on TMD
physics (or physics of two-scale observables) (Collins
et al., 1985), the evolution is completely taken care of by
perturbative Collins-Soper evolution kernels in the small
bT -regime by introducing a “b∗-prescription”,

fi/P (x,bT, Q) ≡ fi/P (x,bT
∗, Q)FNP(x,bT, Q) , (69)

where bT
∗ ≡ bT/

√
1 + (bT /bTmax)2, such that b∗T <

bTmax
for bT ∈ [0,∞), and FNP(x,bT, Q) is a

nonperturbative function to be fitted through data from
global fits (Collins and Rogers, 2015; Davies et al., 1985;
Landry et al., 2003; Meng et al., 1996). The second
approach is to keep the perturbatively evolved TMD
PDFs in the small-bT region as they are, and introduce
a model evolution kernel for the large-bT region whose
parameters are fitted by experimental data (Qiu and

Zhang, 2001b; Scimemi and Vladimirov, 2019). The
third approach is to calculate these non-perturbative
evolution kernels within lattice QCD, as discussed in
the previous subsection, an approach which needs to
be explored further. In view of the reach of lattice
TMD calculations performed to date, it seems plausible
to anticipate that, in the medium term, obtaining non-
perturbative evolution kernels with an accuracy in the
range of 10-20% up to bT ∼ 1 fm at hadron momenta up
to about 2 GeV at the physical pion mass will be possible.
The restriction in the hadron momentum is likely to
remain a significant source of systematic uncertainty,
engendering higher-twist power corrections that must be
brought under numerical control. Also effects of the finite
size of the lattice are still only rudimentarily understood.
Nonetheless, such input could provide valuable additional
information for global fits.

Phenomenologically, most efforts to extract TMD
PDFs from existing data are concentrated on the
unpolarized f1(x, k2

T ) in Eq. (58). In recent years, there
has been tremendous progress both in the accuracy of
the theoretical framework and in the dimension of the
data set included in the fit. Extractions of f1(x, k2

T ) from
SIDIS data were performed in the so-called extended
parton model (Anselmino et al., 2014; Signori et al.,
2013) (the latter being the only analysis so far with an
explicit flavor dependence in the fitting parameters of
the functional form), and were followed by extractions in
the appropriate TMD framework but limited to Drell-
Yan and Z-boson production data. In these cases,
the description of the TMD evolution formula (57)
was continuously improved, moving from the NLL
level (Bacchetta et al., 2017; Echevarria et al., 2014; Sun
et al., 2018) through the NNLL one (Bertone et al., 2019;
D’Alesio et al., 2014; Scimemi and Vladimirov, 2018), up
to the NNNLL level (Bacchetta et al., 2019a; Scimemi
and Vladimirov, 2019) that matches the accuracy of
standard phenomenology at the LHC (see Table 1 and
Sec. 2.3 of Ref. (Bacchetta et al., 2019a) for more details
on the perturbative expansion). In the most recent
analyses (Bacchetta et al., 2019a; Bertone et al., 2019;
Scimemi and Vladimirov, 2018, 2019), very precise data
from the LHC (in particular, from ATLAS) were included
in the fit and turned out to have a large impact on
the behaviour of f1(x, k2

T ) at small x. Conversely, the
impact of a flavor-dependent TMD (as obtained from
the low-energy analysis of Ref. (Signori et al., 2013))
on the extraction of Standard Model parameters at the
LHC was explored in Ref. (Bacchetta et al., 2019c)
using the template-fit technique, reaching the conclusion
that flavor sensitivity in the intrinsic quark transverse
momentum might induce an additional uncertainty in the
extraction of the W boson mass that is comparable to the
error correlated to PDF uncertainties.

The first extraction of f1(x, k2
T ) in the TMD framework

from a global fit of both SIDIS data and measurements
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of the Drell-Yan and Z-boson production processes
can be found in Ref. (Bacchetta et al., 2017). The
approach is based on the description at NLL of
the perturbative Collins-Soper evolution kernel plus
a modified “b∗-prescription”. The fit includes 8059
data points with a quality of χ2/d.o.f. = 1.55 ±
0.05 with only 11 parameters. The results confirm
the universality of TMD PDFs but show a marked
anti-correlation between TMD PDFs and TMD FFs,
calling for an independent extraction of transverse-
momentum dependent fragmentation functions from e+-
e− annihilation data (which is still missing). The
same finding is obtained in the more recent global fit
of Ref. (Scimemi and Vladimirov, 2019), where the
perturbative accuracy of the TMD at small bT is pushed
to the NNNLO level and the nonperturbative part of the
evolution at large bT is fitted to data. The analysis of
Ref. (Scimemi and Vladimirov, 2019) includes recent very
precise LHC data, although the total number of analyzed
data points (1039) falls short of the hitherto largest set
of 8059 analyzed in Ref. (Bacchetta et al., 2017).

As for polarized TMD PDFs in Eq. (58), the best
known is the Sivers function f⊥1T (x, k2

T ). It describes how
the kT distribution of an unpolarized quark is distorted
in a transversely polarized hadron (Sivers, 1990). In
fact, for a nucleon with mass M moving along the ẑ
direction and transversely polarized along the ŷ direction,
the probability density of a quark with flavor q is given,
at a certain (understood) scale Q, by

fq/N↑(x, kx, ky) = fq1 (x, k2
T )− f⊥q1T (x, k2

T )
kx
M

, (70)

cf. Eq. (58). If the nucleon were unpolarized, the fq/N
would be determined only by the unpolarized TMD
PDF f1 and the density would be perfectly symmetric
around the ẑ direction. The transverse polarization of
the nucleon induces a distortion of the density along
the x̂ direction through the Sivers TMD PDF f⊥1T .
Evidently, f⊥1T describes a spin-orbit effect at the partonic
level. The Sivers function is representative of the class
of näıve T-odd TMDs, namely of those TMDs that
are not constrained by T-reversal invariance (Boer and
Mulders, 1998). Their universality is broken but in
a calculable way. For example, the Sivers function
extracted in a Drell-Yan process with a transversely
polarized proton should turn out opposite to the one
that is extracted in SIDIS. The f⊥1T |DY = −f⊥1T |SIDIS

prediction is based on very general assumptions, and it
represents a fundamental test of QCD (Collins, 2002).
Therefore, it is the subject of intense experimental
investigation. Preliminary results hint to statistically
favor the prediction (Adamczyk et al., 2016; Aghasyan
et al., 2017; Anselmino et al., 2017) although more precise
data are needed to draw a sharp conclusion. Many
parametrizations of the Sivers function are available (for
example, see Refs. (Anselmino et al., 2012; Aybat et al.,

FIG. 34 Upper panels: quark density fq/N = f1(x = 0.1, k2
T )

at Q2 = 1 GeV2 for an unpolarized proton moving ideally
towards the reader; left panel for up quark, right panel for
down quark. Lower panels: quark density fq/N↑ = f1(x =

0.1, k2
T ) − f⊥q1T (x = 0.1, k2

T )kx/M in the same conditions but
for a proton transversely polarized along the ŷ direction (see
text).

2012; Bacchetta and Radici, 2011; Boer, 2013; Collins
et al., 2006; Sun and Yuan, 2013; Vogelsang and Yuan,
2005)). In Ref. (Bacchetta et al., 2020b), the density
fq/N↑ of Eq. (70) is reconstructed by combining the
extraction of the unpolarized f1 from Ref. (Bacchetta
et al., 2017) with the extraction of the Sivers f⊥1T from
SIDIS data in the same approach. In this way, the
quark density is reconstructed in a consistent way from
real experimental data for nucleons with or without
transverse polarization. In Fig. 34, fq/N↑ is represented
at x = 0.1 and Q2 = 1 GeV2 for a proton ideally moving
towards the reader. The upper panels correspond to the
symmetric situation of an unpolarized proton. The lower
panels show the distortion along the x̂ direction induced
by the transverse polarization along the ŷ direction,
which turns out opposite for the up quark (left panel) and
the down quark (right panel). The tomography depicted
in Fig. 34 gives a realistic estimate of the non-trivial
correlation between the motion of quarks and the spin
direction of the parent proton.

As for the transversity TMD PDF h1(x, k2
T ) in

Eq. (58), we refer to Sec. II.1.4. Very recently, a global
fit of all single-spin asymmetries involving polarized
TMDs in SIDIS, Drell-Yan, e+-e− annihilation, and
hadron-hadron collision processes has been presented in
Ref. (Cammarota et al., 2020), extracting a universal
set of TMD functions including the Sivers and the
transversity distributions. However, the analysis was not
performed in the TMD framework, thus neglecting the
effects of TMD evolution which might be important when
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connecting experimental data collected at very different
scales.

In summary, it has now become possible to build the
first accurate tomography in momentum space of quarks
inside (polarized) nucleons, and we can describe how
this picture evolves with the hard scale Q and how it
changes with the quark longitudinal momentum fraction
x. However, we have no similar results for the gluon TMD
PDFs. Several studies have explored useful channels
at RHIC and the LHC with p − p collisions leading to
J/ψ + X, or J/ψ + γ + X, or ηc + X final states (Boer
et al., 2016; D’Alesio et al., 2019, 2017; den Dunnen
et al., 2014). At the EIC, it would be possible to
consider also SIDIS processes like e− p collisions leading
to J/ψ + X, h1 + h2 + X, jet+jet+X , J/ψ+jet+X
final states (Bacchetta et al., 2020a; Boer et al., 2016;
Mukherjee and Rajesh, 2017; Rajesh et al., 2018).

With more and higher quality data becoming available
from Jefferson Lab at 12GeV, COMPASS at CERN,
and the future EIC, and a better understanding of non-
perturbative evolution at large bT from lattice QCD
calculations, the community should be able to perform
much more accurate global fits of TMD PDFs to learn
about the “true” confined partonic motion in hadrons,
isolating it from the contamination from parton showers
triggered by high energy collisions. In addition to
the specific issue of the Collins-Soper evolution kernel
highlighted above, lattice QCD can provide further
auxiliary input for future global fits. TMD observables
at separations up to bT ∼ 1 fm at hadron momenta up
to about 2 GeV will be accessible at the physical pion
mass in the medium term, where it can be expected that
moments in the momentum fraction x will continue to
be obtained with better precision than the x-dependent
quantities, even as determinations of the latter are
developed. Used to anchor phenomenological fits, such
moments may represent the most accessible avenue for
lattice QCD to contribute to global fit efforts.

V. OUTLOOK, CHALLENGES & CONCLUSIONS

V.1. Outlook

The study of the distributions of partons into hadrons
is an active interdisciplinary research field lying at the
crossroads of high-energy, hadronic and nuclear physics.
In this report, we have provided a succinct review
of recent developments concerning PDFs, GPDs and
TMD PDFs from both nonperturbative lattice QCD
and perturbative global analysis. Throughout, we
have highlighted the synergy between these two distinct
approaches and provided examples of where each can
reinforce the other.

From the perspective of QCD global analysis,
fits of PDFs, GPDs and TMD PDFs are often
limited by kinematical regions which have either been
weakly probed experimentally or are inaccessible to
contemporary measurements, such as (very) high or
(very) low x, in the case of PDFs. Similarly, precise
extractions of the flavor dependence of the PDFs
and related quantities are frequently hindered by the
sparsity of data with direct sensitivity. For instance,
in studies of unpolarized PDFs, determinations of the
nucleon’s strangeness content commonly require final-
state tagging of charm quarks in dimuon production
off nuclei or other semi-inclusive processes for which
various ambiguities exist regarding the treatment of
nuclear medium effects, hadronization, and other issues.
Due to these complexities, lattice-QCD data on PDF
moments or quasi-/pseudo-distributions can already have
a valuable impact as fitted data or theoretical priors
in global PDF fits. In contrast, contemporary data
informing the u- and d-quark distributions are sufficiently
constraining that lattice calculations on the lowest PDFs
moments do not yet possess the needed precision to
be quite as informative in a global analysis. All the
same, technical improvements in the evaluation of PDF
moments, the extension of lattice calculations to higher
moments, and supplementation of this information with
quasi- and pseudo-PDFs will gain pace in coming years.
These developments suggest the possibility of future
global PDF fits in which extractions of unpolarized PDFs
are augmented by an array of lattice calculations that
provide enhanced precision.

Strategies and theory developments for this approach
can be guided by lattice calculations and QCD
analyses for the comparatively less constrained partonic
distributions, such as the helicity and transversity
collinear distributions, GPDs, and TMD PDFs.. The
impact of lattice calculations in QCD global fits
can be reciprocally enhanced by the phenomenological
determinations themselves, which, by their precision,
can provide benchmarks for many standard lattice
observables. We therefore envision a PDF-Lattice
synergy deriving from the ability of QCD global fitters
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to drive improvements in lattice calculations with
benchmarks informed by high-energy data, while the
lattice provides informative constraints in kinematical
regions that are otherwise challenging to constrain
empirically.

As an essential ingredient for this relationship,
both communities must establish a common basis for
comparing results from lattice QCD and global fits — a
challenging undertaking given the complex contemporary
landscape of lattice calculations and global fits, which
involve a patchwork of theoretical settings, systematic
assumptions, and, in the case of QCD analyses, empirical
data sets. This is a primary goal of this report, which,
in addition to numerous updates, aimed to extend the
comparative PDF-lattice basis from the arena of collinear
distributions developed in the 2017 PDFLattice white
paper to multidimensional distributions for which lattice
information can more immediately drive global fits. The
study of 1-dimensional collinear unpolarized PDFs is a
very mature field and benefits from decades of intense
experimental and theoretical accomplishments. By
contrast, study of the collinear helicity and transversity
PDFs and of the 3-dimensional hadronic structure
represents a comparatively new field which offers a wealth
of opportunities for new measurements, tools, and ideas.

The TMD PDFs and GPDs discussed in this report
are examples of how we can augment our current
collinear PDFs to more fully map out the hadronic
structure. These generalized distributions provide a
special opportunity with new facilities on the horizon
such as the HL-LHC, LHeC, and EIC. For example,
the EIC is well suited to perform hadron tomography
measurements, given its high-luminosity coverage of
the low Q2 quark-hadron transition region in the
kinematical parameter space. These hadron tomography
measurements can be crucial in unfolding the nucleon’s
collinear and transverse structure at scales adjacent to
the nucleon mass, and for constraining the quantities
accessible in next-generation lattice-QCD calculations.

V.2. Challenges

Looking ahead to the next decade, what will we need
to accomplish?.

• For the unpolarized proton PDFs, the goal is
to continue reducing uncertainties so these are
no longer a limiting factor for many precision
measurements. These analyses are performed at
NNLO as standard. It will take a concerted effort
on both the experimental and theoretical fronts to
move these analyses to the next desired precision.

• For the helicity and transversity PDFs, knowledge
is significantly more limited than for unpolarized
PDFs, both theoretically and experimentally. The
standard accuracy for global analyses of these
PDFs is currently NLO and LO, respectively. The
quality and quantity of data limit their sensitivity
to only a limited subset of partons in a fairly
restricted kinematic region. This state of affairs
will be overcome by the advent of an EIC.

• For the nuclear PDFs, the uncertainties are
significantly larger than those for the proton PDFs.
The nuclear PDF analyses have more degrees
of freedom, but typically have less data points
than the proton PDFs; hopefully, this situation
will be remedied by the proposed experimental
facilities. Additionally, new Lattice QCD efforts
are beginning to explore light nuclei; this could be
helpful in describing nPDFs as simple A-dependent
interpolations in this region may be insufficient.
As the nPDF precision increases, we can being to
investigate collective effects and other phenomena
that are present for nuclei but may not be evident
in the proton.

• In lattice QCD, calculations of PDF moments
have improved for both unpolarized, helicity and
transversity moments. Additionally, new ideas
on QCD factorizable and lattice-QCD calculable
quantities, such as quasi- and pseudo-PDFs and
correlations of currents, offer new avenues of
inquiry and the possibility to extract PDFs
over a broader range of x. Theoretical efforts
in identifying new QCD factorizable quantities,
especially those difficult to measure experimentally,
would allow us to leverage the the power of lattice
QCD to map out unknown structures.

• The study of GPDs offers insight into the 3D
structure of the nucleon via exclusive processes such
as DVCS and meson production. A significant
challenge of these measurements is that they
involve a larger number of variables as compared
to collinear PDFs. As such, progress on this topic
will require a multifaceted effort combining new
experimental data with a variety of theoretical
methods including Mellin moments, quasi- and
pseudo-distributions, and Machine Learning to
provide a 3D tomographic image of the nucleon
structure.
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• The extension of collinear PDFs to TMD PDFs
provides a new and fertile area for research, and
there are a number of topics which are particularly
well suited to the Lattice QCD approach. Recent
progress has enabled these calculations to scan the
(b ·P )-dependence of the hadronic matrix elements
to access the x-dependence of the TMD PDFs.
Further extensions of the calculations to nonzero
transverse momentum transfer offer the possibility
to measure the quark orbital angular momentum.
These advances, combined with recent work that
provides a rigorous theoretical formalism for the
TMD PDF framework, indicate a promising future
for this line of research.

V.3. Conclusions

This report is the outcome of a 2019 workshop which
brought the perturbative and non-perturbative PDF
communities together to address how a combined effort
from these complementary perspectives can advance our
knowledge of the nucleon structure. In addition to
providing an update of the traditional collinear PDFs,
we have extended our analysis to include both the GPDs
and TMD PDFs which, when taken together, can provide
a complete description of both the transverse motion and
position of the partons inside a nucleon.

The broader scope of our investigations highlights
areas where perturbative global PDF analyses and the
Lattice QCD calculations can benefit each other. For
example, the global analyses of the unpolarized collinear
PDFs are very mature and can thus provide constraints
which can be utilized by the Lattice QCD calculations.
Conversely, for some of the polarized and generalized
PDF measurements, the Lattice QCD approach can
provide important inputs.

With the prospect of new facilities and experiments
in the near future, there is a urgent need for improved
theoretical tools to keep pace with the experimental
data. This work is ongoing, and the techniques and
methods described here will not only form the basis
of next-generation PDFs, but also afford a deeper
understanding of the QCD theory which will facilitate
precision measurements and new discoveries for future
experiments.
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Quintero (2017a), Proceedings, 12th Conference on Quark
Confinement and the Hadron Spectrum (Confinement XII):
Thessaloniki, Greece, EPJ Web Conf. 137, 05020.

Chouika, N., C. Mezrag, H. Moutarde, and J. Rodŕıguez-
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Q. Ma, K. Orginos, J.-W. Qiu, and D. G. Richards (2020),
arXiv:2001.04960 [hep-lat].

Sufian, R. S., J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu,
and D. G. Richards (2019), Phys. Rev. D99 (7), 074507,
arXiv:1901.03921 [hep-lat].

Sufian, R. S., Y.-B. Yang, A. Alexandru, T. Draper, J. Liang,
and K.-F. Liu (2017), Phys. Rev. Lett. 118 (4), 042001,
arXiv:1606.07075 [hep-ph].

Sun, P., J. Isaacson, C. P. Yuan, and F. Yuan (2018), Int. J.
Mod. Phys. A 33 (11), 1841006, arXiv:1406.3073 [hep-ph].

Sun, P., and F. Yuan (2013), Phys.Rev. D88, 114012,
arXiv:1308.5003 [hep-ph].

Tanabashi, M., et al. (Particle Data Group) (2018), Phys.
Rev. D98 (3), 030001.

Tangerman, R. D., and P. J. Mulders (1995), Phys. Rev. D51,
3357, arXiv:hep-ph/9403227 [hep-ph].

Thorne, R. S., S. Bailey, T. Cridge, L. A. Harland-Lang,
A. D. Martin, and R. Nathvani (2019), Proceedings, 27th
International Workshop on Deep Inelastic Scattering and
Related Subjects (DIS 2019): Torino, Italy, April 8-12,
2019, PoS DIS2019, 036, arXiv:1907.08147 [hep-ph].

Vinnikov, A. V. (2006), arXiv:hep-ph/0604248 [hep-ph].
Vladimirov, A. A. (2017), Phys. Rev. Lett. 118 (6), 062001,

arXiv:1610.05791 [hep-ph].
Vladimirov, A. A., and A. Schäfer (2020), Phys. Rev.
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