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The perturbative procedure of matching was proposed to connect parton quasi-distributions that
are calculable in lattice QCD to the corresponding light-cone distributions which enter physical
processes. Such a matching procedure has so far been limited to the twist-2 distributions. Recently,
we addressed the matching for the twist-3 PDF gT (x). In this work, we extend our perturbative
calculations to the remaining twist-3 PDFs, e(x) and hL(x). In particular, we discuss the non-
trivialities involved in the calculation of the singular zero-mode contributions for the quasi-PDFs.
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I. INTRODUCTION

The twist-3 parton distribution functions (PDFs) e(x) and hL(x) were introduced some 30 years ago [1, 2]. They
complement the twist-3 PDF gT (x), which enters the cross section of polarized deep-inelastic lepton-nucleon scattering
(DIS). Twist-3 PDFs are of general interest as they contain information about quark-gluon-quark correlations in the
nucleon [3, 4]. Moreover, a semi-classical relation between the function e(x) and the (transverse) force acting on
transversely polarized quarks in an unpolarized nucleon has been reported in Ref. [5]. In Ref. [6], e(x) was shown
to be related to the poorly-known hadronic matrix element of the quark chromo-magnetic dipole moment operator,
which is an essential input in the study of nuclear electric dipole moments (EDMs), and hence this connection can
provide new insight into physics beyond the standard model. Recently, the role of e(x) has also been discussed in
relation to the mass structure of hadrons [7] (see, also Ref. [8]). Unlike gT (x), both e(x) and hL(x) are chiral odd and
hence can only show up in observables with other chiral-odd functions. This feature makes it challenging to extract
information on these functions from experiment. In Ref. [2], it was argued that e(x) can be accessed in an unpolarized
Drell-Yan process, but only at the level of twist-4. Soon after, it was shown that e(x) could also be measured through
a particular twist-3 single-spin asymmetry in semi-inclusive DIS [9], which has been measured by the HERMES and
CLAS collaborations [10–13]. An alternative process for addressing e(x) is di-hadron production in electron-proton
collisions [14]. A first attempt to extract information about e(x) through this channel, based on preliminary data
from the CLAS collaboration, can be found in Ref. [15]. A twist-3 double-spin asymmetry in the Drell-Yan process
could be used to address hL(x) [1, 2, 16, 17], and other final states in polarized hadronic collisions could in principle
be considered as well — see, for instance, the discussion in Refs. [18, 19]. But so far no information exists on hL(x)
from the experimental side.

A. Delta function singularities in e(x) and hL(x)

An interesting and sometimes controversially-discussed feature of e(x) and hL(x) regards the possible existence of
singular zero-mode (x = 0) contributions, that is, delta-function singularities (δ(x)), and their implication on sum
rules. For the sake of this discussion, we summarize below the sum rules for the lowest moments of e(x) and hL(x). By
definition, the lowest moment of the the flavor-singlet combination of e(x) gives the pion-nucleon sigma term σπN [2],∫ 1

−1

dx(eu(x) + ed(x)) =
σπN
m

, (1)

where,

σπN =
m

2MN
〈P |

(
ψ̄u(0)ψu(0) + ψ̄d(0)ψd(0)

)
|P 〉 , m =

1

2
(mu +md) , (2)

and MN is the nucleon mass. On the basis of rotational invariance, it was shown that the lowest moments of hL(x)
and the twist-2 transversity h1(x) [16, 20] are connected as∫ 1

−1

dxhL(x) =

∫ 1

−1

dxh1(x) , (3)

which is the counterpart of the Burkhardt-Cottingham sum rule that relates gT (x) and the (twist-2) helicity distri-
bution g1(x) [21].

As mentioned above, there has been discussion on whether one can get around the presence of the zero modes.
Refs. [22–24] emphasized that a δ(x) singularity in e(x) is a consequence of the QCD equation of motion (EOM).
Specifically, one can split e(x) as

eq(x) =
δ(x)

2MN
〈P |ψ̄q(0)ψq(0)|P 〉+ ẽq(x) + eqm(x) , (4)

where ẽ is a “pure” twist-3 term (which encodes quark-gluon-quark interactions) and em is a current-mass term.
Using the decomposition of Eq. (4) in the above mentioned sum rule, one finds∫

dx ẽq(x) = 0 ,

∫
dx ẽm(x) = 0 , (5)
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which implies that the first moment of e(x) entirely receives contribution from the δ(x) term. Very recently, it was
argued, again on the grounds of EOM approach, that the coefficient of δ(x) is zero [25]. A critique on that work was
drawn in Ref. [7], ruling out the possibility of a cancellation of δ(x) in e(x). By reconstructing hL(x) from its operator
product expanded (OPE) form, Ref. [2] showed that hL(x) comprised of three terms: a twist-2 term, a “pure” twist-3
term, and a current-mass term. Through a foreseeable discontinuity in the integral relation between hL(x) and the
mass term, Ref. [26] indicated the existence of a possible δ(x) in hL(x). The need for such a singularity was also
justified for a compliance with the sum rule mentioned in Eq. (3) as the twist-2 part, h1(x), is continuous at x = 0.

The first attempt to calculate e(x) and hL(x) was made in the MIT bag model [2, 27]. However, no δ(x) singularity
was found. Calculations in diquark spectator models, with form factors, did also not indicate such singularities [28].
A recent study in the same (spectator) model [29], using a cut-off for the transverse momentum integration instead
of form factors, showed that a δ(x) is present in both e(x) and hL(x). A δ(x) contribution in e(x) was also found
in non-perturbative calculations in the chiral quark-solition Model (χQSM) [30–33]. Remarkably, the coefficient of
δ(x) was shown to be related to the sigma term and therefore the vacuum quark condensate – a quantity directly
related to the chiral symmetry breaking in the QCD vacuum. Thus, this important finding demonstrated that the
non-trivial structure of the QCD vacuum, encoded in the condensate, can show up in a physical observable. To shed
some light into the mechanism responsible for the singularities in the twist-3 PDFs, an interesting calculation in the
(1+1)-dimensional Gross-Neveu model was presented in Ref [20]. The origin of δ(x) was identified to be due to the
long range quark-quark correlations, which in fact is the same mechanism responsible for δ(x) in e(x) in χQSM.
One-loop perturbative calculations of e(x) and hL(x) in quark target models [26, 29] also indicated the presence of
δ(x). Interestingly, in calculations employing the light-front Hamiltonian approach instead of the Feynman-diagram
approach, as in Refs. [26, 29], no such singularities were observed in e(x) [34] and hL(x) [35], which can well be due
to an insufficiency of the used approach to deal with zero modes. Generally, it is accepted that sum rules like in
Eq. (3) are violated if δ(x) contributions are not included in the twist-3 PDFs [26, 29, 35]. We note in passing that
zero-mode contributions can also generate discontinuities for higher-twist generalized parton distributions [29, 36],
thus endangering factorization of certain observables in hard exclusive reactions.

B. Accessing PDFs from lattice QCD

By now, we already see that there are various theoretical statements available in the literature about the δ(x)
singularities, with some of them being contradictory. Lattice QCD calculations with appropriate lattice parameters
close to the continuum limit and with large volumes, may be able to offer some insights on the above matter in the
future. However, the explicit time-dependence of the light-cone PDFs prohibits their direct calculation on Euclidean
lattices. In 2013, there was a breakthrough proposal by Ji to calculate instead parton quasi-distributions (quasi-
PDFs) [37, 38]. Quasi-PDFs are defined in terms of spatial correlation functions of fast-moving hadrons, and therefore
can be directly calculated on Euclidean lattices. At large, but finite, momentum, such correlation functions can be
matched to their respective light-cone PDFs prior to the UV renormalization. On the lattice, one is constrained to
apply the UV renormalization before taking the infinite momentum limit. The issue of the limits leads to differences
in the UV behavior between the light-cone PDFs and the quasi-PDFs. The key underlying idea of this approach
is that the non-perturbative physics should be the same for the light-cone and the quasi-PDFs. The differences in
the UV behavior can be calculated and rectified perturbatively in Large Momentum Effective Theory (LaMET),
through a procedure known as matching [39–41]. Apart from the quasi-PDF approach as a way to directly access the
x-dependence of the PDFs in lattice QCD, several other ideas have been put forth [42–53].

In the last few years, there has been significant advances, both in theory and in lattice QCD. This includes the
proof of renormalizability [54–56], the development of a renormalization prescription [57, 58], which was extensively
implemented on the lattice [59–66]. A plethora of other aspects regarding quasi-PDFs and Euclidean correlators in
general have also been extensively studied [67–94]. The first lattice results for quasi-PDFs and other related quantities
constitute an important development in this field [49, 58, 59, 62, 95–121]. Additionally, the verification of convergence
of quasi-PDFs to their light-cone counterparts in model calculations further substantiate these quasi-distributions to
be reliable tools to study the light-cone PDFs [122–134]. We refer to [135–139] for an up-to-date compendium of
progress in the field of studying light-cone PDFs through Euclidean correlators in lattice QCD.

The procedure of matching has largely been explored for the twist-2 distribution functions [39–41, 54, 67, 80, 81, 91,
140–146]. Recently, we computed the first ever one-loop matching equations for the twist-3 PDF gT (x) [147], which
we implemented on lattice data in Ref. [148]. Here, we extend our work, for the case of e(x) and hL(x). Specifically,
we calculate the light-cone PDFs e(x) and hL(x), and their quasi-PDFs conterparts, eQ and hL,Q, in a quark target
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to one-loop order in perturbative QCD (pQCD). The ultimate goal of this work is to obtain the appropriate matching
equations. We anticipate that a full matching formula will also involve mixing with quark-gluon-quark correlators.
In the present work, we do not consider such mixing.

——————

We organize the manuscript as follows: In Sec. II we provide the definition of the light-cone PDFs e(x) and hL(x),
and of the corresponding quasi-PDFs eQ(x) and hL,Q(x). In Sec. III, we present one-loop pQCD results for e(x)
(eQ(x)) and hL(x) (hL,Q(x)) in the Feynman gauge with three different IR regulators: nonzero gluon mass, nonzero

quark mass and dimensional regularization (DR). Sec. IV addresses matching for e(x) and hL(x) in the MS scheme.
We summarize our results in Sec. V.

II. DEFINITIONS

We start by recalling the definition of twist-3 light-cone PDFs e(x) and hL(x) for quarks. Generally, light-cone
PDFs are defined through the correlation function1

Φ[Γ](x, S) =
1

2

∫
dz−

2π
eik·z 〈P, S|ψ̄(− z2 ) ΓW(− z2 ,

z
2 )ψ( z2 )|P, S〉

∣∣∣
z+=0,~z⊥=~0⊥

. (6)

Here Γ denotes a generic gamma matrix. Color gauge invariance of this bi-local quark-quark correlator is enforced by
the Wilson line

W(− z2 ,
z
2 )
∣∣∣
z+=0,~z⊥=~0⊥

= P exp

(
− igs

∫ z−

2

− z
−

2

dy−A+(0+, y−,~0⊥)

)
, (7)

where P is a path-ordered exponential depending on the plus-component of the gluon field. The hadron is characterized
by its 4-momentum P and a covariant spin vector S which can be written as

Sµ = (S+, S−, ~S⊥) =

(
λ
P+

M
,−λ M

2P+
, ~S⊥

)
, (8)

where λ is the helicity of the hadron and M is its mass. The spin vector satisfies the relation P · S = 0 by definition.
The twist-3 light-cone PDFs e(x) and hL(x) are then defined as

Φ[1] =
1

2P+
ū(P, S) 1u(P, S) e(x) =

M

P+
e(x) , (9)

Φ[iσ+−γ5] =
1

2P+
ū(P, S) iσ+−γ5 u(P, S)hL(x) =

M

P+
λhL(x) , (10)

where u(P, S) (ū(P, S)) is the spinor for the incoming (outgoing) hadron, σµν = i
2 (γµγν − γνγµ) and γ5 is the usual

matrix which anti-commutes with any other Dirac matrix.

We now turn to the quasi-PDFs which are defined through the spatial correlation function [37, 38]

Φ
[Γ]
Q (x, S;P 3) =

1

2

∫
dz3

2π
eik·z 〈P, S|ψ̄(− z2 ) ΓWQ(− z2 ,

z
2 )ψ( z2 )|P, S〉

∣∣∣
z0=0,~z⊥=~0⊥

, (11)

with the Wilson line

WQ(− z2 ,
z
2 )
∣∣∣
z0=0,~z⊥=~0⊥

= P exp

(
− igs

∫ z3

2

− z
3

2

dy3A3(0,~0⊥, y
3)

)
. (12)

1 For a generic four-vector v we denote the Minkowski components by (v0, v1, v2, v3) and the light-cone components by (v+, v−, ~v⊥), with
v+ = 1√

2
(v0 + v3), v− = 1√

2
(v0 − v3) and ~v⊥ = (v1, v2).
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FIG. 1: One-loop real diagrams contributing to the light-cone PDFs e(x) and hL(x), and the quasi-PDFs eQ and hL,Q.

FIG. 2: One-loop virtual diagrams contributing to the light-cone PDFs e(x) and hL(x), and the quasi-PDFs eQ and hL,Q. The
Hermitean conjugate diagrams of (2a) and (2d) have not been shown.

The spin vector in this case is written as

Sµ = (S0, ~S⊥, S
3) =

(
λ
P 3

M
, ~S⊥, λ

P 0

M

)
. (13)

The quasi-PDFs of interest are then defined as

Φ
[1]
Q =

M

P 3
eQ(x;P 3) , Φ

[iσ30γ5]
Q =

M

P 3
λhL,Q(x;P 3) . (14)

The definitions of the quasi-PDFs are such that their lowest moments are P 3 independent [130],∫
dx eQ(x;P 3) =

∫
dx e(x) ,

∫
dxhL,Q(x;P 3) =

∫
dxhL(x) . (15)

III. ONE-LOOP RESULTS

In this section, we calculate the perturbative corrections to the light-cone PDFs and the quasi-PDFs to one-loop
order. In principle, one can do these calculations in any gauge and the final result should be independent of the gauge.
Here, we choose to work in the Feynman gauge for which the contributing real and virtual diagrams are shown in Fig. 1
and Fig. 2, respectively. We regulate the infrared (IR) divergences by making use of 3 different schemes: non-zero
parton mass regulations (mg 6= 0 for gluon mass and mq 6= 0 for quark mass) and dimensional regularization (DR).
The ultraviolet (UV) divergences in the problem have consistently been tackled with DR. The individual diagrams
have additional divergences at x = 1. However, the combination of real and virtual corrections (which are proportional
to δ(1−x)) is well-defined. Since our computations are at the level of the partons (these results are prior to embedding
them into a full correlator picture), we use mq and p (= xP ) as the mass and 4-momentum for the (quark) target.

A. Results for e(x)

In this subsection, we focus on the light-cone PDF e(x) and its corresponding quasi-PDF eQ(x).
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1. Light-cone PDF

Let us discuss first the computation of the real diagrams. The one-loop correction for Fig. (1a) is calculated as

mq

p+
e(1a)(x) = − ig

2CFµ
2εgµν

4

∫ ∞
−∞

dnk

(2π)n
Tr
[
(/p+mq) γ

ν (/k +mq) 1 (/k +mq) γ
µ
]

(k2 −m2
q + iε)2((p− k)2 −m2

g + iε)
δ

(
x− k+

p+

)
1

p+
, (16)

where g denotes the coupling for the quark-gluon-quark vertex and CF = 4/3 is the color factor. The integrals in
Eq. (16) have been analytically continued to n = 4 − 2ε dimensions to regulate the divergences present otherwise.
Here ε is the DR regulator. If ε is used for the UV divergences, then ε→ εUV > 0 (and the corresponding subtraction
scale is µ → µUV > 0), while if it is used for the IR divergences then ε → εIR < 0 (and µ → µIR > 0). Trace algebra
simplifies Eq. (16) to

e(1a)(x) = − ig
2CFµ

2ε

(2π)n
p+

∫ ∞
−∞

dn−2k⊥dk
−dk+

(2− n)2 p · k + n(k2 +m2
q)

(k2 −m2
q + iε)2((p− k)2 −m2

g + iε)
δ

(
x− k+

p+

)
1

p+
. (17)

We will use the following abbreviation to present our one-loop results

PUV =
1

εUV

+ ln 4π − γE ,

and similarly PIR for the IR. After regulating UV and IR divergences in the k⊥ integrals, Eq. (17) for mg 6= 0 case
can be written as

e(1a)(x)
∣∣∣
mg

= e
(1a)
(s) (x) + e

(1a)
(c) (x)

∣∣∣
mg

, (18)

where the “singular” part of the light-cone PDF e(x) (denoted as e(s)) is given by

e
(1a)
(s) (x) =


e

(1a)
(s) (x)

∣∣∣
mq

=
αsCF

2π
δ(x)

(
PUV + ln

µ2
UV

m2
q

− 1

)
,

e
(1a)
(s) (x)

∣∣∣
εIR

=
αsCF

2π
δ(x)

(
PUV − PIR + ln

µ2
UV

µ2
IR

)
,

(19)

and the “canonical” (or the regular) part of the light-cone PDF e(x) (denoted as e(c)) is given by

e
(1a)
(c) (x)

∣∣∣
mg

=
αsCF

2π

(
PUV + ln

µ2
UV

xm2
g

− 1− x
x

)
. (20)

It is interesting to discuss the above results. We divided the result into two distinct parts: (a) singular, and (b)
canonical. The singular part of the PDF has a zero-mode δ(x) contribution. Such a singularity originates from a
term proportional to p · k (see the first term in Eq. (17)), which can be used to cancel the gluon propagator leading
to [29, 149]

(2− n)

∫
dk−

1

(k2 −m2
q + iε)2

= (2− n)
iπ

(k2
⊥ +m2

q)

δ(x)

p+
. (21)

The k⊥ integral in Eq. (21) has a UV divergence which is regulated by DR, and the coefficient of this integral is such
that the UV pole 1/εUV allows for a δ(x) contribution in Eq. (19). For mg 6= 0, one should in principle set the quark
mass term in Eq. (21) to zero. In doing so, we confront an IR divergence in the limit k⊥ → 0. As we pointed out in
Ref. [147], this IR divergence is left unattended when one works with a nonzero gluon mass, and this is a new feature
appearing at the level of twist-3. In fact, this insufficiency of the gluon mass as an IR regulator is only confined to
this specific singular zero-mode term present in Fig. (1a). For practical reasons, we suggest(ed) to handle the IR
divergence by either retaining the quark mass term in Eq. (21) or by using DR. For gT , the two methods lead to two
(qualitatively) different answers, namely, the δ(x) drops out when using DR [147]. For e(x), as well as for hL(x), the
coefficient of the k⊥ integral in Eq. (21) is such that, regardless of the IR scheme, the δ(x) term survives. There is
another crucial difference between the δ(x) appearing here versus those in gT . The δ(x) for e(x) and hL(x) comes in
with a prefactor that has an explicit dependence on the IR pole. On the other hand, the prefactor of δ(x) for gT is
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IR-finite. Note that the two results for the singular part of e(x) in Eq. (19) correspond to the two options of working
with either mq 6= 0, or DR for the k⊥ integral in Eq. (21). For the canonical part of e(x), mg 6= 0 is sufficient to
regulate the IR divergences and, therefore, we have a unique result in Eq. (20). With mq 6= 0 and DR for the IR, one
obtains

e(1a)(x)
∣∣∣
mq

= e
(1a)
(s) (x)

∣∣∣
mq

+ e
(1a)
(c) (x)

∣∣∣
mq

=
αsCF

2π
δ(x)

(
PUV + ln

µ2
UV

m2
q

− 1

)
+
αsCF

2π

(
PUV + ln

µ2
UV

(1− x)2m2
q

− 2

1− x

)
,

e(1a)(x)
∣∣∣
εIR

= e
(1a)
(s) (x)

∣∣∣
εIR

+ e
(1a)
(c) (x)

∣∣∣
εIR

=
αsCF

2π
δ(x)

(
PUV − PIR + ln

µ2
UV

µ2
IR

)
+
αsCF

2π

(
PUV − PIR + ln

µ2
UV

µ2
IR

)
. (22)

Therefore, for all three IR regulators, the δ(x) contributes.

The diagram of Fig. (1b) is calculated as

mq

p+
e(1b)(x) = − ig

2CFµ
2εgµνv

ν

4

∫ ∞
−∞

dnk

(2π)n
Tr
[
(/p+mq) 1 (/k +mq) γ

µ
]

(v.(p− k) + iε)(k2 −m2
q + iε)((p− k)2 −m2

g + iε)
δ

(
x− k+

p+

)
1

p+
. (23)

Here, v is defined such that v2 = 0 and v · a = a+ for any four-vector aµ. The results for the three IR regulators are

e(1b)(x)
∣∣∣
mg

=
αsCF

2π

1 + x

2(1− x)

(
PUV + ln

µ2
UV

xm2
g

)
, (24)

e(1b)(x)
∣∣∣
mq

=
αsCF

2π

1 + x

2(1− x)

(
PUV + ln

µ2
UV

(1− x)2m2
q

)
, (25)

e(1b)(x)
∣∣∣
εIR

=
αsCF

2π

1 + x

2(1− x)

(
PUV − PIR + ln

µ2
UV

µ2
IR

)
. (26)

The diagram of Fig. (1c) gives the same result as the one of Fig. (1b). For the light-cone PDFs, the diagram of
Fig. (1d) drops out because the results are proportional to v2.

We now proceed with the computation of the virtual diagrams. The quark self-energy diagram in Fig. (2a) is inde-
pendent of the Dirac structure and we presented it in Ref. [147]. We quote the results here for the sake completeness,

e(2a)(x)
∣∣∣
mg

= −αsCF
2π

∫ 1

0

dy y

(
PUV + ln

µ2
UV

ym2
g

− 1

)
, (27)

e(2a)(x)
∣∣∣
mq

= −αsCF
2π

∫ 1

0

dy (1− y)

(
PUV + ln

µ2
UV

(1− y)2m2
q

− 1 + y2

(1− y)2

)
, (28)

e(2a)(x)
∣∣∣
εIR

= −αsCF
2π

∫ 1

0

dy y

(
PUV − PIR + ln

µ2
UV

µ2
IR

)
, (29)

where y is the (integrated) loop momentum fraction.

The initial expression for the diagrams of Fig. (2b) and Fig. (2c), is the same as the ones of Fig. (1b) and Fig. (1c),
respectively, modulo an overall sign (see Ref. [147]). Therefore the results are

e(2b)(x)
∣∣∣
mg

= −αsCF
2π

∫ 1

0

dy
1 + y

2(1− y)

(
PUV + ln

µ2
UV

ym2
g

)
, (30)

e(2b)(x)
∣∣∣
mq

= −αsCF
2π

∫ 1

0

dy
1 + y

2(1− y)

(
PUV + ln

µ2
UV

(1− y)2m2
q

)
, (31)

e(2b)(x)
∣∣∣
εIR

= −αsCF
2π

∫ 1

0

dy
1 + y

2(1− y)

(
PUV − PIR + ln

µ2
UV

µ2
IR

)
. (32)
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Finally, the diagram of Fig. (2d) does not contribute, similar to the corresponding real diagram of Fig. (1d). All these
results for the virtual diagrams are to be understood with an overall prefactor of δ(1− x) which we have left out for
simplicity.

2. Quasi-PDF

Just as in the light-cone case, the result for Fig. (1a) can be divided into a singular and a canonical part. In this
section, we focus mostly on discussing the subtleties involved in the treatment/calculation of the singular part for
the quasi-PDFs, and we refer to Ref. [147] for more details on the calculation of the canonical part and the other
diagrams. The term which generates a δ(x) in the light-cone PDF e(x) gives rise to the following structure for the
quasi-PDF eQ(x)2:

e
(1a)
Q(s)(x) =



e
(1a)
Q(s)(x)

∣∣∣
mq

=
αsCF

2π



1

x
x > 1

p3√
x2p2

3 +m2
q

−1 < x < 1

− 1

x
x < −1 ,

e
(1a)
Q(s)(x)

∣∣∣
εIR

=
αsCF

2π



1

x
x > 1

C(εIR)

(
p3

µIR

)−2εIR (1− εIR)

|x|1+2εIR
−1 < x < 1

− 1

x
x < −1 ,

(33)

where

C(εIR) =
π1/2−εIR

(2π)−2εIRΓ[1/2− εIR]
. (34)

Note that we call the terms in Eq. (33) “singular” because, as we shall see in the following, they exhibit an IR
singularity at x = 0. However, these terms are well-behaved in other regions of x. Recall that the gluon mass does not
enter into the calculation of the singular components of the PDFs. DR for the k3 component in 1−2ε dimensions leads
to extra factors like C(εIR) as shown in Eq. (34). The x-dependent results for the real diagrams for the quasi-PDFs
are UV finite. (The same UV divergences which stem from the k⊥ integrals for the light-cone PDFs show up in the
x-integrals of the above results for the quasi-PDFs.) Therefore, at the level of extracting the x-dependence, one can
already perform a Taylor expansion in powers of the UV regulator, that is εUV ≈ 0 for the regions |x| > 1. One can
do this expansion in powers of the IR regulator, that is m2

q/p
2
3 ≈ 0 or εIR ≈ 0, for instance for the region −1 < x < 1,

but one cannot do so at the specific point of x = 0. If we would do that, we would arrive at the result eQ(s) ∼ (1/x).
This generates a misleading result and one arrives at the incorrect conclusion that the functional forms for the IR
singularities do not agree between the light-cone e(s) and quasi-PDF eQ(s). This is because for the light-cone result one

has the IR singularity associated with the delta function e(s) ∼ δ(x) lnm2
q or e(s) ∼ δ(x)1/εIR, while for the quasi-PDF

the IR singularity is reflected in the structure eQ(s) ∼ (1/x) as x→ 0. A conceptually correct approach is to hold off
with this Taylor expansion in powers of the IR regulator for the singular terms until we have carefully isolated the IR
singularity at x = 0.

We first take up the mq 6= 0 case. In the following, we integrate
1√

x2 + η2
, with η ≡ mq/p

3, over x in the interval

2 For convenience of notation, in our results we use that p23 = (p3)2.
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[−1, 1] with a test function f(x) that is finite at the origin,∫ 1

−1

dx
f(x)√
x2 + η2

=

∫ 0

−1

dx
(f(x)− f(0))√

x2 + η2
+

∫ 1

0

dx
(f(x)− f(0))√

x2 + η2
+

∫ 1

−1

dx
f(0)√
x2 + η2

. (35)

For the first and the second terms, we perform an expansion about η ≈ 0. For the third term, we first integrate and
then expand the result about η ≈ 0. Doing these steps, we arrive at∫ 1

−1

dx
f(x)√
x2 + η2

=

∫ 0

−1

dx
(f(x)− f(0))

−x
+

∫ 1

0

dx
(f(x)− f(0))

x
+ f(0)

(
ln

4

η2

)
+O(η2) . (36)

We now make the identifications ∫ 0

−1

dx
(f(x)− f(0))

−x
=

∫ 0

−1

dx f(x)

[
1

−x

]
+[0]

, (37)

∫ 1

0

dx
(f(x)− f(0))

x
=

∫ 1

0

dx f(x)

[
1

x

]
+[0]

, (38)

based on the definition of plus-functions at x = 0, that is,

R0(|x|) ≡
[

1

|x|

]
+[0]

= θ(|x|) θ(1− |x|) lim
β→0

[
θ(|x| − β)

|x|
+ δ(|x| − β) lnβ

]
, (39)

where −1 < x < 1 and β > 0. (Note that the right-hand side of Eq. (39) is an exact mathematical way of computing
plus-functions at x = 0 whose general definition has been shown in Eq. (44). In this context, we also refer to Eq. (45)
and the paragraph thereafter.) Making these replacements, we see that Eq. (36) can be cast as∫ 1

−1

dx
f(x)√
x2 + η2

=

∫ 1

−1

dx f(x)

[
1

|x|

]
+[0]

+

∫ 1

−1

dx f(x) δ(x)

(
ln

4

η2

)
+O(η2) . (40)

Since Eq. (40) holds for any arbitrary test function in the interval [−1, 1], we arrive at the identity

θ(1− x) θ(1 + x)√
x2 + η2

= δ(x)

(
ln

4

η2

)
+ R0(|x|) +O(η2) . (41)

We can extend the same logic for the case of DR. One can readily verify the identity

θ(1− x) θ(1 + x)

|x|1+2εIR
= −δ(x)

εIR
+
∞∑
n=0

(−1)n
(2εIR)n

n!
Rn(|x|) , (42)

where

Rn(|x|) ≡
[

lnn |x|
|x|

]
+[0]

= θ(|x|) θ(1− |x|) lim
β→0

[
θ(|x| − β)

lnn |x|
|x|

+ δ(|x| − β)
lnn+1 β

n+ 1

]
, (43)

with β > 0. This point has been addressed in Ref. [41] for x > 0. The expression in Eq. (43) is therefore a
straightforward generalization of the relevant identity (see Eq. (C.2)) of Ref. [41] in order to cover also the region
of negative x. A simple way of understanding Eq. (43) is through the standard definition of plus-functions. A
plus-function at x = 0, for instance in the interval [0, 1], is defined as

[f(x)]+[0] ≡ θ(x) θ(1− x) lim
β→0

[
θ(x− β) f(x)− δ(x− β)

∫ 1

β

dy f(y)

]
. (44)

Therefore, for the specific case when the function is 1/x1+ε, Eq. (44) right away provides[
θ(x) θ(1− x)

x1+2ε

]
+[0]

= θ(x) θ(1− x) lim
β→0

[
θ(x− β)

x1+2ε
− δ(x− β)

(
−1 + β−2ε

2ε

)]
. (45)
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A small-ε expansion of Eq. (45) readily shows its equivalence with Eq. (43). We refer to Ref. [150] where general
relations like in Eq. (45) were derived for different x-intervals, and various other important properties of plus-functions
were outlined. For our purpose, the first two non-trivial terms in the expansion of εIR matter in Eq. (42). Notice that
the finite terms entering O(η0) and O(ε0IR) are exactly the same for the two IR regulators.

Now, for mg 6= 0, the result for eQ can be written as

e
(1a)
Q (x)

∣∣∣
mg

= e
(1a)
Q(s)(x) + e

(1a)
Q(c)(x)

∣∣∣
mg

. (46)

Using Eq. (41) and Eq. (42) in Eq. (33), we obtain the following expressions for the singular terms for eQ

e
(1a)
Q(s)(x) =



e
(1a)
Q(s)(x)

∣∣∣
mq

=
αsCF

2π



1

x
x > 1

δ(x) ln
4p2

3

m2
q

+ R0(|x|) −1 < x < 1

− 1

x
x < −1 ,

e
(1a)
Q(s)(x)

∣∣∣
εIR

=
αsCF

2π



1

x
x > 1

− δ(x)

(
PIR − 1− ln

4p2
3

µ2
IR

)
+ R0(|x|) −1 < x < 1

− 1

x
x < −1 .

(47)

As discussed in Sec. III A 1, there are two results because mg 6= 0 is insufficient to regulate the IR divergence present
in the singular terms. It is straightforward to arrive at the following result for the canonical part of eQ with mg 6= 0:

e
(1a)
Q(c)(x)

∣∣∣
mg

=
αsCF

2π



ln
x

x− 1
x > 1

ln
4(1− x)p2

3

m2
g

− 1− x
x

0 < x < 1

ln
x− 1

x
x < 0 .

(48)

For mq 6= 0 and DR, we find

e
(1a)
Q (x)

∣∣∣
mq

= e
(1a)
Q(s)(x)

∣∣∣
mq

+ e
(1a)
Q(c)(x)

∣∣∣
mq

=
αsCF

2π



1

x
x > 1

δ(x) ln
4p2

3

m2
q

+ R0(|x|) −1 < x < 1

− 1

x
x < −1

+



ln
x

x− 1
x > 1

ln
4xp2

3

(1− x)m2
q

− 2

1− x
0 < x < 1

ln
x− 1

x
x < 0 ,

(49)

e
(1a)
Q (x)

∣∣∣
εIR

= e
(1a)
Q(s)(x)

∣∣∣
εIR

+ e
(1a)
Q(c)(x)

∣∣∣
εIR

=
αsCF

2π



1

x
x > 1

− δ(x)

(
PIR − 1− ln

4p2
3

µ2
IR

)
+ R0(|x|) −1 < x < 1

− 1

x
x < −1

+



ln
x

x− 1
x > 1

−PIR + ln
4x(1− x)p2

3

µ2
IR

0 < x < 1

ln
x− 1

x
x < 0 .

(50)
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Finally, we want to emphasize that Eq. (41) and Eq. (42) are to be understood in the sense of a distribution because

δ(x) and [...]+[0] have a meaning under integrals only. In this sense, the singular terms 1/
√
x2 + η2 and 1/|x|1+2εIR

present in the quasi-PDF eQ can be re-written so that, to leading order in O(η2) and O(εIR), they reproduce exactly
the same effect as the terms δ(x) ln η2 or δ(x)1/εIR present in the light-cone PDF e(s). With these results, one infers
an exact agreement in the IR-pole structures between the light-cone e(s) (e(c)) and the quasi-PDF eQ(s) (eQ(c)).

The contribution from the diagram of Fig. (1b) is given by

e
(1b)
Q (x)

∣∣∣
mg

=
αsCF

2π

1 + x

2(1− x)



ln
x

x− 1
x > 1

ln
4(1− x)p2

3

m2
g

0 < x < 1

ln
x− 1

x
x < 0 ,

(51)

e
(1b)
Q (x)

∣∣∣
mq

=
αsCF

2π

1 + x

2(1− x)



ln
x

x− 1
x > 1

ln
4xp2

3

(1− x)m2
q

0 < x < 1

ln
x− 1

x
x < 0 ,

(52)

e
(1b)
Q (x)

∣∣∣
εIR

=
αsCF

2π

1 + x

2(1− x)



ln
x

x− 1
x > 1

−PIR + ln
4x(1− x)p2

3

µ2
IR

0 < x < 1

ln
x− 1

x
x < 0 .

(53)

The diagram of Fig. (1c) gives the same result as above. Unlike the case of light-cone PDFs, the diagram of Fig. (1d)
is non-vanishing for the quasi-PDFs and the result is given by

e
(1d)
Q (x) =

αsCF
2π



1

1− x
x > 1

1

x− 1
0 < x < 1

1

x− 1
x < 0 ,

(54)

with the result being independent of the IR regulator.

We now take up the virtual diagrams. The quark self-energy diagram, which has been computed in our previous
work [147], is given by

e
(2a)
Q (x)

∣∣∣
mg

= −αsCF
2π

(1− εUV)C(εUV)

(
p3

µUV

)−2εUV
∫
dy



y−2εUV

(
y ln

y

y − 1
− 1

)
y > 1

y−2εUV

(
y ln

4(1− y)p2
3

m2
g

+ 1− 2y

)
0 < y < 1

(−y)−2εUV

(
y ln

y − 1

y
+ 1

)
y < 0 ,

(55)
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e
(2a)
Q (x)

∣∣∣
mq

= −αsCF
2π

C(εUV)

(
p3

µUV

)−2εUV
∫
dy



(1− εUV) y−2εUV

(
(1− y) ln

y

y − 1
+ 1

)
y > 1

y−2εUV

(
(1− εUV)(1− y) ln

4yp2
3

(1− y)m2
q

−(1− εUV)
2y2 − 5y + 1

1− y
−
(

1− εUV

2

)
4y

1− y

)
0 < y < 1

(1− εUV) (−y)−2εUV

(
(1− y) ln

y − 1

y
− 1

)
y < 0 ,

(56)

e
(2a)
Q (x)

∣∣∣
εIR

= −αsCF
2π

(1− εUV)C(εUV)

(
p3

µUV

)−2εUV
∫
dy



y−2εUV

(
y ln

y

y − 1
− 1

)
y > 1

y−2εUV

(
− yPIR + y ln

4y(1− y)p2
3

µ2
IR

+ 1− y
)

0 < y < 1

(−y)−2εUV

(
y ln

y − 1

y
+ 1

)
y < 0 ,

(57)

where C(εUV) is the same as in Eq. (34), but with the replacement εIR → εUV and with the understanding that εUV > 0.
The (integrated) loop momentum fraction y is defined through the relation k3 = yp3. A detailed discussion of these
self-energy results can be found in Ref. [147].

For the diagram of Fig. (2b) we find

e
(2b)
Q (x)

∣∣∣
mg

= −αsCF
2π

C(εUV)

(
p3

µUV

)−2εUV
∫
dy

1 + y

2(1− y)



y−2εUV ln
y

y − 1
y > 1

y−2εUV ln
4(1− y)p2

3

m2
g

0 < y < 1

(−y)−2εUV ln
y − 1

y
y < 0 ,

(58)

e
(2b)
Q (x)

∣∣∣
mq

= −αsCF
2π

C(εUV)

(
p3

µUV

)−2εUV
∫
dy

1 + y

2(1− y)



y−2εUV ln
y

y − 1
y > 1

y−2εUV ln
4yp2

3

(1− y)m2
q

0 < y < 1

(−y)−2εUV ln
y − 1

y
y < 0 ,

(59)

e
(2b)
Q (x)

∣∣∣
εIR

= −αsCF
2π

C(εUV)

(
p3

µUV

)−2εUV
∫
dy

1 + y

2(1− y)



y−2εUV ln
y

y − 1
y > 1

y−2εUV

(
− PIR + ln

4y(1− y)p2
3

µ2
IR

)
0 < y < 1

(−y)−2εUV ln
y − 1

y
y < 0 ,

(60)

and the diagram in Fig. (2c) gives the exact same result.
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Finally, we find the following for the diagram in Fig. (2d)

e
(2d)
Q (x) = −αsCF

2π
C(εUV)

(
p3

µUV

)−2εUV
∫
dy



y−2εUV
1

1− y
y > 1

y−2εUV
1

y − 1
0 < y < 1

(−y)−2εUV
1

y − 1
y < 0 .

(61)

All of the y integrals appearing in the virtual diagrams are logarithmically divergent. These UV divergences can be
renormalized in the MS scheme.

B. Results for hL

In this subsection, we present results for the light-cone PDF hL(x) and the quasi-PDF hL,Q(x).

1. Light-cone PDF

The contribution from the diagram of Fig. (1a) can be obtained by making the replacement of 1 → iσ+−γ5 in
Eq. (16). The resulting expressions with the three IR regulators are shown below.

For mg 6= 0:

h
(1a)
L (x)

∣∣∣
mg

= h
(1a)
L(s)(x) + h

(1a)
L(c)(x)

∣∣∣
mg

, (62)

where the singular part of the light-cone PDF hL(x) is

h
(1a)
L(s)(x) =


h

(1a)
L(s)(x)

∣∣∣
mq

= −αsCF
2π

δ(x)

(
PUV + ln

µ2
UV

m2
q

− 1

)
,

h
(1a)
L(s)(x)

∣∣∣
εIR

= −αsCF
2π

δ(x)

(
PUV − PIR + ln

µ2
UV

µ2
IR

)
,

(63)

and the canonical part of the light-cone PDF hL(x) is

h
(1a)
L(c)(x)

∣∣∣
mg

=
αsCF

2π

(
PUV + ln

µ2
UV

xm2
g

+
(1− x)(1− 2x)

x

)
. (64)

For mq 6= 0 and DR for the IR:

h
(1a)
L (x)

∣∣∣
mq

= h
(1a)
L(s)(x)

∣∣∣
mq

+ h
(1a)
L(c)(x)

∣∣∣
mq

= −αsCF
2π

δ(x)

(
PUV + ln

µ2
UV

m2
q

− 1

)
+
αsCF

2π

(
PUV + ln

µ2
UV

(1− x)2m2
q

+ 2x− 3− 1 + x

1− x

)
,

h
(1a)
L (x)

∣∣∣
εIR

= h
(1a)
L(s)(x)

∣∣∣
εIR

+ h
(1a)
L(c)(x)

∣∣∣
εIR

= −αsCF
2π

δ(x)

(
PUV − PIR + ln

µ2
UV

µ2
IR

)
+
αsCF

2π

(
PUV − PIR + ln

µ2
UV

µ2
IR

)
. (65)
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The discussions for the diagram in Fig. (1a) made in the context of e(x) carries over to hL(x). Note that the singular
terms for hL(x) (hL,Q) and e(x) (eQ) are the same except for an overall sign. After making the replacement of
1→ iσ+−γ5 in Eq. (23), we find that the results for the diagrams shown in Figs. (1b) and (1c) are the same as that
of e(x). This is due to the relevant trace algebra. As a consequence, the results of all the virtual diagrams for hL(x)
are the same as that of e(x).

2. Quasi-PDF

The results for hL,Q with the three IR regulators are shown below.

For mg 6= 0 we have

h
(1a)
L,Q(x)

∣∣∣
mg

= h
(1a)
L,Q(s)(x) + h

(1a)
L,Q(c)(x)

∣∣∣
mg

, (66)

where, for the singular part of hL,Q, we find

h
(1a)
L,Q(s)(x) =



h
(1a)
L,Q(s)(x)

∣∣∣
mq

=
αsCF

2π



− 1

x
x > 1

−δ(x) ln
4p2

3

m2
q

− R0(|x|) −1 < x < 1

1

x
x < −1 ,

h
(1a)
L,Q(s)(x)

∣∣∣
εIR

=
αsCF

2π



− 1

x
x > 1

δ(x)

(
PIR − 1− ln

4p2
3

µ2
IR

)
− R0(|x|) −1 < x < 1

1

x
x < −1 ,

(67)

and for the canonical part of hL,Q we find

h
(1a)
L,Q(c)(x)

∣∣∣
mg

=
αsCF

2π



ln
x

x− 1
x > 1

ln
4(1− x)p2

3

m2
g

+
1− x
x

0 < x < 1

ln
x− 1

x
x < 0 .

(68)

For mq 6= 0 and DR, we obtain

h
(1a)
L,Q(x)

∣∣∣
mq

= h
(1a)
L,Q(s)(x)

∣∣∣
mq

+ h
(1a)
L,Q(c)(x)

∣∣∣
mq

=
αsCF

2π



− 1

x
x > 1

−δ(x) ln
4p2

3

m2
q

− R0(|x|) −1 < x < 1

1

x
x < −1

+



ln
x

x− 1
x > 1

ln
4xp2

3

(1− x)m2
q

− 2

1− x
0 < x < 1

ln
x− 1

x
x < 0 ,

(69)
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h
(1a)
L,Q(x)

∣∣∣
εIR

= h
(1a)
L,Q(s)(x)

∣∣∣
εIR

+ h
(1a)
L,Q(c)(x)

∣∣∣
εIR

=
αsCF

2π



− 1

x
x > 1

δ(x)

(
PIR − 1− ln

4p2
3

µ2
IR

)
− R0(|x|) −1 < x < 1

1

x
x < −1

+



ln
x

x− 1
x > 1(

− PIR + 2(1− x)

+ ln
4x(1− x)p2

3

µ2
IR

)
0 < x < 1

ln
x− 1

x
x < 0 .

(70)

The other diagrams yield the same results as for eQ (see corresponding comment in previous sub-section).

IV. ONE-LOOP MATCHING COEFFICIENT IN MS

Schematically, the relation between light-cone and quasi-PDFs is expressed through the following factorization
theorem up to power corrections that are suppressed with respect to the hadron momentum,

q̃(x;P 3) =

∫ +1

−1

dy

|y|
C

(
x

y

)
q(y) +O

(
1

P 2
3

)
. (71)

In Eq. (71), the symbol q̃ (q) stands for a quasi-PDF (light-cone PDF) of a parton inside a hadron, while C denotes
the matching coefficient. Like we already pointed out in the Introduction, we expect mixing with quark-gluon-quark
operators, even for the quark non-singlet case. However, in this work we do not consider such mixing. The key feature
of the factorization-type formula in Eq. (71) is the IR-finiteness of the matching coefficient C. To derive the first-order
correction to the matching coefficient, one applies a perturbative expansion of Eq. (71) in powers of αs, leading to

C(x) = δ(1− x) +
αsCF

2π

[
Γ̃(x)− Γ(x)

]
+
αsCF

2π
δ(1− x)

[
Π̃−Π

]
. (72)

In Eq. (72), Γ (Γ̃) and Π (Π̃) are the real corrections and the virtual corrections for the light-cone (quasi-) PDFs,
respectively. Eq. (72) implies that the matching coefficient, at the lowest nontrivial order in perturbation theory, is
given by the difference between one-loop results for the quasi-PDFs and the light-cone PDFs. Matching, in conjunction
with proper renormalization, corrects for the different UV behavior between the light-cone and quasi-distributions
such that in the limit of P 3 →∞ one is able to recover the light-cone distributions.

The formalism of the matching relies on the fact that the IR behavior of the light-cone and quasi distributions
are the same. Previous papers on matching calculations for the twist-2 distributions have confirmed this [39–41, 54,
67, 80, 81, 91, 140–146]. In Ref. [147], where we addressed the one-loop matching formula for gT , we also found an
agreement between the IR behavior of the light-cone PDF gT and the quasi-PDF gT,Q. In this work, we confirm that
the IR poles exactly match between e (hL) and eQ (hL,Q) for all three IR regulators and for all one-loop diagrams.
Finding this feature required extensive calculations. Also a non-trivial analysis was needed in the case of the singular
term as discussed above in detail.

In the following, we take a brief look at the difference between one-loop results for the quasi-PDFs and the light-cone
PDFs. This procedure gives the matching coefficient. For the purpose of this discussion, we take the MS renormalized
expressions of the light-cone results. As for quasi-PDFs, we renormalize the virtual diagram results in the same
scheme, leaving the real diagram results as it is. The basics steps to do this exercise have been outlined in Ref. [147].
The difference between one-loop results for eQ(x) (hL,Q) and e(x) (hL) in the MS scheme can be represented in the
compact form

CMS

(
ξ,
µ2

p2
3

)
= δ(1− ξ) + C

(s)

MS

(
ξ,
µ2

p2
3

)
+ C

(c)

MS

(
ξ,
µ2

p2
3

)
, (73)

where the first term corresponds to the tree-level distributions, while the second and the third terms are the differences
from the singular and canonical parts of the distributions, respectively.
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The difference between eQ(x) and e(x) from the singular terms reads

C
(s)

MS

(
ξ,
µ2

p2
3

)
=
αsCF

2π



1

ξ
ξ > 1

δ(ξ)

(
ln

4p2
3

µ2
+ 1

)
+ R0(|ξ|) −1 < ξ < 1

−1

ξ
ξ < −1 .

(74)

The above equation reaffirms that there is an exact agreement in the IR poles for the singular terms between the two
distributions. Moreover, both mq 6= 0 and DR for the IR provide the very same matching coefficient. From a practical
point of view, this is a very important outcome. In Eq. (74), we have done a change of variable x → ξ in order to
reserve x as the variable signifying the momentum fraction carried by quarks inside the hadrons, that is p3 = xP 3.
The difference between eQ(x) and e(x) from the canonical terms is

C
(c)

MS

(
ξ,
µ2

p2
3

)
=

αsCF
2π



[
2

1− ξ
ln

ξ

ξ − 1
+

1

1− ξ
+

1

ξ

]
+

− 1

ξ
ξ > 1

[
2

1− ξ
ln

4ξ(1− ξ)p2
3

µ2
− 1

1− ξ

]
+

0 < ξ < 1

[
2

1− ξ
ln
ξ − 1

ξ
− 1

1− ξ
+

1

1− ξ

]
+

− 1

1− ξ
ξ < 0

+
αsCF

2π
δ(1− ξ)

(
ln

µ2

4p2
3

)
, (75)

where the plus-prescription [...]+ has been defined at ξ = 1. The above equation reiterates that there is an exact
agreement in the IR poles for the canonical terms of the distributions. Furthermore, just as in the case of the singular
terms, this result is the same for all three IR regulators.

We now turn our attention to the difference between the one-loop results for hL,Q(x) and hL(x) in the MS. For the
singular term we obtain a unique result,

C
(s)

MS

(
ξ,
µ2

p2
3

)
=
αsCF

2π



−1

ξ
ξ > 1

−δ(ξ)
(

ln
4p2

3

µ2
+ 1

)
− R0(|ξ|) −1 < ξ < 1

1

ξ
ξ < −1 ,

(76)

and for the canonical term, which is also independent of the IR regulator, we get

C
(c)

MS

(
ξ,
µ2

p2
3

)
=

αsCF
2π



[
2

1− ξ
ln

ξ

ξ − 1
+

1

1− ξ
+

1

ξ

]
+

− 1

ξ
ξ > 1

[
2

1− ξ
ln

4ξ(1− ξ)p2
3

µ2
+ 2(1− ξ)− 1

1− ξ

]
+

0 < ξ < 1

[
2

1− ξ
ln
ξ − 1

ξ
− 1

1− ξ
+

1

1− ξ

]
+

− 1

1− ξ
ξ < 0

+
αsCF

2π
δ(1− ξ)

(
1 + ln

µ2

4p2
3

)
. (77)

We believe that the above results are useful, but we also repeat that operator mixing should be taken into account.
As we elaborated in Ref. [147], the problem of working with MS matching coefficients is that the convolution integrals
involved in the matching formula are divergent. The divergences can be successfully removed through an extra
subtraction, for instance in the MMS scheme [113, 147].
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V. SUMMARY

In this paper, we present a calculation of the twist-3 light-cone PDFs e(x) and hL(x) and their quasi-PDF coun-
terparts eQ(x) and hL,Q(x) for a quark target to one-loop order in perturbation theory. We have regulated the IR
divergences in 3 different ways: non-zero parton mass regulations, that is mg 6= 0 and mq 6= 0, and DR. The UV
divergences are regulated using DR.

Throughout our work, we point out the main differences between these results and the ones from our previous
work on gT (x) [147]. Specifically, we discuss the role played by singular zero-mode contributions in the matching
for e(x) and hL(x). While a δ(x) may or may not arise in gT (x) depending upon the IR scheme, it is bound to be
present in e(x) and hL(x). Even more importantly, the δ(x) in e(x) and hL(x) is accompanied by prefactors that
exhibit an IR divergence. The quasi-PDFs eQ(x) and hL,Q(x) have a seemingly different-looking IR-pole structure
at x = 0. However, we have shown that it is possible, in the sense of a distribution, to cast the singular terms for
the quasi-PDFs into a δ(x) term whose prefactors exactly agree with those from the light-cone PDFs. This is a
non-trivial point and we have provided a formal proof of this for the IR regulators mq 6= 0 and DR. Moreover, we
find that diagram-by-diagram there is an exact agreement in the IR poles between e(x) and eQ(x) as well as hL(x)
and hL,Q(x). This leads to the important conclusion that matching is possible for e(x) and hL(x). Explicit results

for the matching coefficients have been extracted in the MS scheme. We repeat that complete matching equations
for twist-3 PDFs most likely involve operator mixing, which we did not consider in the present work. However, we
believe that our results are very useful and provide an important step toward explicitly establishing the quasi-PDF
approach beyond leading twist.

Acknowledgments

We are very grateful to Yong Zhao for an important discussion about the (non-trivial) point x = 0 for the quasi-
PDFs in DR. The work of S.B. and A.M. has been supported by the National Science Foundation under grant number
PHY-1812359. A.M. has also been supported by the U.S. Department of Energy, Office of Science, Office of Nuclear
Physics, within the framework of the TMD Topical Collaboration. M.C. acknowledges financial support by the U.S.
National Science Foundation under Grant No. PHY-1714407. K.C. and A.S. are supported by the National Science
Centre (Poland) grant SONATA BIS no. 2016/22/E/ST2/00013. F.S. was funded by DFG project number 392578569.

[1] R. Jaffe and X. D. Ji, Phys. Rev. Lett. 67, 552-555 (1991).
[2] R. Jaffe and X. D. Ji, Nucl. Phys. B 375, 527-560 (1992).
[3] I. Balitsky and V. M. Braun, Nucl. Phys. B 311, 541-584 (1989).
[4] K. Kanazawa, Y. Koike, A. Metz, D. Pitonyak and M. Schlegel, Phys. Rev. D 93, 054024 (2016) [arXiv:1512.07233

[hep-ph]].
[5] M. Burkardt, Phys. Rev. D 88, 114502 (2013) [arXiv:0810.3589 [hep-ph]].
[6] C. Y. Seng, Phys. Rev. Lett. 122, 072001 (2019) [arXiv:1809.00307 [hep-ph]].
[7] Y. Hatta and Y. Zhao, [arXiv:2006.02798 [hep-ph]].
[8] X. Ji, [arXiv:2003.04478 [hep-ph]].
[9] J. Levelt and P. Mulders, Phys. Lett. B 338, 357-362 (1994) [arXiv:hep-ph/9408257 [hep-ph]].

[10] A. Airapetian et al. [HERMES], Phys. Rev. Lett. 84, 4047-4051 (2000) [arXiv:hep-ex/9910062 [hep-ex]].
[11] A. Airapetian et al. [HERMES], Phys. Rev. D 64, 097101 (2001) [arXiv:hep-ex/0104005 [hep-ex]].
[12] H. Avakian et al. [CLAS], Phys. Rev. D 69, 112004 (2004) [arXiv:hep-ex/0301005 [hep-ex]].
[13] W. Gohn et al. [CLAS], Phys. Rev. D 89, 072011 (2014) [arXiv:1402.4097 [hep-ex]].
[14] A. Bacchetta and M. Radici, Phys. Rev. D 69, 074026 (2004) [arXiv:hep-ph/0311173 [hep-ph]].
[15] A. Courtoy, [arXiv:1405.7659 [hep-ph]].
[16] R. Tangerman and P. Mulders, [arXiv:hep-ph/9408305 [hep-ph]].
[17] Y. Koike, K. Tanaka and S. Yoshida, Phys. Lett. B 668, 286-292 (2008) [arXiv:0805.2289 [hep-ph]].
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[140] X. Ji, A. Schäfer, X. Xiong and J. H. Zhang, Phys. Rev. D 92, 014039 (2015) [arXiv:1506.00248 [hep-ph]].
[141] X. Xiong and J. H. Zhang, Phys. Rev. D 92, 054037 (2015) [arXiv:1509.08016 [hep-ph]].
[142] Y. S. Liu, W. Wang, J. Xu, Q. A. Zhang, J. H. Zhang, S. Zhao and Y. Zhao, Phys. Rev. D 100, 034006 (2019)

[arXiv:1902.00307 [hep-ph]].
[143] W. Wang, J. H. Zhang, S. Zhao and R. Zhu, Phys. Rev. D 100, 074509 (2019) [arXiv:1904.00978 [hep-ph]].
[144] W. Wang, Y. M. Wang, J. Xu and S. Zhao, [arXiv:1908.09933 [hep-ph]].
[145] A. V. Radyushkin, Phys. Rev. D 100, 116011 (2019) [arXiv:1909.08474 [hep-ph]].
[146] I. Balitsky, W. Morris and A. Radyushkin, [arXiv:1910.13963 [hep-ph]].
[147] S. Bhattacharya, K. Cichy, M. Constantinou, A. Metz, A. Scapellato and F. Steffens, Phys. Rev. D 102, 034005 (2020)

[arXiv:2005.10939 [hep-ph]].
[148] S. Bhattacharya, K. Cichy, M. Constantinou, A. Metz, A. Scapellato and F. Steffens, [arXiv:2004.04130 [hep-lat]].
[149] T. M. Yan, Phys. Rev. D 7, 1780-1800 (1973).
[150] Z. Ligeti, I. W. Stewart and F. J. Tackmann, Phys. Rev. D 78, 114014 (2008).

http://arxiv.org/abs/1808.01437
http://arxiv.org/abs/1903.05721
http://arxiv.org/abs/1911.01955
http://arxiv.org/abs/1912.12816
http://arxiv.org/abs/2004.01595
http://arxiv.org/abs/2005.09832
http://arxiv.org/abs/1811.00678
http://arxiv.org/abs/1811.07248
http://arxiv.org/abs/1812.07192
http://arxiv.org/abs/2004.03543
http://arxiv.org/abs/2010.02445
http://arxiv.org/abs/1506.00248
http://arxiv.org/abs/1509.08016
http://arxiv.org/abs/1902.00307
http://arxiv.org/abs/1904.00978
http://arxiv.org/abs/1908.09933
http://arxiv.org/abs/1909.08474
http://arxiv.org/abs/1910.13963
http://arxiv.org/abs/2005.10939
http://arxiv.org/abs/2004.04130

	I Introduction
	A Delta function singularities in e(x) and hL(x)
	B Accessing PDFs from lattice QCD

	II Definitions
	III One-Loop results
	A Results for e(x)
	1 Light-cone PDF
	2 Quasi-PDF

	B Results for hL
	1 Light-cone PDF
	2 Quasi-PDF


	IV One-loop matching coefficient in MS
	V Summary
	 Acknowledgments
	 References

