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We present a calculation of the pion quark momentum fraction, 〈x〉, and its third Mellin mo-
ment 〈x2〉. We also obtain, for the first time, 〈x〉 and 〈x2〉 for the kaon. We use an ensemble of
two degenerate light, a strange and a charm quark (Nf = 2 + 1 + 1) of maximally twisted mass
fermions with clover improvement. The quark masses are chosen so that they reproduce a pion
mass of about 260 MeV, and a kaon mass of 530 MeV. The lattice spacing of the ensemble is 0.093
fm and the lattice has a spatial extent of 3 fm. We analyze several values of the source-sink time
separation within the range of 1.12 − 2.23 fm to study and eliminate excited-states contributions.
The necessary renormalization functions are calculated non-perturbatively in the RI′ scheme, and
are converted to the MS scheme at a scale of 2 GeV. The final values for the momentum fraction
are 〈x〉πu+ = 0.261(3)stat(6)syst, 〈x〉Ku+ = 0.246(2)stat(2)syst, and 〈x〉Ks+ = 0.317(2)stat(1)syst. For

the third Mellin moments we find 〈x2〉πu+ = 0.082(21)stat(17)syst, 〈x2〉Ku+ = 0.093(5)stat(3)syst, and

〈x2〉Ks+ = 0.134(5)stat(2)syst. The reported systematic uncertainties are due to excited-state contam-
ination. We also give the ratio 〈x2〉/〈x〉 which is an indication of how quickly the PDFs lose support
at large x.

ar
X

iv
:2

01
0.

03
49

5v
1 

 [h
ep

-la
t] 

 7
 O

ct
 2

02
0



2

I. INTRODUCTION

The pion and kaon provide a good laboratory for studying QCD dynamics at hadronic scales. Moments of parton
distribution functions (PDFs) are important quantities for the study of the internal structure of hadrons. They can
directly be computed non-perturbatively within lattice QCD, using local operators, up to 〈x3〉, and yield important
insights that complement experimental programs that mostly measure PDFs for the nucleon. As the global initiatives
to study PDFs in a variety of high-energy processes, such as deep-inelastic lepton scattering (DIS) and Drell-Yan
in hadron-hadron collisions, at facilities such as Jefferson Lab, RHIC, Fermilab, and the LHC, intensify, providing
theoretical insights on the moments has become very timely. In particular, studying the the pion and kaon moments
will provide valuable information for the experimental program of the future Electron-Ion Collider [1, 2].

PDFs provide a complementary picture of the structure of hadrons, as compared to electromagnetic form factors.
However, unlike form factors PDFs are light-cone dominated quantities, and thus, cannot be calculated directly
on a Euclidean lattice. A very promising approach to access the x-dependence of PDFs in lattice QCD has been
proposed [3], and is developing in parallel with calculations of moments of PDFs. Significant progress needs to be
made before reaching the precision and control of systematic uncertainties needed for a reliable comparison with
experimental measurements.1 The traditional approach to extract information on PDFs from lattice QCD is to
evaluate Mellin moments of PDFs. Computing the Mellin moments of PDFs allows us to obtain results with more
controlled systematics. They are interesting in their own right, as they are extracted from phenomenological analyses
of experimental data, enabling direct comparison.

While the proton has been extensively investigated using lattice QCD, there are only limited studies for pion and
kaon structure [6–10]. A few studies exist beyond lattice QCD mainly within models, such as the Dyson-Schwinger
equations [11–14] and Nambu–Jona-Lasinio [15, 16]. In addition, lattice QCD calculations mostly focus on the pion
electromagnetic form factor [17–21] and the pion average momentum fraction [19, 22–26]. Given the relatively small
amount of experimental data to date it is important to obtain results on the Mellin moments from first principle
calculations.

Pion and kaon structure is relevant to a number of important questions, such as, how hadron masses are generated,
the dynamics of chiral symmetry breaking, and the role of pions in nucleon-nucleon interactions. The constrast
between the nucleon, and the pion and kaon, is crucial to understand the Standard Model mechanisms that produce
hadron masses. For example, in the chiral limit the masses of the pion and kaon vanish, whereas, the nucleon still
has a mass on the order of 1 GeV. As such, the trace anomaly must vanish in the pion/kaon in the chiral limit but
is non-vanishing in the nucleon. The pion, the lightest hadronic state in the QCD spectrum, is relevant for chiral
symmetry breaking involved in nucleon-nucleon interactions. Pion cloud for instance, can explain why there are more
d than u anti-quarks in the proton sea [27–30]. Comparisons between pion and kaon structure can reveal interesting
aspects of QCD dynamics. For example, a model calculation [15] suggests that the strange contribution to the kaon
form factors drops faster with increasing momentum transfer, compared to the up quark form factor, which has been
interpreted as a consequence of confinement.

The rest of the paper is organized as follows: In Sec. II we present the theoretical setup of the calculation and
the appropriate decomposition to obtain 〈x〉 and 〈x2〉 for mesons. In Sec. III A we provide the details of the lattice
formulation, the parameters of the ensemble employed, as well as the calculation of the correlation functions needed
in this work. The analysis for the extraction of reliable estimates for the non-perturbative renormalization functions
is described in Sec. III B, as well as the details of the non-perturbative prescription. The various analyses on the
two-point correlation functions for extracting the pion and kaon masses corresponding to the ensemble under study
are presented in Sec. IV. In the same section we also include a thorough investigation of excited states for both 〈x〉
and 〈x2〉, as well as an alternative kinematic setup for extracting 〈x〉. The final results along with comparison with
other studies and phenomenology are presented in Sec. V. In Sec. VI we summarize our work and conclude.

1 For a recent review on these approaches see Refs. [4, 5].
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II. THEORETICAL SETUP

To calculate 〈x〉, we compute the meson matrix elements 〈M(p′)|O{µν}|M(p)〉 for p′ = p, where O{µν} is the
one-derivative vector operator defined as

O{µν} ≡ ψ

[
1

2

(
γµ
↔
D ν + γν

↔
D µ

)
− 1

4

4∑
ρ=1

δµνγ
ρ
↔
D ρ

]
ψ . (1)

where the notation {· · · } means symmetrization and traceless, with
↔
D = 1

2

(→
Dµ −

←
Dµ

)
,
→
Dµ= 1

2

(
∇µ +∇∗µ

)
[31],

and ψ corresponds to the up or down quark for the pion, and the up or strange quark for the kaon. {...} indicates
symmetrization over the indices, in this case µ and ν, as well as subtraction of the trace, to avoid mixing with other
operators [32–34].

The higher moment 〈x2〉 is accessed using a fermion operator with two covariant derivatives, Oµνρ = ψγµDνDρ ψ.
To avoid any mixing, we choose the indices µ, ν, ρ to be different [33, 35, 36]. Therefore, only a symmetrization over
these indices is needed, that is,

O{µνρ} ≡ 1

6

(
Oµνρ +Oµρν +Oνµρ +Oνρµ +Oρµν +Oρνµ

)
. (2)

The meson matrix elements decompose into two generalized form factors, A20 and B20 for the one-derivative vector
operator, and A30 and B30 for the two-derivative operator. The kinematic coefficients in Euclidean space are given
by:

〈M(p′)|O{µν}|M(p)〉 = C
[
2P {µP ν}A20(Q2) + 2∆{µ∆ν}B20(Q2)

]
, (3)

〈M(p′)|O{µνρ}|M(p)〉 = C
[
2i P {µP νP ρ}A30(Q2) + 2i∆{µ∆νP ρ}B30(Q2)

]
. (4)

In the above decompositions, P is the average of the initial and final momenta of the meson, P = (p+p′)/2, and ∆ their
difference, ∆ = p′− p. Q2 is the momentum transferred squared. C is a kinematic factor related to the normalization
of the two-point functions. Therefore, C depends on the frame employed and the momentum transferred. Based on
our conventions, we obtain C = 1√

4E(p)E(p′)
for a general frame. mM is the mass of meson M and E(p)=

√
m2
M + ~p 2

is the energy at momentum ~p. Therefore, C does not depend on the spatial directions of the momentum, only on ~p 2.
Note also, that the generalized form factors Ai0 and Bi0 are functions of the momentum transferred squared, and are
independent of the kinematic setup.

The quantities of interest are obtained from the forward limit of the matrix elements, leading to 〈x〉 ≡ A20(0),
〈x2〉 ≡ A30(0). The decomposition of Eq. (3) takes a simple form for mesons at rest, and in fact, at Q2 = 0 there is
only one matrix element contributing, which has µ = ν = 4 where we denote by index 4 the temporal direction. In
such a simplified case, Eq. (3) becomes

〈M(0)|O44|M(0)〉 = −3mM

4
〈x〉M . (5)

The index “M” indicates the meson of interest. The kinematic coefficient of A30 becomes zero in the rest frame
(~p ′ = ~p = 0) and in the forward limit, unless all the indices of the operator are temporal. This is is not an optimal
option, as O444 suffers from mixing with lower-dimension operators [32–34], making the extraction of 〈x2〉 unreliable.
In fact, to eliminate mixing even with operators of equal dimension, all indices must be different from each other,
which is the choice we employ in this work. Given these constraints, the only way to obtain 〈x2〉 is to work in a frame
in which the meson is moving with some momentum ~p ′ = ~p 6= 0 (boosted frame). In the forward limit, the momentum
is the same at the source and the sink, p′ = p = (iE, px, py, pz). For µ 6= ν 6= ρ 6= µ, all spatial components of the
momentum must be non-zero to extract 〈x2〉 directly from lattice data, without the need of applying fits on matrix
elements with finite momentum transfer. In the boosted frame, the matrix elements are related to their corresponding
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Mellin moments via:

〈M(p)|O44|M(p)〉 =
1

2EM (p)

(
m2
M

2
− 2(EM (p))2

)
〈x〉M , (6)

〈M(p)|Oµν4|M(p)〉 = −pµ pν〈x2〉M , (7)

which include all kinematic factors and normalizations. In Eq. (7) we take one of the indices to be temporal, which
simplifies the kinematic factor of 〈x2〉.

III. LATTICE SETUP

A. Lattice Action

In this work we employ one ensemble [37] of Nf = 2 + 1 + 1 twisted mass fermions with a clover term and the
Iwasaki improved gluon action. The ensemble is generated by the Extended Twisted Mass Collaboration (ETMC).
The fermionic part of the action is written in the physical basis as

S[ψ, ψ̄, U ] = a4
∑
x

ψ(x)

(
D[U ] + µq − iγ5τ3

[
Wcr +

i

4
cswσ

µνFµν [U ]

])
ψ(x) . (8)

D = γµ(∇∗µ +∇µ)/2, ∇µ and ∇∗µ are the forward and backward lattice covariant derivatives, and µq is the twisted
quark mass [26]. Wcr = −(a/2)∇∗µ∇µ + mcr and mcr is the bare untwisted mass tuned to its critical value, which
gives automatic O(a) improvement [38], requiring no further improvements on the operator level. The last term is the
clover term multiplied by the Sheikoleslami-Wohlert improvement coefficient csw. Since we achieve O(a) improvement
from the critical mass, csw is used to reduce isospin symmetry breaking effects [39]. We take csw = 1.74 for this
ensemble. The parameters of the simulation are given in Table I.

Parameters

Ensemble β a [fm] volume L3 × T Nf mπ [MeV] Lmπ L [fm]

cA211.32 1.726 0.093 323 × 64 u, d, s, c 260 4 3.0

TABLE I. Parameters of the ensemble used in this work.

For the interpolating fields, JM , of the mesons under study we take

Jπ+ = dγ5u , (9)

JK+ = sγ5u . (10)

A useful consequence of the pseudoscalar structure of the pion, as well as the γ5-hermiticity relation of the twisted
mass quark propagators

Gu(x, x′) = γ5G
†
d(x
′, x)γ5 , (11)

is that we only need to calculate the up quark contribution to the pion three-point functions. The pion and kaon
interpolating fields are smeared using Gaussian smearing at both source and sink. The smearing parameters are tuned
separately for the pion and kaon. We use the same value of αG but varying the number of smear iterations NG for
the light and strange quarks. An optimal choice for NG is based on the criterion that the root mean squared radius
of the smeared source reproduces the experimental radius of the pion [40] for the light quarks and the experimental
radius of the kaon [41] for the strange quarks. In this work we obtain (αG, NG) = (0.2, 50) for the light quarks and
(αG, NG) = (0.2, 40) for the strange quark. APE smearing is applied on the gauge links that enter the gaussian
smearing with parameters (αAPE , NAPE) = (0.5, 50).
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M(ts, xs⃗)

(t, x)⃗

(ti, xi⃗)M

FIG. 1. Connected diagram for the three-point function entering the calculation of 〈x〉 and 〈x2〉. The wavy line corresponds to
the operator insertion.

We study the connected contribution to the matrix elements of O44 and Oµν4, which is shown in Fig. 1. For
the calculation of the three-point functions we use the fixed sink sequential inversion approach. The three-point
correlation functions are calculated at zero momentum transfer,

CΓ
M (t, ts, ~p) =

∑
~xs,~x

〈JM (ts, ~xs)Oµν(t, ~x)JM (ti, ~xi)〉e−i~p·(~xs−~xi) , (12)

where ti, t, ts are the source, insertion and sink Euclidean times, respectively. The corresponding spatial coordinates
of the source, current insertion and sink are ~xi, ~x, ~xs. Without loss of generality we will take the source to be at
ti = 0, so that the source-sink separation ts− ti = ts. For a general insertion current OΓ = ūΓu± d̄Γd, the three-point
functions can be written in terms of the up and down parts

CµνM (t, ts) =
∑
~xs,~x

〈JM (ts, ~xs)|[ūΓ(t, ~x)u± d̄Γ(t, ~x)d]|JM (0,~0)〉 = CΓ
M,u(t, ts)± CΓ

M,d(t, ts) . (13)

Performing the Wick contractions for the pion, and applying the γ5-hermiticity, it can be shown that, for π+, the up
and down parts are related by

CΓ
π,d = ±

(
CΓ
π,u

)∗
. (14)

The plus / minus sign comes from the fact that a general γ-structure is either γ5-hermitian or anti-γ5-hermitian, i.e.
γ5Γ†γ5 = ±Γ. Both the one-derivative vector and two-derivative vector operators are γ5-hermitian, and therefore,

C44
π,u+d = 2C44

π,u , (15)

Cµν4
π,u+d = 2Cµν4

π,u . (16)

In the results presented here, we focus on the u+ contribution to the pion, where the q+ ≡ q + q̄ notation has been
adopted. Note that, based on Eqs. (15) and (16), 〈x〉πu+ = 〈x〉πd+ and 〈x2〉πu+ = 〈x2〉πd+ , that is, 〈x〉πu++d+ = 2〈x〉πu+

and 〈x2〉πu++d+ = 2〈x2〉πu+ . This discussion is relevant to the comparison with phenomenological results presented in
Sec. VI. We note that Eqs. 14, 15, 16 are only applicable for the pion case, whereas for the kaon due to different mass
of the light and strange quarks such relations do not hold.

We analyze 122 configurations, separated by 20 trajectories to reduce auto-correlation effects. In the rest frame, we
use 16 randomly chosen source positions on each configuration, giving a total statistics of 1952. In the boosted frame,
we use 32 source position for a total statistics of 3904. For the calculation in the rest frame, we use six source-sink time
separations, namely ts/a = 12, 14, 16, 18, 20, 24, corresponding to ts = 1.12 − 2.23 fm. This allows for a thorough
investigation and elimination of possible contributions from excited states. Based on the analysis of the results in
the rest frame we concluded that a subset of ts/a = 14, 16, 18 is sufficient for extracting the ground state matrix
elements. Thus, we only use these three time separations for the computation of 〈x〉 and 〈x2〉, in the boosted frame.

According to the decomposition of Eq. (6), 〈x2〉 can be obtained using momentum boost with at least two non-
zero spatial components, with the lowest momentum being ~pi = 2π

L (±1,±1, 0) (12 combinations). In this work, we

employ, for 〈x2〉, momenta of the class ~pi
2 = 12π2

L2 , which corresponds to 8 combinations for the spatial components,

~pi = 2π
L (±1,±1,±1). With the same setup we also obtain 〈x〉, for a qualitative comparison with the rest frame,

and the scaling of the statistical uncertainties. The choice ~pi
2 = 12π2

L2 is optimal for two reasons: While it increases

the statistical uncertainties as compared to momenta ~pi
2 = 8π2

L2 , the computational cost for the same number of

configurations is reduced by 33% due to the smaller number of permutations. Also, the class ~pi
2 = 12π2

L2 allows one

to access, with the same setup, other quantities, such as 〈x3〉, as well as form factors and generalized form factors.
These quantities will be presented in a follow-up work.
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B. Renormalization

The renormalization of the bare matrix elements is multiplicative, and the renormalization functions are calculated
non-perturbatively using the Rome-Southampton method (RI′ scheme) [42]. The estimates are converted to the MS-
scheme and evolved at a renormalization scale of µ =2 GeV. We refer to the renormalization function of Oµµ and
Oµνρ (µ 6= ν 6= ρ 6= µ) as ZvD and ZvDD, respectively. The renormalization function in the RI′ scheme are determined
by the conditions

Zq =
1

12
Tr
[
(SL(p))−1 SBorn(p)

]∣∣∣
p2=µ2

0

, Z−1
q ZO

1

12
Tr
[
ΓLO(p)

(
ΓBorn
O (p)

)−1
]∣∣∣
p2=µ2

0

= 1 , (17)

where p is the momentum of the vertex function, set to the RI′ renormalization scale, µ0. SBorn (ΓBorn
O ) is the tree-

level value of the fermion propagator (operator), and the trace is taken over spin and color. We use the momentum
source method [43], which is successfully employed for twisted mass fermions [44–46]. This method achieves per mil
accuracy even with a small number of configurations. In the results presented here we use 10 configurations. In order
to reduce discretization effects we use momenta that have the same spatial components, that is:

(ap) ≡ 2π

(
nt
Lt

+
1

2Lt
,
nx
Ls
,
nx
Ls
,
nx
Ls

)
, nt ε [2, 9] , nx ε [2, 5] , (ap)2 ∈ [0.9− 6.7] , (18)

where Lt (Ls) is the temporal (spatial) extent of the lattice. These momenta are chosen to have suppressed non-
Lorentz invariant contributions (

∑
i p

4
i /(
∑
i p

2
i )

2<0.3), which is based on empirical arguments [47]. We improve the
non-perturbative estimates for ZvD by subtracting finite lattice effects using the procedure outlined in Refs. [46, 48].
The latter are computed to one loop in perturbation theory and to all orders in the lattice spacing, O(g2 a∞). Such
a procedure is not yet available for two-derivative operators. However, we partly improve ZvDD, by subtracting the
O(g2 a∞) artifacts from Zq which enters the renormalization condition for ZvDD in Eq. (17).

β = 1.726, a = 0.093 fm

aµ amPS lattice size

0.0060 0.1680 243 × 48

0.0080 0.1916 243 × 48

0.0100 0.2129 243 × 48

0.0115 0.2293 243 × 48

0.0130 0.2432 243 × 48

TABLE II. Parameters for the Nf = 4 ensembles used for the renormalization functions.

For a proper chiral extrapolation, we calculate the renormalization functions on several ensembles with all masses
of quark flavors degenerate (Nf = 4). We use five ensembles at different values for the pion mass, which are produced
with the same β value as the one of the cA211.32 ensemble analysed for the matrix elements. The parameters of
the Nf = 4 ensembles are given in Table II. The chiral limit is taken using a quadratic fit with respect to the pion
mass. For both ZvD and ZvDD, we find a negligible dependence on the pion mass, as can be seen in Table III for two
representative renormalization scales ((aµ0)2 = 2, 4). On each Nf = 4 ensemble we use 23 values of the initial RI′

scale µ0 ranging from ((aµ)2 ∈ [0.9− 6.7]). Each value is converted and evolved to MS(2 GeV) using an intermediate
Renormalization Group Invariant scheme defined in continuum perturbation theory. A linear fit with respect to
(aµ0)2 is applied on the MS values to eliminate residual dependence on the initial scale µ0. Such a dependence may
be present due to finite-a effects and/or truncation of the conversion factor (to three loops in perturbation theory).

In Fig. 2 we show ZvD and ZvDD in the RI′ and MS schemes as a function of the initial RI′ renormalization scale,

µ0. ZMS
O are given at µ = 2 GeV, and the purely non-perturbative data exhibit a small residual dependence on the

initial scale µ0 they were evolved from. A procedure of subtracting the finite-a effects to O(g2a∞) is also applied on
ZvD. For ZvDD the improvement is only applied to Zq. We find that for both cases, subtracted results have a much
smaller slope than the non-substracted ones, demonstrating the effectiveness of the artifact-subtraction procedure.

We eliminate any residual (aµ0)2 dependence in each renormalization function by using the Ansatz

ZO(a p) = ZO + Z
(1)
O · (aµ0)2 . (19)
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ZRI′
vD

amPS (aµ0)2=2 (aµ0)2=4

0.1680 1.1762(2) 1.1043(1)

0.1916 1.1770(3) 1.1045(2)

0.2129 1.1773(2) 1.1046(1)

0.2293 1.1782(2) 1.1048(1)

0.2432 1.1779(2) 1.1047(1)

ZRI′
vDD

amPS (aµ0)2=2 (aµ0)2=4

0.1680 1.4870(4) 1.3722(2)

0.1916 1.4890(5) 1.3733(2)

0.2129 1.4888(5) 1.3732(3)

0.2293 1.4922(4) 1.3751(2)

0.2432 1.4914(6) 1.3748(3)

TABLE III. Pion mass dependence of the renormalization function ZvD (left panel) and ZvDD (right panel) in the RI′ scheme.
The first column is the pion mass (in lattice units) for the ensemble, the second (third) is the renormalization function at scale
(aµ0)2=2 ((aµ0)2=4). The number in the parenthesis is the statistical error.

ZO corresponds to the final value of the renormalization function for operator O. We obtain ZvD = 1.123(1)(5) and
ZvDD = 1.340(1)(15), where the numbers in the first and second parentheses are the statistical and systematic errors,
respectively. The source of systematics is related to the (aµ0)2 → 0 extrapolation. The final value uses the fit interval
(aµ0)2 ε [2− 7] and the systematic is estimated by varying the lower range of the fit range. The reported uncertainty
is the difference with the value obtained from (aµ0)2 ε [4− 7].

0 1 2 3 4 5 6 7

(a µ
0
)

2

1.2

1.3

1.4

1.5

1.6

Z
v

D
D

 

0.9

1.0

1.1

1.2

1.3

Z
v

D
 

RI’
MS unsub

MS O(g2ainf)-subtracted

FIG. 2. Chirally extrapolated results for ZvD (top) and ZvDD (bottom). Blue triangles correspond to RI′ scheme, black circles
to MS scheme and magenta diamonds to the subtracted results in the MS scheme. The data are plotted as a function of the
initial RI′ scale (aµ0)2. The dashed line corresponds to the fit of Eq. (19), and the filled magenta diamonds represent our final
values for ZvD and ZvDD.

IV. ANALYSIS METHODS

A. Effective Mass

One of the important ingredients in the determination of the Mellin moments is the mass (energy) of the meson in
the rest (boosted) frame. This is needed because the ground-state energy enters in the decomposition of Eqs. (3) -
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(6). We implement two fits for extracting the ground state energy from the two-point correlation functions

C2pt
M (t, ~p) =

∑
~x

〈JM (t, ~x)J†M (0,~0)〉ei~p~x , (20)

as described below. We exploit the symmetry properties and we symmetrize the correlator corresponding to t and
T − t, for t ∈ [0, T/2], i.e., the value at t have been averaged with their corresponding value at T − t.

Plateau method: The first method relies on a single-state fit where the effective mass (energy) is fitted to a constant
with respect to t. The fit is taken over a range of t where the effective mass (energy) becomes time independent
(plateau region). We calculate the effective mass from the symmetrized two-point function according to

mM
eff(t) =

1

2
ln

C2pt
M (t− 1) +

√
(C2pt

M (t− 1))2 − (C2pt
M (T2 ))2

C2pt
M (t+ 1) +

√
(C2pt

M (t+ 1))2 − (C2pt
M (T2 ))2

. (21)

We test several values for the lower value of t entering the plateau fit, tlow/a ∈ [11 − 19] for the rest frame and
tlow/a ∈ [8− 14] for the boosted frame, while the maximum value is fixed to t/a = 31.

Two-state fit: The second method is a two-state fit in which we include the first excited state in the fit Ansatz
given by

C2pt
M (t) = c0

(
e−E0t + e−E0(T−t)

)
+ c1

(
e−E1t + e−E1(T−t)

)
. (22)

The amplitudes c0 and c1, as well as the ground and first excited state energies E0, E1 are fit parameters. An
alternative procedure is to apply the two-state fit on meff directly, by substituting Eq. (22) into Eq. (21). This way,
one of the amplitudes cancels out and the fit consists of three free parameters. Here we employ both procedures to
cross-check the consistency of the results. We note that extracting the amplitude c0 is needed in order to calculate
the ratios between the three-point and two-point functions as described in the next section (see, e.g., Eq. (32)). The
two-state fit is taken over the range t ∈ [tlow − 31a], with tlow/a ∈ [1− 4].

0.125

0.126

a
m

ef
f
π

0 2 4 6 8 10 12 14 16 18 20
tlow/a

0.250

0.251

0.252

a
m

ef
f
K

m2− state

mplat

Final m2− state

Final mplat

FIG. 3. Pion (top) and kaon (bottom) mass in the rest frame as a function of the lowest value of t/a, tlow/a entering the
fit. Results using the plateau method are shown with red squares, and results from the two-state fit with green circles. The
selected values extracted using the plateau and two-state fits are shown with the purple square and blue circle, respectively.

In Fig. 3 we show the pion and kaon mass as a function of the lowest value of t/a entering the fit. We note that for
the kaon we use the so-called Osterwalder Seiler (OS) fermions [49] which avoids the mixing effects between strange
and charm quarks. The value of the µs = 0.022 which enters the strange quark propagator is fixed by the physical
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ratio mDs
/fDs

= 7.9 [50], where mDs
is the mass of the Ds meson and fDs

it’s decay constant. We compare the
results extracted from the plateau and two-state fits of Eq. (22). We find that there is a very good agreement between
the two methods, when tlow/a ≥ 11 in the plateau fit.

We repeat a similar process of extracting the energy and amplitude of the ground state, using the data in the

boosted frame. As explained above, we focus on meson momentum boost ~pi
2 = 12π2

L2 . To increase the accuracy of the
results and improve the stability of the fit, we perform the various fits on the averaged two-point functions over the
eight values of the momentum boost leading to the same ~pi

2 (~pi = 2π
L (±1,±1,±1)). The results of the fit are shown

in Fig. 4
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0.42

0.43
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E

ef
f
K

E2− state

Eplat

Final E2− state

Final Eplat√
m2

eff + p2

FIG. 4. Pion (top) and kaon (bottom) mass in the boosted frame as a function of the the lowest value of t/a entering the fit.
The notation is the same as in Fig. 3.

The final values shown with purple and blue in Figs. 3 and 4 are selected based on the following criterion: We
accept a plateau fit with tlow when the lowest state mass in the rest (boosted) frame (energy) obtained using the
plateau method, mplat (E0,plat) and the the two-state fit m2st (E0,2st)satisfy the conditions

1

2
δmplat

>
= |mplat −m2st.|, (23)

where δmplat is the statistical error on the value extracted from the plateau method. An additional constraint for the
accepted fit, is χ2

plat/d.o.f < 1. Our final values for the pion mass in the rest frame based on the above criteria are:

plateau : amπ = 0.1250(2), tlow/a = 11 , (24)

2−state : amπ = 0.1251(2), tlow/a = 2 (25)

while in the boosted frame we obtain

plateau : aE0π = 0.361(4), tlow/a = 8 , (26)

2−state : aE0π = 0.360(3), tlow/a = 1 . (27)

A similar procedure for the kaon leads to

plateau : amK = 0.2507(3), tlow/a = 11 , (28)

2−state : amK = 0.2508(2), tlow/a = 2 (29)
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in the rest frame, and to

plateau : aE0K = 0.423(1), tlow/a = 8 , (30)

2−state : aE0K = 0.423(1), tlow/a = 2 (31)

in the boosted frame.

In Fig. 5 we plot the effective mass in the rest frame calculated from Eq. (21). We also show the plateau fit value
and the two-state fit on the correlator as chosen based on Eq. (23). We find full agreement between the two fits, for
both the pion and the kaon.

0 5 10 15 20 25 30
t/a

0.122

0.124

0.126

0.128

0.130

0.132

0.134

a
m

ef
f
π

0 5 10 15 20 25 30
t/a

0.248

0.250

0.252

0.254

0.256
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0.260
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ef
f
K

mplat

m2− state

FIG. 5. Pion (left) and kaon (right) meff in the rest frame. The fitted value from the plateau mplat is shown with a red band,
and from the two-state fit applied on meff with a green band.

B. Excited-states contamination in 〈x〉

To extract the ground state contributions to 〈x〉, one has to ensure suppression of excited states in the three-point
functions. This is achieved at sufficiently large insertion (t/a� 1) and sink times ((ts− t)/a� 1), where the ground
state of the hadron gives the dominant contribution to the three-point correlation functions. It is in this region that
we need to extract the matrix elements in order to control excited-states contamination. We employ six values of ts
in the rest frame, ts/a ∈ [12, 24], which for mesons can be achieved with a reasonable computational cost. For the
pion this is due to the fact that the statistical error for meson matrix elements in the rest frame remains the same
with increasing ts. Similarly to the analysis of the two-point functions we use two different analysis methods on the
three-point functions, in order to study the convergence to the ground state and the significance of excited-states
contributions. We used this study in the rest frame, as a guidance for the ts values to be employed in the boosted
frame. Conclusions from such a study are also useful in a follow-up work for other studies of pion and kaon matrix
elements.

Plateau method: The first method is based on a constant fit applied to an appropriate ratio of three-point and
two-point functions. We choose a convenient ratio so that the denominator contains the ground state obtained from
the fit of Eq. (22) (instead of the actual two-point functions). This removes the ts dependence in the ratio, allowing
plateau convergence with increasing ts:

R44
M (ts, t) =

C44
M (ts, t)

c0 e−E0ts
. (32)

We perform a constant fit as a function of the time t of the operator insertion for each ts separately and in a region
where mild t-dependence is observed. One then seeks convergence of the extracted plateau values as ts increases. In
the limit of large time separations the ratio becomes time-independent, that is

R44
M (ts, t)

(ts − t)/a� 1−−−−−−−−−→
t/a� 1

Π44
M . (33)
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Combining Eq. (5) with Eq. (33), we can obtain 〈x〉 via

〈x〉M = − 4

3mM
ZvD Π44

M . (34)

In the above expression we include the renormalization function for the one-derivative operator, ZvD, and all kinematic
and normalization factors.

Two-state method: In the second method of extracting 〈x〉 we take into account the contribution from the first-
excited state in the three-point correlation functions. A two-state fit may be performed via

C44(t, ts) =A00

{
θ(ts − t)e−E0ts − θ(t− ts)e−E0(T−ts)

}
+A01

{
θ(ts − t)e−E0(ts−t)−E1t − θ(t− ts)e−E0(t−ts)−E1(T−t)

}
+A10

{
θ(ts − t)e−E1(ts−t)−E0t − θ(t− ts)e−E1(t−ts)−E0(T−t)

}
+A11

{
θ(ts − t)e−E1ts − θ(t− ts)e−E1(T−ts)

}
,

(35)

where θ(t) = 1 for t ≥ 0 and θ(t) = 0 for t < 0. Given the large number of parameters, in Eq. (35) we use m for the
rest frame and E0 for the boosted frame and E1 for the excited states extracted from the two-state fit of Eq. (22).
Therefore, the actual free parameters are the amplitudes A00, A01, and A11 (A01 = A10 for zero momentum transfer).
The desirable matrix element of the ground state is extracted via

〈M(0)|O44|M(0)〉 =
A00

c0
, (36)

where c0 is the coefficient obtained from Eq. (22). Eq. (36) leads to the following expression for the renormalized 〈x〉

〈x〉M = − 4

3mM
ZvD

A00

c0
. (37)

ts/a 〈x〉πu+ 〈x〉ku 〈x〉ks

12 0.309(3) 0.278(2) 0.339(2)

14 0.287(3) 0.264(2) 0.330(2)

16 0.275(3) 0.257(2) 0.325(2)

18 0.267(3) 0.252(2) 0.322(2)

20 0.261(4) 0.248(2) 0.319(2)

24 0.255(4) 0.244(3) 0.316(2)

2-state (a) 0.261(3) 0.246(2) 0.317(2)

2-state (b) 0.262(4) 0.246(2) 0.317(2)

TABLE IV. Renormalized data for 〈x〉 for various ts values and the 2-state fit ((a) ts ∈ [12 − 24], (b) ts ∈ [14 − 18]). The
numbers shown in the parenthesis are the statistical errors.

In Table IV we collect the values for 〈x〉 for the pion and kaon extracted from different source-sink time separations,
and the two-state fit using ts/a = 12 − 24. The results for the two-state fit using ts/a = 14 − 18 is also included.
The latter choice is based on investigating the dependence of 〈x〉 on the fit range. We find that the excited-state fit is
compatible with the values obtained from ts/a & 18 for both the pion and the kaon. As expected in the rest frame,
the statistical uncertainties remain constant with increase of the source-sink separation. We find that the plateau
values have statistical errors of 2% or less.
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The ratios of three- to two-point functions for each value of ts are shown in Fig. 6, for the up contribution to the
pion and the up and strange contribution of the kaon. R denotes the ratio R44

M of Eq. 32 multiplied by all kinematic
factors and the renormalization function. We observe that the excited-states contamination is similar for both the
pion and kaon. We find convergence on 〈x〉 for ts & 18a. A comparison of the two-state fit using ts ∈ [12a − 24a]
and the plateau values is shown in the right panels of Fig. 6. Since the ground-state contribution is established at
ts ≥ 18a and the two-state fits using ts ∈ [12a − 24a] and ts ∈ [14a − 18a] yield the same values, we choose to limit
our calculations to ts/a = 14, 16, 18 for the boosted frame. A comparison for 〈x〉 between the two frames is discussed
in Sec. IV C.
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2− state
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s
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FIG. 6. Results for the ratio leading to 〈x〉. We show the up part of the pion, the up and strange parts of the kaon, in
the top, center and bottom panels, respectively. In the left column, the points are the ratios in Eq. (32) multiplied by the
renormalization and all kinematic factors. We plot values for ts/a = 12 up to ts/a = 24. The blue, red, green, magenta, cyan
and orange constant bands are the results obtained from Eq. (34). The purple band is the two-state fit value obtained from
Eq. (37). In the right column we plot the plateau values, together with two-state fit results. The gray band is the function
obtained from a two-state fit using ts ∈ [12a− 24a] and taking t = ts/2.

C. Alternative setup for 〈x〉 in the boosted frame

In the above discussion we have used the rest frame for the extraction of 〈x〉, ~pf = ~0, and in the forward limit

we also have ~pi = ~0. In this paragraph we explore an alternative setup, a boosted frame with ~pf = ~pi 6= ~0. Note
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that employing such a frame is not necessary for 〈x〉, as A20(0) has a nonzero kinematic coefficient in the rest frame.
However, the study of 〈x〉 within the boosted frame is interesting because one can understand how the statistical
errors increase with ts. Based on the conclusions from Sec. IV B on the analysis of excited states, we focus on
ts/a = 14, 16, 18, as the computational cost for the same number of configurations is increased by a factor of 8 as
compared to the rest frame. Since this calculation is part of a wider set of operators, the optimal class of momenta is

~p2
i = 12π2

L2 . This corresponds to eight combinations for the spatial components, that is, ~p = 2π
L (±1,±1,±1). In such

a frame, the appropriate decomposition is given in Eq. (6), instead of Eq. (5).

In Fig. 7 we compare the ratios leading to 〈x〉 for both the pion (top panels) and kaon (center and bottom panels).
The left, center and right columns correspond to ts = 14a, 16a, 18a, respectively. The ratios include all the kinematic
factors, and thus can be compared to each other. As can be seen, the statistical uncertainties increase with ts in the
boosted frame, which is expected. For both the pion and kaon we find agreement between the plateau values obtained
from the two frames within the uncertainties.

0.25

0.30

0.35

0.40

0.45

R
4
4
π
u

ts = 14 ts = 16 ts = 18

0.25

0.30

0.35

R
4
4
K
u

5 0 5
(t− ts/2)/a

0.30

0.35

0.40

R
44 K
s

5 0 5
(t− ts/2)/a

5 0 5
(t− ts/2)/a

ts = 14, p2 = 0

ts = 14, p2 = 3

ts = 16, p2 = 0

ts = 16, p2 = 3

ts = 18, p2 = 0

ts = 18, p2 = 3

2-state, p2 = 0

2-state, p2 = 3

FIG. 7. Comparison of 〈x〉 in the boosted (filled symbols) and rest (open symbols) frame. From top to bottom we show 〈x〉 for
the pion and kaon up and strange contribution. Results at ts/a = 14, 16, 18 are shown in the left, center and right columns,
respectively. For this comparison, we use 16 source positions for each momentum frame so that the statistics are consistent.

The ratio for the 〈x〉 for the pion and the kaon is shown in Fig. 8 for ts/a = 14, 16, 18, and also compared to the
two-state results. We find that all plateau values are compatible with the results of the two-state, indicating that
excited-states contamination are within the reported uncertainties, which are larger compared to the ones in the rest
frame. In Table V we collect all the results obtained in the boosted frame. We find that the statistical uncertainties
in 〈x〉πu grow from 5% to 10%, with the increase of ts from 14a to 18a. The corresponding increase in 〈x〉ku (〈x〉ks) is
2% to 3% (2% to 4%). We remind that the error in the rest frame is less or equal to 2%, and it is constant for all
source-sink separations.
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FIG. 8. Ratio for 〈x〉πu (top), 〈x〉Ku (center), and 〈x〉Ks (bottom) for ts/a = 14, 16, 18, shown with blue circles, red squares,
and green triangles, respectively. The corresponding plateau values are shown with bands of the same color. The purple band
corresponds to the value extracted using the two-state fit.

ts/a 〈x〉πu 〈x〉ku 〈x〉ks

14 0.273(9) 0.262(3) 0.332(3)

16 0.269(13) 0.257(4) 0.330(4)

18 0.255(19) 0.248(5) 0.327(6)

2-state 0.263(13) 0.251(4) 0.325(4)

TABLE V. Renormalized data for 〈x〉 for the three ts values and the 2-state fit using ts ∈ [14 − 18]). The number shown in
the parenthesis are the statistical errors.

D. Excited-states contamination in 〈x2〉

The extraction of 〈x2〉 is more challenging than 〈x〉 for several reasons. Firstly, 〈x2〉 cannot be extracted in the rest
frame due to a vanishing kinematic factor in Eq. (7). The introduction of momentum in the meson states increases
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the statistical noise, and in our case, the use of a rather large momentum (~p2
i = 12π2

L2 ) worsens the signal even more.
Secondly, the presence of two covariant derivatives in the operator contribute to the increase of the gauge noise.
Thirdly, having three Dirac indices leads to a more complicated renormalization pattern, and, to completely avoid the
mixing with operators of equal or lower dimension, the indices of the operator must be selected different from each
other. Here we employ the operator Oµν4.

In Fig. 9, we show the ratio leading to 〈x2〉 for the pion and the kaon. We plot the data for the three values of
ts considered, that is ts/a = 14, 16, 18, and compare with the two-state results. We find that all plateau values are
compatible with the results of the two-state, indicating that excited-states contamination are mild compared to the
errors on this quantity. The values obtained from the plateau and two-state fits are given in Table VI.
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FIG. 9. Ratio for 〈x2〉πu (top), 〈x2〉Ku (center), and 〈x2〉Ks (bottom) for ts/a = 14, 16, 18, shown with blue circles, red squares,
and green triangles, respectively. The corresponding plateau values are shown with bands of the same color. The purple band
corresponds to the value extracted using the two-state fit.

ts/a 〈x2〉πu 〈x2〉Ku 〈x2〉Ks

14 0.111(7) 0.098(2) 0.140(2)

16 0.099(13) 0.097(4) 0.138(3)

18 0.082(21) 0.093(5) 0.134(5)

2-state 0.099(13) 0.096(3) 0.137(3)

TABLE VI. Renormalized data for 〈x2〉 at each ts values and the two-state fit (ts ∈ [14 − 18]). The number shown in the
parenthesis is statistical error.
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V. FINAL RESULTS AND COMPARISON WITH OTHER STUDIES

In this section we discuss our final values for the quantities studied in this work. For 〈x〉 we give the results in the
rest frame and using the two-state fits. This is because the statistical uncertainties are the same for all values of ts.
For 〈x2〉 we use the results extracted from ts/a = 18, as the two-state fit may be driven by the most accurate data.

〈x〉πu+ = 0.261(3)(6) , (38)

〈x〉Ku+ = 0.246(2)(2) , (39)

〈x〉Ks+ = 0.317(2)(1) , (40)

and

〈x2〉πu+ = 0.082(21)(17) , (41)

〈x2〉Ku+ = 0.093(5)(3) , (42)

〈x2〉Ks+ = 0.134(5)(2) . (43)

These results are in the MS scheme at a scale of 2 GeV. We use the notation q+ ≡ q + q̄ for the sum from quark
and antiquark contributions. As already mentioned 〈x〉πu++d+ = 2〈x〉πu+ and 〈x2〉πu++d+ = 2〈x2〉πu+ . The number given
in the first parenthesis is the statistical error obtained from a jackknife analysis. We also report a systematic error,
given in second parenthesis, which is due to excited states contamination. This is computed as the difference between
the value extracted using the two-state fit and the plateau method for ts = 24 for 〈x〉 and ts = 18 for 〈x2〉. We also
extract the ratio 〈x2〉/〈x〉, for which we find

〈x2〉πu+

〈x〉πu+

= 0.30(8)(7) , (44)

〈x2〉Ku+

〈x〉Ku+

= 0.37(2)(2) , (45)

〈x2〉Ks+
〈x〉Ks+

= 0.42(2)(2) , (46)

using the results at ts/a = 18 for 〈x〉 and 〈x2〉. The number in the first parenthesis is statistical, while in the second
parenthesis is systematic due to excited states.

There is very limited experimental data on the kaon PDF, so it is interesting to contrast these moment results with
expectations from model calculations. For our lattice results we find 〈x〉Ku+ < 〈x〉πu+ < 〈x〉Ks+ which is consistent with
many phenomenological calculations, including the DSE results of Ref. [14]. This ordering in the momentum fractions
is understood because the heavier s quark skews sK(x) to larger x which is compensated by a shift in uK(x) to smaller
x. In the limit of equal quark masses these moments would be degenerate, therefore, we find flavor breaking effects of
up to 20% in these moments. For the third Mellin moment we find 〈x2〉Ku+ , 〈x2〉πu+ < 〈x〉Ks+ , which is again consistent
with expectations. Uncertainties on the third Mellin for the u quark in the pion and kaon do not allow an ordering of
these moments, however, any deviation from the order found for the momentum fractions would be very interesting.

There are a number of calculations on the pion 〈x〉 [22, 24, 26, 51, 52], including results obtained directly at the
physical point [25]. The pion third Mellin moment 〈x2〉, on the other hand, is lesser known, and has been studied in
Refs. [22, 26, 51] using different lattice formulations. Here we compare with lattice results on 〈x〉πu+ extracted at the
same or similar value of the pion mass, that is 240 - 270 MeV.

In Ref. [26], several Nf = 2 + 1 + 1 ensembles of twisted mass fermions with no clover improvement were used for
the calculation of the pion moments. They find 〈x〉πu+ = 0.2586(41)(28) on an ensemble (A30.32) with the similar
lattice spacing (a = 0.09 fm) and lattice size to the one of this work. For another ensemble (B25.32) with a smaller
lattice spacing a = 0.082 fm, mπ = 260 MeV and mπL = 3.5, they found 〈x〉πu+ = 0.2523(51)(71). Both values are in
agreement with 〈x〉πu+ = 0.261(3)(6) obtained using our Nf = 2 + 1 + 1 clover-improved ensemble.
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It is interesting to compare with phenomenological estimates, which can be found in Refs. [53] and [54]. The older
analysis of Ref. [54] gives a value of 〈x〉πu = 0.217(10), in the MS at a scale at (5.2 GeV)2, while ours is (2 GeV)2.
Converting to 2 GeV, their value becomes 〈x〉πu = 0.361(17). A more recent analysis is presented by the JAM
Collaboration [53], on a large set of experimental data including Drell-Yan data and leading neutron electroproduction
from HERA. They find 〈x〉πvalence = 0.480(10), which is reasonably close to our value of 2〈x〉πu+ = 0.522(13). The
error in the parenthesis is the combined statistical and systematic uncertainties added in quadrature. The fact that
our value is higher, by ∼ 4%, maybe attributed to the fact that our calculation is not at the physical point and the
continuum limit is not taken. Both the chiral extrapolation and taking a→ 0 will decrease this value as demonstrated
in Ref. [26]. We also note that all lattice calculations to date consider only the connected contributions as done in this
work. The disconnected contributions should be included for a final comparison with phenomenology. We summarize
the results for 〈x〉πu in Table VII.

There are very limited calculations for 〈x2〉 within lattice QCD, and the one which we can directly compare with our
results is Ref. [26]. They find 〈x2〉πu+ = 0.131(18)(24) and 〈x2〉πu+ = 0.132(40)(53) for ensembles A30.32 and B25.32,
respectively. These estimates are compatible with our final value, within the large uncertainties of the aforementioned
values. 〈x2〉π was also calculated in Refs. [22, 51] using a different operator, which has two Dirac indices the same.
Such a choice is expected to lead to more complicated renormalization pattern due to mixing, which is not addressed
in Refs. [22, 51]. They obtain 〈x2〉πu+ = 0.128(9)(4) which is, however consistent with the value obtained in this work.

Phenomenological estimates for 〈x2〉π can be found in Ref. [53] where a value of 〈x2〉πvalence = 0.210(5) is reported,
which is compatible with our value of 2〈x2〉πu+ = 0.164(54) within uncertainties. However, one needs to bear in mind
that the phenomenological value does not include sea quark contributions unlike the lattice QCD calculation, where
such sea quark effects are automatically included. For completeness, we also provide the results from Ref. [54], which
correspond to a scale of (5.2 GeV)2. Their finding is 〈x2〉πu = 0.087(5). We convert this result to 2 GeV resulting to
〈x2〉πu = 0.169(10). This is compatible with our value.

Reference 〈x〉π 〈x2〉π

This work (lattice) 0.522(13) 0.164(54)

Ref. [26] (lattice) 0.517(99) 0.262(60)

Ref. [26] (lattice) 0.505 (174) 0.264(133)

Ref. [54] (global fits) 0.361(17) 0.169(10)

Ref. [53] (global fits) 0.480(10) 0.210(5)

TABLE VII. Comparison of lattice results and phenomenological data for 〈x〉π and 〈x2〉π.

VI. SUMMARY

We present a calculation of the second and third Mellin moments, 〈x〉 and 〈x2〉 for the pion and kaon. We use
one Nf = 2 + 1 + 1 ensemble reproducing a pion mass of 260 MeV and a kaon mass of 530 MeV. For 〈x〉 we employ
both the rest and boosted frames, and we find full agreement between the two. However, the statistical uncertainties
for the boosted frame are larger, as can be seen in Fig. 7. To extract 〈x2〉 one requires a boosted frame due to

kinematical factors. The selected meson momentum boost has all spatial components nonzero, and gives ~pi
2 = 12π2

L2

(0.52 GeV2). We renormalize all matrix elements with non-perturbative renormalization with cut-off subtraction that
utilizes lattice QCD perturbation theory.

We perform a thorough investigation of excited states using the three-point function that determines 〈x〉. For this
investigation we use the rest frame and calculated the matrix elements for six values of the source-sink time separation
ranging from 1.12 fm to 2.23 fm. The computational cost for this study is within reach, as the statistical error does
not increase with ts in the rest frame for the pion and only increases mildly for the kaon. We analyze the data using
one-state and two-state fits. We find that excited states are suppressed for ts > 1.6 fm, that is, ts = 18a or higher.
Another important conclusion from the analysis is that the two-state fits using only ts/a = 14, 16, 18 are compatible
with the two-state fits obtained including the larger ts values. This is crucial, as in the case of the boosted frame,
the statistical errors increase with ts, as illustrated in e.g, Fig. 9, limiting how large ts can be. Thus, for the boosted
frame we perform the computation for ts/a = 14, 16, 18, where the consistency of the results extracted between one-
and two-state fits demonstrates that excited states are correctly accounted for.
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The results for the pion are given in Eq. (38) and Eq. (41), in the MS scheme at a renormalization scale of 2 GeV.
Our results agree very well with the lattice QCD analysis of Ref. [26]. It is important to emphasize that the in-depth
study and elimination of excited-states in our analysis has reduced the extracted values bringing them closer to those
determined from phenomenology. For example, our lattice data for source-sink time separations below 1.6 fm give a
value that is 10%− 20% higher than the final value extracted when the larger separations are used (see Table IV).

Our final results for 〈x〉Ku,s and 〈x2〉Ku,s are given in Eqs. (39) - (40) and Eqs. (42) - (43), respectively in the MS scheme
at a scale of 2 GeV. Currently, there are no other lattice data for these quantities, nor global fits on experimental data.
Therefore, the results on the kaon presented in this work provide a first prediction. Taking in to account that for
the ensemble employed in this work the kaon mass is about 530 MeV, i.e. only ∼ 7% heavier than its physical value,
means that the values for 〈x〉Ku,s and 〈x2〉Ku,s can be considered as a good approximation of their physical counterparts.

In the near future, we will consider calculation of 〈x3〉 for both the pion and kaon. Another direction is the form
factors and generalized form factors, which require off-forward matrix elements. We intend to test the momentum
smearing method [55] for the boosted frame, which has been proven to increase the overlap with the ground state,
decreasing significantly the statistical noise. This has already been implemented by members of our group in nucleon
matrix elements of non-local operators [56–61], and can easily be applied for meson matrix elements.
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