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Abstract

Large-scale high-performance computing (HPC) applications
running on supercomputers produce large amounts of data
routinely and store it in files on multi-PB shared parallel stor-
age systems. Unfortunately, storage community has a limited
understanding of the access and reuse patterns of these files.
This paper investigates the access and reuse patterns of I/O-
intensive files on a production-scale supercomputer.

1 Introduction

High-performance computing (HPC) applications running
on large-scale facilities routinely perform TBs of I/O. Conse-
quently, significant efforts have been made to study the I/O be-
havior of HPC systems and workloads in the recent past. Pre-
vious studies have attempted to characterize the I/O of work-
loads based on application-level traces [10,11,17,39], present
experimental analysis of factors affecting I/O [35,56-58], and
provide guidance for I/O storage systems [29,32-34,54,59].
However, there is limited understanding about how different
files produced by HPC systems are re-accessed and re-used,
from the same application and across applications. This is
primarily because it is fundamentally challenging to measure
and collect file-based I/O information across multiple execu-
tions as it requires tracing all executions of an application and
the affected files which imposes high overhead and hence, is
unsuitable for production HPC systems. The benefits of such
a study are multi-fold, including understanding the nature of
file-specific I/O, uncovering file reuse patterns, studying the
effect of I/O variability on I/O performance, and optimizing
file placement decisions. However, the costs of conducting
such a study are prohibitively high for production systems
[4,8,44]. This is one of the major reasons why the community
has lacked such an understanding so far.

To the best of our knowledge, this is the first work to per-
form in-depth characterization and analysis of access, reuse,
and sharing characteristics of I/O-intensive files. In particular,
this is the first work to characterize (1) whether HPC files are
ready-heavy, write-heavy, or both; (2) inter-arrival times for
re-access and type of re-access across runs; (3) sharing of a
file across multiple applications. Furthermore, our file-based
I/0 timing analysis also reveals key sources of inefficiencies
that cause I/O variability within and across runs.
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Figure 1: Architecture of the Cori supercomputer [7].

This study was carried out using a lightweight Darshan I/O
monitoring tool to trace application I/O on Cori, a leading
top 500 supercomputer, for a period spanning four months
(Oct’17-Jan’18) during production - covering <36 million
node-hours of operational system time.

Next, we briefly describe Cori and our methodology.

2 Background and Methodology

Brief Overview of the System. This study is based on a Cray
XC40 supercomputer, Cori, ranked at #13 in the Top-500 su-
percomputers list. Cori achieves the peak computational per-
formance of ~27 Pflop/s. Cori contains 9,688 Intel Xeon Phi
and 2,388 Intel Haswell processors. Fig. | shows Cori’s net-
work and storage structure. Cori features a disk-based Lustre
file system which is composed of ~10,000 disks organized
as 248 Lustre Object Storage Targets (OST). Each OST is
configured with GridRAID and has a corresponding Object
Storage Server (OSS) for handling I/O requests. The total size
of the file system is ~30 PB with a peak I/O bandwidth of 744
GB/s. During the data collection period of this study, the file
system was shared with Edison, an older Cray XC30 system
which was near the end of its lifetime (retired in May’19). Edi-
son was comparatively much smaller system (only 2 Pflop/s
of peak performance) and generated much lesser I/O traffic
compared to Cori as it was also near the end of its lifetime.
As Edison was recently decommissioned, we only focus on
Darshan logs collected on the Cori system. Cori also has
a SSD-based Cray DataWarp burst-buffer storage layer. We
note this study does not focus on burst-buffer I/O activities as
they are limited (5-15%) and the shared file system observes
almost all of the I/O traffic as per Darshan data.
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Figure 2: Over 99% of ~52 million files transferred < 1 GB
data and were accessed only once during the study period.
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Figure 3: (a) Files can be divided into groups: read-heavy
(RH), write-heavy (WH), or both, read- and write- heavy
(RW). (b) Difference in data read and written per run shows
>82% of runs either perform only read I/O or only write I/O.

Data Collection. We use Darshan, a light-weight I/O moni-
toring tool which provides application-level I/O tracing capa-
bility [11] to collect file I/O access patterns. Darshan V3.10
was enabled by default on Cori for all users during the study
period. Darshan reports key information including user id,
job id, application (executable) id, start timestamp, end times-
tamp, and number of processes (ranks). Darshan also traces
key statistical metrics for each file at the I/O-software-stack-
level for different types of I/O interfaces including POSIX
(Portable Operating System Interface) I/O, MPI (Message
Passing Interface) I/O, and STD (Standard) I/O. These met-
rics include amount of read/write data, aggregate time for
read/write/meta operations, rank id of I/O performing rank(s),
and variance of I/O size and time among different application
ranks. Lastly, Darshan also collects Lustre-file-system-level
metrics such as stripe width and OST IDs over which a file
is striped. However, Darshan does not report actual file sizes,
only the size of the data transferred. Over the period of this
study, ~84 million logs (one per execution) were collected
with information spanning ~52 million unique files, 8489
applications, 651 users, and 12.8 PB of data transfer (6.9 PB
read data and 5.9 PB write data).

Explanation of Analysis Figures. We now briefly describe
the format of the analysis figures used for our study.
Heatmaps. These plots are used to show the significance of
a specific relationship between two metrics. The intensity of a
heatmap box color indicates the number of files which exhibit
the corresponding relationship between the two metrics.
CMF Plots. We use CMF (Cumulative Mass Function) plots
to show the cumulative distribution of a metric. A vertical
dotted blue line is used to indicate the mean of the distribution.

Some CMF plots show the distribution of the CoV (Coeffi-
cient of Variation (%) = standard deviation 100 of a metric to
highlight the normalized variability observed by the metric.

Violin Plots. These plots are used to show the density (in
terms of the number of files) for different values of a metric
in a vertical format. A horizontal solid blue line is used to
indicate the mean of the density distribution.

Next we describe how we select I/O-intensive files, classify
these files, and classify the runs which access them.

2.1 Selecting I/O-Intensive Files

As mentioned previously, Cori’s Darshan logs contain in-
formation about ~52 million files. However, our analysis
shows that a large majority of these files perform very little
I/O during the study period. Fig. 2 shows a heatmap of the
aggregate amount of data transferred to/from a file vs. the
number of runs during which a file is accessed. Most of the
files experience less than 100 GB of I/O during the study
period and are accessed by only one run. In fact, over 99%
of these files transfer less than 1 GB data. Note that this does
not mean that the actual file size is less than 1 GB; but the
data transfer to/from the file amounts to less than 1 GB.

Therefore, a majority of such files may not be helpful in
establishing representative characteristics related to dominant
I/O patterns of HPC applications. These files include user
notes, scripts, executables, non-I/O-intensive-application out-
puts, and error logs. Therefore, our study focuses on a class
of “I/O-intensive” files which individually experience data
transfer of at least 100 GB during the study period and are
accessed by at least 2 runs - to capture the most dominant
and representative I/O patterns. From here on, we refer to
these 1/O-intensive files as “files” simply. This methodol-
ogy streamlines our analysis to useful Darshan logs spanning
~400k runs, 791 applications, 149 users, 8.5k files, and 7.8
PB of data transfer (4.7 PB read data and 3.1 PB write data).
We ensured that our analysis is not skewed by only a handful
of users performing most of the I/O to these files. In fact, over
70% of selected users perform I/O to more than 2 files, with
each user performing I/O to 57 files on average.

2.2 File Classification

Next, we classify I/O-intensive files in terms of the type of
I/O they perform. This helps us derive type-specific insights
for different types of files in Sec. 3. We study the aggregate
amount of read and write data transferred per file. Fig. 3(a)
shows a heatmap of the amount of read data transfer vs. the
amount of write data transfer. We observe that files can be
classified into three distinct clusters. The lower right cluster
consists of 22% of the files which transferred mostly read data
during the four months. We refer to these as read-heavy or RH
files. The upper left cluster consists of 7% of the files which
transferred only write data (write-heavy or WH files). Lastly,
the cluster in the top right corner with the largest percentage
of files (71%), consists of files which are both, read- and write-
heavy (referred to as RW files).
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Figure 4: Visual representation of inter-arrival times and num-
ber of consecutive runs for both read (R) and write (W) runs.

Finding 1. HPC files can be classified as read-heavy (RH),
write-heavy (WH), or read- and write- heavy (RW). For the
first time, we quantify that a significant fraction of the files
are read-heavy (22%) and 7% of files are write-heavy - these
7% files are constantly written to but not read, which may
indicate unread checkpoint/analysis data. 71% of HPC files
are RW files (i.e., both read- and write- heavy). These files
may include checkpoint/analysis files which do get read. Such
a file classification can be used for file placement decisions
in a multi-tier storage system including burst buffers, where
each tier is suitable for different kind of I/O operations.

2.3 Run Classification

While the files can be cleanly classified into three clusters,
they can be accessed by multiple “application runs” (simply,
referred to as “runs”) and can perform both read and write
I/O. A run refers to a job running on multiple compute nodes
and consisting of multiple MPI processes/ranks and possibly
shared-memory threads within a node. We found that a vast
majority of runs perform either mostly-read or mostly-write
1/0. To demonstrate this, we calculate the difference in the
amount of read and write data for each run using the formula:

ldata read_data wilten] The value of this formula ranges from 0
to 1: 1 indicates that all of the data transacted by the run is
either exclusively read or exclusively write and O indicates
equal amount of read and write data transfer. Fig. 3(b) shows
that over 82% of all runs have a value very close to 1, i.e.,
they are either read-intensive or write-intensive. In the context
of I/0, we refer to read-intensive runs as simply “read runs’
and write-intensive runs as “write runs”. We found that 69%
of all runs are read runs and 31% are write runs. RH files
are mostly read by read runs, WH files are mostly written by
write runs, and both read and writes runs operate on RW files.
This classification helps us establish a producer-consumer
relationship among runs in Sec. 3.1.

Finding 2. Somewhat surprisingly, modern HPC applica-
tions largely tend to perform only one type of I/O dur-
ing a single run: either read or write. This is in con-
trast to the commonly-held assumption that HPC applica-
tions have both read and write I/O phases during the same
run [16,20, 21, 28, 36,46, 49, 60]. This finding indicates the
potential rise of scientific workflows instead of traditional
monolithic scientific applications [6,40,45]. The presence
of non-monolithic applications provides the opportunity to
better schedule different components of a large workflow to
avoid I/O contention among different workflows.
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Figure 5: (a) Most of the read and write runs have inter-arrival
times of 50-55 hours per file (file re-access interval). (b) The
mean number of consecutive read runs in 13 and the mean
number of consecutive write runs is 3.

3 Result Discussion and Analysis

In this section, we explore HPC file behavior concerning
multi-run reuse and multi-application sharing (Sec. 3.1), and
we study I/O data characteristics pertaining to load imbalance
and intra- and inter- run I/O variability (Sec. 3.2).

3.1 File Reuse Characteristics

Run Inter-Arrival Times. In Sec. 2.3, we showed that a run
can be classified as either read run or write run, and found that
the total number of read runs are more than 2x the number
of write runs. Now, we study the inter-arrival times of these
different runs to understand the avgerage time taken to reuse
the same file (inter-arrival time is defined as shown in Fig. 4).
Fig. 5(a) shows that the mean inter-arrival time of read runs
experienced by a file is 47 hours, while that of write runs is 55
hours. But, on an average, 80% of files are re-accessed only
after 50-55 hours for both read and write runs. We note that
the average inter-arrival time is much longer than the average
runtime of jobs on Cori (e.g., >80% of HPC jobs on these
systems finish in less than 2 hours) [3,43].

Finding 3. Read and write runs have similar inter-arrival
times of over 2 days for 80% of the files. For the first time
we find that most files get re-accessed after a relatively long
period (>50 hours) - much longer than the runtime of jobs.
This enables opportunity for data compression [18] of files
which are expected to remain inactive for some time and also
leverage transparent burst-buffer prefetching and caching [9,
47] for files expected to be accessed in a short while.

Consecutive Runs of the Same I/O Type. Read and write
runs having similar inter-arrival times motivates us to test
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Figure 6: (a) Over 65% of files are accessed by at least 2 appli-
cations. (b) The average inter-arrival time of each application
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read runs transfer 17 GB of data per run, while write runs
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if read and write runs are scheduled back to back, and if so,
how long do these sequences last. We calculate the average
number of consecutive read runs and write runs for each file
(as shown in Fig. 4) and plot the distribution in Fig. 5(b). Over
80% of files experience 2 or more consecutive read runs and
over 65% of files experience 2 or more consecutive write runs.
A majority of files experience 2 consecutive read runs (65%)
and 2 consecutive write runs (50%). This suggests that files
get accessed in alternating phases of multiple read runs and
multiple write runs - consistent with our observation that RW
files dominate the population (71%). However, there are many
files which experience a large number of consecutive read
runs (due to RH files). In fact, the mean number of consecutive
read runs experienced by a file is over 14, while the mean
number of consecutive write runs is < 4. There are only 2.2x
as many read runs as write runs (Sec. 2.3), but mean number
of consecutive read runs is 4.3 x the number consecutive write
runs. This indicates that data is produced a few times, and
then consumed many times over, true for most RW files. This
observation suggests that scientific simulations often produce
data during certain runs, which is then used as a driver input
by several subsequent runs to explore different potential paths
or analyze a simulated phenomena in detail. We note that
consecutive write runs does not imply that all the previously
written data is rewritten/lost. Some scientific workflows could
append a file over two consecutive write runs and then, read a
part of the file in the subsequent run.

Finding 4. HPC files experience a few consecutive write
runs and a long string of consecutive read runs on average.
This insight can help leverage MPI “hints” [38] to guide the
system about the type of I/O about to be executed. Partitioning

—— 1/O Data Transferred === Num. Files
3 Num. Applications Num. Users
g 100 —
S L% IO USRI S
R 50
S 251
@
g % 50 100 150 200
b

OST ID (sorted)

Figure 7: The amount of I/O data transferred by each OST is
largely unequal, even though the number of files, applications,
and users are more balanced due to capacity balancing.

of I/0 servers [25] to separately serve RH files (which perform
many consecutive reads) and RW files (for read and write
runs) can boost I/0 performance.

Multi-Application File Sharing. Taking the producer-
consumer relationship one step further, it would be interest-
ing to understand if the producer and the consumer are the
same application or if they are different applications. From
a methodological point of view, we note that all applications
which access a file are run by the same user. So for any file,
both producer and consumer applications belong to the same
user. Also, a file is not considered to be shared by default
among multiple users due to permission issues. Fig. 6(a)
shows the CMF of the number of applications which access
a file. Over 67% of files are accessed by at least 2 applica-
tions, thus indicating that files are often shared by multiple
applications. Fig. 6(b) shows the CMF of the inter-arrival
time of each application which performs I/O to a file. The
mean inter-arrival time of each application is 31 hours, which
is much lower than the mean inter-arrival time of individual
read and write runs (>50 hours). Thus, for most files, 2 or
more applications serve as the producer and the consumer,
as opposed to a single application performing I/O to the file.
This is consistent with our finding that a majority (86%) of
files accessed by multiple applications are RW files (only 12%
of these shared files are RH files and only 2% are WH files).
Finding 5. HPC files are shared by multiple applications and
each application performs both read and write 1/0 serving
as both, the producer and the consumer. Inter-arrival times
of these runs also indicate that the producer and the con-
sumer are launched significantly apart in time - limiting the
effectiveness of potential caching across applications.

3.2 Characteristics of I/0 Data Accesses

Per Run I/0 Data Transfer. In Sec. 3.1, we studied how
files get used over multiple runs. We now investigate how the
data transaction characteristics change over these multiple
runs. Fig. 6(c) shows a CMF of the amount of data transferred
per run by read runs and write runs. We observe that on
average, read runs transfer 17 GB of data per run, while write
runs transfer 25 GB of data per run. In fact, 50% of read runs
transfer less than 1 GB of data.
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Finding 6. While reads runs are more abundant than write
runs and transfer more data in total, surprisingly, write runs
transfer more amount of data than read runs per run. On
average, write runs perform 1.4x the I/O of read runs per run.
This finding can be exploited to manage I/O contention better
at the system-level by limiting the number of concurrently
executing write runs. Recall that our earlier finding indicates
that HPC applications largely tend to perform only one type
of I/O during one run and hence, “write runs” can easily be
detected and classified.

Spatial Load Imbalance. Now that we have found that differ-
ent runs transfer different amount of data, the next question to
investigate is how this difference affects the back-end OSTs.
Fig. 7 shows the normalized I/O data transferred to/from each
of the OSTs during the study period. Interestingly, there is
a large spread in how much data is transferred by each OST.
The least “active” OST is only 13% as active as the most
active OST. On the other hand, when we look at the number
of files on each OST, number of applications which use these
files, and number of users which generate the files, we see
that the spread is much lower.

Finding 7. For the Lustre-based system studied in this work,
OSTs are capacity-balanced to ensure approximately equal
utilization at the file creation time, but that does not guarantee
dynamic load-balance. Consequently, there is large inequality
in terms of the amount of load (data transfer) which each
OST observes over time - emphasizing the need for dynamic
file migration (currently lacking in the Lustre file system),
replication of read-only data, and caching.

Intra-Run I/O Variability. Next, we look at how varying
OST contention can affect the I/O time of concurrently run-
ning ranks (processes) within a run as these ranks could be
performing I/O to different OSTs in parallel. For this analysis,
we individually analyze the three different I/O interfaces used
at Cori: POSIX I/0, MPI 1/O, and STD I/O. First, we look at
the amount of data transferred using each interface. Fig. 8(a)
shows that POSIX is the most commonly used I/O interface
transferring about 260 GB of data per run per file on average.
Thereafter, MPI interface is used to transfer about 190 GB of
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Figure 9: (a) A large amount of I/O data is transferred dur-
ing 3am-5am local time. (b) Due to this, runs take the most
amount of time to complete their I/O during the correspond-
ing hours. (c) Also, variability in I/O time is lower when I/O
time is higher and higher when I/O time is lower.

data per run per file on average. STD is the least commonly
used interface, as is expected for parallel HPC applications.
Fig. 8(b) shows the standard deviation of the amount of
data transferred across each rank performing I/O per run per
file. On average, this standard deviation is very small across
all three interfaces. For example, the average standard de-
viation of the amount of data transferred across POSIX I/O
performing ranks is less than 1.5 GB, which is negligible com-
pared to the average amount of data transferred using POSIX
(260 GB). On the other hand, Fig. 8(c) shows the standard
deviation of the I/O time across each rank performing I/O per
run per file. This standard deviation is especially high for I/O
performed using POSIX interface. This is because, typically
when using the POSIX interface, each rank performs I/O to
its own file, while when using the MPI I/O interface, all ranks
perform I/O to a shared file. Because the default stripe width
on the Cori supercomputer is 1, over 99% files are striped
across only 1 OST. Therefore, if an application performs I/O
to multiple files in parallel, they tend to perform I/O to multi-
ple OSTs in parallel, as the files could be mapped to different
OSTs. Thus, varying levels of resource contention at these
OSTs can dramatically affect the I/O time of the individual
ranks when using POSIX I/O.
Finding 8. OST load imbalance leads to a high degree of
variability in I/0 time of ranks which are concurrently per-
forming /O, especially if the ranks are performing I/0 to
different OSTs, which is largely the case with POSIX I/0.
This leads to the faster ranks having to wait for the slower
ranks to finish I/O before they can resume computation, thus
wasting precious compute cycles on the HPC system.

Temporal Load Imbalance. Previously, we discovered that
OST I/O imbalance and contention causes intra-run variabil-
ity in I/O time. So the next step is to explore the temporal
characteristics of I/O load. Fig. 9(a) shows the total amount
of data which is transferred at different hours of the day. We
observe that the largest amount of I/O activity is performed by
runs which start between 3am and 5am local time. Note that
Cori has users across the globe, so the specific local time (i.e.,
early morning) is not an indicator of when the local users are
the most active. We plot the amount of data with respect to the
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start time of the run which is sufficient for our analysis. We
note that our following analysis does not necessarily establish
a causal relationship between different factors, but instead
attempts to explain the observed trends. In Fig. 9(b), we plot
the I/O time of runs across different hours of the day. The
I/O time of a run is plotted as percentage of the maximum
I/O time among all runs which perform I/O to the same file
to normalize it across files. However, we observe that runs
started during 3am-5am and a few hours post 5am have the
highest runtime due to the high I/O activity during this time.
This is in spite of the fact that runs performing I/O to the same
file have low variability in terms of the amount of data they
transfer (as we will discuss later).

Interestingly, Fig. 9(c) shows that while the variability
in I/O time is generally significantly high across all times
(>20%), it is the lowest for runs which start during peak I/O
activity periods. The CoV is calculated among runs belong-
ing to the same file which start during the same hour of the
day. The CoV of I/O time plot has a near opposite trend as
that of the I/O time plot (Fig. 9(b)). In fact, the I/O time and
CoV of I/0 time have a Spearman Correlation Index of -0.94,
which points to strong negative correlation. This indicates
that when the I/O activity is highest, the variability in I/O
time that the user can expect is slightly lower, i.e., if user A
starts the same run every day during a high I/O activity period,
they can expect less variability in the runs’ I/O times (and
therefore, runtimes) than user B who starts the same run every
day during a low I/O activity period. Of course, the trade-off
is that user A observes a higher I/O time on average than
user B. This happens because when the I/O activity is high,
the OSTs are heavily contended which may slow down all
I/0. Hence, the effect of any variation in I/O time is small.
However, when OSTs are not contended and 1/0 is faster, the
effects of variation are more pronounced and noticeable.
Finding 9. Temporal load imbalance causes I/0O time of the
same run to be different during different times of the day.
Moreover, variability in I/0 time is strongly negatively cor-
related with the 1/O time during the time of the day. HPC
systems need new techniques to mitigate the intra-run vari-
ability (i.e., ranks of the same application finishing at different
times) which continues to have a considerable presence since
the I/0 variability is significant at all times (>20%).

Inter-Run I/O Variability. The next question we address is
that if there is temporal imbalance in storage system load,
does it cause I/O time variability from one run to another?
Note that the variability we addressed in Finding 9 was among
runs starting during the same hour. Now we look at all runs
accessing the same file regardless of their start times. First, we
explore how much the amount of data transferred to/from the
same file changes from one run to another. Fig. 10(a) shows
the CMF of the CoV of the amount of I/O data transferred
across runs for each file. Overall, more than 80% of files
have a CoV of less than 5% which indicates a negligible
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Figure 10: The change in the amount of data transferred across
runs to read-only files is the smallest, but these files experi-
ence the highest variability across runs in terms of I/O time.
Overall, the change in the amount of data is very small (mean
CoV is 12%); however, the change in the amount of time it
takes to transfer the data is much greater (mean CoV is 39%).

change in the amount of I/O data transferred from one run to
another. This is especially true for RH files, and even true for
RW files, which experience both, read runs and write runs,
thus indicating that similar amount of data gets produced and
consumed in a vast majority of cases. WH files exhibit the
highest variability in the amount of data transferred (mostly
write data in the case of WH files) with a mean CoV of 35%
(results for different types of files are not shown for brevity).

Fig. 10(b) shows the CoV of I/O time for different runs for
each file. Across all files, even though the amount of data does
not change significantly from one run to another, the amount
of time it takes to transfer this data experiences significant
variability: the mean CoV of the I/O time across runs is 39%.
RH files experience the most change in I/O time from one
run to another with a mean CoV of 68%, even though they
have the least change in the amount of data transferred. This
is due to the fact that the OSTs experience different levels of
contention at different times due to temporal load imbalance.
In fact, because read runs transfer less amount of data on
average than write runs (as we discussed in Finding 6), the
effect of this load imbalance is especially prominent on their
I/0O time, which in turn has the largest impact on RH files.
Finding 10. HPC files tend to experience similar amount of
data transfer from one run to another, but they do experience
a large variability in terms of the amount of time taken to
transfer the data. This is especially true for ready-heavy files
which have the least variability in I/O data, but the most vari-
ability in I/0 time - indicating the need for special attention
to RH files when mitigating I/O variability challenge.

4 Scope of the Findings

While we have ensured that our results and insights are
statistically significant, certain aspects of our study may limit
the applicability and generalization ability of our analysis.
User Opt-Out. Cori users had the option to opt out of Dar-
shan logging. However, the Darshan library is enabled by
default for all users. Therefore, a large majority of users, espe-
cially the ones running I/O intensive applications, run Darshan
during execution to understand their I/O behavior.
Time Period of Data Collection. Our study uses four months
of data logs for analysis and is unable to detect trends longer
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than four months. However, four months is a long period
and all of the insightful findings such as read and write runs
inter-arrival times, multiple application inter-arrival times, and
temporal load imbalance are in the order of hours. We also
note that the jobs on the Cori supercomputer do not exhibit
significant seasonal behavior. That is, the I/O traffic remains
relatively similar throughout the year, as also confirmed by
previous studies [42]. Therefore, we do not expect our analysis
and findings to be affected by the time period of the study.

Unavailable Information. Our study is restricted by the type
of information traced by Darshan. Therefore, we are unable to
study file size, file amendments/overwrites, number of nodes
involved in I/O, and batch job I/O behavior. Information about
random vs. sequential I/O type is available for POSIX I/O, but
does not yield interesting results as we found that almost all
of the I/0 is sequential as is expected for HPC applications.

“What if?” Analysis. Our post-event analysis also bars us
from posing “what if” questions such as what if a particular
run is removed from analysis? How would it affect the I/O
trends? Such questions are not possible to study retroactively
in a parallel storage system as all concurrently running ap-
plications affect each other’s I/O behavior in complex ways
which cannot be decoupled easily.

Impact of Cori-specific environment and workloads. As
expected, our findings are influenced by the nature of work-
loads which are executed at National Energy Research Sci-
entific Computing Center (NERSC) and the NERSC system
environment where Cori is hosted. Consequently, we caution
that our findings cannot be generalized to other HPC systems
as-is, but this work provides a methodological framework to
conduct a study of this nature at other centers to confirm and
refute the presented findings.

However, we also note that similarities between NERSC
and other centers are likely since HPC users often tend to
run workloads with similar characteristics [34]. Workloads
running at NERSC are diverse in nature and correspond to a
wide variety of scientific domains such as material science,
cosmology, combustion, fluid dynamics, climate science, and
quantum simulations. Prior studies have covered various as-
pects of these workloads [5,31,34,53].

Increase in data analytics workloads may be the reason for
read-heavy file I/O. Wide increase of such workloads on lead-
ing HPC centers has been observed in recent years [1, 12, 13].
NERSC has observed a rise in data analytics workloads
in NERSC Exascale Science Applications Program (NE-
SAP) [14]. Data and learning applications such as BD-CATS
which run at NERSC are quite I/O-intensive. Interestingly,
we also observed that some applications that generate large
amounts of read data (QCD and quantum modeling of materi-
als) do not necessarily come from the data analytics domain
and have run at NERSC for many years. Finally, we note that
the scope of this study is limited to only the NERSC system
where the instrumentation was performed.

5 Related Work
In this section, we discuss and contrast some related work.

I/0 Characterization Software. As HPC I/O has become
more unstable and a bigger performance bottleneck over the
last few years, much effort is geared toward developing I/O
characterization tools for individual applications [10, 11,22,
50, 55] and for the entire system [2,23,24,51,58]. Recent
works focus on developing software for end-to-end character-
ization of I/O [15,30,31,41,48,58]. These works deal with
tool development and do not provide detailed analysis of I/O
behavior, especially in terms of file access and reuse.

I/0 Behavior Analysis. Most analysis works study the I/O
behavior of individual applications and/or runs such as I/O pe-
riodicity, bandwidth characteristics, and inter/intra application
execution I/O variability [19, 26,29,32-34,37,54,56,57,59].
Variability and I/O characterization studies performed by
some of these previous works are restricted to analyzing a
few benchmarks as they do not have access to a system-level
view of hundreds of concurrently running HPC applications.
Apart from analyzing application-level I/O logs, works by Liu
et al. and Madireddy et al. [27,28,35] also examine storage
server logs to assess application I/O characteristics. In fact,
many studies focus extensively on the storage system’s I/O
behavior [17,21,39,51,52] by exploring optimal file-system
configurations or identifying system-level topology bottle-
necks. Above works do not consider multi-fold interactions
related to HPC files such as file re-access, multi-application
file sharing, run classification and inter-arrival, spatial- and
temporal- load imbalance, and intra- and inter- run variability.

6 Conclusion

Overall, our analysis of Darshan I/O logs on the Cori
supercomputer reveals many previously unexplored and
unexpected insights. We found that files which contribute the
most to HPC I/O are not only re-accessed in more ways than
one but are also shared across applications. They follow a
producer-consumer relationship with runs which extensively
write to the files and runs which extensively read them. We
explored why and how these files have large intra- and inter-
run variability not in terms of I/O size, but in terms of I/O time.
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