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A B S T R A C T

Contemporary Cloud Manufacturing-as-a-Service (CMaaS) platforms now promise customers instant pricing and
access to a large capacity of manufacturing nodes. However, many of the CMaaS platforms are centralized with
data flowing through an intermediary agent connecting clients with service providers. This paper reports the
design, implementation and validation of middleware software architectures which aim to directly connect
client users with manufacturing service providers while improving transparency, data integrity, data provenance
and retaining data ownership to its creators. In the first middleware, clients have the ability to directly customize
and configure parts parametrically, leading to an instant generation of downstream manufacturing process plan
codes. In the second middleware, clients can track the data provenance generated in a blockchain based de-
centralized architecture across a manufacturing system. The design of digital assets across a distributed man-
ufacturing system infrastructure controlled by autonomous smart contracts through Ethereum based ERC-721
non-fungible tokens is proposed to enable communication and collaboration across decentralized CMaaS plat-
form architectures. The performance of the smart contracts was evaluated on three different global Ethereum
blockchain test networks with the centrality and dispersion statistics on their performance provided as a re-
ference benchmark for future smart contract implementations.

1. Introduction

Increasing trends in digitalization [1], data-driven smart manu-
facturing [2], and the presence of highly scalable networked archi-
tectures have allowed manufacturing machines on shop floors to ra-
pidly respond to consumer demands while reducing cost and time via
agile manufacturing techniques [3]. With the introduction of Cyber-
Physical Systems (CPS) [4–6] and the subsequent expansion of cloud
computing and manufacturing capabilities [7–9], there has been a
paradigm shift in the methods used by design and manufacturing ser-
vice companies to conduct business. Increased digital proliferation and
improved virtualization methods have also enabled manufacturing en-
tities to easily connect to the cloud and enable low-latency production
tracking [10]. Today, digital platforms have transformed into CMaaS
platforms wherein resources that are dynamically scalable and virtua-
lized are provided as a service over the internet [11]. CMaaS platforms
have been able to assimilate soft and hard manufacturing resources into
a manufacturing cloud [3,12] and act as continuously evolving,
knowledge-based intelligent manufacturing centers.

CMaaS platforms through cloud manufacturing have been able to
democratize manufacturing services by making esoteric manufacturing

expertise more accessible to the end user by shifting much of the
technological and intellectual overhead away from the user. The user
can now receive an instant quote for manufacturing a part within sec-
onds [13]. This has been enabled by integrated CPS in CMaaS platforms
that exploit scalable architectures and communication methods al-
lowing direct operation of manufacturing entities over the cloud [14]
and promising best utilization of manufacturing resources [15]. This
process has greatly reduced time required for small volume production
of a part by reducing the time-consuming process of requesting for
quotes (RFQ), receiving feedback, transferring part designs and so on.
While these benefits of contemporary CMaaS platforms have been well
accepted across academia and industry, there are still several challenges
associated with such platforms to improve widespread adoption among
end users. In a comprehensive study of information systems, Oliveira
et al. [16] employed the Diffusion of Innovation theory [17] and the
Technology-Organization-Environment perspectives [18] to assess the
control factors that regulate the innovation diffusion and adoption of
cloud manufacturing within organizations and end users. The findings
of the research suggest that, the adoption of cloud manufacturing on a
massive scale is inhibited by a plethora of factors namely complexity
associated with disruptive technologies like cloud manufacturing,
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technological unreadiness, lack of top management support and smaller
organization sizes. Currently, the growth of instant quoting and instant
connection to job shops services are also hindered by the fact that in-
formation asymmetry across the two sides prevents clients and service
providers from easily knowing the identity of either side. This limits
growth of such platforms into highly regulated markets (e.g., defense,
aerospace, and medical devices) or the ability to award large contract
orders.

On a related note, the adoption of cloud manufacturing within
manufacturing and service industries have led to the rise and adoption
of Digital Thread (DT) centric manufacturing system architectures. The
DT spans across multiple stakeholders (machines and organization)
within the folds of a cloud manufacturing based digital services. The
absolute adoption of the architecture is contingent on similar factors as
mentioned by Oliveira et al. [16]. The collection and transfer of digi-
tized manufacturing data across the thread has opened business, legal
and technology concerns. Manufacturing organizations have always
shied away from the sharing of sensitive or proprietary manufacturing
data across cloud-based platforms. A key challenge of such platforms
connected via networked architectures is the concern over cyberse-
curity and malicious intrusions that intend to fish for or modify pro-
prietary data across the DT [19]. Various entities across the thread have
disparate software, technological expertise, and infrastructure stacks.
This leads to the design and implementation of incompatible middle-
ware architectures through which these organizations interact with the
DT. This in totality contributes to a lack of standardization in how
manufacturing entities today interact through the DT and share in-
formation. Another issue of concern that arises is the ownership of the
data and the central infrastructure that connects the different entities
and stakeholders. Service providers will lose control of the data gen-
erated and shared with the intermediary agent and consequently with
the client.

In summary, pervasive adoption of CMaaS is hindered by the added
complexity and ensuing technological unreadiness of the end users.
Additionally, the allied DT infrastructures required to keep such plat-
forms operational are often sources of concern to manufacturing enti-
ties due to privacy, data security and data proprietorship issues.
Motivated by these points, this paper aims to answer the following
research questions: (i) How can CMaaS platforms be made more ac-
cessible to end users through considerable shifting of technological and
intellectual overheads away from the users (ii) How can the power of
distributed ledgers be harnessed to address data security and privacy
issues in DTs (iii) How to appropriately model manufacturing assets on
distributed manufacturing systems (iv) How to model information ex-
change and interactions between different parties on such systems and
finally (v) How to achieve the aforementioned goals without introdu-
cing extremely disruptive changes that could otherwise inhibit CMaaS
adoption.

This paper describes the design and evaluation of system archi-
tectures for CMaaS platforms through a cyber-manufacturing software
middleware stack with a decentralized system enabling the DT infra-
structure connecting data associated with the movement of physical
parts across manufacturing partners (Fig. 1). Besides conventional up-
load of parts by clients to a cloud manufacturing resource, this work
demonstrates how job shops themselves can share data assets as a
manufacturing resource to be parametrically configured based on the
clients’ needs. The contribution of this paper is to propose middleware
architecture solutions for CMaaS platforms that would reduce the
technological and intellectual burden on the end user and at the same
time make use of extant data assets to make the best use of manu-
facturing resources. The proposed architecture also aims to demonstrate
how decentralized architectures enabled by the Blockchain technology
can be used to benefit clients and corresponding manufacturing service
providers (e.g., job shops) through retaining data ownership and con-
trol over how much data is shared across the distributed ledger. This
paper is organized as follows. In section 2, the related works, status quo

and state of the art for CMaaS platforms and Distributed Ledger Tech-
nology (DLT) based manufacturing systems architectures are described.
In the subsequent part of section 3, focus is primarily shifted towards
the design of the various middleware in the proposed decentralized
CMaaS platform and the description of a standardized data model for
manufacturing assets on DLT platforms by modelling their digital twins
[20] as non-fungible assets on the Ethereum blockchain framework.
Section 4 describes the implementation of the various middleware and
the evaluation of the digital manufacturing system as ERC-721 non-
fungible tokens (smart contracts) on the Ethereum blockchain by de-
monstrating their performance on three Ethereum based test networks
[21].

2. Related work

Contemporary CMaaS platforms can now take advantage of digital
twins of manufacturing assets made possible by the evolution of im-
proved virtualization technology and a host of other enabling tech-
nologies and systems [22]. Cloud Manufacturing and Industry 4.0 re-
volution along with the concept of digital twins have now led to
manufacturing paradigms with increased product data proliferation
along a digitized manufacturing system with increasing degrees of end
user interaction. This has allowed the spawning of a multitude of
CMaaS platforms in the recent past wherein the digital twins of pro-
ducts on the cloud serve as accurate surrogates of physical assets. In the
recent past, additive manufacturing based CMaaS platforms have seen a
sharp rise in the implementation and exploitation of digital twin-based
product life cycle management. These platforms have shown to effi-
ciently exploit on-demand access to a shared collection of distributed
manufacturing assets to form reconfigurable production lines which
lead to higher process efficiency, reduced product costs, and optimal
resource allocation [23].

Cloud based platforms like Shapeways [24] originated from the idea
of building a 3D printing marketplace and community. The success of
Shapeways has inspired many other startups and fully-fledged cloud
manufacturing companies to start offering services spanning from
polymer based additive manufacturing to CNC machining. With the
evolution of high performance cloud-computing resources giving access
to accelerated compute-intensive tasks [25], companies like CloudNC
[26], Plethora [27], Fictiv [28], and Xometry [29] have evolved and
now they host CMaaS platforms promising to make mass manufacturing
more accessible to end users through the design of proprietary cloud
enabled software platforms. Cloud based manufacturing platforms like
Quickparts [30] and LiveSource [31] in addition to the previously
mentioned CMaaS platforms allow end users to upload their CAD data
from a variety of proprietary software packages. Contingent on sub-
sequent geometric validation of these CAD models, these platforms
instantly suggest and propose lists of qualified manufacturers who can
manufacture these digital models. These platforms now enable product
designers and engineers to instantly access the capacity of a network of
manufacturing facilities following a model aptly called the “Uber of
Manufacturing Services”. Contemporary research in these avenues now
provide mechanisms which allow accurate mapping of these distributed
manufacturing resources and remote dynamic service requests typical
in these large scale CMaaS platforms [32]. The instant quoting engines
hosted by these platforms, now at the click of a button, can evaluate the
manufacturability of products and return to the user RFQ replies.

Despite the contributions of new and emerging CMaaS platforms in
the cloud manufacturing landscape, contemporary platforms suffer
from significant limitations in that the role of the intermediary agent
connecting the client with service providers can severely limit the
amount and type of transactions carried out. The centralization of data
within an intermediary agent can lead to issues of data ownership, in-
tegrity, and liability concerns. To add to the list of limitations, current
CMaaS platforms do not meet the major requirements – the need for an
open source software framework that supports data intensive,
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distributed applications, and – the need for cloud based, multi-tenancy
software-as-a-service (SaaS) architectures as described by Wu et al.
[23]. Many CMaaS platforms do provide access to end users shared
software applications (e.g., ERP, CAD/CAM) under the envelope of SaaS
[33,34]. However, the assumption that many of these CMaaS platforms
make about the technical and resource capacity of the end user is often
times over estimated. It sometimes is just not pragmatic to think that a
non-expert end user would have instant access to and skill of CAD
softwares to bring about rapid parametric changes to a digital model
and be able to re-upload the model on design changes. There has been
past research wherein attempts have been made to find out how cloud
manufacturing platforms could help non-expert customers use services
more efficiently. Wang et al. [35] have investigated how Internet of
Things (IoT) enabled cloud based additive manufacturing platforms can
be used to provide customers sufficient information and support
throughout the entire product development process. However, most of
the existing literature tender solutions that involve relatively large-
scale hardware and software-based modifications which can be con-
sidered disruptive by manufacturing service providers. The contribu-
tion of this paper in this aspect is to design and implement “plug-and-
play” middleware software architectures which allow end users, CMaaS
platforms and manufacturing nodes to interact in seamless and coherent
fashions. The aim is to achieve these goals in such a way that a sig-
nificant overhead is shifted away from the end user and at the same
time no significant burden is imposed to any other entity as an upshot,
thereby contributing to an overall improvement of cloud manufacturing
democratization and adoption.

The concept of DTs in cloud-enabled smart manufacturing is not
new. The National Institute of Standards & Technology (NIST) estimates
that manufacturing infrastructures empowered by CPS and DT would
save the U.S manufacturing around $100 Billion annually [36]. Em-
boldened by that motivation, the NIST through its “Digital Thread for
Smart Manufacturing” project has been in active development of
methods, protocols and standards for DT running through design,
manufacturing and support processes [37]. Subsequent research and
development of enabling technologies for DT by the NIST has been
multifaceted. The outcomes of these investigations have manifested as
the design of CPS based product lifecycle test beds by Helu et al. [38],
feasibility analysis of STEP AP242 standards for manufacturing in-
formation exchange by Fischer and Trainer et al. [39,40], the use of
digital certificates for data traceability by Hedberg et al. [41], the use of
Quality Information Framework (QIF) standards for metrology data
exchange by Michaloski et al. [42] the application of model-based
manufacturing by Hedberg et al. [43] and the architecture design for

data management of connected systems by Helu et al. [44] to name a
few. There have been significant strides in the research of product data
models and architectures for DTs as well. Specific to Additive Manu-
facturing (A.M), Bonnard et al. [45] have introduced the hierarchical
object-oriented model for digital chains for better encapsulation of
closed-loop manufacturing data. Lu et al. [46] have proposed a service-
oriented product data model for cloud manufacturing that can effec-
tively capture changing requirements on downstream production ac-
tivities. Gan et al. [47] have shown mathematical models for product
manufacturing information flow that encapsulates increased customer
involvement and feedback typical in cloud manufacturing DTs.

To address the issues of product data privacy, security, ownership
and traceability on DT’s for manufacturing, numerous initiatives have
been taken in the recent past. A technology that has come to the fore-
front as a promising solution is the Blockchain based DLTs. According
to NIST, blockchains for smart manufacturing can not only provide
tamper-proof transmission of manufacturing data, they also allow
seamless traceability of the data to all participants in the production
process [48]. Major research thrust areas in blockchain based DLT
platforms have been related to investigations of product data models on
DLTs and architectural consideration for CMaaS infrastructures that
ought to operate on such platforms. Lee et al. [49] have proposed a
unified, three level blockchain architecture for highly connected Cyber-
Physical Production systems (CPPS) that attempts to act as a guideline
for the implementation of DLT in manufacturing paradigms. Madhwal
et al. [50] introduces the potential application of DLT in managing
supply chain for aircraft spare parts that come with hundreds of para-
metric complexities. The impetus is to achieve a transparent network of
supply chain for the aircrafts’ parts which eventually reduces the pos-
sibility of the availability of the parts in the black market. In a case
study of blockchain technology in manufacturing, the authors Angrish
et al. [51] have proposed and implemented a blockchain-based, de-
centralized model for handling manufacturing information generated
by various stakeholders in a supply chain network. The authors have
introduced the “FabRec” model which houses a decentralized con-
sortium of manufacturing machines and computer nodes autonomously
acting and negotiating through computer-coded smart contracts to en-
able organizational transparency and provenance through a verifiable
audit trail. Another interesting implementation of blockchain manu-
facturing system solution in the paradigm of cloud manufacturing and
CMaaS platforms was found in the research of Li et al. [52]. Their re-
search has proposed a Blockchain Cloud Manufacturing “BCmfg” ar-
chitecture to facilitate the development of a distributed, peer to peer
network of cloud manufacturing nodes. The authors showcase an

Fig. 1. Cybermanufacturing Middleware Software Stack with underlying decentralized data ledger enabled by Blockchain technologies recording critical events.
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implementation case study wherein a MATLAB Simulink based virtua-
lized digital twin of machine tools is allowed to interact over a Multi-
chain [53] based blockchain network with other verification and par-
ticipatory nodes. In subsequent research related to integration of
blockchain technology in A.M and CPS, Mandolla et al. [54] have ex-
plored the design of digital twins for A.M through blockchain ex-
ploitation in the context of highly regulated aircraft industry. Huang
et al. [55] have proposed blockchain based data management of digital
twins for complex interconnected parts. Barenji et al. [56] have shown
impressive work into solving scalability, security, data ownership and
big-data problems typical in CPS enabled cloud manufacturing plat-
forms through the implementation of blockchain-based platforms to
eliminate third-party problems found in centralized systems. Lemeš
et al. [57] in their work have demonstrated how distributed CAD en-
vironments enabled by blockchains can be exploited for secure manu-
facturing collaboration.

A comprehensive investigation of the past work in the field of DLT
based manufacturing system architectures for CMaaS platforms men-
tioned hitherto have shown many promising architectural frameworks
and data models that attempt to solve the aforementioned data security,
ownership, privacy and trust issues often faced in centralized systems.
However, there are some gaps in the existing research that this paper
attempts to propose solutions for. The limiting gaps identified are as
follows: (i) Very few of the extant research have taken steps to describe
how the various stakeholders interact over a decentralized architecture.
These interactions are non-trivial and require studying how complex
computer code based smart contracts can replace some of the manual,
labor intensive work carried out between tiered partner organizations.
Useful guidelines have been proposed but most lack key implementa-
tion details which limits the community’s understanding on whether
decentralized manufacturing systems enabled by Blockchain tech-
nology can truly be beneficial in an Industry 4.0 environment and be-
yond. (ii) There have been several proposed product data models of
assets for DT based architectures. However, there still seems to be lack
of consensus as to what should be an appropriate data model for assets
on blockchain based DTs. Many of the contemporary research have
proposed blockchain data models directly stored on the distributed
ledgers. However, blockchains frameworks are not ideal as storage so-
lutions. (iii) CMaaS platforms based on blockchains should consider, in
addition to product data models, appropriate data models for fungible
asset transfer in order to truly automate contracts between end users
and service providers. There seems to be very little work done to pro-
pose how a fungible asset transfer should be occurring alongside a
manufacturing asset on DLTs. (iv) Many of the existing research
showcase applications based on permissioned consortium blockchain
solutions or blockchain networks simply deployed on local nodes. These
deployments do not give a comprehensive picture as to how the pro-
posed models would behave in true public blockchain networks where
there could be millions of transactions happening in a short period of
time as would be expected in large blockchain based CMaaS platforms.
(v) Case studies considered in existing research often fail to consider
very important security practices both in smart contract code and in
overall blockchain framework deployment (e.g., storage of sensitive
cryptographic keys in local nodes as opposed to using identity man-
agement software). There often seems to be the absence of the design of
middleware that would allow the proposed solutions to seamlessly
function with existing industry grade and secure authentication and
identity management solutions for blockchain interaction. (vi) Many of
the existing research showcase programmatic blockchain solutions
implemented through very high-level languages like JavaScript with
dynamic types. While such implementations would be appropriate for a
wide range of applications, for blockchain based CMaaS platforms also
handling fungible assets, that is often a risky choice. For example, the
Bitcoin scripting system is purposefully not Turing complete [58] to
ensure any fungible asset transfer occurs in a completely deterministic
fashion.

This paper addresses some of the aforementioned knowledge gaps in
relation to building a decentralized manufacturing system particularly
in the context of cloud-manufacturing services delivered over a publicly
accessible internet. In this context, the contribution of this paper is: (i)
To propose data models and design patterns through object-oriented
paradigms to represent manufacturing assets’ digital twins and in-
formation exchange via blockchain smart contract architectures (ii) To
demonstrate how globally accessible public blockchain networks with
their secure fungible asset transfer models can be exploited for auto-
mated contract negotiations in CMaaS platforms (iii) To demonstrate
the efficient design of smart contract code constructs that allow for
appropriate representation of the data models while satisfying all the
restrictive security features of proven blockchain programming lan-
guages like Solidity [59]. (iv) To propose important performance me-
trics that the community can utilize to assess the efficiency of their own
smart contract code constructs and finally (v) To design and implement
middleware software architectures that allow the blockchain interface
to seamlessly interact with the CMaaS platform without introducing
significant disruption.

3. Cloud Manufacturing-as-a-Service middleware service
architecture

3.1. System architecture roles, functions and data flow

A high-level overview of the proposed system is exhibited in Fig. 2
explained in the context of a design and servicing of a CNC machined
part. It can be started with the assumption that models of para-
metrically configurable, consumer or industrial parts are hosted by
manufacturers on the CMaaS platform and clients want to fabricate
versions of those parts with dimensions that suit their respective needs.
The system can be differentiated into 2 subsystems, namely the upper
Physical Manufacturing system layer and the lower Blockchain Network
Layer. The process starts with a client or end user modifying a para-
metric model of the digital twin of a product model on a web browser
through a front-end app hosted by the CMaaS platform. Should the
client be satisfied with the final form of the rendered digital twin, a
purchase order or an RFQ command can be initiated. The client mid-
dleware subsequently makes Remote Procedural Calls (RPC calls) to
functions encoded within a manufacturing system smart contract
hosted on a blockchain network. The manufacturing system smart
contract, on receiving metadata about the part to be manufactured,
instantly returns a quotation through blockchain events communicated
from the blockchain layer to the physical manufacturing system layer. If
the client approves this quote, the client can initiate and authorize a
make order through the middleware against a purchase order id sent to
the client in the previous step. This process initiates a blockchain event
to which the client middleware subscribes to. On reception of the make
order event from the blockchain, the client middleware subsequently
sends off toolpath regeneration commands to the CNC toolpath re-
generation engine hosted by the CMaaS platform. Another session of
client and CMaaS middleware communication eventually leads to re-
generated toolpath that corresponds to the parametrically altered
model required by the client. On successful production of a part, the
blockchain network layer completely takes over. The termination of the
machining process is registered by the CNC machine on the blockchain
as an event and this leads to the creation of an ERC-721 [60] modelled
non fungible token representation of the part on the blockchain with
the initial ownership assigned to the CNC machine owner. The block-
chain network also takes care of the automatic payment from the client
to the CMaaS platform and autonomously negotiates refunds and re-
turns through self-executing smart contract codes running on the
blockchain and catering to the smooth operation of the manufacturing
system.
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3.2. CMaaS service architecture

Fig. 3 shows the architectural elements and the salient features of
the overall CMaaS middleware. One major consideration into the design
of the architecture was to enable the CMaaS middleware to act as a
plug-and-play interaction layer capable of interfacing with any CAD
runtime hosted anywhere. Most conventional CAD software packages
give access to users an Application Programming Interface (API) [61]
(Section II in Fig. 3). To deliver data and functionality across multiple
remote clients, add-ins were designed to spawn multiple threads from
within the single process of the CAD runtime engine in a cooperative

multi-tasking paradigm. The child thread and the main thread API in-
terface communicates through a Publisher/Subscriber (P/S) layer
(section III Fig. 3) wherein the child thread registers specific events
asking for permission to gain access to API functionalities. The API
engine in turn can subscribe to these events through the P/S layer so
that it can respond to the requests coming from the child thread. Sub-
sequently, the API, through its own implemented functions, makes
parametric changes to the model housed in the UI of the CAD runtime.
On successful change to the parameters of the model, the API auto-
matically collects new metadata pertaining to the parameters of the
altered model. The API in turn replies back to the web server thread

Fig. 2. Holistic overview of the implemented decentralized CMaaS platform architecture.

Fig. 3. Architectural elements of the CMaaS middleware.
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with this new model metadata. The server thread receives this data and
relays it back to the user’s parameter change request. This metadata is
eventually used by the client middleware to bring about parametric
changes to the digital twin being rendered on the front-end app,
thereby completing the request-response cycle.

3.3. Client (design) services middleware

Present manufacturing paradigms in the settings of consumer and
industrial production, frequently involve rapid parametric changes of
computer-generated models that products are based on. These para-
metric changes are mandated to cater to different consumer require-
ments or industrial applications, and it is for this reason manufacturing
entities have devoted a lot of resources and attention to mass custo-
mization of products to satisfy product family and product platform
requirements [62]. Contemporary CMaaS platforms assume that the
end users have sufficient technological and resource capacities in order
to be able to achieve the design change and validation tasks. Such tasks
often involve modification of product models in proprietary, compu-
tationally intensive CAD software platforms and it is needless to men-
tion that not all end users would necessarily have access to such re-
sources.

Fig. 4 shows the architectural elements of the client middleware
designed and implemented in this research. The client middleware es-
tablishes and maintains communication with other middleware in the
CMaaS platform. Additionally, it communicates with the blockchain
network layer and manages blockchain identity through embedded
third-party apps. The client middleware allows the client-side software
to directly send HTTP requests involving model parameter change,
toolpath regeneration requests etc. to the CMaaS platform. This layer,
on transfer of the aforementioned requests to the platform, waits for
commensurate replies. After the CMaaS platform does the necessary
parametric change, model geometry and metadata information are re-
turned back to the client middleware as a response to that request. The
client middleware can also support real-time communication and re-
quest/response cycle through rendering of a machine coordinate axis
rendering engine for verification and monitoring purposes.

Section IV of Fig. 4 shows the blockchain identity and wallet man-
agement layer of the client middleware. This layer acts as the interac-
tion layer between the client front-end app and any third party

blockchain wallet app [63] that allows the client user to prove his/her
identity on the blockchain. The client interacts with a digital twin of a
model on the front end and brings about parametric changes to the twin
to suit his/her needs. When the client invokes a make order to send off
the final design for manufacturing, transactions are generated on the
blockchain to record this event so as to keep a continuous trail of im-
mutable information on the chain corresponding to the evolution of the
product being manufactured. The registration of transaction on the
blockchain requires the client sign the transaction messages with a
private key to prove blockchain identity and ownership of the message
within the folds of the digital signature algorithms. Section IV of the
client middleware has the responsibility of automatically initiating
transaction signing process by directly interacting with the third-party
wallet apps. The wallet also manages transfer and reception of cryp-
tocurrency (fungible assets) and crypto-tokens owned by the client and
the client middleware acts as a media allowing secure transfer of these
assets following standard security protocols.

The final section of the client middleware is the blockchain interface
layer (Section V Fig. 4). The function of the blockchain interface layer is
to enable the client middleware to be able to call functions and attri-
butes, subscribe to blockchain events and generate events on the
blockchain as inbound software oracles [64,65]. In order to be able to
achieve the aforementioned functionalities, the middleware has to have
the ability of making RPC calls to the blockchain network layer. The
middleware communicates with third-party APIs that provide RPC call
capabilities. Additionally, the middleware has to act as an interaction
layer allowing seamless integration of the blockchain wallet app men-
tioned in the previous step with the blockchain network layer so that
message transaction and asset transfer can take place.

3.4. Service provider (machine) middleware

Fig. 5 shows the architectural elements of the manufacturing mid-
dleware. The manufacturing middleware initiates by spawning a thread
on the machine OS that runs concurrently to the main thread control-
ling the machine motion commands. The child thread spawned also
starts a multithreaded HTTP web server within it and it is this server
that establishes an inter-server communication with the CMaaS plat-
form and responds to asynchronous calls from the client middleware.
The client middleware interaction layer is substantiated by server

Fig. 4. Architectural elements of the Client middleware at the front-end UI presented to client user of the CMaaS platform.
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endpoints that cater to requests coming from the client middleware.
The machine firmware interaction layer (section III Fig. 5) is the
backbone behind the query and access to low level machine status
parameters. Machine input/output (IO) statuses, process parameter
statuses and real time toolpath coordinate positions are all low-level
hardware-based parameters that can be queried through the machine
firmware interface. Depending on the manufacturer of the machine, an
API can expose high level functions and attributes that give access to
these low-level firmware parameters allowing seamless integration with
the server platform of the middleware.

3.5. Decentralized part tracking and digital assets provenance through
smart contracts

A CMaaS compliant blockchain manufacturing system network was
designed and implemented as a part of this research. The rise of the DLT
and blockchain based enterprise solutions has seen a sudden rise in the
application of blockchain in the manufacturing system and logistics
industry. Blockchain based manufacturing system networks have been
employed to track product history in agriculture [66], to ensure pro-
venance in the diamond industry [67], to enable traceability for food
safety [68] etc. Truly decentralized blockchain solutions are still lim-
ited and in addition to the technical and resource overhead require-
ments for expertise in the field, blockchain manufacturing system fra-
meworks can often appear obscure and difficult to adapt to.
Consequently, many blockchain based manufacturing system solutions
lack standardization, and do not follow industry best practices which
directly affects the manufacturing system efficiency. This work pro-
poses a systematic way of designing blockchain based manufacturing
system networks for CMaaS platforms by giving special attention to
smart contract features, methods, attributes and events.

Separation of Concerns in Smart Contract Structure: Separation

of concerns [69] is a software engineering concept wherein the core
algorithm of a software engineering project is formally separated from
special purpose concerns such as synchronization, real-time constraints,
or location control. A three folded separation of concerns in a manu-
facturing system smart contract implementation is demonstrated in this
research. A typical CMaaS manufacturing system involves 3 major
elements: (i) The stakeholders, (ii) The Asset and (iii) The Core man-
ufacturing system network. The stakeholders are the participants who
interact with the manufacturing system. This stakeholder thus en-
compasses the client or customers, the CMaaS platform, the manu-
facturing nodes (CNC machine owner), the raw material collectors, the
quality control personnel, the verifiers, the distributors and so on. The
asset represents the product moving through the manufacturing system
– from the manufacturer to the consumer. All of the participants in the
CMaaS manufacturing system must have different levels of permissions
and authority over the manufacturing system network. For example, a
registered CNC machine owner cannot also act as a distributor with his/
her blockchain identity on the manufacturing system. Similarly, a client
cannot be allowed to alter administrative attributes of a deployed
manufacturing system smart contract. Only the smart contract deployer
can be allowed to perform that task whether that be the CMaaS plat-
form or the CNC machine owner. The roles, permissions and code
construct defining the stakeholders should not be a part of the code
construct of the manufacturing system smart contract or the asset smart
contract. This leads to a three-fold separation of concern paradigm
where three different smart contract architectures control the behavior
and the attributes of the stakeholders, assets and core manufacturing
system network.

Object Oriented Design Patterns and Inheritance Structure:
With separation of concerns comes an equally important yet heavily
overlooked design pattern in smart contract software engineering
paradigms. This includes the application of object-oriented design

Fig. 5. Architectural elements of the Manufacturing middleware.
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patterns [70] in smart contract code constructs. Fig. 6 shows the object-
oriented smart contract inheritance structure of the major CMaaS
manufacturing system elements. Section I of Fig. 6 shows the in-
heritance structure of the manufacturing system stakeholders. Instead
of creating completely disparate smart contract code constructs for each
of the stakeholders, they can inherit methods, behaviors and attributes
from a parent smart contract. This smart contract is shown as the base
permission smart contract in the figure. The base permission smart
contract is a generalized smart contract code construct which controls
basic permission protocols allowing the stakeholder members to in-
teract with the manufacturing system. Additional methods and attri-
butes go into the code constructs of the inheriting smart contracts that
provide them additional nuances. For example, the base permission
contract can contain method implementations to add members, remove
members and check membership validity. A sample version of the base
smart contract with its methods and attributes is shown Table 1. This
inheritance model allows the client smart contract to register new cli-
ents, remove existing clients from registration or check registration
status of clients on the blockchain manufacturing system. The Role
struct shown in Table 1 can be inherited by the client child contract as a
library member and polymorphed into specific role of clients. In addi-
tion to these methods and attributes, the client smart contract can
augment itself through the addition of methods and attributes specific
to the client. This process is true for all the stakeholders with each
inheriting smart contract containing additional methods and attributes
specific to the stakeholder type.

Section II of Fig. 6 shows the inheritance structure of the asset smart
contract. The asset represents the data model of the part being manu-
factured and moved through the blockchain manufacturing system.

Since the implementation in this paper deals with the Ethereum
blockchain, the asset can be modelled after the ERC-721 non-fungible
token standard [60]. Manufactured products vary in value, properties,
shape, weight, size etc. and hence an ERC-721 standard wherein all
tokens are considered to be disparate and unique is an appropriate data
model to mimic digital twins of manufactured products on the
Ethereum blockchain. The ERC-721 standard defines the minimum in-
terface that ought to be implemented in a smart contract so that the
non-fungible token can be owned, managed, transferred and traded.
The asset model discussed in this paper is a smart contract which in-
herits methods and attributes from the ERC-721 standard template.
Section III of Fig. 6 shows the core method members of the manu-
facturing system smart contract proposed for the CMaaS platform. It is
to be noted that, depending on the number of stakeholders in the
manufacturing system and the nuances in the transition of products
through the chain, there can be a multitude of method implementa-
tions. We can observe from the block diagram that methods re-
presenting collection of raw materials, machining of part from stock,
quality control after machining, distribution and shipment of verified
part to customer and finally acceptance by customer should be im-
plemented in the manufacturing system smart contract.

Activities and States in a Blockchain based Manufacturing
system Framework for CMaaS: The manufacturing system smart
contract in this paper implements a set of methods, modifiers, attributes
and events, a simplified version of which can be seen from the state
diagram of Fig. 7. In the top layer of the diagram, the stakeholders who
are involved with the ownership of the part at a particular instance of
time are shown. The part starts as a raw material under the ownership
of the raw material sourcer. The third layer from top labelled as the

Fig. 6. Smart contract inheritance structure of major CMaaS manufacturing system elements.

Table 1
Typical methods and attributes in a base permission smart contract.

Methods addMember Adds members to the struct Role
Input: (member role, account address)
removeMember Removes members from the struct Role
Input: (member role, account address)
alreadyMember Checks membership of an address in the struct Role
Input: (member role, account address)
Returns: Boolean membership status

Attributes struct Role {mapping (account address => Boolean membership status) members.} A struct data structure mapping addresses to Boolean statuses of membership
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“methods” layer shows the major method implementations in the
manufacturing system smart contract. For example, an entity that
sources raw material in the stakeholder layer would invoke the “source
raw material” method in the method layer. The invocation of this
method will mint a new non fungible ERC-721 token on the blockchain
and associate it with the generation of the part as a raw material. This
generates an event in the blockchain represented by the “Raw Material
Sourced” state of the part in the bottom most layer. When the raw
material is shipped to the CNC owner, the “ship stock” method is in-
voked and this emits another event, changing the state of the part to
“Stock Shipped” state. In this manner, as the part traverses the entities
within the manufacturing system network, the state of the part changes,
corresponding events are emitted, and different methods are called. The
event emitted can be subscribed to by different stakeholders depending
on their interest. The state diagram in Fig. 7 also shows an intermediate
layer labelled as the “permission check modifiers” layer. This layer
ensures that a stakeholder has the necessary permission rights to invoke
a function from the methods layer. For example, when the distributor
has to ship the final part to the client, the “distribute/ship packed part”
method from the methods layer has to be invoked. From Fig. 7, it can be
observed that there are two permission check modifiers namely “is-
Distributor?” and “partShipped?”. These modifiers first check if the
stakeholder invoking the method is in fact a registered distributor on
the blockchain network and subsequently whether the part to be dis-
tributed has passed through the previous state of shipment from the
verifier to the distributor. If these permission checks are passed, the
distributor is allowed to continue with invoking the function. Questions
might arise as to how a modifier in the smart contract of the manu-
facturing system is being able to call a method residing in another smart
contract. This is achieved via inter-contract data exchange on the
Ethereum ecosystem and is depicted through Fig. 8.

The Ethereum ecosystem is governed by the Ethereum Virtual
Machine (EVM) [71] which is like an operating system establishing
communication across all nodes in the Ethereum network. The EVM is
capable of executing logic, algorithms and processing inputs that are
typically found in smart contracts. The EVM defines the “state” of the
Ethereum network at a certain point in time. This “state” refers to the
states of blockchain network, blocks, mining, nodes, consensus and

smart contracts. The EVM has basically three areas where it can store
items and act as a low-level database. The first area is the “storage” area
which houses all the persistent state variables of a smart contract. Every
smart contract has its own storage space in the EVM. Any function call
from within a smart contract that leads to a change in these persistent
state variables also leads to a change in the state of the EVM and it is
these state changing operations which are ensued as transactions and
accrue mining fees. The second data storage area is the “memory” area
which is used to hold temporary values and function scope variables
which are erased between function calls. The third data storage area is
the “stack” which can be used to hold small local variables but most
importantly the stack trace of function calls within smart contracts.

The ability of the modifiers in the manufacturing system smart
contract to call methods and attributes in the stakeholder smart con-
tracts is achieved via inter-contract data exchange enabled by the EVM
[72]. Smart contracts that reside in the global scope of the EVM state
can communicate with other contracts within the same scope and can
establish inter-contract data exchange. This communication is achieved
via internal transactions. Internal transactions are like any other
transactions on the EVM with the major difference being that they are
not generated by externally owned accounts (i.e., an account controlled
by a private key under the ownership of a node). Instead they are
generated by the smart contracts that are initiating the data exchange
process. These internal transactions, unlike transactions ensuing from a
state change of the EVM are not serialized. When one contract sends an
internal transaction to another contract, the associated code or function
that exists on the recipient smart contract is executed by the EVM. Two
smart contracts attempting to engage in such exchange can establish
communication by referring to each other’s smart contract addresses on
the Ethereum ecosystem. The manufacturing system smart contract, in
this case, has an encoded array of already deployed smart contract
addresses of stakeholders that allows it to establish inter-contract data
exchange by invoking methods residing in other contracts through
address references. This design paradigm is a direct upshot of the se-
paration of concerns principle and objected oriented model of smart
contract software engineering. In this way, we can not only keep our
manufacturing system smart contract code clean and free of redundant
features, we also can reduce space required by the contract bytecode to

Fig. 7. State diagram showing major methods and events on the manufacturing system smart contract.
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run on the EVM, thereby drastically increasing runtime efficiency and
reducing costs incurred through gas expenditure. ‘Gas’ is referred to the
fee that is to be paid by the method invoker to execute commands on
the Ethereum ecosystem [73]. It is a value that indicates consumption
towards computational expenses on the blockchain network. From
Fig. 8, it can be observed that section I represents the manufacturing
system smart contract residing in the Ethereum virtual machine. When
a client represented by section II, sends a purchase order request, the
corresponding method in the manufacturing system contract is called.
The manufacturing system contract in turn, through inter-contract data
exchange, makes a query as to whether the method invoker is in-fact a
registered client or not by communicating with the client smart con-
tract. If the client is registered, then the manufacturing system contract
gets back to the client with RFQ reply. The client can then proceed to
requesting for a make order by calling the corresponding function in the
manufacturing system contract. In this manner, as the digital asset is
passed through the manufacturing system, its state changes, and at
every stage, appropriate ownership methods residing within the sta-
keholder contracts are called from the manufacturing system contract
to verify the authentication of the method callers.

4. Implementation and case study

This section will describe the technical implementation of the de-
centralized manufacturing system for the CMaaS platform. Initially,
focus would be given to the technical implementation of the middle-
ware architectures described in Section 3.2 to 3.4. Subsequently focus
would shift towards the implementation of the decentralized block-
chain manufacturing system network and allied systems described in
Section 3.5.

4.1. CMaaS middleware

For this middleware, Autodesk Fusion 360 (Autodesk, CA, USA) was
assumed to be running as a CAD runtime engine within the CMaaS
server. Multiple clients can interact with 3D parametric models posted

by the service provider to the CMaaS server. Utilizing the Fusion 360
API code base, software plugins were written to implement a multi-
threaded web server using the Python microweb framework – Flask
[74]. The plugins were utilized to spawn servers which followed a
RESTful [75] architecture. Consequently, end points were coded which
were function handlers capable of responding to remote client requests.
Since the web server child thread ran within the same process of the
CAD runtime, it has access to all the API functionalities hosted by Fu-
sion 360. The back end of the server thus contained codes that allowed
the server to interact with the API and bring about changes in the CAD
environment. For example, when a parameter change request comes
from the client middleware, an endpoint in the Flask server backend
handles this request and calls the required functions in the API to di-
rectly bring about parametric changes to the model housed within the
CAD runtime. It also handles updates of the 3D CAD model to reflect
new dimensional changes made by the client user. Back and forth data
transfer and data payload between various middleware (as described
below) are handled using HTTP protocols and RESTful design archi-
tectures.

4.2. Client interaction with CMaaS middleware

The client middleware controls communication of client requests
with the CMaaS platform, manages rendering of models on the client
front-end and manages blockchain identity and interaction with the
blockchain network layer. The CMaaS middleware interaction layer of
the client middleware was designed as an asynchronous call scheduler
within a JavaScript runtime engine controlling the front-end client app
(Fig. 9a). This scheduler was able to make asynchronous GET and POST
requests to the CMaaS middleware whenever the client had to initiate
parameter change or toolpath regeneration commands. The client
middleware also renders the digital twin of the model being hosted in
the CAD platform. The model metadata and the STL geometry file of the
models were used in unison to render a model for the digital twin
through WebGL technology encapsulated within a high-level wrapper
library of Three.js [76]. The client middleware also houses a machine

Fig. 8. Inter-contract data exchange between manufacturing system and stakeholder smart contracts.
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coordinate rendering engine. It makes asynchronous calls to query the
real time coordinates of the CNC machine delegated to machine the
model of the client (Fig. 9b). Finally, the client middleware function
included blockchain identity and wallet management and interaction
with the blockchain network layer. Interface software was written ex-
ploiting the functionalities exposed by the web3.js [77] library API.
This allowed the middleware to be able to communicate and send RPC
calls to remote Ethereum nodes. Additionally, this gave the middleware
the ability to initiate blockchain transaction signing process by com-
municating with a browser embedded Ethereum wallet software (Me-
tamask [78]).

4.3. Service provider (machines) interaction with CMaaS middleware

The manufacturing middleware also involved the deployment of a
multithreaded server architecture within the manufacturing node op-
erating system. The manufacturing node or the CNC machine used in
this research was a five-axis desktop CNC milling station (PocketNC,
MT, USA). The CNC machine hosted a LinuxCNC operating system with
a MachineKit interface running within a Beaglebone Black hardware
system. The MachineKit OS is capable of running scripting language
interpreters and hence in a similar fashion to the CMaaS middleware,
an HTTP Flask server was deployed within the OS following RESTful
architecture. This server exposed multiple endpoints that were assigned
the tasks of responding to CMaaS and client middleware queries. The
server also had a backend machine firmware interaction layer wherein
the endpoints were allowed to access the machine firmware to query
status and process parameter values. This was achieved by interacting
with functions from the MachineKit OS python API that allowed the call
of high-level functions within the server architecture for low level
process parameter queries.

4.4. CMaaS and client interaction with blockchain layer

Various smart contracts were implemented to facilitate automatic
interaction between the various middleware components.

Digital Asset Smart Contract: The asset or the digital data model
of the manufactured part on the decentralized manufacturing system
was modelled after the ERC-721 non fungible token standard of the
Ethereum ecosystem using Solidity language. The open source
OpenZeppelin Solidity framework [79] was used to inherit ERC-721
interfaces. Table 2 shows some of the important methods, events and
attributes implemented in the asset smart contract that inherits an in-
terface from the OpenZeppelin ERC-721 implementation. It can be
observed from the attributes field that the asset data model holds in-
formation about the price, unique product code (upc), owner address,
client information and a history trail of all the manufacturing system
stakeholders that the raw material and part has passed through. It can

be observed that the contract exposes methods like “balanceOf”,
“_mint” or “_burn” which query the number of assets owned by a sta-
keholder, creates a new asset in the blockchain and burns or destroys
the associated data of an asset on the blockchain respectively. When a
client of the CMaaS platform initiates the make order to manufacture a
part, the order is broadcasted to the blockchain network and the
manufacturing system smart contract responds by initiating a request to
the raw material sourcer. Once the raw material or the stock of the part
is collected, the part starts its life and its data model on the blockchain
is generated through the minting of a new asset. As the raw material
passes through stakeholders and other entities in the manufacturing
system into the final product, the attributes in the struct data model
change reflecting the latest state of the physical part on the manu-
facturing system. Transfer events are generated whenever the part
ownership is changed. In addition to the methods implemented in the
OpenZeppelin framework, this work proposes the addition of more
methods like “putAssetForSale” or “purchaseAsset” shown in Table 2.
These methods were implemented to allow the sale and transfer of as-
sets between clients who could use the existing framework of the
manufacturing system to establish internal trade and exchange of
manufactured parts.

Manufacturing system Smart Contract Implementation: The
manufacturing system smart contract implemented as a part of this
research included more than 15 event implementations, more than 10
modifier implementations, around 13 method implementations and a
multitude of attribute and helper function implementations that work
in unison to allow the blockchain based manufacturing system work
smoothly. Table 3 shows some of the most important methods in the
manufacturing system contract. The first major method implemented in
the contract is the “initiatePurchaseOrder” method which is called
whenever a client sends a request for quote pertaining to the manu-
facture of a particular product. This method calculates tentative part
price and delivery day depending on the inputs. When this quote’s reply
is returned to the client, he/she can decide to proceed with a make
order. This corresponds to a call of the “makeOrder” method. The client
must transfer cryptocurrency to the smart contract, equivalent to the
amount set in the RFQ reply that represents the cost of manufacturing
the part. The smart contract manages the currency sent in through this
method and stores them in escrow accounts against the address of the
clients. This fund is not disbursed to the CMaaS platform or the service
provider (CNC owner) until the client receives the part that has passed
verification. Once a make order phase is passed, a new part starts its life
as the raw material stock. This is when an asset is minted on the
blockchain as a data model to correspond to this part. The “source-
Material”, “generatePart”, “verifyPart” and “shipPartToTheConsumer”
methods are functions that indicate sourcing of raw material, genera-
tion of part in the CNC machine, verification of part by the quality
control department and shipment of part by the distributor respectively.

Fig. 9. (a): Client front-end app; Fig. 9(b): Client front-end app with real time rendering of CNC machine toolpath coordinates.
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As the manufactured part passes through stakeholders in the manu-
facturing system, these methods are called, events are generated, and
the state of the part is changed in accordance to the state diagram in
Fig. 7.

Smart Contract Security Considerations: Since manufacturing
system smart contracts must deal with fungible assets that possess
monetary value, ensuring security within smart contract codes is an
important task during the design of the code-based contracts. There are
several security concerns that need to be taken care of when coding
smart contracts [80]. Those security concerns that are relevant with
manufacturing system frameworks are discussed below with concrete
implementation guidelines. Fig. 10 shows the implemented manu-
facturing system smart contract fungible asset transfer model by means
of a flow chart. It can be started by assuming that the client has already
received a reply for his/her request for quote and is about to make a
make order request. The function implemented in the manufacturing
system smart contract that handles a make order request is a payable
function as can be seen from Table 3. This means that the client must
send fungible assets in the form of ‘Ether’ when invoking this function.
This fungible asset must be of an amount equivalent to or greater than
the price of the physical non-fungible asset that the client is trying to
get made from the CMaaS platform. When the client sends the required
amount of Ethers as fungible assets to this method call, the amount is
not instantaneously transferred to the CMaaS platform. It is first stored
in an escrow account of the smart contract. As the physical asset
modelled by the ERC-721 standard passes through all the necessary
stakeholders in the manufacturing system, it is finally shipped to the
client. In case the client is dissatisfied with the final product, he/she is
immediately issued a refund by transferring the amount that was pre-
viously stored in the escrow account against the blockchain identity of
the client. In case the client is satisfied, the amount is transferred to the

CMaaS platform and any overpaid amount is returned to the client. In
both cases, after the amount is transferred, the balance in the escrow
account against the blockchain identity of the client is zeroed. This
seemingly systematic process of dealing with customer payments and
refunds in the manufacturing system smart contract can have serious
security issues in the form of DAO attacks [81,82].

Since manufacturing system smart contracts deal with the transfer
of both fungible and non-fungible assets on the Ethereum blockchain,
there should be ways to pause the functionality of a smart contract.
Allowing manufacturing system smart contracts to be “pausable” is to
prevent financial loss in case any bugs are located within the contract
code. For example, should the manufacturing system contract be sub-
ject to a malicious DAO attack, then the very least to be done from the
side of the manufacturing system administrator is to be able to pause
the functionality of the smart contract immediately. This is often re-
ferred to as “Stop Lossing” of smart contracts. Smart contract pausa-
bility can be implemented by implementing the following steps.

(i) Create a storage Boolean variable only accessible by the manu-
facturing system contract deployer - pauseStatus variable.

(ii) Add a function modifier to each method in the manufacturing
system contract. It can be called the modifier requiresOperational
().

(iii) Create a helper function only accessible by the contract deployer
that allows to change the state of the pauseStatus variable. This
method can be called setOperatingStatus().

(iv) Implement the requiresOperational() modifier such that it allows
the execution of a method (other than the setOperatingStatus
method) by an invoker only if the pauseStatus variable is set to
false by the contract owner.

Table 2
Typical methods and attributes implemented in an asset smart contract with ERC-721 inheritance. Members marked with * are implemented in OpenZeppelin.

Methods balanceOf (owner address) Queries number of assets owned by a stakeholder.*
Returns: uint256 balance of address.
ownerOf (uint256 tokenId) Queries the address of owner of an asset. *
Returns: address of token owner.
transferFrom (address from, address to, uint256 tokenId) Initiates asset transfer. *
_mint (address to, uint256 tokenId) Mints or creates new assets. *
_burn (address owner, uint256 tokenId) Burns or destroys assets. *
putAssetForSale (uint256 _upc, uint256 _price) Broadcasts to blockchain network about the sale of an asset –

proposed
purchaseAsset (uint256 _tokenId) public payable Allows the acquisition of an asset through sale - proposed

Events Transfer (from, to, upc) Generates an event when a transfer of asset occurs between
stakeholders.*

Approval (owner, to, upc) Generates an event on ownership or sale approval of an asset by an
owner.*

Attribute struct Asset {uint upc; uint price; address currentOwnerAddress; address sourcerAddress;
address payable cncOwnerAddress; address verifierAddress; address distributorAddress;
address payable consumerAddress; string consumerName; string consumerLocation; State
assetState;}

Data model of an asset on the blockchain encoded as a struct. Struct
members dictate the state of an asset at any instance of time –
proposed.

Table 3
Important methods implemented in the manufacturing system smart contract.

Methods 1. initiatePurchaseOrder (string memory custName, string memory custLoc, uint
volumeClass, uint materialClass) public onlyConsumer(msg.sender)

Returns an RFQ reply with a purchaseOrder code to the client using customer
information, asset volume, material classes and hourly rate of manufacturing
node.

2. makeOrder (uint purchaseOrder) public payable onlyConsumer(msg.sender) Sends a make order against a purchase order code from the client to the CMaaS
platform.

3. sourceMaterial (uint purchaseOrder) public onlySourcer(msg.sender) Initiates sourcing of raw material by the sourcer. This is when an asset is minted
on the blockchain.

4. generatePart (uint upc) public onlyCncOwner(msg.sender) blankShipped(upc) Indicates finish of part generation by the CNC machine. Can be called by the
manufacturing middleware or the owner.

5. verifyPart (uint upc) public onlyVerifier(msg.sender) partShipped(upc) Indicates completion of verification by the quality controller.
6. shipPartToTheConsumer (uint upc) public onlyDistributor(msg.sender)
shippedToDist(upc)

Called when the distributor has shipped the part to the client.

7. receivePart (uint upc) public onlyConsumer(msg.sender) shippedtoCons(upc) Called when the client receives the part in the final stage of the manufacturing
system.
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Multi-party Consensus: Blockchain platforms like the Bitcoin
support multi-signature accounts that are typically called “multisig”.
Multisig accounts have the advantage of requiring more than one party
to sign a transaction originating from the account. Therefore, they have
better protection against theft or unlawful transactions in case bad
actors within a smart contract decide to transfer funds elsewhere. For
the Ethereum platform, multi-signature protocols can add an additional
layer of security. However, multi-sig is not an inherent feature of
Ethereum blockchain and hence needs to be encoded in smart contracts.
This encoded multi-sign feature in Ethereum is often referred to as
“Multi-party Consensus”. The basic algorithm that can be employed to
implement multi-party consensus in Ethereum smart contracts can be
listed down as follows and is shown in Fig. 11 as pseudo-code.

(i) Define an integer storage variable M, that represents the number of
keys required to initiate a transaction or invoke a method that
changes the state of a smart contract.

(ii) Define an array of administrator addresses of length N, which re-
presents the pool of authorized administrators allowed to partici-
pate in multi-party consensus.

(iii) Define an empty dynamic array variable multiCall, that represents
the number of authorized administrators which have called a
method.

(iv) Inside the method which needs to implement a multi-party con-
sensus, iterate over the array multiCall and check whether the
message sender is already a member of that array or not. If yes, it is
a duplicate call and return with an error message apprising the
method invoker about a duplicate call. If no, append the invoker
address to multi-Call.

(v) Next, check if the length of multi-Call is equal to M. If it is, then the
method has been invoked for the required amount of times (M
times) by M different administrators. When this condition is met,
execute the transaction originating from the method call.

5. Results

The manufacturing system smart contract along with the asset and
stake holder contracts were all deployed on three different Ethereum
blockchain test networks – Rinkeby, Ropsten and Kovan. These test
networks vary in the type of consensus algorithms they employ [83].
The Ropsten test network most closely resembles the main Ethereum
network since it also makes use of the Proof of Work (PoW) consensus
algorithm [84]. The PoW consensus algorithm originally proposed by
Bitcoin, is known for its high requirement of computational power. It is
a solution to the Byzantine General’s Problem on distributed systems
[85]. In this algorithm, the network reaches consensus as follows: (i) In
PoW, there is an upfront cost of resources called “work” put into gen-
erating a block’s cryptographic hash value in the blockchain. This work
can easily be validated by other nodes in the network to check if it has
been done correctly. (ii) Each node in the network is involved in solving
a problem (e.g., guessing a random number called the nonce which is a
part of the block’s hash value) meant to prove that the nodes have done
some required work. (iii) Having put in the time to solve the problem is
a signal to the network that the result of the work of a node is likely
trustworthy and hence a consensus about the state of the network can
be reached at. (iv) Nodes trying to solve the problem are called miners
and it can take a lot of computer power to solve the problem since the
random guessing is done by brute computational capacity. These mi-
ners are constantly in a race to solve each problem as quickly as pos-
sible and append the next block to the chain. (v) In return of the time
and resources invested by the miners, they are paid transaction fees
which come directly from the users making the transactions (vi) Once a
miner correctly figures out the nonce of a particular block, that block is
appended to the blockchain, the miner is paid its fees and the whole
cycle resumes for the validation of the next block. This algorithm takes
the longest amount of time and fees in verifying transactions. Both the
Kovan and the Rinkeby test networks implement the Proof of Authority
consensus algorithm (PoA). The PoA algorithm is a modified version of
the Proof of Stake algorithm (PoS) [86]. In this algorithm, instead of a
node’s stake with monetary value as in PoS algorithms, a node’s identity
performs the role of stake. In PoA, identity is staked by a group of
validators that are pre-approved to perform the validation process. PoA
like PoS has lower requirement of electric power and the continuity of
the network remains contingent on the number of approved genuine
nodes. The Kovan test network uses the Aura consensus mechanism
which is also known as Authority Round [87].

The manufacturing system smart contract acts as a central hub
wherein stakeholders represented by other smart contracts participate
and interact. Therefore, testing the performance of the manufacturing
system smart contract allowed the indirect validation of the partici-
pating smart contracts. The manufacturing system contract was com-
posed of a mix of methods that varied in the number of computational
lines of execution. To be precise, methods 1–4 in Table 3 are those

Fig. 10. Manufacturing system smart contract fungible asset transfer model.

Fig. 11. Pseudo Code implementing the multi-party consensus algorithm.
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manufacturing system smart contract functions that are involved in
data exchange tasks between different smart contracts, new asset gen-
eration and minting tasks from inherited smart contracts, blockchain
storage variable state change tasks, and so on. Consequently, these four
methods were the most computationally intensive and time-consuming
functions as far as mining of transactions originating from these method
executions are concerned. The other methods were much less resource
intensive since they represented either simple transfer of assets between
stakeholders or were simple helper functions with few lines of code.
Therefore, the gas consumption and validation time performances of
transactions originating from these method calls were decided to be
evaluated on the three test networks as a measure of the performance of
the entire manufacturing system smart contract. The amount of gas
consumed by a transaction or a method call over the Ethereum network
corresponds to the number of lines of code execution that have to be
performed to complete the method call. Higher is this number, larger is
the amount of gas fees that has be to submitted by the caller of the
function to execute the method within the EVM. Consequently, smart
contract code constructs that lead to conservative gas consumption
during method calls are generally preferred.

Since the lines of code execution within the aforementioned smart
contract methods remained ideally constant, the gas fees used to exe-
cute these functions remained pretty much stable throughout the
testing phase of the smart contracts on the test networks. However,
owing to the different consensus algorithms, the different test networks
showed a wide variation in mining times of the transactions ensuing
from the method calls. Consequently, it was decided to focus on the
mining time distributions for each of the four method calls across the
three test networks. To collect gas consumption and transaction mining
time metrics, the four methods were called in sequence over the three
test networks. Each of these sequences were repeated 40 times to collect
a sample for each network that could be assumed to be fairly normally
distributed. Therefore, a total of 120 method call transaction data
points were generated. Subsequently statistical bootstrapping with re-
petition was performed on the obtained data to allow for the collection
of important centrality and dispersion statistics from the sampling
distributions ensuing from the bootstrapping process. The statistical
metrics obtained from the bootstrapping simulation are shown in
Table 4. Table 4 also shows the mean amount of gas consumptions for
each of the methods and the sampling distribution statistics of the
mining times of the four smart contract methods across the Rinkeby,
Kovan and Ropsten test networks respectively. Table 4 bears testimony
to the fact that the mining time for all the method calls are highest

across the Ropsten network. This is in accordance to expectation since
this is the network that closely resembles the Ethereum main network
and employs the PoW algorithm.

The mining process, on average takes the least amount of time on
the Kovan network with the Rinkeby network mining performance
lying somewhere in between. The mining times of the four method calls
within a network were subjected to further statistical testing to find out
if there was any statistically significant difference between the means of
the mining times within the same test network. For this purpose,
Tukey’s HSD test [88] was employed following single factor ANOVA
analysis on the mining time data. It was found that under a significance
level of 0.05, the p-value for the comparison of means was almost zero
and hence the null hypothesis that the mean mining times of the four
methods within a network are equal was rejected. This means that there
is statistically significant difference in the mean mining times of
transactions ensuing from the four method calls.

Table 4 also shows the mean gas consumed for the four method call
transactions across the different test networks. It can be observed that,
for a particular method, the amount of gas consumed due to a trans-
action ensuing from its call is almost identical across all test networks.
The “makeOrder” method had the least mean gas consumption and the
“sourceMaterial” method had the highest gas consumption across all
the test networks. This was expected since the “sourceMaterial” method
initiates the minting of an ERC-721 non fungible token. Therefore, this
method in addition to engaging in inter-contract communication with
other smart contracts for permission and authorization checks, had to
also perform execution in the EVM to establish contact with the asset
smart contract. Additionally, in the implementation of this method,
there were several contract state change processes associated with the
generation of a new asset which might also have contributed to higher
gas consumptions. The “makeOrder” method on the other hand in-
volves simple passage of information from the client to the CMaaS
platform or the CNC machine owner involving authorization of pur-
chase order and hence did not in general lead to high gas consumption.
Judging from the mining time and mean gas consumption metrics, it
can be concluded that the manufacturing system and the allied smart
contracts would execute most efficiently on test networks like the
Kovan test net which employ the Proof of Authority consensus algo-
rithms. The centrality and dispersion statistics associated with the
sampled transactions show that the major methods employed within
the contracts lead to gas consumption and mining times within rea-
sonable limits of the Ethereum ecosystem.

Since Ethereum smart contracts handle fungible assets and every

Table 4
Centrality and dispersion statistics of major method call transactions over test networks.

Manufacturing System Contract Major Methods

initiatePurchaseOrder makeOrder Source Material generatePart

Test Networks Rinkeby Time Stats (sec) Mean 21.92 16.45 18.04 17.82
Std. Dev 2.56 2.32 3.19 2.98
Max 31.66 25.03 27.96 27.14
Min 13.88 10.63 10.16 6.89
95% CI [16.89–26.95] [11.90−20.99] [11.78−24.31] [11.96−23.68]

Mean Gas Use 196,341 55,212 304,005 94,801
Kovan Time Stats (sec) Mean 4.07 5.58 4.11 4.13

Std. Dev 1.87 2.01 1.43 1.78
Max 12.48 13.25 8.84 12.71
Min 0.72 0.94 0.89 0.89
95% CI [0.42−7.74] [1.63−9.53] [1.31−6.92] [0.64−7.61]

Mean Gas Use 203,611 55,756 305,458 77,214
Ropsten Time Stats (sec) Mean 28.46 17.07 22.27 21.85

Std. Dev 7.57 3.51 7.11 4.04
Max 53.71 27.92 47.30 34.25
Min 7.44 5.72 4.73 9.01
95% CI [13.62−43.31] [10.19−23.94] [8.32−36.22] [13.92−29.78]

Mean Gas Use 203,611 56,168 306,101 74,051
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transaction over the EVM incurs gas costs, every attempt should be
made to make smart contract code as simplified and less dis-
combobulated as possible so that gas fees are kept at a minimum. High
gas fees ensue from higher computational load due to the execution of
complex code structures resulting from repetitive branching or multi-
level nesting. The adoption of separation of concern principles and
object-oriented paradigms provide a structure that allow complexities
to be minimized thereby contributing to higher overall smart contract
gas consumption efficiency. In a typical CMaaS manufacturing system
smart contract, where millions of transactions could occur within sec-
onds, minimizing gas fees bears considerable importance. Therefore,
assessment of Ethereum smart contract codes in the form of pre-de-
ployment quality checks for vulnerability and gas consumption effi-
ciency is an indispensable requirement especially due to the immutable
nature of the codes post deployment. Hegedűs, P. [89] and Tonelli, R.
et al. [90] have previously shown the code performance metrics of
Solidity based Ethereum smart contracts using the static Chidamber &
Kemerer [91] metrics of object-oriented programming. The authors
have presented the software performance metrics of smart contracts
across 16 distinct performance metric values over around 40,000 So-
lidity smart contract source code files through the implementation of
their innovated prototype tool SolMet. While the authors focused on a
multitude of metrics, only few of the metrics remained relevant to the
evaluation of the complexity of the CMaaS smart contract code and
those are duly presented in Table 5.

The two most important metric values from Table 5 relevant to the
evaluation of complexity of the designed smart contracts are McCabe’s
Cyclomatic Complexity (McCC) and Nesting Level (NL). McCC re-
presents the mean count of all branching elements within a contract
function arising from the implementation of control loop structures and
conditional statements (namely if, for, while, do-while loops). NL is a
measure of the mean count of the deepest nesting levels of control
structures within a contract function. The underpinning idea is that
higher are the values of these two metrics, more is the complexity of the
smart contract code due to higher average usage of control loops and
conditional statements and higher nesting levels of such structures.
From Table 5, it is evident that the values obtained as a part of this
research are relatively lower than the McCC and NL values obtained
from literature. Despite the difference in values being small, it should
be appreciated that the authors in their survey already found the dis-
tribution of these values to be highly skewed towards lower values for
smart contract codes and to be able to attain even lower mean values as
compared to those quoted in literature corresponds to a considerable
improvement in the reduction of code complexity for smart contracts.
This shows that, due to the proper implementation of separation of
concerns and object-oriented design patterns in the construction of the
CMaaS manufacturing system smart contracts, very low McCC and NL
values could be obtained that allowed for the design of smart contract
codes with higher gas consumption efficiency.

6. Discussion

In this paper, focus was first placed on the architectural framework
of a CMaaS platform that allows mass customization and manufacturing
of products by remote clients through cloud centric communications.
Work in this paper demonstrated that multi-threaded server-based
middleware can be designed and interfaced with existing or legacy
software platforms to enable powerful decentralized cloud manu-
facturing capabilities. It was also demonstrated that cloud-based mid-
dleware could very efficiently integrate into and interface with hard-
ware assets or manufacturing nodes. This outcome is important towards
the future realization of a completely autonomous manufacturing ser-
vice that would be intelligent and be composed of a consortium of self-
aware machines. Another important potential demonstrated by the
work in this research is its contribution in the shifting of the technical
and intellectual overhead associated with CMaaS platforms away from
the client. Through the implementation of the architectural framework
proposed in this paper, remote clients can now practically gain access to
the services of a cloud manufacturing entity without having to know
much about the intricate details of design and manufacturing, as is
often required by end users designing and altering solid models in CAD
software often required by conventional CMaaS platforms. Therefore,
end-users who are non-experts themselves can participate in design
activities – further democratizing access to manufacturing services.

In the second part of this paper, the work proposed an architectural
framework and presented design implementation of a decentralized,
digital manufacturing system that can work in unison with CMaaS
platforms to track product data and manage stakeholders involved in
the production, supply and distribution of such parts. Decentralized,
digital manufacturing systems have the capacity of providing real time
product data for asset tracking. This provides end clients with a history
of the product trail within the manufacturing system network of the
CMaaS platform enabling provenance verification and product au-
thentication. Interaction between stakeholders across different organi-
zations over the cloud represent ideal cases of distributed systems
where different organizations come together and work into the devel-
opment of a product as is typical on many CMaaS platforms. In addition
to providing provenance records through immutable data to clients,
blockchain architectures have the capabilities of ensuring the require-
ments efficiently and securely. Without a central authority controlling
the data in a decentralized manufacturing system, participating entities
can now interact in a robust environment with high levels of re-
dundancy.

In summary, the contributions that set the work laid out in this
paper apart from other research on blockchain based CMaaS platforms
covered in section 2 are as follows:

(i) This work introduced the idea of object-oriented design paradigms
in the design of complex manufacturing system smart contracts. It
was demonstrated that inheritance models of software engineering
could be systematically implemented in blockchain smart contract
engineering to allow separation of concerns and hence lead to ef-
ficient smart contract design under constrained environments.

(ii) It was also demonstrated how different stakeholders in a manu-
facturing system could be modelled through distinct smart con-
tracts and how inter-contract communication protocols allowed
the interplay of such stakeholders within a CMaaS platform. Given
the manufacturing system smart contract architecture im-
plemented in this research, CMaaS platforms can now exploit the
framework to adapt to scalability issues.

(iii) In order to allow seamless interaction between several stake-
holders in the CMaaS blockchain platform and between several
software microservices, this paper has shown the design and im-
plementation of plug-and-play middleware software architectures
that can easily interface with existing cloud manufacturing infra-
structures to allow blockchain based CMaaS capabilities without

Table 5
Object-oriented software metrics of Solidity smart contracts for CMaaS manu-
facturing system.

Metrics Description Mean values (this
research)

Mean values from
literature

LLOC Logical lines of code 358 36.43
NF Number of functions 20 4.94
McCC McCabe’s cyclomatic

complexity
1.05 1.15

NL Nesting level 0.12 0.14
NUMPAR Number of parameters 1.4 1.50
NOA Number of ancestors 0 1.17
NA Number of attributes 25 2.47
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introducing significant disruption.
(iv) This paper also demonstrated an appropriate data model for pro-

ducts being tracked by decentralized manufacturing systems. It
was showcased through the implementation of the ERC-721 non
fungible token standard of the Ethereum ecosystem to model
manufacturing product data through the implementation of secure
interfaces and by proposing additional methods on the interface to
allow transfer and trading of such tokens representing manu-
factured assets. Having an appropriate data model for digital assets
following non-fungible asset protocols will allow the transfer,
trading and exchange of such assets to be represented by appro-
priate events in the decentralized manufacturing system network.
This provides a useful guideline to stakeholders into understanding
what considerations to make when modelling a digital asset on the
blockchain.

(v) This paper also proposed methods and showcased important per-
formance metrics in terms of gas consumption, mining times and
cyclomatic complexity of codes that would allow Ethereum based
CMaaS platforms to quickly assess the efficiency of their smart
contract design patterns prior to deployment. Through appropriate
descriptive and inferential statistical methods, it was also validated
that the execution of the manufacturing system smart contract
methods did not pose any complex requirement in the Ethereum
ecosystem as far as transaction fees and mining times are con-
cerned.

(vi) This paper also demonstrated how secure fungible asset transfer
models of the global Ethereum blockchain network could be uti-
lized to automate and process secure payments required to settle
smart contract conditions as is typical for any manufacturing job
on CMaaS platforms.

The work in this paper also addresses several privacy and security
issues within the domain of the manufacturing system smart contract.
The decentralized Ethereum ecosystem that the smart contracts are
based on, already makes sure that a stakeholder’s real-world identity is
obfuscated via pseudo anonymity [92]. Additionally, the restrictive
nature of the Solidity programming language and the presence of in-
ternal security features like block gas limits [93] and call-stack depth
limits ensure that the transfer of fungible assets across the network
happen in a secure environment. The adoption of object-oriented design
patterns and separation of concerns principles proposed in this paper
enforces an additional layer of abstraction with improved privacy. Such
a design paradigm makes sure that the stakeholders can interact with
each other through disparate stakeholder and manufacturing system
smart contracts. This introduces redundancy and further decentraliza-
tion since there is now no central point of attack for malicious parti-
cipants. Should such participants intend to gain access to the in-
formation of the stakeholders and breach privacy, they would have to
ascertain identity by establishing which stakeholder smart contracts is
the manufacturing smart contract communicating with via inter-con-
tract data exchange. These data exchange communications between
smart contracts are internal transactions, which are not serialized and
are not generated by externally owned accounts. Consequently, this
design pattern of encoding manufacturing system and stakeholder
smart contracts as disparate entities makes it even more difficult for a
malicious participant to breach the privacy of a stakeholder. Ad-
ditionally, the client interaction middleware designed and showcased in
section 4.2 enables the signing of blockchain transactions through se-
cure wallets as opposed to the usage of privacy-compromised, locally
stored private keys that can be observed in many contemporary re-
search studies.

This paper also focuses on security, proposing smart contract stop-
lossing features of manufacturing system smart contracts in section 4.4
which has the ability of immediately halt transactions across the con-
tracts, should there be any incidence of suspicious fungible asset
transfers. Finally, an algorithmic multi-party consensus security

protocol for smart contracts was proposed that allows secure smart
contract transactions by mimicking multi-sig transaction signature
features of the Bitcoin platform. Blockchain based DTs exploit the as-
pects of consensus algorithms for most of these privacy and security
features to work. Consequently, the success of these implementations is
reliant on whether there are enough honest participating nodes such
that privacy is not compromised. Finally, identities over blockchain
based DTs are pseudo anonymous and hence there always remains a
chance for malicious participants to link transactions to network ad-
dresses and hence breach privacy. While there has been the evolution of
emerging security protocols like permissioned controls [94], succinct
noninteractive argument of knowledge (zk-SNARK), ring signatures,
stealth addresses [95] etc., the choice of the right privacy and security
protection protocol for such a manufacturing system is highly depen-
dent on its scale and the intricacies of its functions.

The work in this paper opens several avenues for research in the
future. DLTs and blockchains are not the definitive solutions for all the
problems that arise from centralized manufacturing systems. The de-
ployment of DLTs have several associated risks that should be taken
into consideration. With data distributed among many ledgers and
nodes, legal risks associated with DLT deployment remain. For highly
regulated manufacturing processes like pharmaceuticals or medical
devices, DLT based supply chains can be considered joint ventures
where the liability for any transgressions will now be spread across all
the participating nodes in the DLT system [96]. Public blockchains like
Ethereum provide very low barrier to entry for new participants and
since it does not mandate authentication, bad actors can creep in and
create challenges for regulation of manufacturing processes. Private or
consortium blockchain frameworks can help mitigate those problems,
however many of them still suffer from inefficient fungible asset
transfer models and do not provide the required commercial con-
fidentiality for business operations [97].

Concerns pertaining to the corruption of data of digital assets in
cloud-based systems via infiltrators with malicious intent have been
raised in the past and they remain a source of impediment for wide-
spread adoption of cloud enabled technologies in the manufacturing
domain. Although blockchain platforms like Ethereum can help with
data integrity issues, the sheer magnitude of data generated from
manufacturing renders such platforms less effective for high data
throughput scenarios. Ethereum based blockchain solutions, due to
their restrictive nature and security features are not good data storage
solutions. This also limits the capacity of Ethereum based distributed
CMaaS platforms to appropriately encapsulate complex product life
cycle data as is mandated in modern ISO standards like STEP and STEP-
NC. With that in mind, the authors recommend the following future
research directions to overcome the existing barriers to widespread
adoption of distributed CMaaS platforms among both end users and
service providers:

(i) Future work investigating the design interfaces in blockchain based
databases like BigChainDB [98] or decentralized file sharing plat-
forms like the Interplanetary File System (IPFS) [99] show promise
to tackle the challenges of big-data problems in smart manu-
facturing. Ongoing research by Bhattacharyya et al. [100] have
demonstrated how blockchain based databases like BigChainDB can
be utilized to encapsulate more complex data models for manu-
facturing assets and to automate more complex contractual nego-
tiations involving bidding and real time notifications. This opens
avenues for the possibility of inclusion of more complex product
data models (like the HOOM [45]) on DLTs that are ISO standards
compliant and hence have much wider application prospective. The
author envision the design and implementation of hybrid infra-
structures and intercommunication protocols and middleware
which take advantage of the immutable, big-data capabilities of
BigChainDB and the secure, fungible asset transfer models of the
Ethereum framework that would lead to the design of more

M. Hasan and B. Starly Journal of Manufacturing Systems 56 (2020) 157–174

172



acceptable CMaaS blockchain solutions.
(ii) Another direction could involve the research of better methods that

would make CMaaS platforms more accessible to end users. There
needs to be further investigation to find out ways technical and
intellectual overheads can be further shifted away from end users.
With the emergence of artificial intelligence, machine learning,
computer vision and allied technologies, machines and software
systems can now be imparted with self-correction algorithms that
allow them to take intelligent decisions. The authors envision the
application of such modalities into CMaaS client software that
would efficiently be able to capture design intent of end users in
much shorter times. Pointivo [101] a small business funded by the
National Science Foundation has used such technologies to auto-
matically generate 3D model for CAD and building information
models.

7. Conclusion

In this work, an architectural framework of an improved CMaaS
platform that is capable of doing mass customization of parts from re-
mote clients was proposed and its implementation details was demon-
strated. The CMaaS architecture designed was successfully demon-
strated to shift technical and knowledge burdens away from remote
clients through the implementation of server-based, plug-and-play
middlewares that could efficiently interface with existing software and
hardware platforms to provide them cloud manufacturing capabilities.
Implementation of a decentralized manufacturing system architecture
was demonstrated and systematic means of encoding higher efficiency
manufacturing system smart contract code constructs through object-
oriented and inheritance model paradigms was also described.
Additionally, the tracking of digital asset data through decentralized
manufacturing systems by modelling them as non-fungible assets was
shown and the performance of manufacturing system smart contracts
dealing with such assets was demonstrated through statistical in-
ferential tests on test network performance.
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