
Approximation Bounds for Hierarchical Clustering

Approximation Bounds for Hierarchical Clustering: Average
Linkage, Bisecting K-means, and Local Search

Benjamin Moseley
moseleyb@andrew.cmu.edu
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Joshua R. Wang
joshuawang@google.com
Google Research
1600 Amphitheatre Parkway
Mountain View, CA 94043, USA

Editor:

Abstract
Hierarchical clustering is a data analysis method that has been used for decades. Despite
its widespread use, the method has an underdeveloped analytical foundation. Having a
well understood foundation would both support the currently used methods and help guide
future improvements. The goal of this paper is to give an analytic framework to better
understand observations seen in practice. This paper considers the dual of a problem
framework for hierarchical clustering introduced by Dasgupta (2016). The main result is
that one of the most popular algorithms used in practice, average linkage agglomerative
clustering, has a small constant approximation ratio for this objective. To contrast, this
paper establishes that using several other popular algorithms, including bisecting k-means
divisive clustering, have a very poor lower bound on its approximation ratio for the same
objective. However, we show that there are divisive algorithms that perform well with
respect to this objective by giving two constant approximation algorithms. This paper is
some of the first work to establish guarantees on widely used hierarchical algorithms for a
natural objective function. This objective and analysis give insight into what these popular
algorithms are optimizing and when they will perform well.

1. Introduction

Hierarchical clustering is a widely used method to analyze data. See Murtagh and Contreras
(2012); Krishnamurthy et al. (2012); Heller and Ghahramani (2005) for an overview and
pointers to relevant work. In a typical hierarchical clustering problem, one is given a set
of n data points and a notion of similarity between the points. The output is a hierarchy
of clusters on the input. Specifically, a dendrogram (tree) is constructed where the leaves
correspond to the n input data points and the root corresponds to a cluster containing all
data points. Each internal node of the tree corresponds to a cluster of the data points in its
subtree. The clusters (internal nodes) become more refined as we move down the tree. The

1

B. Moseley and J. Wang

goal is to construct the tree so that these deeper clusters contain points that are relatively
more similar.

There are many reasons for the popularity of hierarchical clustering, including that the
number of clusters is not predetermined and that the clusters produced induce taxonomies
that give meaningful ways to interpret data.

Methods used to perform hierarchical clustering are divided into two classes: agglomerative
and divisive. Agglomerative algorithms take a bottom-up approach and are more commonly
used than divisive approaches (Hastie et al., 2009). In an agglomerative method, each of
the n input data points starts as its own cluster. Then iteratively, pairs of similar clusters
are merged according to some appropriate notion of similarity. Perhaps the most popular
definition of similarity is average linkage where the similarity between two clusters is
defined as the average similarity between all pairs of data points in the two clusters. In
average linkage agglomerative clustering the two clusters with the highest average similarity
are merged at each step. Other variants are also popular. Related examples include: single
linkage, where the similarity between two clusters is the maximum similarity between any
pair of single data points in different clusters, and complete linkage, where the distance is
the minimum similarity between any pair of single data points in different clusters.

Divisive algorithms take a top-down approach where initially all data points are placed
into a single cluster. They recursively perform splits, dividing a cluster into smaller clusters
that will be further subdivided. The process continues until each cluster consists of a single
data point. In each step of the algorithm, the data points are partitioned such that points
within each cluster are more similar than points across clusters. There are several approaches
to perform divisive clustering. One example is bisecting k-means where k-means is used at
each step with k = 2. For details on bisecting k-means, see Jain (2010).

Motivation: Hierarchical clustering has been used and studied for decades. There has been
some work on theoretically quantifying the quality of the solutions produced by algorithms,
such as Ackerman et al. (2012); Ackerman and Ben-David (2016); Zadeh and Ben-David
(2009); Ben-David and Ackerman (2008); Dasgupta (2016). Much of this work focuses on
deriving the structure of solutions created by algorithms or analytically describing desirable
properties of a clustering algorithm. Though the area has been well-studied, there is no widely
accepted formal problem framework. Hierarchical clustering describes a class of algorithmic
methods rather than a problem with an objective function. Studying a formal objective for
the problem could lead to the ability to objectively compare different methods; there is a
desire for the community to investigate potential objectives, which would further support
the use of current methods and guide the development of improvements.

This paper is concerned with investigating objectives for hierarchical clustering. It gives
a natural objective and leverages its structural connection to average linkage agglomerative
clustering to prove this algorithm obtains a constant approximation to the best possible
clustering. In contrast to this positive result, single linkage, complete linkage, and bisecting
k-means are shown to have superconstant (i.e. scaling with the number of data points)
approximation ratios. This paper also provides some divisive algorithms that have comparable
theoretical guarantees to average linkage.

Problem Formulation: Towards this paper’s goal, we begin by trying to establish a formal
problem framework for hierarchical clustering. Recently, Dasgupta (2016) introduced a new

2

Approximation Bounds for Hierarchical Clustering

problem framework for hierarchical clustering. This work justified its proposed objective by
establishing that for several sample problem instances, the resulting solution corresponds to
what one might expect out of a desirable solution. This work spurred considerable interest
and there have been several follow up papers (Charikar and Chatziafratis, 2017; Dasgupta,
2016; Roy and Pokutta, 2016).

In the problem introduced by Dasgupta (2016), the input is a set of n data points as
input along with, for every pair of points i and j, a (nonnegative) weight wi,j denoting
their similarity. The higher the weight, the more similar the edge endpoints. This can be
represented as a weighted complete graph G. The output is a (full) binary tree where the
leaves of the tree correspond to the input data points. For each pair of points i and j, let
T [i ∨ j] denote the subtree rooted at i and j’s least common ancestor. Let leaves(T [i ∨ j])
denote the set of leaves in the tree T [i ∨ j]. The goal is to construct the tree such that
the cost costG(T) :=

∑
i,j∈[n]wij |leaves(T [i ∨ j])| is minimized. Intuitively, this objective

enforces that more similar points i and j should have a lower least common ancestor in
the tree because the weight wi,j is large and so additions to |leaves(T [i ∨ j])| are severely
penalized.

For this objective, several approximation algorithms have been given (Charikar and
Chatziafratis, 2017; Dasgupta, 2016; Roy and Pokutta, 2016). There is a divisive clustering
algorithm with an approximation ratio of O(

√
log n) (Charikar and Chatziafratis, 2017). In

particular, the algorithm gives an O(αn)-approximation where αn is the approximation ratio
of the sparsest cut subroutine (Charikar and Chatziafratis, 2017). Furthermore, assuming
the Small-Set Expansion Hypothesis, every algorithm is a ω(1)-approximation (Charikar
and Chatziafratis, 2017). The current best known bound on αn is O(

√
log n) (Arora et al.,

2009). Unfortunately, this conclusion misses one of our key goals in trying to establish an
objective function. While the algorithms and analysis are ingenious, none of the algorithms
with theoretical guarantees are from the class of algorithms used in practice. Furthermore,
in this work we establish that several commonly used algorithms (namely, single linkage,
average linkage, complete linkage, and bisecting k-means) have bad negative bounds on their
solution quality with respect to Dasgupta’s cost objective.

Hence this question still looms: are there strong theoretical guarantees for practical
algorithms? It seems that Dasgupta’s cost objective may not be ideal for this task; is there
another natural objective that admits solutions that are provably close to optimal?

Results: In this paper, we consider an objective function motivated by the objective
introduced by Dasgupta (2016). For a given tree T let |leaves-outside(T [i ∨ j])| be
the total number of leaves that are not in the subtree rooted at the least common an-
cestor of i and j. The Dasgupta objective considers constructing a tree T to minimize
the cost function costG(T) :=

∑
i,j∈[n]wij |leaves(T [i ∨ j])|. This paper considers the

dual problem where T is constructed to maximize the reward function rewardG(T) :=∑
i,j∈[n]wij |leaves-outside(T [i ∨ j])| = (n

∑
i,j∈[n]wi,j) − costG(T). It is important to

observe that the optimal clustering is the same for both objectives. Due to this, all the
examples given in Dasgupta (2016) motivating their objective by showing desirable structural
properties of the optimal solution also apply to the objective considered in this paper. Our
objective can be interpreted similarly to that in Dasgupta (2016). In particular, similar
points i and j should be located lower in the tree as to maximize |leaves-outside(T [i∨ j])|.

3

B. Moseley and J. Wang

This paper gives a thorough investigation of this new problem framework by analyzing
several algorithms under this objective. The main result is establishing that average linkage
clustering is a 1

3 -approximation. This result gives theoretical justification for the use of
average linkage clustering and, additionally, this shows that the objective considered is
tractable since it admits Ω(1)-approximations. It also suggests that the objective captures a
component of what average linkage optimizes for.

This paper then seeks to understand what other algorithms are good for this objective.
We establish that single linkage, complete linkage, and bisecting k-means is no better than
a polynomial-approximations. This establishes that these methods are very poor for the
objective considered, and that these methods optimize for something distinct than what
average linkage optimizes for.

Given these negative results, we question whether there are divisive algorithms that
optimize for our objective. We answer this question affirmatively by giving a local search
strategy that obtains a 1

3 -approximation as well as showing that randomly partitioning is
exactly a 1

3 -approximation.

Related Work (This Cost Function): Charikar et al. (2019a) gave a tight lower bound
construction for average linkage under this paper’s reward objective, which matches our
upper bound. They same work also gives an SDP relaxation technique which has a better
approximation ratio. Charikar et al. (2019b) study our objective for Euclidean data and
shows a better bound for average linkage under this data model. Menon et al. (2019) consider
our objective in the setting where the data points arrive one by one.

Related Work (Other Cost Functions): Recently a contemporaneous paper (Cohen-
Addad et al., 2017) done independently has been published. This paper considers a class of
objectives motivated by the work of Dasgupta (2016). For their objective, they also derive
positive results for average linkage clustering and additionally give axiomatic properties that
are desirable in an objective for hierarchical clustering. Ma and Dhavala (2018) consider
combining Dasgupta’s objective function with prior knowledge about the data set. Wang and
Wang (2018) suggests an alternate objective with the goal of comparing the clusterability
across different input graphs, rather than just different clusterings for a single input graph.
Both Chierchia and Perret (2019) and Monath et al. (2019) propose continuous objective
functions with the goal of applying gradient descent. Lattanzi et al. (2019) and Abboud
et al. (2019) both strive to make more efficient (parallelized and raw runtime, respectively)
versions of classical clustering algorithms, and judge the resulting quality via comparing
iteration-by-iteration against what the classical algorithm would have done. Wang and
Moseley (2020) propose an objective function for which bisecting k-means achieves a constant
approximation.

2. Preliminaries

In this section, we give preliminaries including a formal definition of the problem considered
and basic building blocks for later algorithm analysis.

In the Reward Hierarchical Clustering Problem there are n input data points given
as a set V . There is a weight wi,j ≥ 0 between each pair of points i and j denoting their
similarity, represented as a complete graph G. The output of the problem is a rooted tree T

4

Approximation Bounds for Hierarchical Clustering

where the leaves correspond to the data points and the internal nodes of the tree correspond
to clusters of the points in the subtree. We will use the indices 1, 2, . . . n to denote the
leaves of the tree. For two leaves i and j, let T [i ∨ j] denote the subtree rooted at the least
common ancestor of i and j and let the set leaves-outside(T [i ∨ j]) denote the number of
leaves in T that are not in T [i ∨ j]. The objective is to construct T to maximize the reward
rewardG(T) =

∑
i∈[n]

∑
j 6=i∈[n]wi,j |leaves-outside(T [i ∨ j])|.

We make no assumptions on the structure of the optimal tree T . However, one optimal
tree is a binary tree, so we may restrict the solution to binary trees without loss of generality.
This can be seen as follows. It was shown in Dasgupta (2016) that the optimal solution
for the costG(T) is binary. Knowing that costG(T) + rewardG(T) = n

∑
i,j wi,j , so the

optimal solution to minimizing costG(T) is the same as the optimal solution to maximizing
rewardG(T). Thus, there is an optimal solution for the rewardG(T) objective that is binary.

To see this, let leaves(T [i ∨ j]) be the set of leaves in T [i ∨ j] and costG(T) :=∑
i,j wij |leaves(T [i ∨ j])|. The objective considered in Dasgupta (2016) focuses on minimiz-

ing costG(T). We note than costG(T) + rewardG(T) = n
∑

i,j wi,j , so the optimal solution
to minimizing costG(T) is the same as the optimal solution to maximizing rewardG(T). In
Dasgupta (2016) it was shown that the optimal solution for any input is a binary tree.

As mentioned, there are two common types of algorithms for hierarchical clustering: ag-
glomerative (bottom-up) algorithms and divisive (top-down) algorithms. In an agglomerative
algorithm, each vertex v ∈ V begins in separate cluster, and each iteration of the algorithm
chooses two clusters to merge into one. In a divisive algorithm, all vertices v ∈ V begin in a
single cluster, and each iteration of the algorithm selects a cluster with more than one vertex
and partitions it into two small clusters.

In this section, we present some basic techniques which we later use to analyze the
effect each iteration has on the reward. It will be convenient for us to think of the weight
function as taking in two vertices instead of an edge, i.e. w : V × V → R≥0. This is
without loss of generality, because we can always set the weight of any non-edge to zero (e.g.
wvv = 0 ∀v ∈ V).

To bound the performance of an algorithm it suffices to bound rewardG(T) and costG(T)
since rewardG(T) + costG(T) = n

∑
i,j wi,j . Further, let T

∗ denote the optimal hierarchical
clustering. Then its reward is at most rewardG(T ∗) ≤ (n− 2)

∑
ij wij . This is because any

edge ij can have at most (n− 2) non-leaves for its subtree T [i ∨ j]; i and j are always leaves.

2.1 Analyzing Agglomerative Algorithms

In this section, we discuss a method for bounding the performance of an agglomerative
algorithm. When an agglomerative algorithm merges two clusters A,B, this determines
the least common ancestor for any pair of nodes i, j where i ∈ A and j ∈ B. Given this,
we define the reward gain due to merging A and B as, merge-rewG(A,B) := (n − |A| −
|B|)

∑
a∈A,b∈B wab.

Notice that the final reward rewardG(T) is exactly the sum over iterations of the reward
gains, since each edge is counted exactly once: when its endpoints are merged into a single
cluster. Hence, rewardG(T) =

∑
merges A,Bmerge-rewG(A,B).

We next define the cost of merging A and B as the following. This is the potential
reward lost by merging A and B; reward that can no longer be gained after A and B are

5

B. Moseley and J. Wang

merged, but was initially possible. Define, merge-costG(A,B) := |B|
∑

a∈A,c∈[n]\(A∪B)wac +
|A|
∑

b∈B,c∈[n]\(A∪B)wbc.
The total cost of the tree T , costG(T), is exactly the sum over iterations of the cost

increases, plus an additional 2
∑

ij wij term that accounts for each edge being counted towards
its own endpoints. We can see why this is true if we consider a pair of vertices i, j ∈ [n]
in the final hierarchical clustering T . If at some point a cluster containing i is merged
with a third cluster before it gets merged with the cluster containing j, then the number
of leaves in T [i ∨ j] goes up by the size of the third cluster. This is exactly the quantity
captured by our cost increase definition. Aggregated over all pairs i, j this is the following,
costG(T) =

∑
i,j∈[n]wij |leaves(T [i ∨ j])| = 2

∑
i,j∈[n]wij +

∑
merges A,Bmerge-costG(A,B).

2.2 Analyzing Divisive Algorithms

Similar reasoning can be used for divisive algorithms. The following are reward gain and cost
increase definitions for when a divisive algorithm partitions a cluster into two clusters A,B.
Define, split-rewG(A,B) := |B|

∑
a,a′∈Awaa′ + |A|

∑
b,b′∈B wbb′ and split-costG(A,B) :=

(|A|+ |B|)
∑

a∈A,b∈B wab.
Consider the reward gain. For a, a′ ∈ A we are now guaranteed that when the nodes in B

are split from A then every node in B will not be a leaf in T [a ∨ a′] (and a symmetric term
for when they are both in B). On the cost side, the term counts the cost of any pairs a ∈ A
and b ∈ B that are now separated since we now know their subtree T [i ∨ j] has exactly the
nodes in A ∪B as leaves.

3. A Theoretical Guarantee for Average Linkage Agglomerative
Clustering

In this section, we present the main result, a theoretical guarantee on average linkage
clustering. See Murtagh and Contreras (2012) for details and background on this widely
used algorithm. The formal definition of the algorithm is given in the following pseudocode.
The main idea is that initially all n input points are in their own cluster and the algorithm
recursively merges clusters until there is one cluster. In each step, the algorithm merges the
clusters A and B such that the pair maximizes the average distances of points between the
two clusters, 1

|A||B|
∑

a∈A,b∈B wab.

Data: Vertices V , weights w : E → R≥0

Initialize clusters C ← ∪v∈V {v};
while |C| ≥ 2 do

Choose A,B ∈ C to maximize w̄(A,B) := 1
|A||B|

∑
a∈A,b∈B wab;

Set C ← C ∪ {A ∪B} \ {A,B};
end

Algorithm 1: Average Linkage

The following theorem establishes that this algorithm is only a small constant factor
away from optimal.

6

Approximation Bounds for Hierarchical Clustering

Theorem 1 Consider a graph G = (V,E) with nonnegative edge weights w : E → R≥0. Let
the hierarchical clustering T ∗ be an optimal solution maximizing of rewardG(·) and let T be
the hierarchical clustering returned by Algorithm 1. Then, rewardG(T) ≥ 1

3rewardG(T ∗).

Proof Consider an iteration of Algorithm 1. Let the current clusters be in the set C, and
the algorithm chooses to merge clusters A and B from C. When doing so, the algorithm
attains a reward gain of the following. Let w̄(A,B) = 1

|A||B|
∑

a∈A,b∈B wab be the average
weight of an edge between points in A and B.

merge-rewG(A,B) = (n− |A| − |B|)
∑

a∈A,b∈B
wab =

∑
C∈C\{A,B}

|C|
∑

a∈A,b∈B
wab

=
∑

C∈C\{A,B}

|C||A||B|w̄(A,B)

while at the same time incurring a cost increase of:

merge-costG(A,B) = |B|
∑

a∈A,c∈[n]\(A∪B)

wac + |A|
∑

b∈B,c∈[n]\(A∪B)

wbc

= |B|
∑

C∈C\{A,B}

∑
a∈A,c∈C

wac + |A|
∑

C∈C\{A,B}

∑
b∈B,c∈C

wbc

=
∑

C∈C\{A,B}

|B||A||C|w̄(A,C) +
∑

C∈C\{A,B}

|A||B||C|w̄(B,C)

≤
∑

C∈C\{A,B}

|B||A||C|w̄(A,B) +
∑

C∈C\{A,B}

|A||B||C|w̄(A,B)

= 2 ·merge-rewG(A,B)

Intuitively, every time this algorithm loses two units of potential it cements the gain of
one unit of potential, which is why it is a 1

3 -approximation. Formally:

costG(T) = 2
∑
i,j

wij +
∑

merges A,B

merge-costG(A,B) ≤ 2
∑
i,j

wij + 2 ·
∑

merges A,B

merge-rewG(A,B)

≤ 2
∑
i,j

wij + 2 · rewardG(T)

Now the reward can be bounded as follows.

rewardG(T) ≥ n
∑
ij

wij − costG(T) ≥ n
∑
ij

wij − 2
∑
i,j

wij − 2 · rewardG(T)

rewardG(T) ≥ n− 2

3

∑
ij

wij ≥
1

3
rewardG(T ∗)

where the last step follows from the fact that it is impossible to have more than n − 2
leaves-outside.

7

B. Moseley and J. Wang

As an aside, we note that it is not possible for all inequalities in the proof to be
simultaneously tight, and hence average linkage is actually slightly better (inverse polynomial
in n) than a 1/3 approximation. The reasoning is as follows.

Consider the very first merge made by average-linkage, where it picks the highest weight
edge of our graph G. Suppose this edge (u, v) has weight W . The proof above relates
merge-costG({u}, {v}) and merge-rewG({u}, {v}). We plug known quantities into the defini-
tion of merge reward.

merge-rewG({u}, {v}) = (n− 2)W

We can also unroll the definition of merge cost for this simple merge.

merge-costG({u}, {v}) =
∑

z∈V \{u,v}

(wuz + wvz)

We know from our proof that the merge cost is between zero and 2(n−2)W . Let’s express
the cost as α(n− 2)W , where α ∈ [0, 2]. We handle the case where α is high as follows. The
average triangle containing (u, v) has (α+ 1)W total weight. Our reward objective has an
alternate form in terms of triangles, as observed by Charikar et al. (2019b).

rewardG(T) =
∑
i<j<k

(
wij1[Ekij] + wjk1[E ijk] + wik1[Ejik]

)
rewardG(T) + costG(T) =

∑
i<j<k

(wij + wjk + wik) + 2
∑
i<j

wij

Following the notation in that paper, E ijk denotes the event that among the three nodes
{i, j, k}, i is split from the others first. For the average triangle containing (u, v), this means
that even the optimal hierarchical clustering can only score W out of a possible (α+ 1)W
total. We can combine this missing αW value for each of our (n− 2) triangles with the final
approximation statement to get:

rewardG(T) ≥ 1

3
(rewardG(T ∗) + costG(T ∗)− 2

∑
i<j

wij)

≥ 1

3
(rewardG(T ∗) + α(n− 2)W)

Now, we handle the case where α is low. In this case, we gain (n− 2)W merge reward
while only incurring α(n − 2)W merge cost. This puts a little ahead in our telescoping
inequality:

costG(T) ≤ 2
∑
i<j

wij + 2rewardG(T) + (2− α)(n− 2)W

Hence we arrive at a slightly better conclusion:

rewardG(T) ≥ 1

3
rewardG(T ∗) +

2− α
3

(n− 2)W

8

Approximation Bounds for Hierarchical Clustering

We conclude by noting that our two guarantees are balanced when α = 1 and that
(n− 2)W ≥ 2

n(n−1) · rewardG(T ∗).

rewardG(T) ≥ 1

3
rewardG(T ∗) +

1

3
(n− 2)W

≥
(

1

3
+

2

n(n− 1)

)
rewardG(T ∗)

4. Divisive Local-Search

In this section, we develop a simple local search algorithm and bound its approximation
ratio. The local search algorithm takes as input a cluster C and divides it into two clusters
A and B to optimize a local objective: the split reward. In particular, initially A = B = ∅.
Each node in C is added to A or B uniformly at random.

Local search is run by moving individual nodes between A and B. In a step, any
point i ∈ A (resp. B) is added to B (resp. A) if

∑
j,l∈A;j,l 6=iwj,l + (|A| − 1)

∑
j∈B wi,j >∑

j,l∈B wj,l + |B|
∑

j∈A,j 6=iwi,j (resp.
∑

j,l∈B;j,l 6=iwj,l + (|B| − 1)
∑

j∈Awi,j >
∑

j,l∈Awj,l +
|A|
∑

j∈B,j 6=iwi,j). This states that a point is moved to another set if the objective increases.
The algorithm performs these local moves until there is no node that can be moved to
improve the objective.

Data: Vertices V , weights w : E → R≥0

Initialize clusters C ← {V };
while some cluster C ∈ C has more than one vertex do

Let A,B be a uniformly random 2-partition of C;
Run local search on A,B to maximize |B|

∑
a,a′∈Awaa′ + |A|

∑
b,b′∈B wbb′ ,

considering just moving a single node;
Set C ← C ∪ {A,B} \ {C};

end
Algorithm 2: Divisive Local-Search

In the following theorem, we show that the algorithm is arbitrarily close to a 1
3 approxi-

mation.

Theorem 2 Consider a graph G = (V,E) with nonnegative edge weights w : E → R≥0.
Let the hierarchical clustering T ∗ be the optimal solution of rewardG(·) and let T be the
hierarchical clustering returned by Algorithm 2. Then, rewardG(T) ≥ (n−6)

(n−2)
1
3rewardG(T ∗).

Proof Since we know that rewardG(T ∗) ≤ (n − 2)
∑

ij wij , it suffices to show that
rewardG(T) ≥ 1

3(n − 2)
∑

ij wij . We do this by considering possible local moves at ev-
ery step.

Consider any step of the algorithm and suppose the algorithm decides to partition a
cluster into A,B. As stated in the algorithm, its local search objective value is OBJ =
|B|
∑

a,a′∈Awaa′ + |A|
∑

b,b′∈B wbb′ . Assume without loss of generality that |B| ≥ |A|, and
consider the expected local search objective OBJ ′ value for moving a random node from B

9

B. Moseley and J. Wang

to A. Note that the new local search objective value is at most what the algorithm obtained,
i.e. OBJ ′ ≤ OBJ :

E[OBJ ′] = (|B| − 1)

 ∑
a,a′∈A

waa′ +
1

|B|
∑

a∈A,b∈B
wab

+ (|A|+ 1)

(|B|−1
2

)(|B|
2

) ∑
b,b′∈B

wbb′

= (|B| − 1)

 ∑
a,a′∈A

waa′ +
1

|B|
∑

a∈A,b∈B
wab

+ (|A|+ 1)

 |B| − 2

|B|
∑
b,b′∈B

wbb′

= (|B| − 1)

∑
a,a′∈A

waa′ +
|B| − 1

|B|
∑

a∈A,b∈B
wab + (|A|+ 1)

(1− 2

|B|
)
∑
b,b′∈B

wbb′

= OBJ −

∑
a,a′∈A

waa′ +
|B| − 1

|B|
∑

a∈A,b∈B
wab + (−2|A|

|B|
+ 1− 2

|B|
)
∑
b,b′∈B

wbb′

But since there are no improving moves we know the following.

0 ≥ E[OBJ ′]−OBJ = −
∑
a,a′∈A

waa′ +
|B| − 1

|B|
∑

a∈A,b∈B
wab −

2|A| − |B|+ 2

|B|
∑
b,b′∈B

wbb′

Rearranging terms and multiplying by |B| yields the following.

(|B| − 1)
∑

a∈A,b∈B
wab ≤ |B|

∑
a,a′∈A

waa′ + (2|A| − |B|+ 2)
∑
b,b′∈B

wbb′

We now consider three cases. Either (i) |B| ≥ |A|+ 2, (ii) |B| = |A|+ 1, or (iii) |B| = |A|.
Case (i) is straightforward:(

|B| − 1

|A|+ |B|

)
split-costG(A,B) ≤ split-rewG(A,B)

1

2
split-costG(A,B) ≤ split-rewG(A,B)

In case (ii), we use the fact that (x+ 2)(x− 2) ≤ (x+ 1)(x− 1) to simplify:(
|B| − 1

|A|+ |B|

)
split-costG(A,B) ≤

(
|A|+ 1

|A|

)
split-rewG(A,B)(

|B| − 1

|A|+ |B|

)
split-costG(A,B) ≤

(
|B|+ 2

|B|+ 1

)
split-rewG(A,B)(

|B|+ 1

|B|+ 2

)(
|B| − 1

|A|+ |B|

)
split-costG(A,B) ≤ split-rewG(A,B)(

|B| − 2

|A|+ |B|

)
split-costG(A,B) ≤ split-rewG(A,B)(

1

2
− 1.5

|A|+ |B|

)
split-costG(A,B) ≤ split-rewG(A,B)

10

Approximation Bounds for Hierarchical Clustering

Case (iii) proceeds similarly; we now use the fact that (x + 2)(x − 3) ≤ (x)(x − 1) to
simplify: (

|B| − 1

|A|+ |B|

)
split-costG(A,B) ≤

(
|A|+ 2

|A|

)
split-rewG(A,B)(

|B| − 1

|A|+ |B|

)
split-costG(A,B) ≤

(
|B|+ 2

|B|

)
split-rewG(A,B)(

|B|
|B|+ 2

)(
|B| − 1

|A|+ |B|

)
split-costG(A,B) ≤ split-rewG(A,B)(

|B| − 3

|A|+ |B|

)
split-costG(A,B) ≤ split-rewG(A,B)(

1

2
− 3

|A|+ |B|

)
split-costG(A,B) ≤ split-rewG(A,B)

Hence we have shown that for each step of our algorithm, the split reward is at least
(1

2 −
3

|A|+|B|) times the split cost. We rewrite this inequality and then sum over all iterations:

split-rewG(A,B) ≥ 1

2
split-costG(A,B)− 3

∑
a∈A,b∈B

wab

rewardG(T) ≥ 1

2
costG(T)− 3

∑
i,j∈[n]

wij

=
1

2

n ∑
i,j∈[n]

wij − rewardG(T)

− 3
∑
i,j∈[n]

wij

3

2
rewardG(T) ≥ n− 6

2

∑
i,j∈[n]

wij

rewardG(T) ≥ n− 6

3

∑
i,j∈[n]

wij

This is what we wanted to prove.

We note that it is possible to improve the loss in terms of n to n−4
n−2 by instead considering

the local search objective (|B| − 1)
∑

a,a′∈Awaa′ + (|A| − 1)
∑

b,b′∈B wbb′ .

5. Random Hierarchical Clustering

In this section, we bound the performance of a random divisive algorithm. In each step, the
algorithm is given a cluster and divides the points into two clusters A and B where a point is
added in each step uniformly at random. We show that this algorithm is a 1

3 -approximation
to our reward function and further this is tight.

Theorem 3 Consider a graph G = (V,E) with nonnegative edge weights w : E → R≥0. Let
the hierarchical clustering T ∗ be a maximizer of rewardG(·) and let T be the hierarchical

11

B. Moseley and J. Wang

Data: Vertices V , weights w : E → R≥0

Initialize clusters C ← {V };
while some cluster C ∈ C has more than one vertex do

Let A,B be a uniformly random 2-partition of C;
Set C ← C ∪ {A,B} \ {C};

end
Algorithm 3: Random Hierarchical Clustering

clustering returned by Algorithm 3. Then:

E[rewardG(T)] ≥ 1

3
rewardG(T ∗)

Proof We begin by pretending that A or B empty is a valid partition of C, and address
this detail at the end of the proof. If so, we can generate A,B with the following random
process: for each vertex v ∈ C, flip a fair coin to decide if it goes into A or into B.

Now, consider an edge (i, j) ∈ E. The algorithm will score a reward of
wij |leaves-outside(T [i ∨ j])|. Thus, we need to determine the expected value of
|leaves-outside(T [i ∨ j])|. How often does one of the n − 2 other nodes besides i and j
become a nonleaf of T [i ∨ j]? Fix all all coin flips made for i and let k 6= i, j be a point.
The point k will become a nonleaf if j matches more coin flips than k does. The number
of matched coin flips is a geometric random variable with parameter 1/2. There is a 1/2
chance of matching for zero coin flips, a 1/4 chance of matching for one coin flip, and so on.
Let h be the number of edges on the path from i to the root of the tree. The probability of
equality is

∑h
i=1

1
22i

= 1/4 + 1/16 + 1/64 + · · · = 1/3 for sufficiently large h. By symmetry,
the remaining 2/3 probability is split bewteen j matching for more and k matching for more.
Hence each of the other n − 2 nodes k has exactly a 1/3 chance of being a nonleaf. As a
result,

E[rewardG(T)] =
n− 2

3

∑
ij

wij ≥
1

3
rewardG(T ∗)

since it is impossible to have more than n− 2 nonleaves.
Finally, we address the possibility of A or B being empty. This is equivalent to a node in

T having a single child. In this case, rewardG(T) is unchanged if we merge the node with
that child, since this does not change leaves(T [i ∨ j]) for any edge (i, j). Hence if A or B is
empty we can safely redraw. Hence our random process is equivalent to uniformly drawing
over all partitions. This completes the proof.

We now establish that this is tight.

Lemma 4 There exists a graph G = (V,E) with nonnegative edge weights w : E → R≥0,
such that if the hierarchical clustering T ∗ is an optimal solution of rewardG(·) and T is the
hierarchical clustering returned by Algorithm 3,

E[rewardG(T)] =
1

3
rewardG(T ∗)

12

Approximation Bounds for Hierarchical Clustering

Algorithm This paper’s Reward Objective Dasgupta’s Cost Objective
Single Linkage Flail: 1

Ω(n1/3)
[Thm. 10] Line: Ω(n

logn) [Thm. 11]
Average Linkage Clique Star: (1/2 + δ) [Thm. 12] Clique Star: Ω(n1/3) [Thm. 13]
Complete Linkage Double Star: 1

Ω(n) [Thm. 14] Line: Ω(n
logn) [Thm. 15]

Bisecting k-Means Double Star: 1
Ω(
√
n)

[Thm. 16] Cycle Star: Ω(
√
n) [Thm. 17]

Table 1: The base counterexample graphs we use and the approximation bounds they yield.

Proof In the proof of Lemma 3, we showed that

E[rewardG(T)] =
n− 2

3

∑
ij

wij .

This naturally suggests a tight example: any graph where the optimal hierarchical
clustering T ∗ can capture all edges (i, j) ∈ E with non-zero weight using only clusters
of size 2. In other words, in any graph where the edges form a matching, the bound is tight.

6. Negative Results

This section gives negative lower bound proofs for the algorithms single linkage, average
linkage, complete linkage, and bisecting k-means. All of the proofs in this section follow a
similar structure:

1. Construct a base counterexample graph.

2. Increase several edge weights in the base graph by multiples of a constant ε > 0 in
order to ensure the algorithm breaks-ties in favor of the wrong decision.

3. Upper-bound the quality of the algorithm’s hierarchical clustering, T .

4. The performance of the optimal solution is lower-bounded by giving a hierarchical
clustering solution T ′. This solution will be far superior to the algorithm’s solution.

In steps (3) and (4), it will typically be the case that the analysis breaks edge weights
into a base component and a tie-breaking component, which come from steps (1) and (2)
respectively.

We begin by defining all of the base counterexample graphs that will be used. Then the
negative results for each of the algorithms are given in the following subsections.

6.1 Base Counterexample Graphs

This subsection gives definitions for the base counterexample graphs that will be used in the
lower bound proofs.

Definition 5 (Line Graph. See Figure 1.) The line graph Pn, consists of n nodes:
v1, . . . , vn. The only edges are in the path (v1, v2, . . . , vn). This graph is parameterized
by n.

13

B. Moseley and J. Wang

v1 v2 v3 v4 v5

Figure 1: The unweighted line graph on 5 nodes.

v1
v2

v3
v4

v5 v6 v7 v8 v9 v10 v11 v12

Clique

Line

Figure 2: The unweighted (n = 12, k = 5)-flail graph.

Definition 6 (Flail Graph. See Figure 2) The (n, k)-flail graph consists of n nodes:
v1, . . . , vn. The first k nodes, v1, . . . , vk, form a clique. The only other edges are those
in the path vk, vk+1, . . . , vn. This graph is parameterized by n and k.

Definition 7 (Double Star Graph. See Figure 3) The k-double star graph consists of
2` nodes: v1, . . . , v2k. There are edges from v1 to all of v2, v3, . . . , v`, forming a star. There
are also edges from v`+1 to all of v`+2, v`+3, . . . , v2`, forming another star. Finally, there is
an edge from v1 to v`+1, connecting the two stars. This graph is parameterized by `, the size
of each star.

Definition 8 (Cycle Star Graph. See Figure 4) The (k, `)-cycle star graph consists of
k + k` nodes. Let U = {v1, . . . , vk} and U i = {vi,1, . . . , vi,`} for i ∈ [1, . . . , k]. The vertex
set V = U ∪

⋃k
i=1 U

i. There are edges from vi to vi+1 and vk to v1, forming a cycle. There
are also edges from vi to all of U i, for each i ∈ [1, . . . , k], forming a star. This graph is
parameterized by k, the nodes on the cycle, and `, the leaves in each of the k stars.

Definition 9 (Clique Star Graph. See Figure 5) The (k, `)-clique star graph consists
of k + k` nodes. Let U = {v1, . . . , vk} and U i = {vi,1, . . . , vi,`} for i ∈ [1, . . . , k]. The vertex
set V = U ∪

⋃k
i=1 U

i. The nodes in U form a clique. There are also edges from vi to all of
U i, for each i ∈ [1, . . . , k], forming a star. This graph is parameterized by k, the nodes int he
clique, and `, the leaves in each of the k stars.

v1 v6

v2 v3 v4 v5 v7 v8 v9 v10

Star Star

Figure 3: The unweighted (` = 5)-double star graph.

14

Approximation Bounds for Hierarchical Clustering

v1
v2

v3
v4

v5

v1,1

v1,2
v1,3

v2,1

v2,2

v2,3

v3,1

v3,2

v3,3
v4,1

v4,2

v4,3

v5,1

v5,2

v5,3

Cycle

Star

Figure 4: The unweighted (k = 5, ` = 3)-cycle star graph.

v1
v2

v3
v4

v5

v1,1

v1,2
v1,3

v2,1

v2,2

v2,3

v3,1

v3,2

v3,3
v4,1

v4,2

v4,3

v5,1

v5,2

v5,3

Clique

Star

Figure 5: The unweighted (k = 5, ` = 3)-clique star graph.

15

B. Moseley and J. Wang

Tree T Tree T ′

v1 v2 v3 v4 v1 v2 v3 v4

Figure 6: Hierarchical clusterings from the proof of Theorem 10, for n = 4. Single-linkage
produces the left clustering, while the right clustering achieves a better objective
value.

6.2 Single Linkage and the Reward Objective

This subsection gives a lower-bound proof showing that single linkage does not produce a
good approximation to the reward objective introduced in this paper.

Theorem 10 There exists a family of graphs Gn with nonnegative edge weights w : E → R≥0

such that if the hierarchical clustering T ∗ is a maximizer of rewardG(·) and T is the hierarchical
clustering returned by single linkage, rewardG(T) ≤ 1

Ω(n1/3)
· rewardG(T ∗).

Proof For convenience, it is assumed that n is a perfect cube. If n is not, then the graph
can be padded with unconnected vertices.

The base counterexample graph family is the flail graph; see Figure 2 for an example. For
the actual counterexample graph, several weights for tie-breaking purposes will be increased.
Let ε > 0 be a constant that will be fixed later. Choose Gn to be the (n, n2/3)-flail graph.
The weights w are as follows. All edges are unit weight, except edges between consecutive
vertices: the edge (vi, vi+1) has weight (1 + iε). In other words, the most valuable edge
is (vn−1, vn), followed by (vn−2, vn−1), and so on all the way down to (v1, v2). The least
valuable edges are the clique edges between nonconsecutive vertices.

Consider the clustering created by the single linkage algorithm on Gn. Recall that single
linkage merges clusters in each step based on the most valuable edge between two clusters.
By construction, it must take the cluster {vn} is merged with vn−1. The resulting cluster is
merged with vn−2, and so on, until the cluster merges with v1. This clustering is depicted in
Figure 6. Let T be the tree corresponding to this hierarchical clustering. The reward given
in this tree is bounded as follows. To compute the reward, we first split each edge into a unit
weight component and a tie-breaking component. Then the contribution from clique edges

16

Approximation Bounds for Hierarchical Clustering

and path edge are accounted for separately.

rewardG(T) =
∑

(i,j)∈E

wij |leaves-outside(T [i ∨ j])|

=
∑

(i,j)∈E

|leaves-outside(T [i ∨ j])|

︸ ︷︷ ︸
Base Weight Component

+
n−1∑
i=1

iε · |leaves-outside(T [vi ∨ vi+1])|︸ ︷︷ ︸
Tie-Breaking Weight Component

=
k−1∑
i=1

k∑
j=i+1

|leaves-outside(T [vi ∨ vj])|︸ ︷︷ ︸
Base Weight Component, Clique Edges

+
n−1∑
i=k

|leaves-outside(T [vi ∨ vi+1])|︸ ︷︷ ︸
Base Weight Component, Path Edges

+ ε

n−1∑
i=1

i(i− 1)︸ ︷︷ ︸
Tie-Breaking Weight Component

=
k−1∑
i=1

k∑
j=i+1

(i− 1) +
n−1∑
i=k

(i− 1) + ε ·O(n3)

= O(k3) +O(n2) + ε ·O(n3)

Fix ε to be 1/n. Since k = n2/3, this entire expression is O(n2).
To finish the proof, it suffices to show that some hierarchical clustering obtains at least

Ω(n7/3) reward on this graph. Consider the hierarchical clustering which does things in the
opposite direction; T ′ takes the cluster {v1} and merges in v2, then v3, and so on, until
it merges in vn. This clustering is also depicted in Figure 6. How much reward does T ′

accumulate? A similar calculation as before bounds this as follows:

rewardG(T ′) =
∑

(i,j)∈E

wij |leaves-outside(T ′[vi ∨ vj])|

≥
k−1∑
i=1

k∑
j=i+1

|leaves-outside(T ′[vi ∨ vj])|︸ ︷︷ ︸
Base Weight Component, Clique Edges

=
k−1∑
i=1

k∑
j=i+1

(n− j)

≥
(
k

2

)
(n− k)

Since k = n2/3, this is at least Ω((n2/3)2 · n) = Ω(n7/3), as desired. This establishes that
some hierarchical clustering, and hence also the optimal hierarchical clustering, beats single
linkage in terms of reward by a factor of at least Ω(n1/3). This completes the proof.

17

B. Moseley and J. Wang

Tree T Tree T ′

v1 v2 v3 v4 v1 v2 v3 v4

Figure 7: Hierarchical clusterings from the proof of Theorem 11, for n = 4. Single-linkage
produces the left clustering, while the right clustering achieves a better objective
value.

6.3 Single Linkage and the Cost Objective

In this subsection, it is shown that the algorithm single linkage does not produce a good
approximation to Dasgupta’s cost objective.

Theorem 11 There exists a family of graphs Gn with nonnegative edge weights w : E → R≥0

such that if the hierarchical clustering T ∗ is a minimizer of costG(·) and T is the hierarchical
clustering returned by single linkage, costG(T) ≥ Ω(n

logn) · costG(T ∗).

Proof The proof uses the line graph as the base counterexample graph family; see Figure 1
for an example. For the actual counterexample graph, several weights in the line graph are
increased for tie-breaking purposes. Let ε > 0 be a constant that will be set later. Choose
Gn to be Pn. The weights of Gn are as follows. The edge (vi, vi+1) has weight (1 + iε). In
other words, the most valuable edge is (vn−1, vn), followed by (vn−2, vn−1), and so on all the
way down to (v1, v2).

Consider what the single linkage algorithm does on Gn. Recall that single linkage only
considers the most valuable edge between two clusters. By construction, it must take the
cluster {vn} and merge in vn−1, then vn−2, and so on, until it merges in v1. This clustering
is depicted in Figure 7. Given that this is how the algorithm behaves, the question is how
much cost does this hierarchical clustering T accumulate. This is bounded as follows.

costG(T) =

n−1∑
i=1

(1 + iε)|leaves(T [i ∨ i+ 1])|

=
n−1∑
i=1

(1 + iε)(n− i+ 1)

=
n−1∑
i=1

(n− i+ 1)︸ ︷︷ ︸
Base Weight Component

+ ε

n−1∑
i=1

i(n− i+ 1)︸ ︷︷ ︸
Tie-Breaking Weight Component

≥ Ω(n2)

18

Approximation Bounds for Hierarchical Clustering

To finish the proof, it suffices to show that some hierarchical clustering obtains at most
O(n log n) cost on this graph. This was essentially shown in Dasgupta’s original paper, but
this is presented here as well for the sake of completeness Dasgupta (2016).

Consider the following hierarchical clustering T ′. The construction begins with each node
in its own cluster: C1 = {v1}, C2 = {v2}, . . . , Cn = {vn}. Then perform a merge step by
pairing up each odd numbered cluster with the next largest numbered cluster. This yields
new clusters C1 = {v1, v2}, C2 = {v3, v4}, The edges between the resulting clusters from
a line graph. The process is repeated until there is a single cluster left. This clustering is
also depicted in Figure 7. The total cost of this clustering T ′ is bounded as follows.

costG(T ′) =
n−1∑
i=1

(1 + iε)|leaves(T ′[vi ∨ vi+1])|

=

n−1∑
i=1

|leaves(T ′[vi ∨ vi+1])|︸ ︷︷ ︸
Base Weight Component

+ ε

n−1∑
i=1

i|leaves(T ′[vi ∨ vi+1])|︸ ︷︷ ︸
Tie-Breaking Weight Component

≤
n−1∑
i=1

|leaves(T ′[vi ∨ vi+1])|+ ε ·O(n3)

Choose ε = 1/n2 so that the second term is O(n). To bound the first term, notice that every
time a merge step is performed, at most n cost is incurred; there is a single edge between
every pair of merged clusters and all the clusters being merged are disjoint. There are at
most O(log n) merge steps performed, since each step reduces the number of clusters by
a factor of 2. Hence costG(T ′) ≤ O(n log n), as desired. Together this shows that some
hierarchical clustering, and hence also the optimal hierarchical clustering, beats single
linkage in terms of cost by a factor of at least Ω(n/ log n). This completes the proof.

6.4 Average Linkage and the Reward Objective

In this subsection, it is shown that the average linkage algorithm is at best a constant-
approximation to the reward objective.

Theorem 12 Let δ > 0 be any constant. There exists a family of graphs Gn with nonnegative
edge weights w : E → R≥0 such that if the hierarchical clustering T ∗ is a maximizer of
rewardG(·) and T is the hierarchical clustering returned by average linkage, rewardG(T) ≤(

1
2 + δ

)
· rewardG(T ∗), as long as n is sufficiently large.

Proof Let k be a constant integer (that depends only on the constant δ) that we will select
later. For convenience, assume that the number of nodes n is a multiple of k. If n is not,
then the graph can be padded with unconnected vertices.

The base counterexample graph family is the clique star graph; see Figure 5 for an
example. For the actual counterexample graph, several weights will be increased for tie-
breaking purposes. Let ε > 0 be a constant that will be fixed later. Choose Gn to be the

19

B. Moseley and J. Wang

tree T (clique first)

tree T ′ (stars first)

v1 · · · vk v1,1 · · · vk,`

v1 v1,1 · · · v1,` · · ·

· · ·

vk vk,1 · · · vk,`

Figure 8: Hierarchical clusterings from the proofs of Theorem 12 and Theorem 13. Average-
linkage produces the top clustering, while the bottom clustering achieves a better
objective value. Solid edges denote direct children, while dotted edges denote
indirect children.

20

Approximation Bounds for Hierarchical Clustering

(k, (n/k) − 1)-clique star graph. The weights w are as follows. All edges are unit weight,
except the clique edges which have weight (1 + ε) instead.

Consider what average linkage does on Gn. Average linkage begins by merging together
the clique of weight (1 + ε). After this, the remaining graph is a large star, so average linkage
finishes by merging in one node at a time into the center. This clustering is depicted in
Figure 8. How much reward does this hierarchical clustering T accumulate?

rewardG(T) =

k−1∑
i=1

k∑
j=i+1

|leaves-outside(T [vi ∨ vj])|

+

k∑
i=1

∑̀
j=1

|leaves-outside(T [vi ∨ vi,j])|︸ ︷︷ ︸
Base Weight Component

+ ε

k−1∑
i=1

k∑
j=i+1

|leaves-outside(T [vi ∨ vj])|︸ ︷︷ ︸
Tie-Breaking Weight Component

≤
k−1∑
i=1

k∑
j=i+1

(n− j)︸ ︷︷ ︸
Base Weight Component, Clique Edges

+
n∑

i=k+1

(n− i)︸ ︷︷ ︸
Base Weight Component, Star Edges

+ ε ·
k−1∑
i=1

k∑
j=i+1

(n− j)︸ ︷︷ ︸
Tie-Breaking Weight Component

≤ O(k2n) +

(
1

2
n2

)
+ ε ·O(k2n)

We now choose ε = 1 so that the RHS expression is 1
2n

2 + O(k2n). To finish the proof, it
will suffice to show that some hierarchical clustering obtains nearly n2 reward on this graph.

Consider the hierarchical clustering which first handles the small stars (by merging in
one node at a time into the center), and then merges together the remaining clique. This

21

B. Moseley and J. Wang

clustering is also depicted in Figure 8. How much reward does T ′ accumulate?

rewardG(T ′) =

k−1∑
i=1

k∑
j=i+1

|leaves-outside(T ′[vi ∨ vj])|

+
k∑
i=1

∑̀
j=1

|leaves-outside(T ′[vi ∨ vi,j])|︸ ︷︷ ︸
Base Weight Component

+ ε

k−1∑
i=1

k∑
j=i+1

|leaves-outside(T ′[vi ∨ vj])|︸ ︷︷ ︸
Tie-Breaking Weight Component

≥ k
∑̀
j=1

(n− j − 1)︸ ︷︷ ︸
Base Weight Component, Star Edges

≥ k`(n− 1− n

2k
)

= (n− k)(n− 1− n

2k
)

= n2 − kn− n+ k − n2

2k
+ n/2

≥ (1− 1

2k
)n2 −O(kn)

The remainder of the proof is relatively straightforward. We have an upper bound on
rewardG(T) and a lower bound on rewardG(T ′). We have yet to pick the constant k and we
have yet to define what it means for n to be sufficiently large. We want to use our remaining
choices to guarantee a (1

2 + δ) gap between rewardG(T) and rewardG(T ′).
Our first action is to let n be sufficiently large so that O(k2n) and O(kn) are both at

most 1
4δn

2. Our bounds simplify to the following:

rewardG(T) ≤
(

1

2
+

1

4
δ

)
n2

rewardG(T ′) ≥
(

1− 1

2k
− 1

4
δ

)
n2

We know the final gap we want, so our choice of k is now forced. We would like:(
1

2
+

1

4
δ

)
n2 ≤

(
1

2
+ δ

)(
1− 1

2k
− 1

4
δ

)
n2

1
2 + 1

4δ
1
2 + δ

≤
(

1− 1

2k
− 1

4
δ

)
1

2k
≤

3
4δ

1
2 + δ

− 1

4
δ

Note that for δ ≥ 1
2 , the theorem statement is trivially true. However, if δ < 1

2 , then
3
4
δ

1
2

+δ
> 3

4δ and so the RHS is positive. Hence it is possible to pick an integer k large enough

22

Approximation Bounds for Hierarchical Clustering

to create the final gap we want. In particular, choosing k to be dδ−1e suffices. Thus, some
hierarchical clustering, and hence also the optimal clustering, beats average linkage in terms
of cost by a factor of at least (1

2 + δ). This completes the proof.

6.5 Average Linkage and the Cost Objective

This subsection shows that the average linkage algorithm does not produce a good approxi-
mation to Dasgupta’s cost objective.

Theorem 13 There exists a family of graphs Gn with nonnegative edge weights w : E → R≥0

such that if the hierarchical clustering T ∗ is a minimizer of costG(·) and T is the hierarchical
clustering returned by average linkage, costG(T) ≥ Ω(n1/3) · costG(T ∗).

Proof For convenience, assume that n is a perfect cube. If n is not, then the graph can be
padded with unconnected vertices.

The base counterexample graph family is the clique star graph; see Figure 5 for an
example. For the actual counterexample graph, several weights will be increased for tie-
breaking purposes. Let ε > 0 be a constant that will be fixed later. Choose Gn to be the
(n1/3, n2/3 − 1)-clique star graph. The weights w are as follows. All edges are unit weight,
except the clique edges which have weight (1 + ε) instead.

Consider what average linkage does on Gn. Average linkage begins by merging together
the clique of weight (1 + ε). After this, the remaining graph is a large star, so average linkage
finishes by merging in one node at a time into the center. This clustering is depicted in
Figure 8. How much cost does this hierarchical clustering T accumulate?

costG(T) =
k−1∑
i=1

k∑
j=i+1

|leaves(T [vi ∨ vj])|+
k∑
i=1

∑̀
j=1

|leaves(T [vi ∨ vi,j])|︸ ︷︷ ︸
Base Weight Component

+ ε

k−1∑
i=1

k∑
j=i+1

|leaves(T [vi ∨ vj])|︸ ︷︷ ︸
Tie-Breaking Weight Component

≥
k−1∑
i=1

i · (i+ 1)︸ ︷︷ ︸
Base Weight Component, Clique Edges

+
n∑

i=k+1

i︸ ︷︷ ︸
Base Weight Component, Star Edges

≥ Ω(k3) + (n− k)
n+ k + 1

2

Since k = n1/3, this entire expression is Ω(n2). To finish the proof, it suffices to show that
some hierarchical clustering obtains at most O(n5/3) cost on this graph.

Consider the hierarchical clustering which first handles the small stars (by merging in
one node at a time into the center), and then merges together the remaining clique. This

23

B. Moseley and J. Wang

clustering is also depicted in Figure 8. How much cost does T ′ accumulate?

costG(T ′) =
k−1∑
i=1

k∑
j=i+1

|leaves(T ′[vi ∨ vj])|+
k∑
i=1

∑̀
j=1

|leaves(T ′[vi ∨ vi,j])|︸ ︷︷ ︸
Base Weight Component

+ ε
k−1∑
i=1

k∑
j=i+1

|leaves(T ′[vi ∨ vj])|︸ ︷︷ ︸
Tie-Breaking Weight Component

≤
k−1∑
i=1

i · (i+ 1) · (`+ 1)︸ ︷︷ ︸
Base Weight Component, Clique Edges

+ k
∑̀
j=1

(j + 1)︸ ︷︷ ︸
Base Weight Component, Star Edges

+ε ·O(k3`)

≤ O(k3`) +O(k`2) + ε ·O(k3`)

Since k = n1/3 and ` = n2/3 − 1, and we can choose ε = 1, this entire expression is O(n5/3).
Thus, some hierarchical clustering, and hence also the optimal clustering, beats average
linkage in terms of cost by a factor of at least Ω(n1/3). This completes the proof.

6.6 Complete Linkage and the Reward Objective

In this subsection, it is shown that the complete linkage algorithm does not produce a good
approximation to the reward objective.

Theorem 14 There exists a family of graphs Gn with nonnegative edge weights w : E → R≥0

such that if the hierarchical clustering T ∗ is a maximizer of rewardG(·) and T is the hierarchical
clustering returned by complete linkage, rewardG(T) ≤ 1

Ω(n) · rewardG(T ∗).

Proof For convenience, assume that n is even. If n is not, then the graph can be padded
with unconnected vertices.

The base counterexample graph family is the double star graph; see Figure 3 for an example.
Here n denotes the number of nodes and ` = (n− 2)/2. For the actual counterexample graph,
several weights will be increased for tie-breaking purposes. Let ε > 0 be a constant that
will be fixed later. Choose Gn to be the n/2-double star graph, although our tie-breaking
additions will cause some additional edges to appear. The edge (v1, v`+1) has weight (1 + ε),
while all other edges originally in the base graph have unit weight. Let S = [n] \ {1, `+ 1}.
For all pairs (i, j) ∈ S × S where i < j, add an edge of weight ε between vi and vj (that is,
add a clique of weight ε on S).

Consider what complete linkage does on Gn. Complete linkage begins by merging the edge
of weight (1 + ε), creating clusters {v1, v`+1}, {v2}, . . . , {vn}. At this point, the {v1, v`+1}
cluster has zero complete linkage with every other cluster, but the complete linkage between
any other pair of clusters is ε. Hence complete linkage will merge all other clusters (in some

24

Approximation Bounds for Hierarchical Clustering

tree T (breaks stars)

tree T ′ (stars first)

v1 v`+1 v2 · · · v2·`

v1 v2 · · · v` v`+1 v`+2 · · · v2·`

Figure 9: Hierarchical clusterings from the proofs of Theorem 14 and Theorem 16. Complete-
linkage and Bisecting k-Means produce the top clustering, while the bottom
clustering achieves a better objective value. Solid edges denote direct children,
while dotted edges denote indirect children.

25

B. Moseley and J. Wang

order) and only then merge in {v1, v`+1}. This clustering is depicted in Figure 9. How much
reward does this hierarchical clustering T accumulate?

rewardG(T) =

|leaves-outside(T [v1 ∨ v`+1])|

+
∑̀
i=2

|leaves-outside(T [v1 ∨ vi])|

+
2∑̀

i=`+2

|leaves-outside(T [v`+1 ∨ vi])|︸ ︷︷ ︸
Base Weight Component

+

ε|leaves-outside(T [v1 ∨ v`+1])|

+ ε
∑

(i,j)∈S×S
i<j

|leaves-outside(T [vi ∨ vj])|

︸ ︷︷ ︸
Tie-Breaking Weight Component

= [1 · (n− 2) + (`− 1) · 0 + (`− 1) · 0] +
[
ε ·O(n3)

]
= O(n) + ε ·O(n3)

Fix ε to be 1/n2, so this entire expression is O(n). To finish the proof, it suffices to show
that some hierarchical clustering obtains at least Ω(n2) reward on this graph.

Consider the following hierarchical clustering T ′. Cluster the stars separately; {v1} is
merged with v2, then v3, and so on, until v` is merged. At the same time, {vk+1} is merged
with v`+2, then vk+3, and so on, until v2` is merged. This clustering is also depicted in
Figure 9. How much reward does T ′ accumulate?

rewardG(T ′) ≥
∑̀
i=2

|leaves-outside(T ′[v1 ∨ vi])|+
2∑̀

i=`+2

|leaves-outside(T ′[v`+1 ∨ vi])|︸ ︷︷ ︸
Base Weight Component, Star Edges

≥ 2 ·
n−2∑
j=`

j

≥ Ω(n2)

We have shown that some hierarchical clustering, and hence also the optimal hierarchical
clustering, beats complete linkage in terms of reward by a factor of at least Ω(n). This
completes the proof.

6.7 Complete Linkage and the Cost Objective

In this subsection, it is shown that the complete linkage algorithm does not produce a good
approximation to Dasgupta’s cost objective.

Theorem 15 There exists a family of graphs Gn with nonnegative edge weights w : E → R≥0

such that if the hierarchical clustering T ∗ is a minimizer of costG(·) and T is the hierarchical
clustering returned by complete linkage, costG(T) ≥ Ω(n

logn) · costG(T ∗).

Proof For convenience, it will be assumed that n is even. If n is odd, then the graph can
be padded with unconnected vertices.

26

Approximation Bounds for Hierarchical Clustering

tree T (S12 and S03 first)

tree T ′ (balanced binary)

v1 v2 · · · v13 v14 v3 v4 · · · v15 v16

v1 v2 v3 v4 · · · v13 v14 v15 v16

Figure 10: Hierarchical clusterings from the proof of Theorem 15, for n = 16. Complete-
linkage produces the top clustering, while the bottom clustering achieves a better
objective value. Solid edges denote direct children, while dotted edges denote
indirect children.

Like with single linkage, the base counterexample graph family is the line graph; see
Figure 1 for an example. For the actual counterexample graph, several weights are increased
for tie-breaking purposes. Let ε > 0 be a constant that will be fixed later. Choose Gn
to be Pn, although the tie-breaking additions will cause some additional edges to appear.
Let S12 = {i ∈ [n] | i ≡ 1 (mod 4) or i ≡ 2 (mod 4)} and S03 = {i ∈ [n] | i ≡ 0
(mod 4) or i ≡ 3 (mod 4)}. For all pairs (i, j) ∈ S12 × S12 where i < j, add ε to the weight
of edge (vi, vj). If such an edge did not exist before, pretend it existed as a zero-weight
edge, which now has ε-weight (that is, we add an clique of weight ε on S12). This process is
repeated for all pairs (i, j) ∈ S03 × S03 where i < j (that is, we also add an clique of weight
ε on S03).

Consider what the complete linkage algorithm does on Gn. Complete link-
age begins by merging all the edges of weight (1 + ε), resulting with the clusters
{v1, v2}, {v3, v4}, . . . , {vn−1, vn}. At this point, there are two types of clusters. A clus-

27

B. Moseley and J. Wang

ter either (i) only includes vi where i is congruent to one or two modulo four, or (ii) only
includes vi where i is congruent to zero or three modulo four. Furthermore, the complete
linkage between two clusters of the former type is ε, the complete linkage between two clusters
of the latter type is ε, and the complete linkage between two clusters of different types is
zero. Hence, complete linkage will merge all clusters of the former type (in some order) and
all clusters of the latter type (in some order). Finally, it will merge these two large clusters
together. This clustering is depicted in Figure 10. The cost this hierarchical clustering T
accumulates is as follows.

costG(T) =

n−1∑
i=1

|leaves(T [vi ∨ vi+1])|︸ ︷︷ ︸
Base Weight Component

+ ε
∑

(i,j)∈S12×S12
i<j

|leaves(T [vi ∨ vj])|+ ε
∑

(i,j)∈S03×S03
i<j

|leaves(T [vi ∨ vj])|

︸ ︷︷ ︸
Tie-Breaking Weight Component

≥ (n/2 · 2 + (n/2− 1) · n)

≥ Ω(n2)

Note that n/2 of the base edges are involved immediately in a merge into a cluster of size
two, while the remainder are involved in the final merge into a cluster of size n. To finish the
proof, it suffices to show that some hierarchical clustering obtains at most O(n log n) cost on
this graph. The proof of this is identical to that in Theorem 11, except that the tie-breaking
term is slightly different. This clustering is also depicted in Figure 10. Choosing ε = 1/n2

still suffices to make the O(n log n) term dominate, since for the current graph added at
most O(n2) edges, each of which involves at most O(n) leaves.

Together this shows that some hierarchical clustering, and hence also the optimal cluster-
ing, beats complete linkage in terms of cost by a factor of at least Ω(n log n). This completes
the proof.

6.8 Bisecting k-Means and the Reward Objective

In this subsection, we consider the divisive algorithm which uses the k-means objective
(with k = 2) when choosing how to split clusters. Normally, the k-means objective con-
cerns the distances between points and their cluster center: min

∑k
i=1

∑
x∈Si
||x − µi||2.

However, it is known that this can be rewritten as a sum over intra-cluster distances:
min

∑k
i=1

1
|Si|
∑

x,y∈Si
||x−y||2 Awasthi et al. (2015). In other words, when splitting a cluster

into two sets A and B, the algorithm minimizes 1
|A|
∑

a,a′∈A ||a− a′||2 + 1
B

∑
b,b′∈B ||b− b′||2.

At first glance, this appears to almost capture split-rewG(A,B); the key difference is that
the summation has been scaled down by a factor of |A||B|. Of course, it also involves
minimization over squared distances instead of maximization over similarity weights. We
show that the divisive algorithm which splits clusters by the natural k-means similarity

28

Approximation Bounds for Hierarchical Clustering

v1 v6

v2 v3 v4 v5 v7 v8 v9 v10

A?

B?

Figure 11: The initial split (A?, B?) of bisecting 2-means from the proof of Theorem 16, for
` = 5.

objective, namely max 1
|A|
∑

a,a′∈Awaa′ + 1
|B|
∑

b,b′∈B wbb′ , is not a good approximation to
the optimal hierarchical clustering.

Theorem 16 There exists a family of graphs Gn with nonnegative edge weights w : E → R≥0

such that if the hierarchical clustering T ∗ is a minimizer of costG(·) and T is the hierarchical
clustering returned by bisecting k-Means, rewardG(T) ≤ 1

Ω(
√
n)
· rewardG(T ∗).

Proof For convenience, we will assume that n is even and a perfect square. If n is not, then
we can always pad the graph with unconnected vertices.

The base counterexample graph family is the double star graph; see Figure 3 for an
example. In the actual counterexample graph, several weights are increased. Choose Gn to
be the (` = n/2)-cycle star graph. The weights w are as follows. All edges are unit weight,
except for the (v1, v`+1) edge (which connects the two stars), which has

√
n weight instead.

Consider what bisecting k-means does on Gn. We want to show that the first step of bisect-
ing k-means results in the clusters A∗ = {v1, v`+1}, B∗ = {v2, v3, . . . , v`, v`+2, v`+3, . . . , v2`}.
This split is depicted in Figure 11.

Recall that the k-means (similarity) objective is max w(A)
|A| + w(B)

|B| . Note that (A∗, B∗)

achieves a (k-means) objective value of
√
n

2 . Can any other choice of clusters (A,B) match
this objective value? We begin by observing that Gn is a tree, so the graphs induced by A
and B must be forests. A forest always has more vertices than edges, so the contribution
of a cluster to the objective value is at most its average edge weight. Hence it cannot be
the case that (v1, v`+1) does not lie completely inside A or B; this would result in objective
value at most two.

Without loss of generality, then, we assume that v1, v`+1 ∈ A. At this point, B cannot
contain edges since all edges have v1 or v`+1 as one of their endpoints. Furthermore, adding
any other vertices to A only decreases its contribution, since any other vertex contributes
one to w(A) and one to |A|, which only serves to drag down the average w(A)

|A| . Hence we
have shown that k-means begins by choosing clusters (A∗, B∗). The upshot of this is that

29

B. Moseley and J. Wang

the initial split into (A∗, B∗) cuts all n− 2 star edges, which greatly reduces the reward of T :

rewardG(T) =

∑̀
i=2

|leaves-outside(T [v1 ∨ vi])|

+
2∑̀

i=`+2

|leaves-outside(T [v`+1 ∨ vi])|︸ ︷︷ ︸
Star Edges

+
√
n|leaves-outside(T [v1 ∨ v`+1])|︸ ︷︷ ︸

Edge Between Stars

= 0 +
√
n(n− 2)

To finish the proof, it suffices to show that some hierarchical clustering obtains at least Ω(n2)
reward on this graph.

Consider the following hierarchical clustering T ′. Cluster the stars separately: {v1} is
merged with v2, then v3, and so on, until we merge in v`. At the same time, {v`+1} is merged
with v`+2, then v`+3, and so on, until we merge in v2`. Finally, merge these two clusters
together. This clustering is also depicted in Figure 9. How much reward does T ′ accumulate?

rewardG(T ′) ≥
∑̀
i=2

|leaves-outside(T ′[v1 ∨ vi])|+
2∑̀

i=`+2

|leaves-outside(T ′[v`+1 ∨ vi])|︸ ︷︷ ︸
Star Edges

≥ 2 ·
∑̀
i=2

(n− i)

≥ Ω(`n)

Since ` = n/2, this is Ω(n2), as desired. This shows that some hierarchical clustering, and
hence also the optimal hierarchical clustering, beats bisecting k-means in terms of reward by
a factor of at least 1

Ω(
√
n)
. This completes the proof.

6.9 Bisecting k-Means and the Cost Objective

This subsection gives a lower bound showing that bisecting k-means does not produce a good
approximation to Dasgupta’s cost objective.

Theorem 17 There exists a family of graphs Gn with nonnegative edge weights w : E → R≥0

such that if the hierarchical clustering T ∗ is a minimizer of costG(·) and T is the hierarchical
clustering returned by bisecting k-Means, costG(T) ≥ Ω(

√
n) · costG(T ∗).

Proof For convenience, we will assume that n is a perfect square. If n is not, then we can
always pad the graph with unconnected vertices.

The base counterexample graph family is the cycle star graph; see Figure 4 for an example.
In the actual counterexample graph, several weights are increased. Choose Gn to be the

30

Approximation Bounds for Hierarchical Clustering

(n1/2, n1/2 − 1)-cycle star graph. The weights w are as follows. All edges are unit weight,
except the clique edges which have weight

√
n instead.

Consider what bisecting k-means does on Gn. The first step of bisecting k-means is the
most important, and the proof requires some analysis to prove this step is an irrevocable
mistake.

Recall that the k-means (similarity) objective is max w(A)
|A| + w(B)

|B| . One choice of initial

clusters is A = U and B =
⋃k
i=1 U

i. This choice has a (k-means similarity) objective score
of
√
n. The optimal choice of initial clusters (A∗, B∗) must hence score at least

√
n. This

implies that either w(A∗)
|A∗| or w(B∗)

|B∗| must be at least
√
n

2 . Without loss of generality, assume

it is w(A∗)
|A∗| . Since the total weight in the graph is at most 2n, this implies that A∗ is small:

|A∗| ≤ 4
√
n. B∗ must be correspondingly large: |B∗| ≥ n−4

√
n. This means that (assuming

n is large enough) w(B∗)
|B∗| is a constant!

We have come to the conclusion that w(A∗)
|A∗| must be contributing at least

√
n − O(1).

Notice that if A∗ contains x <
√
n nodes from U , its contribution can be at most

√
n(x−1)
x

(nodes in V \ U only make matters worse, since they contribute one to the numerator and
denominator at best). This implies that A∗ must contain at least a constant fraction of the
nodes in U :

√
n(x− 1)

x
≥
√
n−O(1)

O(1) ≥
√
n

x
x ≥ Ω(

√
n)

However, these nodes in A∗ ∩ U are the centers of several stars. Together, these stars
represent Ω(n) nodes, of which A∗ cannot even cover a constant fraction, since we established
that A∗ is too small. These facts about the initial split are depicted in Figure 12. The upshot
of this is that this initial split into (A∗, B∗) cuts Ω(n) star edges, which will contribute a
large factor to the cost of T :

costG(T) ≥
k∑
i=1

∑̀
j=1

|leaves(T [vi ∨ vi,j])|︸ ︷︷ ︸
Star Edges

≥ Ω(n) · n
= Ω(n2)

To finish the proof, it suffices to show that some hierarchical clustering obtains at most
O(n1.5) cost on this graph.

Consider the following hierarchical clustering T ′. Cluster the stars separately: {vi} is
merged with vi,1, then vi,2, and so on, until we merge in vi,`. This leaves us with a cycle of
k clusters, which we handle as we have handled line graphs; pair up each odd cluster with
the next largest cluster, repeatedly, until we are left with a single cluster. This clustering is

31

B. Moseley and J. Wang

v1
v2

v3
v4

v5

v1,1

v1,2
v1,3v1,4

v2,1

v2,2

v2,3

v2,4

v3,1

v3,2

v3,3

v3,4
v4,1 v4,2

v4,3

v4,4

v5,1

v5,2

v5,3

v5,4

A?

Figure 12: A depiction of the initial split (A?, B?) of bisecting 2-means from the proof of
Theorem 17, for k = 5, ` = 4. Our analysis shows that A? must contain a
constant fraction of the central cycle nodes. Additionally, since it is of O(

√
n)

size it cannot contain many star nodes.

tree T ′ (stars first)

v1 v1,1 · · · v1,` · · ·

· · ·

vk vk,1 · · · vk,`

Figure 13: Hierarchical clustering from the proof of Theorem 17. The depicted clustering
achieves a better objective value than bisecting 2-means (which is illustrated in
Figure 12). Solid edges denote direct children, while dotted edges denote indirect
children.

32

Approximation Bounds for Hierarchical Clustering

depicted in Figure 13.How much cost does T ′ accumulate?

costG(T ′) =
√
n|leaves(T ′[vk ∨ v1])|+

√
n
k−1∑
i=1

|leaves(T ′[vi ∨ vi+1])|︸ ︷︷ ︸
Cycle Edges

+

k∑
i=1

∑̀
j=1

|leaves(T ′[vi ∨ vi,j])|︸ ︷︷ ︸
Star Edges

≤ (n log n) + (k`2)

Since k =
√
n and ` =

√
n − 1, this is at most O(n1.5), as desired. This shows that

some hierarchical clustering, and hence also the optimal hierarchical clustering, beats bi-
secting k-means in terms of reward by a factor of at least Ω(

√
n). This completes the proof.

7. Conclusion

One motive for developing an analytic framework is that it may help clarify and explain
our observations from practice. In this case, we have shown that average linkage is a
1
3 -approximation to a particular objective function (Theorem 1), and the analysis that
does so helps to explain what average linkage is optimizing. We have also shown that
average-linkage can be no better than a 1

2 -approximation (Theorem 12)1. One open problem
is to devise new algorithms and determine the best approximation ratio possible for the
problem. The current state of the art is a (≈ 0.336)-approximation based on semi-definite
programming (Charikar et al., 2019a). Can this be improved further? Another open problem
is to find a characterization of graphs that excludes some of the worst-case ones used to prove
negative results. Is there a formal way to restrict inputs that allows for better objective
guarantees?

We mention that similar results to ours for average-linkage have been shown by Cohen-
Addad et al. (2017). In this work, it is shown that average-linkage is a 1

2 -approximation for a
related objective function when there are dissimilarity scores between the points.

Another open direction is the possibility of other objective functions. What are single
linkage, complete linkage, and bisecting k-means optimizing for? One quirk shared by both
Dasgupta’s cost objective and our reward objective is that the optimal tree is always binary.
This is not appropriate for all applications; for example, in the classical application of
biological taxonomy, groups typically contain much more than two subgroups. Can we devise
an objective function which incentivizes non-binary trees?

8. Acknowledgments

Benjamin Moseley was supported in part by a Google Research Award, a Yahoo Research
Award and NSF Grants CCF-1617724, CCF-1733873, CCF-1725661, CCF-1824303, CCF-

1. A follow-up work to ours shows that average-linkage cannot achieve a 1
3
+ ε approximation for any

ε > 0 (Charikar et al., 2019a).

33

B. Moseley and J. Wang

1845146 and CMMI-1938909. This work was partially done while the author was working at
Washington University in St. Louis.

Joshua R. Wang was supported in part by NSF Grant CCF-1524062. This work was
partially done while the author was at Stanford University.

References

Amir Abboud, Vincent Cohen-Addad, and Hussein Houdrougé. Subquadratic high-
dimensional hierarchical clustering. In Advances in Neural Information Processing Systems,
pages 11576–11586, 2019.

Margareta Ackerman and Shai Ben-David. A characterization of linkage-based hierarchical
clustering. Journal of Machine Learning Research, 17:232:1–232:17, 2016.

Margareta Ackerman, Shai Ben-David, Simina Brânzei, and David Loker. Weighted clustering.
In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26,
2012, Toronto, Ontario, Canada., 2012.

Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings
and graph partitioning. J. ACM, 56(2):5:1–5:37, 2009.

Pranjal Awasthi, Afonso S Bandeira, Moses Charikar, Ravishankar Krishnaswamy, Soledad
Villar, and Rachel Ward. Relax, no need to round: Integrality of clustering formulations.
In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science,
pages 191–200. ACM, 2015.

Shai Ben-David and Margareta Ackerman. Measures of clustering quality: A work-
ing set of axioms for clustering. In Advances in Neural Information Processing
Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural
Information Processing Systems, Vancouver, British Columbia, Canada, De-
cember 8-11, 2008, pages 121–128, 2008. URL http://papers.nips.cc/paper/
3491-measures-of-clustering-quality-a-working-set-of-axioms-for-clustering.

Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest
cut and spreading metrics. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19, pages 841–854, 2017.

Moses Charikar, Vaggos Chatziafratis, and Rad Niazadeh. Hierarchical clustering better
than average-linkage. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
2291–2304, 2019a.

Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, and Grigory Yaroslavtsev. Hierarchical
clustering for euclidean data. In The 22nd International Conference on Artificial Intelligence
and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, pages 2721–2730,
2019b.

34

http://papers.nips.cc/paper/3491-measures-of-clustering-quality-a-working-set-of-axioms-for-clustering
http://papers.nips.cc/paper/3491-measures-of-clustering-quality-a-working-set-of-axioms-for-clustering

Approximation Bounds for Hierarchical Clustering

Giovanni Chierchia and Benjamin Perret. Ultrametric fitting by gradient descent. In Advances
in neural information processing systems, pages 3175–3186, 2019.

Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu.
Hierarchical clustering: Objective functions and algorithms. CoRR, abs/1704.02147, 2017.

Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings
of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 118–127, 2016.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised Learning, pages
485–585. Springer New York, New York, NY, 2009.

Katherine A. Heller and Zoubin Ghahramani. Bayesian hierarchical clustering. In Machine
Learning, Proceedings of the Twenty-Second International Conference (ICML 2005), Bonn,
Germany, August 7-11, 2005, pages 297–304, 2005.

Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8):
651 – 666, 2010. ISSN 0167-8655. doi: https://doi.org/10.1016/j.patrec.2009.09.011. URL
http://www.sciencedirect.com/science/article/pii/S0167865509002323.

Akshay Krishnamurthy, Sivaraman Balakrishnan, Min Xu, and Aarti Singh. Efficient active
algorithms for hierarchical clustering. In Proceedings of the 29th International Conference
on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

Silvio Lattanzi, Thomas Lavastida, Kefu Lu, and Benjamin Moseley. A framework for
parallelizing hierarchical clustering methods. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 73–89. Springer, 2019.

Xiaofei Ma and Satya Dhavala. Hierarchical clustering with prior knowledge. arXiv preprint
arXiv:1806.03432, 2018.

Aditya Krishna Menon, Anand Rajagopalan, Baris Sumengen, Gui Citovsky, Qin Cao,
and Sanjiv Kumar. Online hierarchical clustering approximations. arXiv preprint
arXiv:1909.09667, 2019.

Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, and Amr Ahmed. Gradient-
based hierarchical clustering using continuous representations of trees in hyperbolic space.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 714–722, 2019.

Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview.
Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.

Aurko Roy and Sebastian Pokutta. Hierarchical clustering via spreading metrics. In Advances
in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 2316–2324, 2016.

Dingkang Wang and Yusu Wang. An improved cost function for hierarchical cluster trees.
arXiv preprint arXiv:1812.02715, 2018.

35

http://www.sciencedirect.com/science/article/pii/S0167865509002323

B. Moseley and J. Wang

Yuyan Wang and Ben Moseley. An objective for hierarchical clustering in euclidean space
and its connection tobisecting k-means. In Proceedings of the 34th Conference on Artificial
Intelligence (AAAI 2020), 2020.

Reza Zadeh and Shai Ben-David. A uniqueness theorem for clustering. In UAI 2009,
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
Montreal, QC, Canada, June 18-21, 2009, pages 639–646, 2009.

36

	Introduction
	Preliminaries
	Analyzing Agglomerative Algorithms
	Analyzing Divisive Algorithms

	A Theoretical Guarantee for Average Linkage Agglomerative Clustering
	Divisive Local-Search
	Random Hierarchical Clustering
	Negative Results
	Base Counterexample Graphs
	Single Linkage and the Reward Objective
	Single Linkage and the Cost Objective
	Average Linkage and the Reward Objective
	Average Linkage and the Cost Objective
	Complete Linkage and the Reward Objective
	Complete Linkage and the Cost Objective
	Bisecting k-Means and the Reward Objective
	Bisecting k-Means and the Cost Objective

	Conclusion
	Acknowledgments

