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Abstract

We present a theoretical analysis of the training process for a single-layer GAN
fed by high-dimensional input data. The training dynamics of the proposed model
at both microscopic and macroscopic scales can be exactly analyzed in the high-
dimensional limit. In particular, we prove that the macroscopic quantities measuring
the quality of the training process converge to a deterministic process character-
ized by an ordinary differential equation (ODE), whereas the microscopic states
containing all the detailed weights remain stochastic, whose dynamics can be
described by a stochastic differential equation (SDE). This analysis provides a new
perspective different from recent analyses in the limit of small learning rate, where
the microscopic state is always considered deterministic, and the contribution of
noise is ignored. From our analysis, we show that the level of the background
noise is essential to the convergence of the training process: setting the noise level
too strong leads to failure of feature recovery, whereas setting the noise too weak
causes oscillation. Although this work focuses on a simple copy model of GAN,
we believe the analysis methods and insights developed here would prove useful
in the theoretical understanding of other variants of GANs with more advanced
training algorithms.

1 Introduction

A generative adversarial network (GAN) [1] seeks to learn a high-dimensional probability distribution
from samples. While there have been numerous advances on the application front [2–6], considerably
less is known about the underlying theory and conditions that can explain or guarantee the successful
trainings of GANs.

Recently, it has been a very active area of research to study either the equilibrium properties [7–9]
or the training dynamics [10, 11]. Specifically, there is a line of works studying the dynamics of
the gradient-based training algorithms e.g., [11–16]. The basic idea is the following. The evolution
of the learnable parameters in the training dynamics can be considered as a discrete-time process.
With a proper time scaling, this discrete-time process converges to a deterministic continuous-time
process as the learning rates tend to 0, which is characterized by an ordinary differential equation
(ODE). By studying local stability of the ODE’s fixed points, [12] shows that oscillation in the
training algorithm is due to the eigenvalues of the Jacobian of the gradient vector field with zero real
part and large imaginary part. Due to this fact, various stabilization approaches are proposed, for
example adding additional regularizers [13, 14], and using two timescale [15] training. Very recently,
[16] argues that those stabilization techniques may encourage the algorithms to converge non-Nash
stationary points. All above works consider a small-learning-rates limit, where the limiting process
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is always deterministic. The stochasticity and the effect of the noise is essentially ignored, which
may not reflect practical situations. Thus, a new analysis paradigm to study the dynamics with the
consideration of the intrinsic stochasticity is needed.

In this paper, we present a high-dimensional and exactly solvable model of GAN. Its dynamics can be
precisely characterized at both macroscopic and microscopic scales, where the former is deterministic
and the latter remains stochastic. Interestingly, our theoretical analysis shows that injecting additional
noise can stabilize the training. Specifically, our main technical contributions are twofold:

• We present an asymptotically exact analysis of the training process of the proposed GAN
model. Our analysis is carried out on both the macroscopic and the microscopic levels. The
macroscopic state measures the overall performance of the training process, whereas the
microscopic state contains all the detailed weights information. In the high-dimensional
limit (n→∞), we show that the former converges to a deterministic process governed by
an ordinary differential equation (ODE), whereas the latter stays stochastic described by a
stochastic differential equation (SDE).

• We show that depending on the choice of the learning rates and the strength of noise, the
training process can reach either a successful, a failed, an oscillating, or a mode-collapsing
phase. By studying the stabilities of the fixed points of the limiting ODEs, we precisely
characterize when each phase takes place. The analysis reveals a condition on the learning
rates and the noise strength for successful training. We show that the level of the background
noise is essential to the convergence of the training process: setting the noise level too strong
(small signal-to-noise ratio) leads to failure of feature recovery, whereas setting the noise
too weak (large signal-to-noise ratio) causes oscillation.

Our work builds upon a general analysis framework [17] for studying the scaling limits of high-
dimensional exchangeable stochastic processes with applications to nonlinear regression problems.
Similar techniques have also been used in the literature to study Monte Carlo methods [18], online
perceptron learning [19, 20], online sparse PCA [21], subspace estimation [22], online ICA [23] and
more recently, the supervised learning of two-layer neural networks [24], but to our best knowledge,
this technique has not yet been used in analyzing GANs.

The rest of the paper is organized as follows. We present the proposed GAN model and the associated
training algorithm in Section 2. Our main results are presented in Section 3, where we show that the
macroscopic and microscopic dynamics of the training process converge to their respective limiting
processes that are characterized by an ODE and SDE, respectively. In Section S-I, we analyze the
stationary solutions of the limiting ODEs and precisely characterizes the long-term behaviors of the
training process. We conclude in Section 5.

2 Formulations

In this section, we introduce the proposed GAN model and specify the associated training algorithm.

Model for the real data. In order to establish the theoretical analysis, we first impose a model for
the probability distribution from which we draw our real data samples. We assume that the real data
yk ∈ Rn, k = 0, 1, . . . are drawn according to the following generative model:

yk = G(ck,ak;U , ηT)
def
= Uck +

√
ηTak, (1)

where U ∈ Rn×d is a deterministic unknown feature matrix with d features; ck ∈ Rd is a random
vector drawn from an unknown distribution Pc; ak is an n-dimensional random vector acting as the
background noise; and ηT is a parameter to control the strength of noise. Without loss of generality 1,
we assume U>U = Id, where Id is the d× d identity matrix.

This generative model, referred to as the spiked covariance model [25] in the literature, is commonly
used in the theoretical study of principal component analysis (PCA). We note that this model is not
a trivial task for PCA even when d = 1 if the variance of the noise ak is a non-zero constant. As

1If U is not orthogonal, we can rewrite Uc in (1) as (UR)(R−1c), where R is a matrix that orthogonalizes
and normalizes the columns of U . We can then study an equivalent system where the new feature vector is
R−1c.
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proved in [25], the best estimator can not perfectly recover the signal U given an O(n) number of
samples yk. Thus, it is of sufficient interest to investigate whether a GAN can retrieve informative
results for the principal components in the same scaling limit.

The GAN model The GAN we are going to analyze is defined as follows. We assume that the
generator G has the same linear structure as the real data model (1) given above:

ỹk = G(c̃k, ãk;V , ηG) (2)

but the parameters are different. Here, ỹk denotes a fake sample produced by the generator; ãk is an
n-dimensional random noise vector; the random variable c̃k is drawn from a fixed distribution Pc̃;
ηG is the noise strength; and the matrix V ∈ Rn×d represents the parameters of the generator. (In an
ideal case in which the generator learns the underlying true probability distribution perfectly, we have
V = U .) Throughout the paper, we follow the notational convention that all the symbols that are
decorated with a tilde (e.g., ỹk, c̃k, ãk) denote quantities associated with the generator.

We define the discriminator D of our GAN model as

D(y;w)
def
= D̂(y>w).

Here, y is an input vector, which can be either the real data yk from (1) or the fake one ỹk from (2);
D̂ : R 7→ R can be any function; and the vectorw ∈ Rn represents the parameters associated with
the discriminator. Later, we will show that the generator can learn multiple features even though
the discriminator only has one feature vectorw. Discriminators with multiple features can also be
analyzed in a similar way, but in this paper we consider the single-feature discriminator for simplicity.

The training algorithm. The proposed GAN model has two set of parameters V and w to be
learned from the data. The training process is formulated as the following MinMax problem

min
V

max
w

Ey∼P(y;U)Eỹ∼P̃(ỹ,V ) L(y, ỹ;w), (3)

where the two probability distributions P(y;U) and P̃(ỹ;V ) represent the distributions of the real
data y and the fake data ỹ as specified by (1) and (2) respectively, and

L(y, ỹ;w)
def
=F (D̂(y>w))− F̃ (D̂(ỹ>w))− λ

2H(w>w) + λ
2 tr
(
H(V >V )

)
(4)

with F (·) and F̃ (·) being two functions that quantify the performance of the discriminator and
λ > 0 being a constant. The function H(·) acts as a regularization term introduced to control the
magnitude of the parameters w and V . It can be an arbitrary real-valued function, which is applied
element-wisely if the input is a matrix.

We consider a standard training algorithm that uses the vanilla stochastic gradient descent/ascent
(SGDA) to seek a solution of (3). To simplify the theoretical analysis, we consider an online (i.e.,
streaming) setting where each data sample yk is used only once. At step k, the model parameterswk

and V k are updated using a new real sample yk and two fake samples ỹ2k and ỹ2k+1, according to

wk+1 = wk + τ
n∇wk

L(yk, ỹ2k;wk)

V k+1 = V k − τ̃
n∇V k

L
(
yk,G(c̃2k+1, ã2k+1;V k; ηG);wk

)
,

(5)

where c̃2k+1, ã2k+1 are random variables that generates the fake sample ỹ2k+1 according to (2). The
two parameters τ and τ̃ in the above expressions control the learning rates of the discriminator and
the generator, respectively. In (5), we only consider a single-step update for wk. This is a special
case of Algorithm 1 in [1] with the batch-size m set to 1. We note that the analysis presented in this
paper can be naturally extended to the mini-batch case where m is a finite number.

Example 1. We define F (D̂(x)) = F̃ (D̂(x)) = x2/2, and the regularizer function H(A) =
log cosh(A − I), where I is the identity matrix with the same dimension of A, and the function
log cosh(·) transforms the input matrix element-wisely. We use this specific regularizer to control the
magnitude of the model parameters V and w. In practice, any convex function with its minimum
reached at zero would be fine. Our choice log cosh(A− I) here is is just a convenient special case
since its derivative H ′(x) = tanh(x) is smooth and bounded. Furthermore, we set the regularization
parameter λ→∞, the original problem (3) becomes a constrained MinMax problem

min
diag(V >V )=Id

max
‖w‖=1

Ey∼PEỹ∼P̃

[
(y>w)2 − (ỹ>w)2

]
,
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in which the diagonal operation diag(A) returns a matrix where the diagonal entries are the same
as A and the off-diagonal entries are all zero. The condition diag(V >V ) = Id ensures that each
column vector of V is normalized.

3 Dynamics of the GAN

Definition 1. Let Xk
def
= [U ,V k,wk] ∈ Rn×(2d+1). We call Xk the microscopic state of the

training process at iteration step k.

The microscopic stateXk contains all the information about the training process. In fact, the sequence
{Xk}k=0,1,2,... forms a Markov chain on Rn×(2d+1). This can be easily verified from the update
rule ofXk as defined in (5), in which the real data yk and fake data ỹk are drawn according to (1)
and (2) respectively. The Markov chain is driven by the initial stateX0 and the sequence of random
variables {(ck,ak, c̃2k, ã2k, c̃2k+1, ã2k+1)}k=0,1,2,....

Definition 2. Let P k
def
= U>V k, qk

def
= U>wk, rk

def
= V >k wk, Sk

def
= V >k V k, and zk

def
= w>k wk.

We call the tuple {P k, qk, rk,Sk, zk} the macroscopic state of the Markov chainXk at step k.

Those macroscopic quantities measure the cosine similarities among the feature vectors of the true
model U , the generator V k and the discriminator wk. For example, the cosine of the angle between
the ith true feature (i.e., the ith column of U ) and the jth feature estimated in the generator (i.e., the
jth column of V k) is [P k]i,j/

√
[Sk]j,j , where [P k]i,j is the inner product between the two feature

vectors and
√

[Sk]j,j is the norm of the jth column of V k. (The columns of U are unit vectors and
need not be normalized here.) For simplicity, we introduce a compact notation for the macroscopic
state:

Mk
def
= X>kXk =



I P k qk
P>k Sk rk
q>k r>k zk


 . (6)

In what follows, we investigate the dynamics of the training algorithm (5) at both the macroscopic
and the microscopic levels. At the macroscopic level, by examining the cosines of the angles, we
study how closely the model parameters V k, wk associated with the generator and discriminator
can align with the ground truth feature vectors, i.e., the columns of U . At the microscopic level, we
study how the elements in the matrix V k and the vectorwk evolve as a stochastic process. As our
analysis will reveal, the mechanisms behind the two levels are different: the macroscopic dynamics is
asymptotically deterministic whereas the microscopic dynamics stays stochastic even as n→∞.

3.1 Macroscopic dynamics

We first study the asymptotic dynamics of the macroscopic state Mk. Our theoretical analysis is
carried out under the following assumptions.

(A.1) The sequences of ck ∼ Pc and c̃k ∼ Pc̃ for k = 0, 1, . . . are i.i.d. random variables with
bounded moments of all orders, and {ck} is independent of {c̃k}.

(A.2) The sequences {ak} and {ãk} for k = 0, 1, . . . are both independent Gaussian vectors with
zero mean and the covariance matrix In. Moreover, {ak}, {ãk} are independent of {ck}
and {c̃k}.

(A.3) The first-order derivative of H(·) and the derivatives up to fourth order of the functions
F (D̂(·)) and F̃ (D̂(·)) exist and they are also uniformly bounded.

(A.4) Let [U ,V 0,w0] be the initial microscopic state. For i = 1, 2, . . . , n, we have
E [
∑d
`=1([U ]4i,` + [V 0]4i,` + [w0]4i ]) ≤ C/n2, where C is a constant not depending on

n.
(A.5) The initial macroscopic state M0 satisfies E ‖M0 −M∗

0‖ ≤ C/
√
n, where M∗

0 is a
deterministic matrix and C is a constant not depending on n.

We provide a few remarks on the above assumptions. In Assumption (A.1), Pc and Pc̃ can be
different. For example, c is Gaussian, and c̃ is uniform on [−1, 1]d. The assumption (A.2) can
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be relaxed to non-Gaussian cases as long as all moments of ak and ãk are bounded, but we use
Gaussian assumption here to simplify the proof. The assumption (A.4) requires that the elements
in the parameter matrix of real data U and initial microscopic state X0 are O(1/

√
n) numbers.

Intuitively, this assumption ensures that U andX0 are generic matrices with O(1) Frobenius norms
(i.e., not the matrices that most elements are zeros and only few elements are large numbers). The
assumption (A.5) ensures that the initial macroscopic states converges to a deterministic value as the
system size n goes to infinity. The following theorem proves that if the initial state is convergent, then
the whole training process converges to a deterministic process as n→∞, which is characterized by
an ODE.
Theorem 1. Fix T > 0. It holds under Assumptions (A.1)–(A.5) that

max
0≤k≤nT

E
∥∥Mk −M

(
k
n

)∥∥ ≤ C(T )√
n
, (7)

where C(T ) is a constant that depends on T but not on n, and M(t) =



I P t qt
P>t St rt
q>t r>t zt


 ∈

R(2d+1)×(2d+1) is a deterministic function. Moreover,M(t) is the unique solution of the following
ODE:

d
dtP t = τ̃

(
qtg̃
>
t + P tLt

)

d
dtqt = τ

(
gt − P tg̃t + qtht

)

d
dtrt = τ

(
P T
t gt − Stg̃t + rtht

)
+ τ̃
(
ztg̃t +Ltrt

)

d
dtSt = τ̃

(
rtg̃
>
t + g̃tr

>
t + StLt +LtSt

)

d
dtzt = 2τ(q>t gt − r>t g̃t + ztht) + τ2bt

(8)

with the initial conditionM(0) = M∗
0, where

gt =
〈
cf(c>qt + e

√
ztηT)

〉
c,e
, g̃t =

〈
c̃f̃(c̃>rt + e

√
ztηG)

〉
c̃,e
, Lt = −λdiag(H ′(St))

ht =
〈
f ′(c>qt + e

√
ztηT)

〉
c,e
−
〈
f̃ ′(c̃>rt + e

√
ztηG)

〉
c̃,e
− λH ′(zt),

bt = ηT
〈
f2(c>qt + e

√
ztηT)

〉
c,e

+ ηG
〈
f̃2(c̃>rt + e

√
ztηG)

〉
c̃,e
.

(9)

The two functions f , f̃ stand for f(x) = d
dxF (D̂(x)) and f̃(x) = d

dx F̃ (D̂(x)), and f ′, f̃ ′ and H ′

are derivatives of f , f̃ and H respectively. The two constants ηT and ηG are the strength of the
noise in the true data model and the generator, respectively. The brackets 〈·〉c,e and 〈·〉c̃,e denote the
averages over the random variables c ∼ Pc, c̃ ∼ Pc̃, and e ∼ N (0, 1), where Pc and Pc̃ are the
distributions involved in defining the generative model (1) and the generator (2).

This theorem implies that for each k = btnc for some t ∈ [0, T ], the macroscopic stateMk converges
to a deterministic numberM(t), and the convergence rate is O(1/

√
n). The limiting ODE (8) for

the macroscopic states involves O(d2) variables, where d is the number of internal features often
assumed to be a finite number that is much less than n. This ODE is essentially different from the
ODE derived in the small-learning-rate limit [11–16], in which the number of variables is O(n).

The complete proof can be found in the Supplementary Materials. We briefly sketch the proof here.
First, we note thatMk is a discrete-time stochastic process driven by the Markov chainXk. Then,
we apply the martingale decomposition forMk and get

Mk+1 −Mk = 1
nφ(Mk) + (Mk+1 − EkMk+1) + [EkMk+1 −Mk − 1

nφ(Mk)],

where the matrix-valued function φ(M) represents the functions on the right hand sides of the ODE
(8), and Ek denotes the conditional expectation given the state of the Markov chain Xk. Finally,
we show the martingale

∑k
k′=0(Mk′+1 − E k′Mk′) and the higher-order term EkMk+1 −Mk −

1
nφ(Mk) have no contribution when n goes to infinity.

Due to the limitation of our current proof, the constant C(T ) in (7) grows exponentially as T
increases. This is not a problem for any finite T , but may cause some problem to study the long
time behavior when T → ∞. However, if we impose a sufficient large regularizer parameter λ to
limit the norms of the microscopic weights V k and wk, then the macroscopic stateMk is bounded
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Figure 1: Macroscopic dynamics of the GAN with d = 2 features: [P k]i,j is the cosine of the angle
between i’th column vector of the real feature matrix Uk and j’th column vector of the generator’s
weight matrix V k. Similarly, [qk]i is the cosine of angle between i’th column vector of Uk and
the discriminator’s weight vector wk. Colored dots are results from experiments, and the curves
tracing these dots are our theoretical prediction by the ODE (8). From the left to right, the variance
of background noise is ηT = ηG = 2, 1, 4 respectively, and other parameters are the same. The left
figure is an example of successful training, where two features (red and blue dots) are retrieved by the
generator. The center figure shows an oscillating training. It happens when noise are weak. The right
figures shows a mode collapsing state, in which only the first feature are estimated by the generator.

as [Mk]2i,j ≤ [Mk]i,i[Mk]j,j . In our experiments, λ > 1 is sufficient. In this case, the constant
C(T ) is bounded not depending on T . In Example 1, when λ → ∞, [Mk]i,i = 1, and therefore
[Mk]2i,j ≤ 1 and C(T ) ≤ (2d + 1)2, where the number of features d is considered a constant not
growing with n. This justifies the fixed points analysis of the ODE as discussed in Section S-I, which
reflects the long-time training behavior. A better proof strategy to get rid of this dependence of T is
also possible, e.g., [26].

Numerical verification. We verify the theoretical prediction given by the ODE (8) via numerical
simulations under the settings stated in Example 1. The results are shown in Figure 1. The number
of features is d = 2, and ck and c̃k are both Gaussian with zero mean and covariance diag([5, 3]).
The dimension is n = 5, 000, and the learning rates of the generator and discriminator are τ̃ = 0.04
and τ = 0.2 respectively. After testing different noise strength ηT = ηG = 2, 1, 4, we have observed
at least three nontrivial dynamical patterns: success, oscillating or mode collapsing. In all these
experiments, our theoretical predictions match the actual trajectories of the macroscopic states pretty
well.

Let us take a closer look at the successful case as shown in the left figure in Figure 1. The dynamics
can be split into 4 stages. At the first stage, the discriminator learns the first feature of the true
model. At this state, [qt]1 quickly increases. At the second stage, the generator starts to learn the
first feature and the discriminator is deceived. At this stage, [P t]

2
1,1 increases and [qt]

2
1 decreases.

Once the discriminator completely forgets the first feature as [qt]1 ≈ 0, the third state begins. The
discriminator starts to learn the second feature as [qt]

2
2 increases. Then, at the last stage, the generator

learns the second feature and the discriminator is fooled again. In this region, [P t]
2
2,2 increases

and [qt]
2
2 decreases down to 0. Eventually, the generators learns both features and the discriminator

is completely fooled. It ends up at a stationary state that qt = 0 and P t is nearly an identity
matrix. Interestingly, this experiment shows that the generator learn features sequentially given a
single-feature discriminator. This may be a reason why in practice, the discriminator’s structure can
be much simpler than the generator’s.

3.2 Microscopic dynamics

In this section, we study how the elements inXk = [U ,V k,wk] evolve during the training process.
Instead of studying the trajectory of Xk, we study the evolution of the empirical measure of the
microscopic states, which is defined as

µk(û,v̂, ŵ)
def
= 1

n

∑n
i=1δ

([
û>, v̂>, ŵ

]
−√n

[
[U ]i,:, [V k]i,:, [w]i

])

where δ(·) is a Dirac measure on R2d+1 and [U ]i,:, [V k]i,: are ith row of U and V k respectively.
The scaling factor

√
n in the Dirac measures is introduced because [U ]i,`, [V k]i,` and [wk,]i are

O(1/
√
n) quantities.
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We next embed the discrete-time measure-valued stochastic process µk into a continuous-time process
by defining µ(n)

t
def
= µk(û, v̂, ŵ) with k = bntc .Following the general technical approach presented

in [17], we can show that under the same assumptions as Theorem 1, given T > 0, the sequence of
measure-valued process {{µ(n)

t }t∈[0,T ]}n converges weakly to a deterministic process {µt}t∈[0,T ].
In addition, µt is the measure of the solution to the stochastic differential equation

dût = 0

dv̂t = τ̃
(
ŵtg̃t +Ltv̂t

)
dt

dŵt = τ
(
û>t gt + v̂>t g̃t + ŵtht

)
dt+ τ

√
bt dBt

(10)

where (û0, v̂0, ŵ0) ∼ µ0; Bt is the standard Brownian motion. The functions gt, g̃t, Lt, ht and bt
are defined in (9), in which the macroscopic quantities P t, St, qt, zt, rt are computed as follows

P t = 〈µt, ûv̂>〉, St = 〈µt, v̂v̂>〉, qt = 〈µt, ûŵ〉, zt = 〈µt, ŵ2〉, rt = 〈µt, v̂ŵ〉, (11)

where 〈µt, ·〉 denotes the expectation with respect to the measure µt.

The SDE (10) shows the intuitive meaning of the functions defined in (9): gt, g̃t, Lt, ht are drift
coefficients of the SDE and bt is the diffusion coefficient of the SDE. We also note that if one follows
the analysis in the small-learning-rate limit [11–16], one will get an ODE for the microscopic states.
Compared to our SDE formula, the diffusion term τ

√
btdBt is missing in those works, and therefore

the effect of the noise can not be analyzed.

Moreover, the deterministic measure µt is unique solution of the following PDE (given in its weak
form): for any bounded smooth test function ϕ(û, v̂, ŵ),

d
dt

〈
µt, ϕ(û, v̂, ŵ)

〉
=

τ̃
〈
µt,
(
ŵg̃>t + v̂>Lt

)
∇v̂ϕ

〉
+ τ
〈
µt,
(
û>gt − v̂>g̃t + htŵ

)
∂
∂ŵϕ

〉
+ τ2

2 bt
〈
µt,

∂2

∂ŵ2ϕ
〉 (12)

where qt, rt, St, and zt are defined in (11), and the functions gt, g̃t, bt, ht and Lt are defined in (9).
We refer readers to [17] for a general framework for rigorously establishing the above scaling limit.

The connection between the microscopic and macroscopic dynamics can also be derived from
the weak formulation of the PDE. Let ϕ being each element of ûv̂>, ûŵ, v̂ŵ, v̂v̂>, ŵ2, and
substituting those ϕ into the PDE (12), we can derive the ODE (8). In the setting of this paper, the
macroscopic dynamics enjoys a closed ODE: We can predict the macroscopic states without solving
the PDE nor SDE at microscopic scale. However, in a more general setting, e.g. when we add a
regularizer other than the L2 type, the ODE itself may not be closed. In that case, one has to solve
the PDE directly.

Numerical verification. We verify the predictions given by the PDE (12) by setting d = 1 using
a special choice of the (n× 1)-dimensional target feature matrix U whose elements are all 1/

√
n

with n = 10, 000. We also set the initial condition µ0(v̂, ŵ|û = 1) to be a Gaussian distribution.
(When d = 1, the macroscopic quantities Pt, qt, rt, St reduce to scalars, so we remove their boldface
here.) In this case, the PDE (12) admits a particularly simple analytical solution: at any time t, the
solution µt(v̂, ŵ|û = 1) is a Gaussian distribution whose mean and covariance matrix are given by

Eµt(v̂,ŵ|û=1)

[
v̂
ŵ

]
=

[
Pt
qt

]
, Eµt(v̂,ŵ|û=1)

[
v̂
ŵ

] [
v̂ ŵ

]
=

[
St rt
rt zt

]
. Figure 2 overlays the contours

of the probability distribution µt(v̂, ŵ|û = 1) at different times t over the point clouds of the actual
experiment data (

√
n[wk]i,

√
n[V k]i,1). We can see that the theoretical prediction given by (12) has

excellent agreement with simulation results.

4 Local Stability Analysis of the ODE for the Macroscopic States
In this section, we study how the parameters, such as the learning rates τ and τ̃ , noise strength ηG
and ηT affect the training algorithm. We will focus on the concrete model as described in Example 1
so that we can have analytical solutions.

In order to further reduce the degrees of freedom of the ODE (8), we let the regularization parameter
λ → ∞. In this case, the vector wk and all columns vectors of V k are always normalized. Thus
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Figure 2: The evolution of the microscopic states at t = 0, 10, 100, and 150. For each fixed t, the
red points in the corresponding figure represent the values of (v̂, ŵ) = (

√
n[V k]i,1,

√
n[wk]i) for

i = 1, 2, . . . , n, where k = bntc. The blue ellipses illustrate the contours corresponding to one, two,
and three standard deviations of the 2-D Gaussian distribution predicted by the PDE (12).

zk = 1 and [S]i,i = 1. The macroscopic state is then described by P k, qk, rk and off-diagonal terms
of Sk. Correspondingly, the ODE in Theorem 1 reduces to





d
dtP t = τ̃

(
qtr
>
t Λ̃ + P tLt

)

d
dtqt = τ

(
Λqt − P tΛ̃rt + htqt

)
d
dtrt = τ

(
P T
t Λqt − StΛ̃rt + htrt

)
+ τ̃
(
Λ̃ +Lt

)
rt

d
dtSt = τ̃

(
rtr
>
t Λ̃ + Λ̃rtr

>
t + StLt +LtSt

)
(13)

where Λ and Λ̃ are the covariance matrices of the distributions Pc and Pc̃, respectively; and

ht = (1− τηG
2 )r>t Λ̃rt − (1 + τηT

2 )q>t Λqt − τ η
2
G+η2T

2 , Lt = −diag(rtr
>
t Λ̃), (14)

in which ηT and ηG are the variance of noise in the true data model and generator, respectively. The
derivation from the ODE (8) to (13) is presented in the Supplementary Materials.

Next, we discuss under what conditions, the GAN can reach a desirable training state by studying
local stability of a particular type of fixed points of the ODE (13). The perfect estimation of the
generator corresponds to P t being an identity matrix (up to a permutation of rows and columns). A
complete fail state relates to P = 0. Furthermore, It is easy to verify that if qt = rt = 0, the ODE
(13) will be stable for any P t = P .
Claim 1. The macroscopic states P t, q = r = 0 for all valid P t are always the fixed points of the
ODE (13). Furthermore, a sufficient condition that the perfect estimation state P t = I, q = r = 0
is locally stable and the failed state P t = 0, q = r = 0 is unstable if

1
2 max

`
{Λ` − Λ̃` + αΛ̃`} ≤ τη2 < min

`
Λ`, (15)

where α = τ̃
τ , η2 = 1

2 (η2
T + η2

G), and Λ` = [Λ]`,`, Λ̃` = [Λ̃]`,`.

The proof can be found in the Supplementary Materials. If the right inequality in (15) is violated,
any feature ` with the signal-to-noise ratio [Λ]`,` < τη2 is not learned by the generator resulting
mode collapsing. The right figure in Figure 1 demonstrates this situations, where only one of the two
features is recovered. If the left inequality in (15) is violated, the training processes can be trapped
in an oscillation phase. This phenomenon is shown in the middle figure in Figure 1. This result
indicates that proper background noise can help to avoid oscillation and stabilize the training process.
In fact, the trick of injecting additional noise has been used in practice to train multi-layer GANs
[27]. To our best knowledge, our paper is the first theoretical study on why noise can have such a
positive effect via a dynamic perspective.

In experiments, the training is not ended at the perfect recovery point due to the presence of the noise
but converges at another fixed point nearby. This is because the perfect state is marginally stable,
as the Jacobian matrix always has zero eigenvalues. It indicates that there are other locally stable
fixed points near P = I . In fact, all points in the hyper-rectangle region satisfying q = r = 0
and

∣∣p∗`
∣∣ ≤

∣∣[P ]`,`
∣∣ ≤ 1, ∀ ` = 1, 2, . . . , d are locally stable for some critical p∗` . In the matched

case when Λ` = Λ̃`, we have p∗` =
[
(Λ` − τη2)(Λ̃` + τη2 − αΛ̃`)/(Λ`Λ̃`)

]1/2
, α = τ̃

τ and η2 =
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1
2 (η2

T + η2
G). Starting from a point near the origin, numerical solution of the ODE shows the training

processes are ended up at the corner of this hyper-rectangle, i.e., P ∗ = diag({p∗` , ` = 1, 2, . . . , d}).
In the small-learning rate limit τ → 0 and the learning rate ratio α→ 0, we get the perfect recovery
P ∗ = I . The limit τ → 0, α→ 0 was studied in the small-learning-rate analysis with the two-time
scaling [15], and the result is consistent, but our analysis includes the situations with finite τ and α.

In addition, we provide a phase diagram analysis in a single-feature case d = 1 in the Supplementary
Materials. All possible fixed points in this case are enumerated and their local stability is analyzed.
This helps us understand the successful recovery condition (15), which is the intersection of the
informative phases that each feature can be recovered individually.

5 Conclusion
We present a simple high-dimensional model for GAN with an exactly analyzable training process.
Using the tool of scaling limits of stochastic processes, we show that the macroscopic state associated
with the training process converges to a deterministic process characterized as the unique solution of
an ODE, whereas the microscopic state remains stochastic described by an SDE, whose time-varying
probability measure is described by a limiting PDE.

Indeed, it is a common picture in statistical physics that the macroscopic states of large systems tend
to converge to deterministic values due to self-averaging. These notions, especially the mean-field
dynamics, have been applied to analyzing neural networks both in shallow [19, 20] and deep models
[28]. However, this mean-field regime was not considered in previous analyses of GAN. For example,
a series of recent works e.g., [11–16] considers a different scaling regime where the learning rate
goes to zero but the system dimension n stays fixed. In that regime, the microscopic dynamics are
deterministic even with the presence of the microscopic noise. In contrast, we study the regime where
the learning rate is fixed but the dimension n→∞. This setting allows us to quantify the effect of
training noise in the learning dynamics.

In this paper, we only consider a linear generator with a latent variable c̃ drawn from a fixed
distribution Pc̃, but our analysis can be extended to a more complex non-linear model with a learnable
latent-variable distribution. Specifically, in order to compute derivatives w.r.t. Pc̃, the latent variable
c̃ ∼ Pc̃ should be reparameterized by a deterministic function c̃ = f(z;θ), where θ is a learnable
parameter and z is a random variable drawn from a simple and fixed distribution. For example, a
Gaussian mixture with L equal-probability modes can be parameterized by c̃ =

∑L
`=1(µ` + Σ`εl)βl,

where µ` and Σ` are two learnable parameters representing the mean and covariance of the `th
mode respectively, and ε ∼ N (0, I); β` is a random indicator variable where only one β` for
` = 1, 2, . . . , L is 1 and the others are 0. In practice, f(z; θ) is implemented by a multilayer neural
network. Our analysis can be naturally extended to analyzing this model as long as the dimensions of
c̃ and θ keep finite when the data dimension n goes to infinity. More challenging situations, where
the dimension of θ is proportional to n, will be explored in future works.

Although our analysis is carried out in the asymptotic setting, numerical experiments show that
our theoretical predictions can accurately capture the actual performance of the training algorithm
at moderate dimensions. Our analysis also reveals several different phases of the training process
that highly depend on the choice of the learning rates and noise strength. The analysis reveals a
condition on the learning rates and the strength of noise to have successful training. Violating this
condition results either oscillation or mode collapsing. Despite its simplicity, the proposed model of
GAN provides a new perspective and some insights for the study of more realistic models and more
involved training algorithms.
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Supplementary Materials
These Supplementary Materials provide additional information, detailed derivations and proof of
the results shown in the main text. Specifically, in Section S-I we provide a local stability analysis
and draw the phase diagram in the case d = 1 and d = 2. In Section S-II, we present a heuristic
derivation of the stochastic differential equation (SDE) for the microscopic states. Next, in Section
S-III, we show a derivation of the ODE for the macroscopic states from the weak formulation of the
PDE. We then establish the full proof of the Theorem 1 in Section S-IV. Finally, we present the local
stability analysis of the ODE’s fixed points in Section S-V.

Notation: Throughout the paper, we use Id to denote the d× d identity matrix. Depending on the
context, ‖·‖ denotes either the `2 norm of a vector or the spectral norm of a matrix. For any x ∈ R,
the floor operation bxc gives the largest integer that is smaller than or equal to x. We denote [v]i the
ith element of the vector v and denote [M ]i,j the element at ith row and jth column of the matrix
M . Finally, C(T ) denotes a constant that depends on the terminal time T , and C denotes a general
constant that does not depends on T and n. Both C and C(T ) can vary line to line.

S-I Phase diagram for the case d = 1 and d = 2

In what follows, we provide a thorough study of all the fixed points of the ODE (13) when the number
of feature d = 1 and d = 2. In particular, three major phases are identified under different settings of
the learning rates τ and τ̃ with the fixed model parameters ηT, ηG, Λ, and Λ̃ .

Phase diagram for d = 1. By analyzing the local stabilities of these fixed points as illustrated in
Figure 3(a), we obtain the phase diagram as shown in Figure 3(b). For simplicity, we only present
the result when ηT = ηG = 1, and Λ = Λ̃, which is denoted by Λ used in the remaining part of this
section. Detailed derivations are presented in S-V.

Even in this simplest case, we find there are in total 5 types of fixed points, the locations of which are
visualized in the 3-dimensional space (P, q, r) shown in Figure 3(a). Each type of the fixed points
has an intuitive meaning in terms of the two-player game between G and D. We list the detailed

information in Table 1, in which we define a function β(τ) =

{
[1 + (Λ

2 − Λ
τ )−1]−1, if τ ≤ 2Λ

Λ+2

+∞, otherwise
.

Noninformative phase: We say that the ODE (13) is in a noninformative phase if either a type-1
or type-2 fixed point in Table 1 is stable. In this case, P = 0, which indicates that the generator’s
parameter vector V has no correlation with the true feature vector U . In Figure 3(b), the region
labeled as noninfo-1 is the stable region for the type-1 fixed point, and noninfo-2 is the stable region
for the type-2 fixed point. The two regions have no overlap. However, we note that in noninfo-1, the
type-3 fixed points can also be stable, in which case the stationary point of the ODE is determined by
the initial condition.

Informative phase: We say that the ODE (13) is in an informative phase if neither type-1 nor type-2
fixed point is stable, and if at least one fixed point of type-3 and type-5 is stable. In this case, it is
guaranteed that P is nonzero, indicating that the generator can achieve non-vanishing correlation
with the real feature vector. In addition, the stable regions for the type-3 and type-5 fixed points are
disjoint. They are shown in Figure 3(b) as info-1 and info-2, respectively. The difference between
the two region is that, in info-1, q is exactly 0 indicating that the discriminator is completely fooled,
whereas in info-2, q is nonzero.

Oscillating phase: We say that the ODE (13) is in an oscillating phase if none of the fixed points in
Table 1 is stable. In this phase, limiting cycles emerge and the system will oscillate on these cycles
indefinitely. Moreover, we found two types of limiting cycles.

To further illustrate the phase transitions, we draw ODE trajectories and phase portraits in Figure 4
corresponding to different choices of the step sizes (from left to right, τ̃ = 0.03, 0.2, 0.4, 0.47).

The two figures in the first column of Figure 4 show a case in the Info-1 phase. The bottom red dot
in Figure 3.(b) represents this configuration of the step sizes, where τ̃ /τ is small. The top figure of
Figure 4.(a) shows the dynamics of Pt, qt and rt, and the bottom figure shows the phase portrait on
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Table 1: List of the fixed points of the ODE (13) when d = 1 and Λ = Λ̃.

Type Location Existence Stable Region Intuitive Interpretation

1 P = q = 0,
r = 0

always τ > Λ2, τ̃τ <
τ+Λ

Λ

Both G and D fail, and
they are uncorrelated

2 P = q = 0
r = ±r∗ 6= 0

τ̃
τ ≥ τ+Λ

Λ or
τ̃
τ ≤ 1− τ

2

max{2, τ+Λ
Λ } ≤ τ̃

τ ≤
β(τ)

Both G and D fail, and
they are correlated

3 q = r = 0
|P | ∈ (0, 1]

always
|P | = 1 is stable if τ̃τ ≤
min{ 2τ

Λ ,max{ τ2Λ−1

|τ−Λ| , 4}}
G wins and D loses

4 P = r = 0
q = ±q∗ 6= 0

always always unstable G loses and D wins

5 None of P , q
or r is zero

not always, at most
8 fixed points

can be computed
numerically

Both G and D are
informative

P − q plane. Top figure of Figure 4.(a) shows an interesting phenomenon that dynamics are separated
into two stages. At the first stage, qt (red dots, cosine similarity between the true feature vector and
discriminator’s estimation) increases drastically from 0 to some value near 1, while Pt (blue dots,
cosine similarity between the true feature vector and generator’s estimation) almost doesn’t change.
Intuitively, at this stage, the discriminator learns the true model while the generator is unchanged. In
the second stage, the generator start to fool the discriminator, where |Pt| increases and qt decreases.
In fact, these two-stage dynamics can be understood from the ODE (13): When τ/τ is small, the
process can be decomposed into two processes in different time scales. In particular, the discriminator
is associated with the faster dynamics as τ � τ̃ , and the generator governs the slower dynamics.
Figure 1 in the main text shows that this picture is still hold for multi-feature cases in the hierarchical
dynamics.

The figures in the middle two columns of Figure 4 show the two types of limiting cycles that
can emerge in the oscillating phase. The middle two red dots in Figure 3.(b) represents these
configurations of the step sizes. The last column of Figure 4 shows another stable phase in Info-2. In
this phase, τ/τ is relatively large. The two time-scale dynamics are mixed, and another type of stable
fixed points emerges.

Phase diagram for d = 2. Figure 5 shows the phase diagram when d = 2. In particular, the
two red lines between Info-1 and Noninfo-1 in Figure 5 are determined by the left inequality in
(15). In Info-1, both feature vectors are recovered by the generator. The dynamics of this phase are
shown in Figure 1.(a) in the main text. In the Half-info phase, only the feature vector with the larger
signal-to-noise ratio is recovered. The dynamics of this phase are shown in Figure 1.(c) in the main
text. The blue line between Info-1 and oscillating phases shows the boundary between oscillation
state and stable state.

S-II Heuristic derivations of the dynamics of the microscopic states

In this section, we derive the stochastic differential equations (10) in the main text for the microscopic
states in a non-rigorous way. Specifically, we directly discard higher-order terms without any
justification, in order to highlight the main ideas. In Section S-IV, we rigorously justify these steps
by providing bounds on those terms.

Our starting point is the iterative algorithm (5) in the main text. Substituting the objective function L
defined in (4) into (5), we have

wk+1 = wk + τ
n

[
ykf(y>k wk)− ỹ2kf̃(ỹ>2kwk)− λwkH

′(w>k wk)
]

(S-1)

V k+1 = V k + τ̃
n

[
wkc̃

>
2k+1f̃(ỹ>2k+1wk)− λV kdiag(H ′(V >k V k))

]
, (S-2)

where yk and ỹk are true and fake samples generated according to (1) and (2) respectively. The two
functions f , f̃ stand for f(x) = d

dxF (D̂(x)) and f̃(x) = d
dx F̃ (D̂(x)). The function H ′ is derivative

of H . If the input of H ′(·) is a matrix, H ′ applies to the input matrix element-wisely. The operation
diag(A) is a diagonal matrix ofA, where the off-diagonal term are set to zero.
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Figure 3: (a): The locations of the five types of fixed points of the ODE (13). Their properties
are listed in Table 1. (b): The phase diagram for the stationary state of the ODE (13). The colored
lines illustrate the theoretical prediction of the boundaries between the different phases. Simulations
results for a single numerical experiment are also shown to illustrate the oscillating phase: Each
grey square represents the value of 1

200

∫ 1000

800
[(Pt − 〈Pt〉)2 + (qt − 〈qt〉)2 + (rt − 〈rt〉)2] dt where

〈Pt〉 = 1
200

∫ 1000

800
Pt dt, and 〈qt〉 and 〈rt〉 are defined similarly. Note that the above quantity measures

the variation (over time) of the training process as it approaches steady states. We see that the variation
is indeed nonzero in the oscillating phase (see Figure 4), whereas the variation is close to zero in all
other phases.
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Figure 4: Macroscopic dynamics of Example 1 with d = 1. In the first row, the red, blue and yellow
dots represent Pt, qt, and rt respectively of the experimental results of a single trial. The black curves
under the dots are theoretical predictions given by the ODE (13). We set a fix the discriminator’s
learning rate τ = 0.3 and vary the generator’s learning rate τ̃ = 0.03, 0.2, 0.4, 0.47 from left to
right column. These parameter settings are marked by the four red dots in the phase diagram in
Figure 3. The second row is the phase portraits of the trajectories shown in the first row onto the
P–q plane. Figure (a) shows a case in the phase of info-1, where a subset of type (3) fixed points are
stable. Figure (b) and (c) are in the oscillating phase, and (d) is in info-2, where the fixed points of
type-5 are stable. The blue dots in the figures show the stable fixed points.

We note that the elements of wk and V k are O( 1√
n

) number as the norm of wk and the norms of
column vectors of V k are all O(1) numbers. To investigate the dynamics of the microscopic state, it
is convenient to rescale wk and V k by a factor of

√
n. We define ûi and v̂k,i as the column view of
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Figure 5: The phase diagram for the stationary states of the ODE (13) when d = 2. This phase
diagram is generated by numerically computing the fixed points and eigenvalues of the Jacobian of
the ODE (13).

the i’th row of the matrices
√
nU and

√
nV k respectively, and ŵk,i

def
=
√
n[wk+1]i. The update rule

of ((ûi, v̂k,i, ŵk,i)i=1,...,n)k=0,1,2,... is

ŵk+1,i − ŵk,i = τ
n

[(
û>i ck +

√
nηTak,i

)
fk −

(
v̂>k,ic̃2k +

√
nηGã2k,i

)
f̃2k − λH ′(zk)ŵk,i

]
,

(S-3)

v̂k+1,i − v̂k,i = τ̃
n

[
ŵk,ic̃2k+1f̃2k+1 − λdiag(H ′(Sk))v̂k,i

]
, (S-4)

where ak,i, ãk,i are the ith elements of ak and ãk respectively, and fk and f̃k are shorthands for

fk = f(y>k wk/
√
n) = f

(
q>k ck +

√
ηT
n

∑n
j=1ak,jŵk,j

)

f̃k = f̃(ỹ>k wbk/2c/
√
n) = f̃

(
r>bk/2cc̃k +

√
ηG
n

∑n
j=1ãk,jŵbk/2c,j

)
,

respectively, and the empirical macroscopic quantities qk, rk, zk and Sk are defined as follows

qk
def
= U>wk = 1

n

∑n
i=1ûiŵi, rk

def
= V >k wk = 1

n

∑n
i=1v̂k,iŵi,

zk
def
= w>k wk = 1

n

∑n
i=1ŵ

2
k,i, Sk

def
= V >k V k = 1

n

∑n
i=1v̂k,iv̂

>
k,i,

P k
def
= U>V k = 1

n

∑n
i=1ûiv̂

>
k,i.

(S-5)

The matrix P k is not used in this section, but we put it here with the other macroscopic quantities for
future reference.

Now we derive (10) from (S-3) and (S-4).

First, it is trivial to get the first equation of the SDE dût = 0 in (10) in the main text, since ûi does
not change over time.

Next, we derive the second equation in (10). Averaging over c̃2k+1 and ã2k+1 on the both sides of
(S-4), we get

〈
v̂k+1,i − v̂k,i

〉
c̃2k+1,ã2k+1

= τ̃
n

[〈
f̃
(
r>k c̃+

√
ηG
n

∑n
j=1[ã]jŵk,j

])
c̃

〉

c̃,ã

ŵk,i − λdiag(H ′(Sk))v̂k,i

]
.

The bracket 〈·〉c̃,ã here denotes the average over c̃ ∼ Pc̃, and standard Gaussian vector ã, where c̃
and ã are the random variables generating the fake sample in the generator as described in (2). Noting
that ã is a Gaussian vector, the term 1√

n

∑n
j=1[ã]jŵk,j in the above equation is also a Gaussian
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random variable, whose mean is zero and variance is zk, which is defined in (S-5). Therefore, we
have 〈

v̂k+1,i − v̂k,i
〉
c̃2k+1,ã2k+1

= τ̃
n

[
g̃kŵk,i +Lkv̂k,i

]
, (S-6)

where

g̃k =

〈
f̃
(
r>k c̃+

√
zkηGe

])
c̃

〉

c̃,e

(S-7)

Lk = −λdiag(H ′(Sk)), (S-8)

where 〈·〉c̃,e denotes the average over c̃ ∼ Pc̃ and e ∼ N (0, 1). In addition, from (S-4), we also
know that the second moment〈(

v̂k+1,i − v̂k,i
)2〉

c̃2k+1,ã2k+1

= O(n−
3
2 ). (S-9)

The moments estimations (S-6) and (S-9) imply the second equation in (10) in the main text. Since
the second moments growth smaller than O(n−1), the differential equation for v̂t has no diffusion
term.

Finally, we derive the last equation in (10) in the main text from the update rule of ŵk (S-3). We
observe that both the terms inside the function f and outside of f in (S-3) depend on ak,i. Using
Taylor’s expansion, we linearize the contribution of ak,i to the function f :

fk = f
(
q>k ck +

√
ηT
n

∑
j 6=iak,jŵk,j +

√
ηT
n ak,iŵk,i

)

= f(q>k ck +
√

ηT
n

∑
j 6=iak,jŵk,j) + f ′(q>k ck +

√
ηT
n

∑
j 6=iak,jŵk,j)

√
ηT
n ak,iŵk,i +O( 1

n ).

(S-10)

Similarly, we have

f̃2k = f̃(r>k c̃2k +
√

ηG
n

∑
j 6=iãk,jŵk,j +

√
ηG
n ã2k,iŵk,i)

= f̃(r>k c̃2k +
√

ηG
n

∑
j 6=iãk,jŵk,j) + f̃ ′(r>k c̃2k +

√
ηG
n

∑
j 6=iãk,jŵk,j)

√
ηG
n ã2k,iŵk,i +O( 1

n )

(S-11)

Substituting (S-10) and (S-11) into (S-3), we have

ŵk+1,i − ŵk,i
τ/n

= û>i ckf(q>k ck +
√

ηT
n

∑
j 6=iak,jŵk,j)− v̂

>
k,ic̃2kf̃(r>k c̃2k +

√
ηG
n

∑
j 6=iãk,jŵk,j)

+ ŵk,i

[
a2
k,if

′(q>k ck +
√

ηT
n

∑
j 6=iak,jŵk,j)− ã2

k,if̃
′(r>k c̃2k +

√
ηG
n

∑
j 6=iã2k,jŵk,j)− λH ′(zk)

]

+
√
n
[
ak,if(q>k ck +

√
ηT
n

∑
j 6=iak,jŵk,j) + ã2k,if̃

′(r>k c̃2k +
√

ηG
n

∑
j 6=iã2k,jŵk,j)

]
+ δk,i,

(S-12)
where δk,i collects all higher-order terms whose contributions will vanish as n → ∞. From this
equation, we can already infer the SDE (10). Specifically, on the right hand side of (S-12), the terms
in the first two lines correspond to the drift term in the SDE. Furthermore, the first term in the third
line in (S-12) contributes to the SDE as a Brownian motion. More precisely, we can derive the third
equation of the SDE (10) in the main text by the moments estimations. Specifically, the first-order
moment is

〈
ŵk+1,i − ŵk,i

〉
ck,ak,c̃2k,ã2k

= τ
n

[
û>i gk − v̂>k,ig̃k + ŵk,ihk

]
+O(n−

3
2 ) (S-13)

where g̃k is defined in (S-7), and

gk =
〈
cf(q>k c+

√
zkηTe)

〉
c,e

(S-14)

hk = ηT

〈
f ′(q>k c+

√
zkηTe)

〉
c,e
− η̃G

〈
f̃ ′(r>k c̃+

√
zkηGe)

〉
c̃,e
− λH ′(zk). (S-15)
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The second moment is〈(
ŵk+1,i − ŵk,i

)2〉
ck,ak,c̃2k,ã2k

= τ2

n bk +O(n−
3
2 ), (S-16)

where
bk = ηT

〈
f2(q>k c+

√
zkηTe)

〉
c,e

+ ηG

〈
f̃2(r>k c̃+

√
zkηGe)

〉
c̃,e
. (S-17)

From the (S-13) and (S-16), we derive the SDE for ŵt in (10) in the main text.

S-III Derive the ODE in Theorem 1 from the weak formulation of the PDE

In this section, we show how to derive the ODE (8) from the weak formulation of the PDE (12).
Choosing the test function ϕ being each element of ûv̂>, ûŵ, v̂ŵ, v̂v̂>, ŵ2, and substituting those
ϕ into the weak formulation of the PDE (12), we will get the ODE (8) as presented in Theorem 1. In
what follows, we provide additional details of this derivation.

We first derive the first ODE d
dtP t = . . . in (8). Let ϕ = [û]`[v̂]`′ , `, `′ = 1, 2, . . . , d, we have

∇v̂ϕ = [û]`s`′ , where s`′ is the `′th canonical basis (i.e., all elements in s`′ are zeros, except that
`′th element is 1). From the PDE (12) in the main text, we have ∀`, `′ = 1, 2, . . . , d:〈

µt, ϕ(û, v̂, ŵ)
〉

=
〈
µt, [û]`[v̂]`′

〉
= [P t]`,`′ ,

〈
µt, (ŵg̃

>
t + v̂>Lt)∇v̂ϕ

〉
=
〈
µt, ([û]`ŵ)[g̃t]`′ + ([û]`v̂

>)[Lt]:,`′
〉

= [qt]l[g̃t]`′ + [P t]`,:[Lt]:,`′ ,

where [P t]`,: and [Lt]:,`′ are `th row of P t and `′th column of L, respectively. In addition, we know
that ∂

∂ŵϕ = ∂2

∂ŵ2ϕ = 0. Combining above results, we can recover the first ODE in (8).

Next, we derive the second ODE dqt
dt = . . . in (8). Let ϕ = [û]`ŵ, ` = 1, 2, . . . , d. We have

∇v̂ϕ = 0, ∂
∂ŵϕ = [û]` and ∂2

∂ŵ2ϕ = 0. Then ∀` = 1, 2, . . . , d,
〈
µt, ϕ(û, v̂, ŵ)

〉
=
〈
µt, [û]`ŵ

〉
= [qt]`

and 〈
µt, (û

>gt − v̂>g̃t + htŵ)
∂

∂ŵ
ϕ

〉
=
〈
µt, (û

>gt − v̂>g̃t + htŵ)[û]`

〉

= [gt]` − [P t]`g̃t + [qt]`ht.

With above results, we can obtain the second ODE in (8).

Next, let’s derive the ODE for dStdt . We set ϕ = [v̂]`[v̂]`′ . If ` 6= `′, we have∇v̂ϕ = [v̂]`s`′+[v̂]`′s`,
where s`′ is the `′th canonical basis. Then〈

µt, ϕ(û, v̂, ŵ)
〉

= [St]`,`′

and 〈
µt, (ŵg̃

>
t + v̂>Lt)∇v̂ϕ

〉
=
〈
µt, ([v̂]`ŵ)[g̃t]`′ + ([v̂]`v̂

>)[Lt]:,`′
〉

+
〈
µt, ([v̂]`′ŵ)[g̃t]` + ([v̂]`′ v̂

>)[Lt]:,`

〉

= [rt]`[g̃t]`′ + [g̃t]`[rt]`′ + [St]`,:[Lt]:,`′ + [Lt]`,:[St]:,`′

If ` = `′, we have ∇v̂ϕ = 2[v̂]`s`, then
〈
µt, ϕ(û, v̂, ŵ)

〉
= [St]`,`

and 〈
µt, (ŵg̃

>
t + v̂>Lt)∇v̂ϕ

〉
= 2([rt]`[g̃t]` + [St]`,:[Lt]:,`)

Plugging back the above two equations and combining the fact that ∂
∂ŵϕ = ∂2

∂ŵ2ϕ = 0, we recover
the ODE of dStdt .

The rest two ODEs can be obtained in the similar way by letting ϕ to be each distinct component of
v̂ŵ and ŵ2.

16



S-IV Proof of Theorem 1

In this section, we prove Theorem 1 shown in the main text. In the previous section, we have
already provided a derivation of the ODE in Theorem 1 from the weak formulation of the PDE
for the microscopic states. In this section, we follow a different path to prove the theorem without
referencing the PDE, because it is easier to establish the rigorous bound of the convergence rate.
Thus, the proof itself also provides another derivation of the ODE, where the most relevant part is
Lemma 5.

S-IV.1 Sketch of the proof

The proof follows the standard procedure of the convergence of stochastic processes [29, 30]. We here
build the whole proof on Lemma 2 in the supplementary materials of [22]. For reader’s convenient,
we present that lemma below.
Lemma 1 (Lemma 2 in the supplementary materials of [22]). Consider a sequence of stochastic pro-
cess {x(n)

k , k = 0, 1, 2, . . . , bnT c}n=1,2,..., with some constant T > 0. If x(n)
k can be decomposed

into three parts
x

(n)
k+1 − x

(n)
k = 1

nφ(x
(n)
k ) + ρ

(n)
k + δ

(n)
k (S-18)

such that

(C.1) The process
∑k
k′=0 ρ

(n)
k′ is a martingale, and E ‖ρ(n)

k ‖2 ≤ C(T )/n1+ε1 for some positive ε1;

(C.2) E ‖δ(n)
k ‖ ≤ C(T )/n1+ε2 for some positive ε2;

(C.3) φ(x) is a Lipschitz function, i.e., ‖φ(x)− φ(x̃)‖ ≤ C‖x− x̃‖;

(C.4) E ‖x(n)
k ‖2 ≤ C for all k ≤ bnT c;

(C.5) E ‖x(n)
0 − x∗0‖ ≤ C/nε3 for some positive ε3 and a deterministic vector x∗0,

then we have
‖x(n)

k − x( kn )‖ ≤ C(T )n−min{ 1
2 ε1,ε2,ε3},

where x(t) is the solution of the ODE
d
dtx(t) = φ(x(t)), with x(0) = x∗0.

In Theorem 1, the stochastic process is the macroscopic states {Mk, k = 0, 1, . . .}, whereMk is a
symmetric matrix consists of 5 non-trivial parts P k, qk, rk, Sk, and zk as shown in (6) in the main
text. Following (S-18), we have the following decomposition forMk

Mk+1 −Mk = 1
nφ(Mk) + (Mk+1 − EkMk+1) + [EkMk+1 −Mk − 1

nφ(Mk)], (S-19)
in which the matrix-valued function φ(M) represents the functions on the right hand sides of the
ODE (8), and Ek denotes the conditional expectation given the state of the Markov chain Xk.
Note that the stochastic process of the macroscopic stateMk is driven by the Markov chain of the
microscopic stateXk. Thus, Ek is well-defined. For future reference, we denotes E the unconditional
expectation of all the randomness of the Markov chain Xk, i.e., the initial state U ,V 0,w0 and
{ak, ck, ãk, c̃k|k = 0, 1, 2, . . .}. By definition,

∑k
k′=0(Mk′+1 − E k′Mk′) is a Martingale.

S-IV.2 Check the conditions provided in Lemma 1

In this subsection, we check the condition (C.1)–(C.5) for the decomposition of (S-19). Once all
conditions are proved to be satisfied, Theorem 1 will be proved.

We first note that (C.5) is the assumption (A.5) in the main text. Thus, (C.5) is satisfied. Before
proving other conditions, we declare a lemma.
Lemma 2. Under the same setting as Theorem 1, given T > 0, then

E




d∑

`=1

[V k]4i,` + [wk]4i


 ≤ C(T )n−2, ∀i = 1, 2, . . . , n, and k = 0, 1, . . . , bnT c , (S-20)

The proof can be founded in Section S-IV.3.
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Check Condition (C.4)

Lemma 3. Under the same setting as Theorem 1, for all k = 0, 1, . . . , bnT c with a given T > 0,
then

E ‖P k‖2 ≤ C(T ), E ‖qk‖2 ≤ C(T ),

E ‖Sk‖2 ≤ C(T ), E z2
k ≤ C(T ),

E ‖rk‖2 ≤ C(T ).

Proof. It’s a direct consequence of Lemma 2. We first verify E z2
k ≤ C(T ).Using Holder’s inequality,

we have

E z2
k = E

(∑n
i=1w

2
k,i

)2

≤ nE∑n
i=1w

4
k,i ≤ C(T )

For [Sk]`,`, ` = 1, . . . , d, similarly, we have

E [Sk]2`,` = E
(∑n

i=1[V k]2i,`

)2

≤ C(T ).

and for E [Sk]2`,`′ , ` 6= `′, we have:

E [Sk]2`,`′ = E
(∑n

i=1[V k]i,`[V k]i,`′
)2

≤ E
(∑n

i=1[V k]2i,`

)(∑n
i=1[V k]2i,`′

)

≤
√
E
(∑n

i=1[V k]2i,`

)2

E
(∑n

i=1[V k]2i,`′
)2

≤ C(T )

where in reaching the third and last line, we used the Cauchy-Schwartz inequality. Now, we get
E ‖Sk‖2 ≤ C(T ). The rest bounds of E ‖P k‖2, E ‖qk‖2 and E ‖rk‖2 in Lemma 3 can also be
directly verified using the Cauchy-Schwartz inequality.

Check Condition (C.3)

Lemma 4. If Assumption (A.3) hold, φ(M) is a Lipschitz function.

Proof. It suffices to verify each component of gradient ∇φ(M) is bounded. Assumption (A.3)
ensures that H ′ is Lipschitz and the derivatives up to fourth order of the functions f , f̃ exists and
uniformly bounded. These conditions guarantee that the partial derivatives of φ(M) w.r.t. P , q, S
and r are bounded. The remaining thing is to show that ∂φ(M)

∂z is also bounded. Since there is a
√
z

term in φ(M), the boundness can be potentially broken at z = 0. However, we can show that it is
not the case. For example, we can show that

〈
cf(c>q + e

√
z)
〉
c,e

is a Lipschitz function, because

∂
∂z

〈
cf(c>q + e

√
z)
〉
c,e

= 1
2z
− 1

2

〈
ecf ′(cq + e

√
z)
〉
c,e

= 1
2

〈
cf ′′(cq + e

√
z)
〉
c,e

is always a well-defined bounded function. In reaching the first line, we here interchanged the
expectation and derivative, which is valid because of the boundness of f(·), and in reaching the
second line, we used the Stein’s lemma. Finally, other terms in (9) involving

√
z can be treated in the

same way. Thus, φ(M) is a Lipschitz function.

Check Condition (C.2)

Lemma 5. Under the same setting as Theorem 1, for all k = 0, 1, . . . , bnT c with a given T > 0,
then

E ‖EkMk+1 −Mk − 1
nφ(Mk)‖ ≤ C(T )n−

3
2 .
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Proof. The above inequality can be split into 5 parts

E ‖Ek P k+1 − P k − τ̃
n (qkg̃

>
k + P kLk)‖ ≤ C(T )n−

3
2 (S-21)

E ‖E kqk+1 − qk − τ
n (gk − P kg̃k + qkhk)‖ ≤ C(T )n−

3
2 (S-22)

E ‖E kSk+1 − Sk − τ̃
n

(
rkg̃

>
k + g̃kr

>
k + SkLk +LkSk

)
‖ ≤ C(T )n−

3
2 (S-23)

E ‖E kzk+1 − zk − 2τ
n

(
q>k gk − r>k g̃k + zkhk

)
− τ2

n bk‖ ≤ C(T )n−
3
2 , (S-24)

E ‖E krk+1 − rk − τ
n

(
P>k gk − Skg̃k + rkhk

)
− τ̃

n (zkg̃k +Lkrk)‖ ≤ C(T )n−
3
2 (S-25)

where g̃k, Lk, gk, hk, bk are defined in (S-7), (S-8), (S-14), (S-15) and (S-17), respectively.

We first prove (S-21). From (S-2), we have

V k+1 − V k = τ̃
n

[
wkc̃

>
2k+1f̃(c̃>2k+1V

>
k wk + ηGã

>
2k+1wk)− λV kdiag(H ′(Sk))

]
. (S-26)

Averaging both sides of the above equation over c̃2k+1 and ã2k+1, we have

Ek V k+1 − V k = τ̃
n

[
wkg̃

>
k + V kLk

]
, (S-27)

where g̃k and Lk are defined in (S-7) and (S-8), respectively. Multiplying U> from the left on the
both sides of the above equation, we have

Ek P k+1 − P k = τ̃
n

[
qkg̃

>
k + P kLk

]
,

which implies (S-21). In fact, there is no higher-order term in (S-21), and the left hand side of (S-21)
is exactly zero.

Then, we prove (S-22). From (S-1), we have

wk+1 −wk = τ
n

[
ykf(y>k wk)− ỹ2kf̃(ỹ>2kwk)− λwkdiag(H ′(zk))

]
, (S-28)

where yk = Uck +
√
ηTak and ỹ2k = V kc̃2k +

√
ηGã2k. Averaging both sides of the above

equation over ck, akc̃2k and ã2k, we have

Ekwk+1 −wk = τ
n

[
Ugk +

〈
akf(c>k qk +

√
ηTa

>
k wk)

〉

− V kg̃k −
〈
ã2kf̃(c̃>2krk +

√
ηGã

>
2kwk)

〉
− λwkdiag(H ′(zk))

]
.

Multiplying U> from the left on the both sides of the above equation, we have

Ek qk+1 − qk = τ
n

[
gk − P kg̃k +

√
ηT

〈
U>akf(c>k qk +

√
ηTa

>
k wk)

〉
c,a

−√ηG

〈
U>ãf̃(c̃>rk +

√
ηGã

>wk)
〉
c̃,ã
− λqkdiag(H ′(zk))

]
(S-29)

We note that

[
U>ak
w>k ak

]
are Gaussian random vector with zero-mean and covariance matrix

[
I qk
q>k zk

]
.

We can rewrite〈
U>af(c>qk +

√
ηTa

>wk)
〉
c,a

= z
−1/2
k U>wk

〈
ef(c>qk +

√
zkηTe

〉
c,e

(S-30)

=
√
ηTqk

〈
f ′(c>qk +

√
zkηTe

〉
c,e
,

where the second line is due to Stein’s lemma (i.e., integral by part for Gaussian random variable.)
Similarly, we have

〈
U>ãf̃(c̃>rk +

√
ηGã

>wk)
〉
c̃,ã

=
√
ηGqk

〈
f̃ ′(c̃>rk +

√
zkηGe

〉
c̃,e
. (S-31)

Substituting (S-30) and (S-31) into (S-29), we get

Ek qk+1 − qk = τ
n [gk − P kg̃k + qkhk] ,
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where g̃k, gk, and hk are defined in (S-7), (S-14), and (S-15), respectively. Now, we proved (S-22),
which again has no higher-order term.

We next prove (S-23). Note that

Sk+1 − Sk = (V k + V k+1 − V k)>(V k + V k+1 − V k)− Sk
= V >k (V k+1 − V k) + (V k+1 − V k)

>
V k + (V k+1 − V k)

>
(V k+1 − V k) .

Averaging both sides of the above equation over c̃2k+1 and ã2k+1 and substituting (S-27) into above
equation, we have

Ek Sk+1−Sk = τ̃
n

[
rkg̃

>
k + SkLk + g̃kr

>
k +LkSk

]
+ τ̃2

n2

[
wkg̃

>
k +V kLk

]>[
wkg̃

>
k +V kLk].

(S-32)
We know that

E ‖
[
wkg̃

>
k + V kLk

]>[
wkg̃

>
k + V kLk]‖ ≤ E ‖wkg̃

>
k + V kLk‖2

≤ 2zk‖g̃k‖2 + 2‖Sk‖‖Lk‖2

≤ CE
[
zk + ‖Sk‖

]

≤ C(T ), (S-33)

where g̃k, Lk are defined in (S-7) and (S-8), respectively. The third line of the above inequalities is
due to the fact that f̃ and H ′ are uniformly bounded, and in reaching the last line, we used Lemma 3.
Combining (S-32) and (S-33), we reach (S-23).

The other two inequalities (S-24) and (S-25) can be proved in a similar way. We omit the details
here.

Check Condition (C.1)

Lemma 6. Under the same setting as Theorem 1, for all k = 0, 1, . . . , bnT c with a given T > 0,
then

E ‖Mk+1 − EkMk+1‖2 ≤ C(T )n−2.

Proof. Note that E ‖Mk+1 − EkMk+1‖2 = E ‖Mk+1 − Mk − Ek (Mk+1 − Mk)‖2 ≤
E ‖Mk+1 −Mk‖2. It is sufficient to prove

E ‖Mk+1 −Mk‖2 ≤ C(T )n−2. (S-34)

In what follows, we are going to bound the second-order moment of each element inMk+1 −Mk.
In particular, we bound the 5 blocks P k, Sk, qk, zk and rk ofMk separately.

We first bound E ‖P k+1 − P k‖2. Multiplying U> from left on both sides of (S-26), we have

P k+1 − P k = τ̃
n

[
qkc̃
>
2k+1f̃(c̃>2k+1V

>
k wk + ηGã

>
2k+1wk)− λP kdiag(H ′(V >k V k))

]

We then get

E ‖P k+1 − P k‖2 ≤ Cn−2E
[
‖qk‖2Ek ‖c̃2k+1‖2 + ‖P k‖2

]

≤ Cn−2E
[
1 + ‖qk‖2 + ‖P k‖2

]

≤ C(T )n−2. (S-35)

Here the last line is due to Lemma 3.

We next bound E ‖qk+1 − qk‖2 in the same way. Specifically, multiplying U> from the left on both
sides of (S-28), we get

qk+1 − qk = τ
n

[
U>ykf(y>k wk)−U>ỹ2kf̃(ỹ>2kwk)− λqkdiag(H ′(w>k wk))

]
.
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We then have

E ‖qk+1 − qk‖2

≤ τ2

n2E
[
‖ck‖2f2

k + ‖U>ak‖2f2
k + ‖P k‖2‖c̃2k‖2f̃2

2k + ‖U>ã2k‖2f̃2
2k + ‖qk‖2h2

k

]

≤ Cn−2
[
1 +

√
E ‖U>ak‖4

√
E f4

k +

√
E ‖U>ã2k‖4

√
E f̃4

2k + E z2
k + E ‖Sk‖2

]

≤ Cn−2[1 + E z2
k + E ‖Sk‖2]

≤ C(T )n−2, (S-36)

where fk and f̃2k are shorthands for f(y>k wk) and f̃(ỹ>2kwk) respectively. In reaching the last line,
we used Lemma 3 again.

Similarly, we can also prove that

E ‖Sk+1 − Sk‖2 ≤ C(T )n−2

E (zk+1 − zk)2 ≤ C(T )n−2

E ‖rk+1 − rk‖2 ≤ C(T )n−2.

(S-37)

Combining (S-35), (S-36) and (S-37), we can prove (S-34), which concludes the whole proof.

S-IV.3 Proof of Lemma 2

Before proving Lemma 2, we first present and prove the following lemma. Let ui and vk,i denote
the ith row vectors of U and V k in column view, respectively, and let wk,i be the ith element of the
vector wk.

Lemma 7. Under the same setting as Theorem 1, for all k = 0, 1, . . . , bnT c with a given T > 0,
then

‖Ek vk+1,i − vk,i‖ ≤ Cn−1
(
‖vk,i‖+

∣∣wk,i
∣∣
)

(S-38)
∣∣Ek wk,i − wk,i

∣∣ ≤ Cn−1
(
‖ui‖+ ‖vk,i‖+

∣∣wk,i
∣∣
)
. (S-39)

In the proof of this lemma and Lemma 2, we omit the two constants ηT and ηG for simplicity.

Proof. From (S-2) and knowing that the function f̃ and H ′ are uniformly bounded, we can immedi-
ately prove (S-38).

Next, we are going to prove (S-39). From (S-1), we know
∣∣Ek wk+1,i − wk,i

∣∣

≤ τ
n

( ∣∣∣∣u>i
〈
ckf(y>k wk)

〉
ck,ak

∣∣∣∣+

∣∣∣∣
〈
ak,if(y>k wk)

〉
ck,ak

∣∣∣∣

+

∣∣∣∣v>k,i
〈
c̃2kf̃(ỹ>2kwk)

〉
c̃2k,ã2k

∣∣∣∣+

∣∣∣∣
〈
ã2k,if̃(ỹ>2kwk)

〉
c̃2k,ã2k

∣∣∣∣+ λ
∣∣∣wk,iH ′(w>k wk)

∣∣∣
)

≤Cn−1

(
‖ui‖+ ‖vk,i‖+

∣∣wk,i
∣∣+

∣∣∣∣
〈
ak,if(y>k wk)

〉
ck,ak

∣∣∣∣+

∣∣∣∣
〈
ã2k,if̃(ỹ>2kwk)

〉
c̃2k,ã2k

∣∣∣∣
)
,

(S-40)

where the last is due to the fact that H ′, f and f̃ are uniformly bounded. Using Taylor’s expansion
up-to zero-order

f(y>k wk) = f(q>k ck +
∑
j 6=iwk,jak,j + wk,jak,j)

= f(q>k ck +
∑
j 6=iwk,jak,j) + f ′(q>k ck +

∑
j 6=iwk,jak,j + χk,i)wk,jak,j ,
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with χk,i being some number such that
∣∣χk,i

∣∣ ≤
∣∣wk,iak,i

∣∣ , we have
∣∣∣∣
〈
ak,if(y>k wk)

〉
ck,ak

∣∣∣∣

≤
∣∣∣∣
〈
f(q>k ck +

∑
j 6=iwk,jak,j)ak,i

〉
ck,ak

∣∣∣∣+

∣∣∣∣
〈
f ′(q>k ck +

∑
j 6=iwk,jak,j + χk,i)wk,ja

2
k,j

〉
ck,ak

∣∣∣∣

=

∣∣∣∣
〈
f ′(q>k ck +

∑
j 6=iwk,jak,j + χk,i)wk,ia

2
k,i

〉
ck,ak

∣∣∣∣
≤ C

∣∣wk,i
∣∣ . (S-41)

The second line is due to the fact ak,i is zero-mean, and in reaching the last line, we used the
boundness of f ′. Similarly, we can get

∣∣∣∣
〈
ã2k,if̃(ỹ>2kwk)

〉
c̃2k,ã2k

∣∣∣∣ ≤ C
∣∣wk,i

∣∣ . (S-42)

Substituting (S-41) and (S-42) into (S-40), we prove (S-40).

Now we are in the position to prove Lemma 2.

Proof of Lemma 2. Because of the exchangeability, Ew4
k,i = Ew4

k,j , and E [V k]4i,` = E [V k]4j,` for
all i, j = 1, 2, . . . , n and ` = 1, 2, . . . , d. Thus, we only need to prove (S-20) for any specific i.

We first prove Ew4
k,i ≤ C(T )n−2. We know that

Ew4
k+1,i − Ew4

k,i = 4E
[
w3
k,iEk

(
wk+1,i − wk,i

)]
+ 6E

[
w2
k,iEk

(
wk+1,i − wk,i

)2]
(S-43)

+ 4E
[
wk,iEk

(
wk+1,i − wk,i

)3]
+ EEk

(
wk+1,i − wk,i

)4
.

From (S-1) and knowing that h, f and f̃ are uniformly bounded, we have

Ek
(
wk+1,i − wk,i

)γ ≤ C

nγ

(
1 + ‖ui‖γ + ‖vk,i‖γ +

∣∣wk,i
∣∣γ
)

for γ = 2, 3, 4. (S-44)

Substituting (S-39) and (S-44) into (S-43) and using the Young’s inequality, we have

Ew4
k+1,i − Ew4

k,i ≤ C
n

(
n−2 + E ‖ui‖4 + E ‖vk,i‖4 + Ew4

k,i

)
.

≤ C
nE

(
n−2 +

∑d
`=1[V k]4i,` + w4

k,i

)
, (S-45)

where the last line is due to Assumption A.4), which implies
∑
`[U ]4i,` ≤ C. Similarly, we can prove

∑d
`=1E

(
[V k+1]4i,` − [V k]4i,`

)
≤ C

nE
(
n−2 +

∑d
`=1[V k]4i,` + w4

k,i

)
. (S-46)

Combining (S-45) and (S-46), we have

E (w4
k+1,i+

∑d
`=1[V k+1]4i,`)−E

(
w4
k,i +

∑d
`=1[V k]4i,`

)
≤ C

n

[
n−2 + E

(
w4
k,i +

∑d
`=1[V k]4i,`

)]
.

Using the above inequality iteratively, we have

E
(
w4
k,i +

∑d
`=1[V k]4i,`

)
≤
(
n−2 + w4

0,i +
∑d
`=1[V 0]4i,`

)
e
k
nC .

Since E
(
w4

0,i +
∑d
`=1[V 0]4i,`

)
are bounded in Assumption A.4), we now reach (S-20).

S-V Local stability analysis of the fixed points of the ODE

In this section, we provide additional details on the local stability analysis of the ODE for Example
1. We first its simplified ODE (13) in the main text. Then, we provide the derivation of the local
stability analysis when d = 1, where the main results are summarized in Section S-I. Finally, we
establish the proof of Claim 1 in the main text.
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S-V.1 Derive the reduced ODE for Example 1 when λ→∞

In Example 1, f(x) = f̃(x) = x. Plugging back to (9), we obtain that
gt = Λqt

g̃t = Λ̃rt

bt = ηT(q>t Λqt + ηTzt) + ηG(r>t Λ̃rt + ηGzt).

(S-47)

Correspondingly, ODE in (8) becomes:
d
dtP t = τ̃

(
qtr̃
>
t Λ̃ + P tLt

)

d
dtqt = τ

(
Λqt − P tΛ̃rt + qtht

)

d
dtrt = τ

(
P T
t Λqt − StΛ̃rt + rtht

)
+ τ̃
(
Λ̃rt +Ltrt

)

d
dtSt = τ̃

(
rtr
>
t Λ̃
>

+ Λ̃rtr
>
t + StLt +LtSt

)

d
dtzt = 2τ(q>t Λqt − r>t Λ̃rt + ztht)

+ τ2[ηT(q>t Λqt + ztηT) + ηG(r>t Λ̃rt + ztηG)]

(S-48)

The first four equations are exactly (13). From last two equations of (S-48), by setting d
dtdiag{St} =

0, d
dtzt = 0, diag(St) = I and zt = 1, we can get (14).

S-V.2 A complete study of all fixed points when d = 1

We next provide the local stability analysis of the fixed points of the ODE (13). When d = 1 and
λ→∞, the macroscopic state is described by only 3 scalars, Pt, qt and rt. The result is summarized
in Table 1. For the sake of simplicity, we only consider the case Λ = Λ̃, and set ηT = ηG = 1, but all
analysis can be extended to general cases.

The fixed points are given by the condition d
dtPt = d

dtqt = d
dtrt = 0. From (13), we get





τ̃Λr (q − rP ) = 0

τ
[
Λ− τ − Λ

(
1 + τ

2

)
q2
]
q − τΛ

[
P +

(
τ
2 − 1

)
rq
]
r = 0

τΛPq +
[
Λ(τ̃ − τ)− τ2

]
r + Λ

(
τ − τ̃ − τ2}

2

)
r3 − τΛ

(
1 + τ

2

)
rq2 = 0,

(S-49)

where P, q, r are the stationary macroscopic state. The local stability of a fixed point is identified by
whether the Jacobian matrix

J(P, q, r)
def
=




∂
∂P g1

∂
∂q g1

∂
∂rg1

∂
∂P g3

∂
∂q g3

∂
∂rg3

∂
∂P g5

∂
∂q g5

∂
∂rg5




has eigenvalue with non-negative real part or not, where g1 = τ̃Λr (q − rP ), g2 =

τ
[
Λ− τ − Λ

(
1 + τ

2

)
q2
]
q−τΛ

[
P +

(
τ
2 − 1

)
rq
]
r and g5 = τΛPq+

[
Λ(τ̃−τ)− (ηT+ηG)τ2

2

]
r+

Λ
(
τ − τ̃ − τ2ηG

2

)
r3 − τΛ

(
1 + τηT

2

)
rq2.

Type (1) fixed point at P = q = r = 0

It is easy to verify that q = r = 0 and any P ∈ [−1, 1] is a solution of (S-49), but we first consider
P = 0.

The Jacobian at P = q = r = 0 is

J(0, 0, 0) =




0 0 0
0 τ(Λ− τ) 0
0 0 Λ (τ̃ − τ)− τ2


 .

Thus, type (1) fixed point is stable if and only if

τ ≥ Λ and τ̃
τ ≤ τ+Λ

Λ .
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Type (2) fixed points at P = q = 0, r = ±r∗ 6= 0

We first analyze when such fixed point exists and then study its local stability.

If P = q = 0, the first two equations in (S-49) trivially hold. The third equation becomes

τ [Λ(r2 − 1)− τ
2 (Λr2 + 2)]− τ̃Λ(r2 − 1) = 0.

The solution is

r2 =
τ − τ̃ + τ2/Λ

τ − τ̃ − τ2/2
. (S-50)

Since only the positive solution corresponds a fixed one. Thus, type (2) fixed point exists if

τ̃
τ ≤ 1− τ

2 (S-51)

or τ̃
τ ≥ τ+Λ

Λ . (S-52)

Next, we investigate the local stability of this fixed point. The Jacobian at q̃ = q = 0 for a given r is

J(0, 0, r) =



−τ̃Λr2 τ̃Λr 0
−τΛr τ(Λ− τ)− Λτ( τ2 − 1)r2 0

0 0 3r2Λ(τ − τ2

2 − τ̃)− τ2 + Λ(τ̃ − τ)




(S-53)

Plugging (S-50) into [J(0, 0, r)]3,3 of (S-53), then [J(0, 0, r)]3,3 ≤ 0 implies

τ̃
τ ≥ τ

Λ + 1.

It indicates that the stationary points at the region (S-51) are always unstable. Thus, we only need to
consider the second region specified by (S-52).

For the upper-left 2× 2 sub-matrix of (S-53), the eigenvalues are non-positive if and only if

−τ̃Λr2 + τ(Λ− τ)− Λτ( τ2 − 1)r2 ≤ 0 (S-54)

τ + Λ( τ2 − 1)r2 + Λ− Λ ≥ 0. (S-55)

Plugging (S-50) into (S-54), we can get
τ̃
τ ≥ 2. (S-56)

Plugging (S-50) into (S-55) and combining (S-52), we can get

[τ + Λ( τ2 − 1)]τ̃ ≥ τΛ( τ2 − 1).

Solving this inequality implies that

τ̃

τ
≤ ( τ2 − 1)Λ

( τ2 − 1)Λ + τ
, when τ <

2Λ

Λ + 2
(S-57)

and
τ̃

τ
≥ ( τ2 − 1)Λ

( τ2 − 1)Λ + τ
, when τ >

2Λ

Λ + 2
. (S-58)

Note that (S-58) is included by (S-56), as ( τ2−1)Λ

( τ2−1)Λ+τ ≤ 2 when τ > 2Λ
Λ+2 .

Then, combining (S-52), (S-56), and (S-57) we obtain the stability region for q̃ = q = 0,

τ̃

τ
≥ 1 +

τ

Λ
,
τ̃

τ
≥ 2, and

τ̃

τ
≤ β(τ),

where β(τ) is defined as

β(τ)
def
=

{
( τ2−1)Λ

( τ2−1)Λ+τ if τ ≤ 2Λ
Λ+2

+∞ otherwise.
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Type (3) fixed points at q = r = 0 and |P | ∈ (0, 1]

As mentioned, we can check that q = r = 0 and any P ∈ [−1, 1] is a solution of (S-49). We next
investigate the stable region for the fixed point P = ±1 and q = r = 0, which represents the perfect
recovery state. For general P , we can analyze its fixed point similarly.

The Jacobian at q = r = 0 for any given P is

J(1, 0, 0) =




0 0 0
0 τ(Λ− τ) −τΛ
0 τΛ Λ (τ̃ − τ)− τ2


 .

In this case, J(1, 0, 0) always has an eigenvalue 0 and to calculate the rest two eigenvalues, we
only need to analyze the bottom-right 2× 2 sub-matrix of J(q̃). The characteristic polynomial of
this sub-matrix is f(λ) = λ2 − (a + d)λ + ad − bc,where a = τ(Λ − τ), b = −τΛ, c = τΛ,
and d = Λ (τ̃ − τ) − τ2. The roots of f(λ) = 0 both have non-positive real part if and only if
a+ d ≤ 0, ad− bc ≥ 0, which implies

τ̃
τ ≤ 2τ

Λ and τ̃
τ (τ − Λ) ≤ τ2

Λ . (S-59)

Noting that when τ < Λ, the second inequality always hold, and when τ > Λ, τ2

Λ(τ−Λ) ≥ 4, we can
combine the two inequalities in (S-59) into compact form

τ̃
τ ≤ min{ 2τ

Λ ,max{ τ2

Λ|τ−Λ| , 4}}.

The stable regions of the fixed points for q = r = 0 and |P | < 1 can be derived in a similar way,
which turns out to be a subset of the stable region for P = ±1.

Type (4) fixed point at P = r = 0 and q 6= 0.

From (S-49), we know when at fixed point, q̃ = r = 0, then q2 = Λ−τ
Λ(1+τ/2) , so τ must satisfy τ ≤ Λ.

The corresponding Jacobian is:

J(0, 0, q) =




0 0 τ̃Λq
0 τ(Λ− τ)− 3τΛq2(1 + τ

2 ) 0
τΛq 0 (τ̃ − τ)Λ− τ2 − τΛq2(1 + τ

2 )


 .

After plugging in q2 = Λ−τ
Λ(1+τ/2) , we can obtain that the characteristic function det(λI − J(0, 0, q))

is equal to:

det(λI − J(0, 0, q)) = [λ+ 2τ(Λ− τ)][λ(λ+ (2τ − τ̃)Λ)− τ τ̃Λ2q2]

Clearly, det(λI − J(0, 0, q)) = 0 has a non-negative root, so J(0, 0, q) always has a non-negative
eigenvalue. This means type (4) fixed points are always unstable.

Type (5) fixed points at P, q, r 6= 0

The fixed points equation (S-49) can also have solutions that none of P , q and r is zero. In what
follows, we derive the analytical expression of this type of solutions. It turns out that there can
be maximum 8 solutions, which are symmetric by flipping the signs. We are unable to derive the
analytical expression for their stable region, but it can be computed numerically.

If P, q, r 6= 0, (S-49) yields

r = q
P (S-60)

Λ− τ − Λ(1 + τ
2 )q2 − Λ[Pq + ( τ2 − 1)r]r = 0 (S-61)

τΛP̃ q + r
[
Λ(τ̃ − τ)− τ2

]
+ r3Λ

(
τ − τ̃ − τ2

2

)
− rq2τΛ

(
1 + τ

2

)
= 0. (S-62)

Plugging (S-60) into (S-61), we can get

q−2 = − 1
τ [Λ( τ2 − 1)P−2 + Λ(1 + τ

2 )]. (S-63)
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Then combining (S-60) (S-63) and (S-62), we can obtain the following equations:
AP−4 +BP−2 + C = 0 (S-64)

where A = Λ(τ̃ − τ)( 1
2 − 1

τ ) + τ̃ , B = Λ[ τ̃τ (1 + τ
2 )− 2], C = Λ(1 + τ

2 ). We can find that (S-64) is
an equation of P−2 with at most two roots. Combining (S-63), we know there are at most 2 solutions
for the pair (q−2, P−2) and hence there are at most 8 solutions for (q, P, r), where r = P/q.

S-V.3 Proof of Claim 1

Proof of Claim 1. We first compute the Jacobian ∂
{

d
dtP t,

d
dtqt,

d
dtrt,

}
/∂{P t, qt, rt} of the ODE

(13) when qt = rt = 0. In the Jacobian, the d× d matrix P t is considered as a d2 vector. In fact,
all elements in the Jacobian matrix related to P t are 0. Specifically, the Jacobian for any P and
qt = rt = 0 is

J(P ) =




0 0 0

0 τ(Λ− τη2Id) −τP Λ̃

0 τP>Λ Λ̃(τ̃ − τ)− τ2η2


 , (S-65)

where η2 = (η2
T + η2

G)/2.

When P is diagonal, under a suitable column-row permutation, the J(P ) in (S-65) becomes a block
diagonal matrix, where each non-zero block is a 2× 2 matrix[

τ([Λ]`,` − τη2) −τ [P ]`,`[Λ̃]`,`
τ [P ]`,`[Λ]`,` [Λ̃]`,`(τ̃ − τ)− τ2η2

]
(S-66)

for ` = 1, 2, . . . , d. Intuitively, the above matrix is the Jacobian matrix of
∂{ d

dt [qt]`,
d
dt [rt]`}/∂{[qt]`, [rt]`}, and the Jacobian ∂{ d

dt [qt]`,
d
dt [rt]`}/∂{[qt]`′ , [rt]`′} is zero

for ` 6= `′.

Now the problem reduces into investigate eigenvalues of n 2-by-2 matrices. For any given ` =
1, 2, . . . , n, we have studied this problem in Section S-V.2 (type (1) and type (3) fixed points).

Specifically, the perfect recovery point P = I , q = r = 0 is stable if and only if λmax(J(P )) ≤ 0,
where J(P ) is defined in (S-65). Similar to the analysis of the type (3) fixed points in Section S-V.2,
the condition that both eigenvalues of the matrix in (S-66) is non-positive implies

1
2 ([Λ]`,` − [Λ̃]`,` + α[Λ̃]`,`) ≤ τη2 (S-67)

and α(τη2 − [Λ]`,`) ≤ τη2

[Λ̃]`,`
(τη2 − [Λ]`,` + [Λ̃]`,`), (S-68)

for all ` = 1, 2, . . . , n. The inequality (S-67) is the first inequality of (15) in Claim 1 in the main text.

Next, we investigate the condition when the trivial fixed point of the origin P = 0 and q = r = 0 is
unstable. Put P = 0 into (S-66), we get a diagonal matrix[

τ([Λ]`,` − τη2) 0

0 [Λ̃]`,`(τ̃ − τ)− τ2η2

]
.

When any eigenvalue of the above matrices for ` = 1, 2, . . . , n is positive, this trivial fixed point will
be unstable. A sufficient condition is the first eigenvalues of all matrices are positive:

τη2 < [Λ]`,` for all ` = 1, 2, . . . , n. (S-69)
The above inequality is the second inequality of (15) in the main text. In addition, (S-69) implies
(S-68) hold as the left hand side of (S-68) is negative. Now, we prove that (15) is a sufficient condition
that the perfect fixed point is stable and the trivial fixed point is unstable.

We further note that (15) is not a necessary condition. There may be a region that (S-69) does not
hold, but the origin is still unstable, and the perfect recovery point is stable. Such region is hard to
characterize analytically, and numerically, we found the training algorithms always converge to other
bad fixed points (e.g. mode collapsing state, or a state that P and q are still zero, but r is non-zero.
The situation of the latter is similar to the noninfo-2 phase in the d = 1 case, which converges to
the type (2) fixed point). Further study on those bad fixed points will be established in future works
under a more general model.
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