
Generalization error in high-dimensional perceptrons:
Approaching Bayes error with convex optimization

Benjamin Aubin†, Florent Krzakala?, Yue M. Lu◦, Lenka Zdeborová†

† Université Paris-Saclay, CNRS, CEA,
Institut de physique théorique, 91191, Gif-sur-Yvette, France.

? Laboratoire de Physique Statistique, CNRS & Sorbonnes Universités,
École Normale Supérieure, PSL University, Paris, France.

◦ John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02138, USA

Abstract

We consider a commonly studied supervised classi�cation of a synthetic dataset whose
labels are generated by feeding a one-layer neural network with random iid inputs. We
study the generalization performances of standard classi�ers in the high-dimensional
regime where α = n/d is kept �nite in the limit of a high dimension d and number of
samples n. Our contribution is three-fold: First, we prove a formula for the generalization
error achieved by `2 regularized classi�ers that minimize a convex loss. This formula was
�rst obtained by the heuristic replica method of statistical physics. Secondly, focussing on
commonly used loss functions and optimizing the `2 regularization strength, we observe that
while ridge regression performance is poor, logistic and hinge regression are surprisingly
able to approach the Bayes-optimal generalization error extremely closely. As α→∞ they
lead to Bayes-optimal rates, a fact that does not follow from predictions of margin-based
generalization error bounds. Third, we design an optimal loss and regularizer that provably
leads to Bayes-optimal generalization error.
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1 Introduction

High-dimensional statistics, where the ratio α = n/d is kept �nite while the dimensionality d
and the number of samples n grow, often display interesting non-intuitive features. Asymptotic
generalization performances for such problems in the so-called teacher-student setting, with
synthetic data, have been the subject of intense investigations spanning many decades [1–6]. To
understand the e�ectiveness of modern machine learning techniques, and also the limitations of
the classical statistical learning approaches [7, 8], it is of interest to revisit this line of research.
Indeed, this direction is currently the subject to a renewal of interests, as testi�ed by some very
recent, yet already rather in�uential papers [9–13]. The present paper subscribes to this line of
work and studies high-dimensional classi�cation within one of the simplest models considered
in statistics and machine learning: convex linear estimation with data generated by a teacher
perceptron [14]. We will focus on the generalization abilities in this problem, and compare the
performances of Bayes-optimal estimation to the more standard empirical risk minimization. We
then compare the results with the prediction of standard generalization bounds that illustrate
in particular their limitation even in this simple, yet non-trivial, setting.

Synthetic data model — We consider a supervised machine learning task, whose dataset is
generated by a single layer neural network, often named a teacher [1–3], that belongs to the
Generalized Linear Model (GLM) class. Therefore we assume the n samples are drawn according
to

y = ϕ?out

(
1√
d

Xw?

)
⇔ y ∼ P ?out (.) , (1)

where w? ∈ Rd denotes the ground truth vector drawn from a probability distribution Pw?

with second moment ρw? ≡ 1
dE
[
‖w?‖22

]
and ϕ?out represents a deterministic or stochastic

activation function equivalently associated to a distribution P ?out. The input data matrix X =
(xµ)nµ=1 ∈ Rn×d contains iid Gaussian vectors, i.e ∀µ ∈ [1 : n], xµ ∼ N (0, Id). Even though
the framework we use and the theorems and results we derived are valid for a rather generic
channel in eq. (1) —including regression problems— we will mainly focus the presentation on
the commonly considered perceptron case: a binary classi�cation task with data given by a
sign activation function ϕ?out (z) = sign (z), with a Gaussian weight distribution Pw?(w?) =
Nw? (0, ρw?Id). The ±1 labels are thus generated as

y = sign
(

1√
d

Xw?

)
, with w? ∼ Nw? (0, ρw?Id) . (2)

Empirical Risk Minimization — The workhorse of machine learning is Empirical Risk
Minimization (ERM), where one minimizes a loss function in the corresponding high-dimensional
parameter space Rd. To avoid over�tting of the training set one often adds a regularization term
r. ERM then corresponds to estimating ŵerm = argminw [L (w;y,X)] where the regularized
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training loss L is de�ned by, using the notation zµ (w,xµ) ≡ 1√
d
xᵀµw,

L (w;y,X) =
n∑
µ=1

l (yµ, zµ (w,xµ)) + r (w) . (3)

The goal of the present paper is to discuss the generalization performance of these estimators
for the classi�cation task (2) in the high-dimensional limit. We focus our analysis on commonly
used loss functions l, namely the square lsquare(y, z) = 1

2(y − z)2, logistic llogistic(y, z) =
log(1 + exp(−yz)) and hinge losses lhinge(y, z) = max (0, 1− yz). We will mainly illustrate
our results for the `2 regularization r (w) = λ‖w‖22/2, where we introduced a regularization
strength hyper-parameter λ.

Related works — The above learning problem has been extensively studied in the statistical
physics community using the heuristic replica method [1–3, 14, 15]. Due to the interest in
high-dimensional statistics, they have experienced a resurgence in popularity in recent years.
In particular, rigorous works on related problems are much more recent. The authors of [10]
established rigorously the replica-theory predictions for the Bayes-optimal generalization
error. Here we focus on standard ERM estimation and compare it to the results obtained
in [10]. Authors of [16] analyzed rigorously M-estimators for the regression case where data are
generated by a linear-activation teacher. Here we analyze classi�cation with a more general and
non-linear teacher, focusing in particular on the sign-teacher. The case of max-margin loss was
studied in [17] with a technically closely related proof, but with a focus on the over-parametrized
regime, thus not addressing the questions that we focus on. A range of unregularized losses was
also analyzed for a sigmoid teacher (that is very similar to a sign-teacher) again in the context
of the double-descent behaviour in [18, 19]. Here we focus instead on the regularized case as it
drastically improves generalization performances of the ERM and that allows us to compare
with the Bayes-optimal estimation as well as to standard generalization bounds. Our proof, as
in the above mentioned works and [20], is based on Gordon’s minimax formalism, including in
particular the e�ect of the regularization.

Main contributions — Our �rst main contribution is to provide rigorously, in Sec. 2, the
classi�cation generalization performances of empirical risk minimization with the loss given by
(3) in the high-dimensional limit, for any convex loss and an `2 regularization. Note that the
proof is easily extended to any convex separable regularization. Additionally, we provide a proof
of the equivalence between the results of our paper and the ones initially obtained by the replica
method, which is of additional interest given the wide range of application of these heuristics
statistical-physics technics in machine learning and computer science [21, 22]. In particular,
the replica predictions in [15, 23–25] follow from our results. Another approach that originated
in physics are the so-called TAP equations [26–28] that lead to the so-called Approximate
Message Passing algorithm for solving linear and generalized linear problems with Gaussian
matrices [29, 30]. This algorithm can be analyzed with the so-called state evolution method [31],
and it is widely believed (and in fact proven for linear problems [4, 32]) that the �xed-point of
the state evolution gives the optimal error in high-dimensional convex optimization problems.
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The state evolution equations are in fact equivalent to the one given by the replica theory and
therefore our results vindicate this approach as well. We also demonstrate numerically that
these asymptotic results are very accurate even for moderate system sizes, and they have been
performed with the scikit-learn library [33].

Secondly, and more importantly, we provide in Sec. 3 a detailed analysis of the generalization
error for standard losses such as square, hinge (or equivalently support vector machine) and
logistic, as a function of the regularization strength λ and the number of samples per dimension
α. We observe, in particular, that while the ridge regression never closely approaches the Bayes-
optimal performance, the logistic regression with optimized `2 regularization gets extremely
close to optimal. And so does, to a lesser extent, the hinge regression and the max-margin
estimator to which the unregularized logistic and hinge converge [34]. It is quite remarkable
that these canonical losses are able to approach the error of the Bayes-optimal estimator for
which, in principle, the marginals of a high-dimensional probability distribution need to be
evaluated. Notably, all the later losses give —for a good choice of the regularization strength λ—
generalization errors scaling as Θ

(
α−1

)
for large α, just as the Bayes-optimal generalization

error [10]. This is found to be at variance with the prediction of Rademacher and max-margin-
based bounds that predict instead a Θ

(
α−1/2

)
rate [35, 36], which therefore appear to be

vacuous in the high-dimensional regime.
Third, in Sec. 4, we design a custom (non-convex) loss and regularizer that provably gives a

plug-in estimator that e�ciently achieves Bayes-optimal performances, including the optimal
Θ
(
α−1

)
rate for the generalization error. Our construction is related to the one discussed

in [37–39], but is not restricted to convex losses.

2 Main technical results

In the formulas that arise for this statistical estimation problem, the correlations between the
estimator ŵ and the ground truth vector w? play a fundamental role and we thus de�ne two
scalar overlap parameters to measure the statistical reconstruction:

m ≡ 1

d
Ey,Xŵᵀw? , q ≡ 1

d
Ey,X [‖ŵ‖2]2 . (4)

In particular, the generalization error of the estimator ŵ(α) ∈ Rd obtained by performing
Empirical Risk Minimization (ERM) on the training loss L in eq. (3) with n = αd samples

eerm
g (α) ≡ Ey,x1 [y 6= ŷ (ŵ(α);x)] , (5)

where ŷ (ŵ(α);x) denotes the predicted label, has both at �nite d and in the asymptotic limit
an explicit expression depending only on the above overlaps m and q:

Proposition 2.1 (Generalization error of classi�cation). In our synthetic binary classi�cation
task, the generalization error of ERM (or equivalently the test error) is given by

eerm
g (α) =

1

π
acos (

√
η) , with η ≡ m2

ρw?q
and ρw? ≡

1

d
E
[
‖w?‖22

]
. (6)
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Proof. The proof, shown in SM. II, is a simple computation based on a Gaussian integration.

To obtain the generalization performances, it thus remains to obtain the asymptotic values
of m, q (and thus of η), in the limit d → ∞. With the `2 regularization, these values are
characterized by a set of �xed point equations given by the next theorems 1:

For any τ > 0, let us �rst recall the de�nitions of the Moreau-Yosida regularization and the
proximal operator of a convex loss function (y, z) 7→ `(y · z):

Mτ (z) = min
x

{
`(x) +

(x− z)2

2τ

}
, Pτ (z) = argminx

{
`(x) +

(x− z)2

2τ

}
. (7)

Theorem 2.2 (Gordon’s min-max �xed point - Binary classi�cation with `2 regularization). As
n, d→∞ with n/d = α = Θ(1), the overlap parametersm, q concentrate to

m −→
d→∞

√
ρw?µ

∗ , q −→
d→∞

(µ∗)2 + (δ∗)2 , (8)

where parameters µ∗ and δ∗ are solutions of

(µ∗, δ∗) = arg min
µ,δ≥0

sup
τ>0

{
λ(µ2 + δ2)

2
− δ2

2τ
+ αEg,sMτ [δg + µsϕout?(

√
ρw?s)]

}
, (9)

and g, s are two iid standard normal random variables. The solutions (µ∗, δ∗) of (9) can be
reformulated as a set of �xed point equations

µ∗ =
α

λτ∗ + α
Eg,s[s · ϕout?(

√
ρw?s) · Pτ∗(δ∗g + µ∗sϕout?(

√
ρw?s))] ,

δ∗ =
α

λτ∗ + α− 1
Eg,s[g · Pτ∗(δ∗g + µ∗sϕout?(

√
ρw?s))] ,

(δ∗)2 = αEg,s[((δ∗g + µ∗sϕout?(
√
ρw?s))− Pτ∗(δ∗g + µ∗sϕout?(

√
ρw?s)))

2] .

(10)

Proof. The proof, shown in SM. III.1, is an application of the Gordon minimax theory.

This set of �xed point equations can be �nally mapped to the ones obtained by the heuristic
replica method from statistical physics (whose heuristic derivation is shown in SM. IV) as well
as the state evolution of the approximate-message-passing algorithm [27, 30, 40]. Thus their
validity for this convex estimation problem is rigorously established by the following theorem:

Corollary 2.3 (Equivalence Gordon-replicas). As n, d→∞ with n/d = α = Θ(1), the overlap
parametersm, q concentrate to the �xed point of the following set of equations:

m = αΣρw? · Ey,ξ
[
Zout? × fout? (y,

√
ρw?ηξ, ρw? (1− η)) · fout

(
y, q1/2ξ,Σ

)]
,

q = m2/ρw? + αΣ2 · Ey,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) · fout

(
y, q1/2ξ,Σ

)2
]
, (11)

Σ =
(
λ− α · Ey,ξ

[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) · ∂ωfout

(
y, q1/2ξ,Σ

)])−1
,

1Note that for a generic convex and non-separable regularizer (di�erent than `2), it would contain instead six
equations (see SM. III.2).
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with η ≡ m2

ρw?q
, fout (y, ω, V ) ≡ V −1(PV [l(y, .)](ω)− ω) ,

Zout? (y, ω, V ) = Ez
[
Pout?

(
y|
√
V z + ω

)]
, fout?(y, ω, V ) ≡ ∂ω log (Zout? (y, ω, V )) ,

(12)

where ξ, z denote two iid standard normal random variables, and Ey the continuous or discrete
sum over all possible values y according to Pout? .

Proof. For the sake of clarity, the proof is again left in SM. III.3.

Equivalent equations for the whole GLM class (classi�cation and regression) with any
separable and convex regularizer are shown in SM. III.2.

Bayes optimal baseline — Finally, we shall compare the ERM performances to the Bayes-
optimal generalization error. Being the information-theoretically best possible estimator, we will
use it as a reference baseline for comparison. The expression of the Bayes-optimal generalization
was derived in [24] and proven in [10] and we recall here the result:

Theorem 2.4 (Bayes Asymptotic performance, from [10]). For the model (1) with Pw?(w?) =
Nw? (0, ρw?Id), the Bayes-optimal generalization error is quanti�ed by two scalar parameters qb

and q̂b that verify the set of �xed point equations

qb =
q̂b

1 + q̂b
, q̂b = αEy,ξ

[
Zout?

(
y, q

1/2
b ξ, ρw? − qb

)
· fout?

(
y, q

1/2
b ξ, ρw? − qb

)2
]
, (13)

and reads
ebayes

g (α) =
1

π
acos (

√
ηb) with ηb =

qb

ρw?
. (14)

3 Generalization errors

We now move to the core of the paper and analyze the set of �xed point equations (10),
or equivalently (11), leading to the generalization performances given by (6), for common
classi�ers on our synthetic binary classi�cation task. As already stressed, even though the
results are valid for a wide range of regularizers, we focus on estimators based on ERM with `2
regularization r(w) = λ‖w‖22/2, and with square loss (ridge regression) lsquare(y, z) = 1

2(y −
z)2, logistic loss (logistic regression) llogistic(y, z) = log(1 + exp(−yz)) or hinge loss (SVM)
lhinge(y, z) = max (0, 1− yz). In particular, we study the in�uence of the hyper-parameter λ
on the generalization performances and the di�erent large α behaviour generalization rates
in the high-dimensional regime, and compare with the Bayes results. We show the solutions
of the set of �xed point equations eqs. (11) in Figs. 1a, 1b, 1c respectively for ridge, hinge and
logistic `2 regressions. Ridge regression is a special case, for which its quadratic loss allows to
derive and fully solve the equations (see SM. V.3). However in general the set of equations has
no analytical closed form and needs therefore to be solved numerically. It is in particular the
case for logistic and hinge, whose Moreau-Yosida regularization eq. (12) is, however, analytical.
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First, to highlight the accuracy of the theoretical predictions, we compare in Figs. 1a-1c the
ERM asymptotic (d→∞) generalization error with the performances of numerical simulations
(d = 103, averaged over ns = 20 samples) of ERM of the training loss eq. (3). Presented for
a wide range of number of samples α and of regularization strength λ, we observe a perfect
match between theoretical predictions and numerical simulations so that the error bars are
barely visible and have been therefore removed. This shows that the asymptotic predictions are
valid even with very moderate sizes. As an information theoretical baseline, we also show the
Bayes-optimal performances (black) given by the solution of eq. (13).

Ridge estimation— As we might expect the square loss gives the worst performances. For
low values of the generalization, it leads to an interpolation-peak at α = 1. The limit of
vanishing regularization λ→ 0 leads to the least-norm or pseudo-inverse estimator ŵpseudo =
(XᵀX)−1 Xᵀy. The corresponding generalization error presents the largest interpolation-peak
and achieves a maximal generalization error eg = 0.5. These are well known observations,
discussed as early as in [23, 25], that are object of a renewal of interest under the name double
descent, following a recent series of papers [11, 41–47]. This double descent behaviour for the
pseudo-inverse is shown in Fig. 1a with a yellow line. On the contrary, larger regularization
strengths do not su�er this peak at α = 1, but their generalization error performance is
signi�cantly worse than the Bayes-optimal baseline for larger values of α. Indeed, as we
might expect, for a large number of samples, a large regularization biases wrongly the training.
However, even with optimized regularizations, performances of the ridge estimator remains far
away from the Bayes-optimal performance.

Hinge and logistic estimation— Both these losses, which are the classical ones used in
classi�cation problems, improve drastically the generalization error. First of all, let us notice
that they do not display a double-descent behavior. This is due to the fact that our results
are illustrated in the noiseless case and that our synthetic dataset is always linearly separable.
Optimizing the regularization, our results in Fig. 1b-1c show both hinge and logistic ERM-
based classi�cation approach very closely the Bayes error. To o�set these results, note that
performances of logistic regression on non-linearly separable data are however very poor, as
illustrated by our analysis of a rectangle door teacher (see SM. V.6).

Max-margin estimation— As discussed in [34], both the logistic and hinge estimator con-
verge, for vanishing regularization λ→ 0, to the max-margin solution. Taking the λ→ 0 limit
in our equations, we thus obtain the max-margin estimator performances. While this is not
what gives the best generalization error (as can be seen in Fig. 1c the logistic with an optimized
λ has a lower error), the max-margin estimator gives very good results, and gets very close to
the Bayes-error.

Optimal regularization— De�ning the regularization value that optimizes the generalization
as

λopt (α) = argminλe
erm
g (α, λ) , (15)
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we show in Figs. 1b-1c that both optimal values λopt (α) (dashed-dotted orange) for logistic and
hinge regression decrease to 0 as α grows and more data are given. Somehow surprisingly, we
observe in particular that the generalization performances of logistic regression with optimal
regularization are extremely close to the Bayes performances. The di�erence with the optimized
logistic generalization error is barely visible by eye, so that we explicitly plotted the di�erence,
which is roughly of order 10−5.

Ridge regression Fig. 1a shows a singular behaviour: there exists an optimal value (purple)
which is moreover independent of α achieved for λopt ' 0.5708. This value was �rst found
numerically and con�rmed afterwards semi-analytically in SM. V.3.

Generalization rates at large α— Finally, we turn to the very instructive behavior at large
values of α when a large amount of data is available. First, we notice that the Bayes-optimal
generalization error, whose large α analysis is performed in SM. V.1, decreases as ebayes

g ∼
α→∞

0.4417α−1. Compared to this optimal value, ridge regression gives poor performances in this
regime. For any value of the regularization λ — and in particular for both the pseudo-inverse
case at λ = 0 and the optimal estimator λopt — its generalization performances decrease much
slower than the Bayes rate, and goes only as eridge

g ∼
α→∞

0.2405α−1/2 (see SM. V.3 for the
derivation). Hinge and logistic regressions present a radically di�erent, and more favorable,
behaviour. Fig. 1b-1c show that keeping λ �nite when α goes to∞, does not yield the Bayes-
optimal rates. However the max-margin solution (that corresponds to the λ→ 0 limit of these
estimators) gives extremely good performances elogistic,hinge

g ∼
λ→0

emax−margin
g ∼

α→∞
0.500α−1

see derivation in SM. V.4). This is the same rate as the Bayes one, only that the constant is
slightly higher.

Comparison with VC and Rademacher statistical bounds— Given the fact that both the
max-margin estimator and the optimized logistic achieve optimal generalization rates going as
Θ
(
α−1

)
, it is of interest to compare those rates to the prediction of statistical learning theory

bounds. Statistical learning analysis (see e.g. [35, 36, 48]) relies to a large extent on the Vapnik-
Chervonenkis dimension (VC) analysis and on the so-called Rademacher complexity. The uniform
convergence result states that if the Rademacher complexity or the Vapnik-Chervonenkis
dimension dVC is �nite, then for a large enough number of samples the generalization gap will
vanish uniformly over all possible values of parameters. Informally, uniform convergence tells
us that with high probability, for any value of the weights w, the generalization gap satis�es
Rpopulation(w)−Rnempirical(w) = Θ

(√
dVC/n

)
where dVC = d− 1 for our GLM hypothesis

class. Therefore, given that the empirical risk can go to zero (since our data are separable),
this provides a generalization error upper-bound eg ≤ Θ(α−1/2). This is much worse that
what we observe in practice, where we reach the Bayes rate eg = Θ(α−1). Tighter bounds
can be obtained using the Rademacher complexity, and this was studied recently (using the
aforementioned replica method) in [49] for the very same problem. We reproduced their results
and plotted the Rademacher complexity generalization bound in Fig.1 (dashed-green) that
decreases as Θ

(
α−1/2

)
for the binary classi�cation task eq. (2).

One may wonder if this could be somehow improved. Another statistical-physics heuristic
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(a) Ridge regression: square loss with `2 regularization. Interpolation-peak, at α = 1, is maximal for the
pseudo-inverse estimator λ = 0 (yellow line) that reaches eg = 0.5.
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and almost indistinguishable of the max-margin performances (dashed black).
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Bayes-optimal line, their di�erence eoptg − ebayesg is shown as an inset (dashed orange).

Figure 1: Asymptotic generalization error for `2 regularization (d → ∞) as a function of α
for di�erent regularizations strengths λ, compared to numerical simulation (points) of ridge
regression for d = 103 and averaged over ns = 20 samples. Numerics has been performed with
the default methods Ridge, LinearSVC, LogisticRegression of scikit-learn package [33]. Bayes
optimal performances are shown with a black line and goes as Θ

(
α−1

)
, while the Rademacher

complexity (dashed green) decrease as Θ
(
α−1/2

)
. Both hinge and logistic converge to max-

margin estimator (limit λ = 0) which is shown in dashed black and deceases as Θ(α−1), while
Ridge decreases as Θ(α−1/2).
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computation, however, suggests that, unfortunately, uniform bound are plagued to a slow rate
Θ
(
α−1/2

)
. Indeed, the authors of [50] showed with a replica method-style computation that

there exists some set of weights, in the binary classi�cation task. (2), that lead to Θ
(
α−1/2

)
rates: the uniform bound is thus tight. The gap observed between the uniform bound and the
almost Bayes-optimal results observed in practice in this case is therefore not a paradox, but an
illustration that the price to pay for uniform convergence is the inability to describe the optimal
rates one can sometimes get in practice. Therefore, we believe, that the fact this phenomena
can be observed in a such simple problem sheds an interesting light on the current debate in
understanding generalization in deep learning [7].

Remarking our synthetic dataset is linearly-separable, we may try to take this fact into
consideration to improve the generalization rate. In particular, it can be done using the max-
margin based generalization error for separable data:

Theorem 3.1 (Hard-margin generalization bound [35, 36, 48]). Given a S = {x1, · · · , xn} such
that ∀µ ∈ [1 : n], ‖xµ‖ ≤ r. Let ŵ the hard-margin SVM estimator on S drawn with distribution
D. With probability 1− δ, the generalization error is bounded by

eg(α) ≤
α→∞

(
4r‖ŵ‖+

√
log (4/δ) log2 ‖ŵ‖

)
/
√
n . (16)

In our case one has r2 ' 1
dEx‖x‖22 = 1

d

∑d
i=1 Ex2

i = 1. On the other hand, in the large size
limit, the norm of the estimator ‖ŵ‖2/

√
d ' √q, that yields eg(α) ≤ 4

√
q
α . We now need to

plug the values of the norm q obtained by our max-margin solution to �nally obtain the results.
Unfortunately, this bound turns out to be even worse than the previous one. Indeed the norm of
the hard margin estimator q is found to grow with α in the solution of the �xed point equation,
and therefore the margin decay rather fast, rendering the bound vacuous. For small values of α,
one �nds that q ∼ α that provides a vacuous constant generalisation bound eg ≤ Θ (1), while
for large α, q ∼ α2 that yields an even worse bound eg ≤ Θ (

√
α). Clearly, max-margin based

bounds do not perform well in this high-dimensional example.

4 Reaching Bayes optimality

Given the fact that logistic and hinge losses reach values extremely close to Bayes optimal
generalization performances, one may wonder if by somehow slightly altering these losses one
could actually reach the Bayesian values with a plug-in estimator obtained by ERM. This is
what we achieve in this section, by constructing a (non-convex) optimization problem with a
specially tuned loss and regularization, whose solution yields Bayes-optimal generalization.
Recent insights have shown that indeed one can sometime re-interpret Bayesian estimation
as an optimization program in inverse problems [37, 38, 51, 52]. In particular, [39] showed
explicitly, on the basis of the non-rigorous replica method of statistical mechanics, that some
Bayes-optimal reconstruction problems could be turned into convex M-estimation.

Matching ERM and Bayes-optimal generalization errors eqs. (6)-(14) with overlaps respect-
ively solutions of eq. (11)-(13) and assuming that Zw? (γ,Λ) ≡ Ew∼Pw?

exp
(
−1/2Λw2 + γw

)
11



and Zout? (y, ω, V ) are log-concave in γ and ω, we de�ne the optimal loss and regularizer lopt,
ropt:

lopt (y, z) = −min
ω

(
(z − ω)2

2(ρw? − qb)
+ logZout? (y, ω, ρw? − qb)

)
,

ropt (w) = −min
γ

(
1

2
q̂bw

2 − γw + logZw? (γ, q̂b)

)
, with (qb, q̂b) solution of eq. (13) .

(17)

See SM. VI for the derivation. Following these considerations, we provide the following theorem:

Theorem 4.1. The result of empirical risk minimization eq. (3) with lopt and ropt in eq. (17),
leads to Bayes optimal generalization error in the high-dimensional regime.

Proof. We present only the sketch of the proof here. First we note that the so called Bayes-
optimal Approximate Message Passing (AMP) algorithm [30] is provably convergent, and indeed
reaches Bayes-optimal performances (see [53]). Second, we remark that an AMP algorithm
for the minimization of the ERM with loss and regularization given by (17) is exactly identical
to the Bayes-optimal AMP. This shows that AMP applied to the ERM problem corresponding
to (17) both converge to its �xed point and reach Bayes-optimal performances. The theorem
�nally follows by noting (see [32,54]) that the AMP �xed point corresponds to the extremization
conditions of the loss.
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Figure 2: Optimal loss lopt (y = 1, z) and regularizer ropt (w) for model eq. (2) as a function of
α.

The optimal loss and regularizer λopt and ropt for the model (2) are illustrated in Fig. (2). And
numerical evidences of ERM with (17) compared to `2 logistic regression and Bayes performances
are presented in SM. VI.
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Supplementary material
In this supplementary material (SM), we provide the proofs and computation details leading
to the results presented in the main manuscript. In Sec. I, we �rst recall the de�nition of the
statistical model used in Sec. 1 and we give proper de�nitions of the denoising distributions
involved in the analysis of the Bayes-optimal and Empirical Risk Minimization (ERM) estimation.
In particular, we provide the analytical expressions of the denoising functions used in Sec. 3
to analyze ridge, hinge and logistic regressions. In Sec. II, we detail the computation of the
binary classi�cation generalization error leading to the expressions in Proposition. 2.1 and
Thm. 2.4 respectively for ERM and Bayes-optimal estimation. In Sec. III, we present the proofs
of the central theorems stated in Sec. 2. In particular, we derive the Gordon-based proof of the
Thm. 2.2 in the more general regression (real-valued) version and provide as well the proof of
Corollary. 2.3 which establishes the equivalence between the set of �xed-point equations of the
Gordon’s proof in the binary classi�cation case and the one resulting from the heuristic replica
computation. The corresponding statistical physics framework used to analyze Bayes and ERM
statistical estimations and the replica computation leading to expressions in Corollary. 2.3 are
detailed In Sec. IV. The section V is devoted to provide additional technical details on the results
with `2 regularization addressed in Sec. 3. In particular, we present the large α expansions of the
generalization error for the Bayes-optimal, ridge, pseudo-inverse and max-margin estimators, and
we investigate the performances of logistic regression on non-linearly separable data. Finally
in Sec. VI, we show the derivation of the �ne-tuned loss and regularizer provably leading to
Bayes-optimal performances, as explained and advocated in Sec. 4, and we show some numerical
evidences that ERM achieves indeed Bayes-optimal error in Fig. 5.
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I De�nitions and notations

I.1 Statistical model

We recall the supervised machine learning task considered in the main manuscript eq. (1), whose
dataset is generated by a single layer neural network, often named a teacher, that belongs to
the Generalized Linear Model (GLM) class. Therefore we assume the n samples are drawn
according to

y = ϕ?out

(
1√
d

Xw?

)
⇔ y ∼ P ?out (.) , (18)

where w? ∈ Rd denotes the ground truth vector drawn from a probability distribution Pw? with
second moment ρw? ≡ 1

dE
[
‖w?‖22

]
and ϕ?out represents a deterministic or stochastic activation

function equivalently associated to a distribution P ?out. The input data matrix X = (xµ)nµ=1 ∈
Rn×d contains iid Gaussian vectors, i.e ∀µ ∈ [1 : n], xµ ∼ N (0, Id).

I.2 Bayes-optimal and ERM estimation

Inferring the above statistical model from observations {y,X} can be tackled in several ways.
In particular, Bayesian inference provides a generic framework for statistical estimation based
on the high-dimensional, often intractable, posterior distribution

P (w|y,X) =
P (y|w,X)P (w)

P (y,X)
. (19)

Estimating the average of the above posterior distribution in the case we have access to the
ground truth prior distributions P (y|w,X) = Pout? (y|z) with z ≡ 1√

d
Xw and P (w) =

Pw? (w), refers to Bayes-optimal estimation and leads to the corresponding Minimal Mean-
Squared Error (MMSE) estimator ŵmmse = EP(w|y,X) [w]. It has been rigorously analyzed in
details in [10] for the whole GLM class eq. (18). Another celebrated approach and widely used
in practice is the Empirical Risk Minimization (ERM) that minimizes instead a regularized loss:
ŵerm = argminw [L (w;y,X)] with

L (w;y,X) =

n∑
µ=1

l (w; yµ,xµ) + r (w) . (20)

Interestingly analyzing the ERM estimation may be included in the above Bayesian framework.
Indeed exponentiating eq. (20), we see that minimizing the loss L is equivalent to maximize the
posterior distribution P (w|y,X) = e−L(w;y,X) if we choose carefully the prior distributions as
functions of the regularizer r and the loss l:

− logP (y|w,X) = l (w;y,X) , − logP (w) = r (w) . (21)

Computing the maximum of the posterior P (y|w,X) refers instead to the so-called Maximum
A Posteriori (MAP) estimator, and therefore analyzing the empirical minimization of (20) is
equivalent to obtain the performance of the MAP estimator with prior distributions given by
(21). Thus both the study of ERM (MAP) and Bayes-optimal (MMSE) estimations are simply
reduced to the analysis of the posterior eq. (19).
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I.3 Denoising distributions and updates

Analyzing the posterior distribution eq. (19) in the high-dimensional regime [10] will boil down
to introducing the scalar denoising distributions Qw, Qout and their respective normalizations
Zw, Zout

Qw(w; γ,Λ) ≡ Pw(w)

Zw(γ,Λ)
e−

1
2

Λw2+γw , Qout(z; y, ω, V ) ≡ Pout (y|z)
Zout(y, ω, V )

e−
1
2
V −1(z−ω)2

√
2πV

,

Zw(γ,Λ) ≡ Ew∼Pw

[
e−

1
2

Λw2+γw
]
, Zout(y, ω, V ) ≡ Ez∼N (0,1)

[
Pout

(
y|
√
V z + ω

)]
.

(22)

We de�ne as well the denoising functions, that play a central role in Bayesian inference. Note in
particular that they correspond to the updates of the Approximate Message Passing algorithm
in [30] that we recalled in Sec. VI.1. They are de�ned as the derivatives of logZw and logZout,
namely

fw(γ,Λ) ≡ ∂γ log (Zw) = EQw [w] and ∂γfw(γ,Λ) ≡ EQw

[
w2
]
− f2

w

fout(y, ω, V ) ≡ ∂ω log (Zout) = V −1EQout [z − ω] and ∂ωfout(y, ω, V ) ≡ ∂fout(y, ω, V )

∂ω
.

(23)

I.3.1 Bayes-optimal - MMSE denoising functions

In Bayes-optimal estimation, the ground truth prior and channel distributions Pw?(w) and
Pout? (y|z) of the teacher eq. (1) are known. Hence, replacing Pw and Pout in (22), we obtain the
Bayes-optimal scalar denoising distributions in terms of which the Bayes-optimal free entropy
eq. (95) is written

Qw?(w; γ,Λ) ≡ Pw?(w)

Zw?(γ,Λ)
e−

1
2

Λw2+γw , Qout?(z; y, ω, V ) ≡ Pout? (y|z)
Zout?(y, ω, V )

e−
1
2
V −1(z−ω)2

√
2πV

.,

(24)

and the denoising updates are therefore given by eq. (23) with the corresponding distributions

fw?(γ,Λ) ≡ ∂γ logZw?(γ,Λ) , fout?(y, ω, V ) ≡ ∂ω logZout?(y, ω, V ) . (25)

I.3.2 ERM - MAP denoising functions

Before de�ning similar denoising functions to analyze the MAP for ERM estimation, we �rst
recall the de�nition of the Moreau-Yosida regularization.

Moreau-Yosida regularization and proximal Let Σ > 0, f(, z) a convex function in z.
De�ning the regularized functional

LΣ[f(, .)](z;x) = f(, z) +
1

2Σ
(z − x)2 , (26)
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the Moreau-Yosida regularizationMΣ and the proximal map PΣ are de�ned by

PΣ[f(, .)](x) = argminzLΣ[f(, .)](z;x) = argminz

[
f(, z) +

1

2Σ
(z − x)2

]
, (27)

MΣ[f(, .)](x) = min
z
LΣ[f(, .)](z;x) = min

z

[
f(, z) +

1

2Σ
(z − x)2

]
, (28)

where (, z) denotes all the arguments of the function f , where z plays a central role. The
MAP denoising functions for any convex loss l(, .) and convex separable regularizer r(.) can be
written in terms of the Moreau-Yosida regularization or the proximal map as follows

fmap,r
w (γ,Λ) ≡ PΛ−1 [r(.)] (Λ−1γ) = Λ−1γ − Λ−1∂Λ−1γMΛ−1 [r(.)] (Λ−1γ) ,

fmap,l
out (y, ω, V ) ≡ −∂ωMV [l(y, .)](ω) = V −1 (PV [l(y, .)](ω)− ω) .

(29)

The above updates can be considered as de�nitions, but it is instructive to derive them from the
generic de�nition of the denoising distributions eq. (23) if we maximize the posterior distribution.
This is done by taking, in a physics language, a zero temperature limit and we present it in
details in the next paragraph.

Derivation of theMAP updates To have access to the maximum of the generic distributions
eq. (22), we introduce a �ctive noise/temperature ∆ or inverse temperature β, ∆ = 1

β . In
particular for Bayes-optimal estimation this temperature is �nite and �xed to ∆ = β = 1.
Indeed with the mapping eq. (21), minimizing the loss function L (20) is equivalent to maximize
the posterior distribution. Therefore it can be done by taking the zero noise/temperature limit
∆→ 0 of the channel and prior denoising distributions Qout and Qw. It is the purpose of the
following paragraphs where we present the derivation leading to the result (29).

Channel Using the mapping eq. (21), we assume that the channel distribution can be expressed
as P (y|z) ∝ e−l(y,z). Therefore we introduce the corresponding channel distribution Pout at
�nite temperature ∆ associated to the convex loss l(y, z)

Pmap
out (y|z) =

e−
1
∆
l(y,z)

√
2π∆

.

Note that the case of the square loss l(y, z) = 1
2 (y − z)2 is very speci�c. Its channel distribution

simply reads Pout (y|z) = e−
1

2∆
(y−z)2

√
2π∆

and is therefore equivalent to predict labels y according
to a noisy Gaussian linear model y = z +

√
∆ξ, where ξ ∼ N (0, 1) and ∆ denotes therefore

the real noise of the model.
In order to obtain a non trivial limit and a closed set of equations when ∆→ 0, we must

de�ned rescaled variables as follows:

V† ≡ lim
∆→0

V

∆
, fmap

out,†(y, ω, V†) ≡ lim
∆→0

∆× fmap
out (y, ω, V ) ,
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where we denote the rescaled quantities after taking the limit ∆→ 0 by †. Similarly to eq. (26),
we introduce therefore the rescaled functional

LV† [l(y, .)](z;ω) = l(y, z) +
1

2V†
(z − ω)2 , (30)

such that, injecting Pmap
out , the channel denoising distribution Qmap

out and the corresponding
partition function Zmap

out eq. (22) simplify in the zero temperature limit as follows:

Qmap
out (z; y, ω, V ) ≡ lim

∆→0

e−
1
∆
l(y,z)+ 1

2V
(z−ω)2√

2π∆V†
√

2π∆
= lim

∆→0

e
− 1

∆
LV† [l(y,.)](z;ω)√

2π∆V†
√

2π∆
, (31)

∝ δ
(
z − PV† [l(y, .)](ω)

)
Zmap

out (y, ω, V ) = lim
∆→0

∫
R

dzQmap
out (z; y, ω, V ) = lim

∆→0

e
− 1

∆
MV† [l(y,.)](ω)√

2π∆V†
√

2π∆
, (32)

that involve the proximal map and the Moreau-Yosida regularization de�ned in eq. (28). Finally
taking the zero temperature limit, the MAP denoising function fmap

out,† leads to the result (29):

fmap
out,†(y, ω, V†) ≡ lim

∆→0
∆× fmap

out (y, ω, V )

≡ lim
∆→0

∆× ∂ω logZmap
out ≡ lim

∆→0
∆V −1EQmap

out
[z − ω]

= −∂ωMV† [l(y, .)](ω) = V −1
†
(
PV† [l(y, .)](ω)− ω

)
.

(33)

Prior Similarly as above, using the mapping eq. (21), for a convex and separable regularizer r,
the corresponding prior distribution at temperature ∆ can be written

Pmap
w (w) = e−

1
∆
r(w) .

Note that at ∆ = 1 the classical `1 regularization with strength λ, r`1(w) = −λ|w|, and the `2
regularization r`2(w) = −λw2/2 are equivalent to choosing a Laplace prior Pw(w) ∝ e−λ|w| or
a Gaussian prior Pw(w) ∝ e−λw

2

2 . To obtain a meaningful limit as ∆→ 0, we again introduce
the following rescaled variables

Λ† ≡ lim
∆→0

∆× Λ , γ† ≡ lim
∆→0

∆× γ ,

and the functional

LΛ−1
†

[r(.)] (w; Λ−1
† γ†) = r(w) +

1

2
Λ†
(
w − Λ−1

† γ†
)2

=

[
r(w) +

1

2
Λ†w

2 − γ†w
]

+
1

2
γ2
†Λ
−1
† ,

(34)
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such that in the zero temperature limit, the prior denoising distribution Qmap
w and the partition

function Zmap
w reduce to

Qmap
w (w; γ,Λ) ≡ lim

∆→0
Pw(w)e−

1
2

Λw2+γw = lim
∆→0

e
− 1

∆
L

Λ−1
†

[r](w;Λ−1
† γ†)

e−
1

2∆
γ2
†Λ
−1
†

∝ δ
(
w − PΛ−1

†
[r] (Λ−1

† γ†)
)

(35)

Zmap
w (y, ω, V ) = lim

∆→0

∫
R

dwQmap
w (w; γ,Λ) = lim

∆→0
e
− 1

∆
M

Λ−1
†

[r](Λ−1
† γ†)

e−
1

2∆
γ2
†Λ
−1
† , (36)

that involve again the proximal map PΛ−1
†

and the Moreau-Yosida regularizationMΛ−1
†

de�ned
in eq. (28). Finally the MAP denoising update fmap

w,† is simply given by:

fmap
w,† (γ†,Λ†) ≡ lim

∆→0
fmap

w (γ,Λ) = lim
∆→0

∂γ logZmap
w ≡ lim

∆→0
EQmap

w
[w]

= lim
∆→0

∂γ

(
− 1

∆
MΛ−1

†
[r(.)] (Λ−1

† γ†)−
1

2∆
γ2
†Λ
−1
†

)
= ∂γ†

(
−MΛ−1

†
[r(.)] (Λ−1

† γ†)−
1

2
γ2
†Λ
−1
†

)
(37)

= Λ−1
† γ† − Λ−1

† ∂Λ−1
† γ†
MΛ−1

†
[r(.)] (Λ−1

† γ†) = PΛ−1
†

[r(.)] (Λ−1
† γ†)

= argminw

[
r(w) +

1

2
Λ†(w − Λ−1

† γ†)
2

]
= argminw

[
r(w) +

1

2
Λ†w

2 − γ†w
]
,

and we recover the result (29).

I.4 Applications

In this section we list the explicit expressions of the Bayes-optimal eq. (25) and ERM eq. (29)
denoising functions largely used to produce the examples in Sec. 3.

I.4.1 Bayes-optimal updates

The Bayes-optimal denoising functions (25) are detailed in the case of a linear, sign and rectangle
door channel with a Gaussian noise ξ ∼ N (0, 1) and variance ∆ ≥ 0, and for Gaussian and
sparse-binary weights.

Channel
• Linear: y = ϕout?(z) = z +

√
∆ξ

Zout?(y, ω, V ) = Nω (y,∆? + V ) ,

fout?(y, ω, V ) = (∆? + V )−1 (y − ω) , ∂ωfout?(y, ω, V ) = − (∆? + V )−1 .
(38)
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• Sign: y = ϕout?(z) = sign(z) +
√

∆?ξ

Zout? (y, ω, V ) = Ny(1,∆?)
1

2

(
1 + erf

(
ω√
2V

))
+Ny(−1,∆?)

1

2

(
1− erf

(
ω√
2V

))
,

fout? (y, ω, V ) =
Ny(1,∆?)−Ny(−1,∆?)

Zout? (y, ω, V )
Nω(0, V ) .

(39)

• Rectangle door: y = ϕout?(z) = 1 (κm ≤ z ≤ κM )− 1 (z ≤ κm or z ≥ κM ) +
√

∆?ξ
For κm < κM , we obtain

Zout?(y, ω, V ) = Ny(1,∆?)
1

2

(
erf

(
κM − ω√

2V

)
− erf

(
κm − ω√

2V

))
+Ny(−1,∆?)

1

2

(
1− 1

2

(
erf

(
κM − ω√

2V

)
− erf

(
κm − ω√

2V

)))
,

fout?(y, ω, V ) =
1

Zout
(Ny(1,∆?) (−Nω(κM , V ) +Nω(κm, V ))

+Ny(−1,∆?) (Nω(κM , V )−Nω(κm, V ))) .

(40)

Prior
• Gaussian weights: w ∼ Pw(w) = Nw(µ, σ)

Zw?(γ,Λ) =
e
γ2σ+2γµ−Λµ2

2(Λσ+1)

√
Λσ + 1

, fw?(γ,Λ) =
γσ + µ

1 + Λσ
, ∂γfw?(γ,Λ) =

σ

1 + Λσ
. (41)

• Sparse-binary weights: w ∼ Pw(w) = ρδ(w) + (ρ− 1)1
2 (δ(w − 1) + δ(w + 1))

Zw?(γ,Λ) = ρ+ e−
Λ
2 (1− ρ) cosh(γ) ,

fw?(γ,Λ) =
e−

Λ
2 (1− ρ) sinh(γ)

ρ+ e−
Λ
2 (1− ρ) cosh(γ)

, ∂γfw?(γ,Λ) =
e−

Λ
2 (1− ρ) cosh(γ)

ρ+ e−
Λ
2 (1− ρ) cosh(γ)

.
(42)

I.4.2 ERM updates

The ERM denoising functions (29) have, very often, no explicit expression except for the square
and hinge losses, and for `1, `2 regularizations that are analytical. However, in the particular
case of a two times di�erentiable convex loss the denoising functions can still be written as the
solution of an implicit equation detailed below.
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Convex losses
• Square loss

The proximal map for the square loss lsquare(y, z) = 1
2(y − z)2 is easily obtained and reads

PV
[

1

2
(y, .)2

]
(ω) = argminz

[
1

2
(y − z)2 +

1

2V
(z − ω)2

]
= (1 + V )−1 (ω + yV ) .

Therefore (29) yields

f square
out (y, ω, V ) = V −1

(
PV
[

1

2
(y, .)2

]
(ω)− ω

)
= (1 + V )−1 (y − ω) ,

∂ωf
square
out (y, ω, V ) = − (1 + V )−1 .

(43)

• Hinge loss
The proximal map of the hinge loss lhinge(y, z) = max (0, 1− yz)

PV
[
lhinge(y, .)

]
(ω) = argminz

max (0, 1− yz) +
1

2V
(z − ω)2︸ ︷︷ ︸

≡L0

 ≡ z?(y, ω, V ) .

can be expressed analytically by distinguishing all the possible cases:

• 1− yz < 0: L0 = 1
2V (z − ω)2 ⇒ z? = ω if yz? < 1⇔ z? = ω if ωy < 1.

• 1 − yz > 0: L0 = 1
2V (z − ω)2 + 1 − yz ⇒ (z? − ω) = yV ⇔ z? = ω + V y if

1− yz? > 0⇔ z? = ω + V y if ωy < 1− y2V = 1− V , as y2 = 1.

• Hence we have one last region to study 1− V < ωy < 1. It follows y(1− V ) < ω < y:

1

2V
(z − y)2 ≤ 1

2V
(z − ω)2 ⇒ z? = y .

Finally we obtain a simple analytical expression for the proximal and its derivative

PV
[
lhinge(y, .)

]
(ω) =


ω + V y if ωy < 1− V
y if 1− V < ωy < 1

ω if ωy > 1

, ∂ωPV
[
lhinge(y, .)

]
(ω) =


1 if ωy < 1− V
0 if 1− V < ωy < 1

1 if ωy > 1

.

Hence with (29), the hinge denoising function and its derivative read

fhinge
out (y, ω, V ) =


y if ωy < 1− V
(y−ω)
V if 1− V < ωy < 1

0 otherwise
, ∂ωf

hinge
out (y, ω, V ) =

{
− 1
V if 1− V < ωy < 1

0 otherwise
.

(44)
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• Generic di�erentiable convex loss
In general, �nding the proximal map in (29) is intractable. In particular, it is the case for the

logistic loss considered in Sec. V.5. However assuming the convex loss is a generic two times
di�erentiable function l ∈ D2, taking the derivative of the proximal map

PV [l(y, .)] (ω) = argminz

[
l (y, z) +

1

2V
(z − ω)2

]
≡ z?(y, ω, V ) ,

veri�es therefore the implicit equations:

z?(y, ω, V ) = ω − V ∂zl (y, z?(y, ω, V )) , ∂ωz
?(y, ω, V ) =

(
1 + V ∂2

z l(y, z
?(y, ω, V ))

)−1
.

(45)

Once those equations solved, the denoising function and its derivative are simply expressed as

fdiff
out (y, ω, V ) = V −1(z? (y, ω, V )− ω) , ∂ωf

diff
out (y, ω, V ) = V −1 (∂ωz

? (y, ω, V )− 1) ,
(46)

with z? (y, ω, V ) = PV [l(y, .)] (ω) solution of (45).

Regularizations
• `2 regularization

Using the de�nition of the prior update in eq. (29) for the `2 regularization r(w) = λw2

2 , we

obtain

f `2w (γ,Λ) = argminw

[
λw2

2
+

1

2
Λw2 − γw

]
=

γ

λ+ Λ
,

∂γf
`2
w (γ,Λ) =

1

λ+ Λ
and Z`2w (γ,Λ) = exp

(
γ2Λ

2(λ+ Λ)2

)
.

(47)

• `1 regularization
Performing the same computation for the `1 regularization r(w) = λ|w|, we obtain

f `1w (γ,Λ) = argminw

[
λ‖w‖+

1

2
Λw2 − γw

]
=


γ−λ

Λ γ > λ
γ+λ

Λ γ + λ < 0

0 otherwise
,

∂γf
`1
w (γ,Λ) =

{
1
Λ ‖γ‖ > λ

0 otherwise
.

(48)
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II Binary classi�cation generalization errors

In this section, we present the computation of the asymptotic generalization error

eg(α) ≡ lim
d→∞

Ey,x1 [y 6= ŷ (ŵ(α);x)] , (49)

leading to expressions in Proposition. 2.1 and Thm. 2.4. The computation at �nite dimension is
similar if we do not consider the limit d→∞.

II.1 General case

The generalization error eg is the prediction error of the estimator ŵ on new samples {y,X},
where X is an iid Gaussian matrix and y are ±1 labels generated according to (18):

y = ϕout? (z) with z =
1√
d

Xw? . (50)

As the model �tted by ERM may not lead to binary outputs, we may add a non-linearity
ϕ : R 7→ {±1} (for example a sign) on top of it to insure to obtain binary outputs ŷ ± 1
according to

ŷ = ϕ (ẑ) with ẑ =
1√
d

Xŵ . (51)

The classi�cation generalization error is given by the probability that the predicted labels ŷ and
the true labels y do not match. To compute it, �rst note that the vectors (z, ẑ) averaged over all
possible ground truth vectors w? (or equivalently labels y) and input matrix X follow in the
large size limit a joint Gaussian distribution with zero mean and covariance matrix

σ = lim
d→∞

Ew?,X
1

d

[
w?ᵀw? w?ᵀŵ
w?ᵀŵ ŵᵀŵ

]
≡
[
σw? σw?ŵ

σw?ŵ σŵ

]
. (52)

The asymptotic generalization error depends only on the covariance matrix σ and as the samples
are iid it reads

eg(α) = lim
d→∞

Ey,x1 [y 6= ŷ (ŵ(α);x)] = 1− P[y = ŷ (ŵ(α);x)] = 1− 2

∫
(R+)2

dxNx (0, σ)

= 1−
(

1

2
+

1

π
atan

(√
σ2

w?ŵ

σw?σŵ − σ2
w?ŵ

))
=

1

π
acos

(
σw?ŵ√
σw?σŵ

)
,

(53)

where we used the fact that atan(x) = π
2 − 1

2 acos
(
x2−1
1+x2

)
and 1

2 acos
(
2x2 − 1

)
= acos(x).

Finally

eg(α) ≡ lim
d→∞

Ey,x1 [y 6= ŷ (ŵ(α);x)] =
1

π
acos

(
σw?ŵ√
ρw?σŵ

)
, (54)

with

σw?ŵ ≡ lim
d→∞

Ew?,X
1

d
ŵᵀw? , ρw? ≡ lim

d→∞
Ew?

1

d
‖w?‖22 , σŵ ≡ lim

d→∞
Ew?,X

1

d
‖ŵ‖22 .
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II.2 Bayes-optimal generalization error

The Bayes-optimal generalization error for classi�cation is equal to eq. (54) where the Bayes
estimator ŵ is the average over the posterior distribution eq. (19) denoted 〈.〉, knowing the
teacher prior Pw? and channel Pout? distributions: ŵ = 〈w〉w. Hence the parameters σŵ and
σw?ŵ read in the Bayes-optimal case

σŵ ≡ lim
d→∞

Ew?,X
1

d
‖ŵ‖22 = lim

d→∞
Ew?,X

1

d
‖〈w〉w‖22 ≡ qb ,

σw?ŵ ≡ lim
d→∞

Ew?,X
1

d
ŵᵀw? = lim

d→∞
Ew?,X

1

d
〈w〉ᵀww? ≡ mb .

Using Nishimori identity [55], we easily obtain mb = qb which is solution of eq. (13). Therefore
the generalization error simpli�es

ebayes
g (α) =

1

π
acos

(√
ηb

)
, with ηb =

qb

ρw?
. (55)

II.3 ERM generalization error

The generalization error of the ERM estimator is given again by eq. (54) with parameters

σŵ ≡ lim
d→∞

Ew?,X
1

d
‖ŵ‖22 = lim

d→∞
Ew?,X

1

d
‖ŵerm‖22 ≡ q ,

σw?ŵ ≡ lim
d→∞

Ew?,X
1

d
ŵᵀw? = lim

d→∞
Ew?,X

1

d
(ŵerm)ᵀw? ≡ m.

where the parametersm, q are the asymptotic ERM overlaps solutions of eq. (11) and that �nally
lead to the ERM generalization error for classi�cation:

eerm
g (α) =

1

π
acos (

√
η) , with η ≡ m2

ρw?q
. (56)
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III Proofs of the ERM �xed points

III.1 Gordon’s result and proofs

We consider in this section that the data have been generated by a teacher (18) with Gaussian
weights

w? ∼ Pw?(w?) = Nw? (0, ρw?Id) with ρw? ≡ E
[
(w?)2

]
. (57)

III.1.1 For real outputs - Regression with `2 regularization

In what follows, we prove a theorem that characterizes the asymptotic performance of empirical
risk minimization

ŵerm = argminw

n∑
i=1

l
(
yi,

1√
d
xᵀiw

)
+
λ‖w‖2

2
, (58)

where {yi}1≤i≤n are general real-valued outputs (that are not necessarily binary), l(y, z) is a
loss function that is convex with respect to z, and λ > 0 is the strength of the `2 regularization.
Note that this setting is more general than the one considered in Thm. 2.2 in the main text,
which focuses on binary outputs and loss functions in the form of l(y, z) = `(yz) for some
convex function `(·).

Theorem III.1 (Regression with `2 regularization). As n, d→∞ with n/d = α = Θ(1), the
overlap parametersm, q concentrate to

m −→
d→∞

√
ρw?µ

∗ , q −→
d→∞

(µ∗)2 + (δ∗)2 , (59)

where the parameters µ∗, δ∗ are the solutions of

(µ∗, δ∗) = arg min
µ,δ≥0

sup
τ>0

{
λ(µ2 + δ2)

2
− δ2

2τ
+ αEg,sMτ [l(ϕout?(

√
ρw?s), .)](µs+ δg)

}
.

(60)
Here,Mτ [l(, .)](x) is theMoreau-Yosida regularization de�ned in (28), and g, s are two iid standard
normal random variables.

Proof. Since the teacher weight vector w? is independent of the input data matrix X, we can
assume without loss of generality that

w? =
√
dρde1,

where e1 is the �rst natural basis vector of Rd, and ρd = ‖w?‖/
√
d. As d→∞, ρd →

√
ρw? .

Accordingly, it will be convenient to split the data matrix into two parts:

X =
[
s B

]
, (61)

where s ∈ Rn×1 and B ∈ Rn×(d−1) are two sub-matrices of iid standard normal entries. The
weight vector w in (58) can also be written as w = [

√
dµ, vᵀ]ᵀ, where µ ∈ R denotes the
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projection of w onto the direction spanned by the teacher weight vector w?, and v ∈ Rd−1 is
the projection of w onto the complement subspace. These representations serve to simplify the
notations in our subsequent derivations. For example, we can now write the output as

yi = ϕout?(ρdsi), (62)

where si is the ith entry of the Gaussian vector s in (61).
Let Φd denote the cost of the ERM in (58), normalized by d. Using our new representations

introduced above, we have

Φd = min
µ,v

1

d

n∑
i=1

l
(
yi, µsi + 1√

d
bᵀi v
)

+
λ(dµ2 + ‖v‖2)

2d
, (63)

where bᵀi denotes the ith row of B. Since the loss function l(yi, z) is convex with respect to z,
we can rewrite it as

l(yi, z) = sup
q
{qz − l∗(yi, q)}, (64)

where l∗(yi, q) = supz{qz − l(yi, z)} is its convex conjugate. Substituting (64) into (63), we
have

Φd = min
µ,v

sup
q

µqᵀsd +
1

d3/2
qᵀBv− 1

d

n∑
i=1

l∗(yi, qi) +
λ
(
dµ2 + ‖v‖2

)
2d

 . (65)

Now consider a new optimization problem

Φ̃d = min
µ,v

sup
q

µqᵀsd +
‖q‖√
d

hᵀv
d

+
‖v‖√
d

gᵀq
d
− 1

d

n∑
i=1

l∗(yi, qi) +
λ
(
dµ2 + ‖v‖2

)
2d

 , (66)

where h ∼ N (0, Id−1) and g ∼ N (0, In) are two independent standard normal vectors. It
follows from Gordon’s minimax comparison inequality (see, e.g., [?]) that

P(|Φd − c| ≥ ε) ≤ 2P
(∣∣∣Φ̃d − c

∣∣∣ ≥ ε) (67)

for any constants c and ε > 0. This implies that Φ̃d serves as a surrogate of Φd. Speci�cally, if
Φ̃d concentrates around some deterministic limit c as d→∞, so does Φd. In what follows, we
proceed to solve the surrogate problem in (66). First, let δ = ‖v‖/

√
d. It is easy to see that (66)
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can be simpli�ed as

Φ̃d = min
µ,δ≥0

sup
q

{
qᵀ(µs + δg)

d
− δ‖q‖√

d

‖h‖√
d
− 1

d

n∑
i=1

l∗(yi, qi) +
λ(µ2 + δ2)

2

}
(a)
= min

µ,δ≥0
sup
τ>0

sup
q

{
−τ‖q‖

2

2d
− δ2‖h‖2

2τd
+

qᵀ(µs + δg)

d
− 1

d

n∑
i=1

l∗(yi, qi) +
λ(µ2 + δ2)

2

}

= min
µ,δ≥0

sup
τ>0

{
λ(µ2 + δ2)

2
− δ2‖h‖2

2τd
− α

n
inf
q

[τ‖q‖2
2
− qᵀ(µs + δg) +

n∑
i=1

l∗(yi, qi)
]}

(b)
= min

µ,δ≥0
sup
τ>0

{
λ(µ2 + δ2)

2
− δ2‖h‖2

2τd
− α

n

n∑
i=1

Mτ [l(yi, .)](µsi + δgi)

}
.

In (a), we have introduced an auxiliary variable τ to rewrite −δ ‖q‖√
d

‖h‖√
d

as

−δ‖q‖√
d

‖h‖√
d

= sup
τ>0

{
−τ‖q‖

2

2d
− δ2‖h‖2

2τd

}
,

and to get (b), we use the identity

inf
q

{τ
2
q2 − qz + `∗(q)

}
= − inf

x

{
(z − x)2

2τ
+ `(x)

}
that holds for any z and for any convex function `(x) and its conjugate `∗(q). As d → ∞,
standard concentration arguments give us ‖h‖

2

d → 1 and 1
n

∑n
i=1Mτ [l(yi, .)](µsi + δgi) →

Eg,sMτ [l(y, .)](µs + δg) locally uniformly over τ, µ and δ. Using (67) and recalling (62), we
can then conclude that the normalized cost of the ERM Φd converges to the optimal value of
the deterministic optimization problem in (60). Finally, since λ > 0, one can show that the cost
function of (60) has a unique global minima at µ∗ and δ∗. It follows that the empirical values of
(µ, δ) also converge to their corresponding deterministic limits (µ∗, δ∗).

III.1.2 For binary outputs - Classi�cation with `2 regularization

In what follows, we specialize the previous theorem to the case of binary classi�cation, with a
convex loss function in the form of l(y, z) = `(yz) for some function `(·).

Theorem III.2 (Thm. 2.2 in the main text. Gordon’s min-max �xed point - Classi�cation with
`2 regularization). As n, d→∞ with n/d = α = Θ(1), the overlap parametersm, q concentrate
to

m −→
d→∞

√
ρw?µ

∗ , q −→
d→∞

(µ∗)2 + (δ∗)2 , (68)

where parameters µ∗, δ∗ are solutions of

(µ∗, δ∗) = arg min
µ,δ≥0

sup
τ>0

{
λ(µ2 + δ2)

2
− δ2

2τ
+ αEg,sMτ [δg + µsϕout?(

√
ρw?s)]

}
, (69)
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and g, s are two iid standard normal random variables. The solutions (µ∗, δ∗, τ∗) of (69) can be
reformulated as a set of �xed point equations

µ∗ =
α

λτ∗ + α
E[s · ϕout?(

√
ρw?s) · Pτ∗(δ∗g + µ∗sϕout?(

√
ρw?s))] ,

δ∗ =
α

λτ∗ + α− 1
E[g · Pτ∗(δ∗g + µ∗sϕout?(

√
ρw?s))] ,

(δ∗)2 = αE[(δ∗g + µ∗sϕout?(
√
ρw?s)− Pτ∗(δ∗g + µ∗sϕout?(

√
ρw?s)))

2] ,

(70)

whereMτ and Pτ denote the Moreau-Yosida regularization and the proximal map of a convex
loss function (y, z) 7→ `(yz):

Mτ (z) = min
x

{
`(x) +

(x− z)2

2τ

}
, Pτ (z) = arg min

x

{
`(x) +

(x− z)2

2τ

}
.

Proof. We start by deriving (69) as a special case of (60). To that end, we note that

Mτ [l(y, .)](z) = min
x

{
l(y;x) +

(x− z)2

2τ

}
= min

x

{
`(yx) +

(x− z)2

2τ

}
= min

x

{
`(x) +

(x− yz)2

2τ

}
=Mτ (yz),

where to reach the last equality we have used the fact that y ∈ {±1}. Substituting this special
form into (60) and recalling (62), we reach (69).

Finally, to obtain the �xed point equations (70), we simply take the partial derivatives of the
cost function in (69) with respect to µ, δ, τ , and use the following well-known calculus rules for
the Moreau-Yosida regularization [?]:

∂Mτ (z)

∂z
=
z − Pτ (z)

τ
,

∂Mτ (z)

∂τ
= −(z − Pτ (z))2

2τ2
.

III.2 Replica’s formulation

The replica computation presented in Sec. IV boils down to the characterization of the overlaps
m, q in the high-dimensional limit n, d→∞ with α = n

d = Θ(1), given by the solution of a
set of, in the most general case, six �xed point equations over m, q,Q, m̂, q̂, Q̂. Introducing the
natural variables Σ ≡ Q− q, Σ̂ ≡ Q̂+ q̂, η ≡ m2

ρw?q
and η̂ ≡ m̂2

q̂ , the set of �xed point equations
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for arbitrary Pw? , Pout? , convex loss l(y, z) and regularizer r(w), is �nally given by

m = Eξ
[
Zw?

(√
η̂ξ, η̂

)
fw?

(√
η̂ξ, η̂

)
fw

(
q̂1/2ξ, Σ̂

)]
,

q = Eξ
[
Zw?

(√
η̂ξ, η̂

)
fw

(
q̂1/2ξ, Σ̂

)2
]
,

Σ = Eξ
[
Zw?

(√
η̂ξ, η̂

)
∂γfw

(
q̂1/2ξ, Σ̂

)]
,

m̂ = αEy,ξ
[
Zout?(.) · fout? (y,

√
ρw?ηξ, ρw? (1− η)) fout

(
y, q1/2ξ,Σ

)]
,

q̂ = αEy,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) fout

(
y, q1/2ξ,Σ

)2
]
,

Σ̂ = −αEy,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) ∂ωfout

(
y, q1/2ξ,Σ

)]
.

(71)

The above equations depend on the Bayes-optimal partition functions Zw? ,Zout? de�ned in
eq. (24), the updates fw? , fout? in eq. (25) and the ERM updates fw, fout eq. (29).

III.3 Equivalence Gordon-Replica’s formulation - `2 regularization and Gaus-
sian weights

III.3.1 Replica’s formulation for `2 regularization

The proximal for the `2 penalty with strength λ can be computed explicitly in eq. (47) and
the corresponding denoising function is simply given by f `2,λw (γ,Λ) = γ

λ+Λ . Therefore, for
a Gaussian teacher (57) already considered in Thm. (70) with second moment ρw? , using the
denoising function (41), the �xed point equations over m, q,Σ can be computed analytically
and lead to

m =
ρw?m̂

λ+ Σ̂
, q =

ρw?m̂
2 + q̂

(λ+ Σ̂)2
, Σ =

1

λ+ Σ̂
. (72)

Hence, removing the hat variables in eqs. (71), the set of �xed point equations can be rewritten
in a more compact way leading to the Corollary. 2.3 that we recall here:
Corollary III.3 (Corollary. 2.3 in the main text. Equivalence Gordon-Replicas). The set of �xed
point equations (70) in Thm. III.2 that govern the asymptotic behaviour of the overlapsm and q is
equivalent to the following set of equations, obtained from the heuristic replica computation:

m = αΣρw? · Ey,ξ
[
Zout? (.) · fout? (y,

√
ρw?ηξ, ρw? (1− η)) · fout

(
y, q1/2ξ,Σ

)]
q = m2/ρw? + αΣ2 · Ey,ξ

[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) · fout

(
y, q1/2ξ,Σ

)2
]

(73)

Σ =
(
λ− α · Ey,ξ

[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) · ∂ωfout

(
y, q1/2ξ,Σ

)])−1

with η ≡ m2

ρw?q
, ξ ∼ N (0, 1) and Ey the continuous or discrete sum over all possible values y

according to Pout? .

Proof of Corollary. III.3(Corollary. 2.3). For the sake of clarity, we use the abusive notationPV (y, ω) =
PV [l(y, .)](ω), and we remove the ∗.
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Dictionary We �rst map the Gordon’s parameters (µ, δ, τ) in eq. (70) to (m, q,Σ) in eq. (73):
√
ρw?µ↔ m, µ2 + δ2 ↔ q , τ ↔ Σ .

so that

η =
m2

ρw?q
=

µ2

µ2 + δ2
, 1− η =

δ2

µ2 + δ2
.

From eq. (24), we can rewrite the channel partition function Zout? and its derivative

Zout? (y, ω, V ) = Ez
[
Pout?

(
y|
√
V z + ω

)]
,

∂ωZout? (y, ω, V ) =
1√
V
Ez
[
zPout?

(
y|
√
V z + ω

)]
,

(74)

where z denotes a standard normal random variable.

Equation overm Let us start with the equation over m in eq. (73):

m = Σαρw?Ey,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) fout? (y,

√
ρw?ηξ, ρw? (1− η)) fout

(
y, q1/2ξ,Σ

)]
= Σα

√
ρw?√

1− ηEy,ξ,z
[
zPout?

(
y|√ρw?

(√
1− ηz +

√
ηξ
))

Σ−1(PΣ (y,
√
qξ)−√qξ)

]
(Using eq. (74))

⇔ µ =

√
µ2 + δ2

δ
αEy,ξ,z

[
zPout?

[
y|√ρw?

δz + µξ√
µ2 + δ2

](
Pτ
(
y,
√
µ2 + δ2ξ

)
−
√
µ2 + δ2ξ

)]
(Dictionary)

=

√
µ2 + δ2

δ
αEξ,z

[
z

(
Pτ
(
ϕout?

(
√
ρw?

δz + µξ√
µ2 + δ2

)
,
√
µ2 + δ2ξ

)
−
√
µ2 + δ2ξ

)]
(Integration over y)

= αEs,g
[(
s− µ

δ
g
)

(Pτ (ϕout? (
√
ρw?s) , δg + µs)− (δg + µs))

]
(Change of variables (ξ, z)→ (g, s))

= αEs,g
[(
s− µ

δ
g
)

(Pτ (ϕout? (
√
ρw?s) , δg + µs))

]
(Gaussian integrations)

⇔ µ =
αEs,g

[
s · Pτ

(
ϕout?

(√
ρw?s

)
, δg + µs

)]
1 + α

δ Es,g
[
g · Pτ

(
ϕout?

(√
ρw?s

)
, δg + µs

)]
=

α

λτ + α
Es,g [s · ϕout? (

√
ρw?s) (Pτ (δg + µs)ϕout? (

√
ρw?s))] ,

(Second �xed point equation)

where we used the fact that Pout? (y|z) = δ(y − ϕout?(z)), the change of variables
s = µξ+δz√

µ2+δ2

g = δξ−µz√
µ2+δ2

⇔


ξ = δg+µs√

µ2+δ2

z = δs−µg√
µ2+δ2

, (75)
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and �nally in the last equality the de�nition of the second �xed point equation in eqs. (70):

δ = α
Es,g

[
g · Pτ

(
ϕout?

(√
ρw?s

)
, δg + µs

)]
λτ + α− 1

. (76)

Equation over q Let us now compute the equation over q in eq. (73):

q −m2/ρw? = Σ2αEy,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) fout

(
y, q1/2ξ,Σ

)2
]

= Σ2αEy,ξ,z
[
Pout?

(
y|√ρw?

(√
1− ηz +

√
ηξ
)) 1

Σ2
(pΣ (y,

√
qξ)−√qξ)2

]
(Using eq. (74))

⇔ δ2 = αEy,ξ,z

[
Pout?

(
y|√ρw?

δz + µξ√
µ2 + δ2

)(
pτ

(
y,
√
µ2 + δ2ξ

)
−
√
µ2 + δ2ξ

)2
]

(Dictionary)

= αEξ,z

(pτ (ϕout?

(
√
ρw?

δz + µξ√
µ2 + δ2

)
,
√
µ2 + δ2ξ

)
−
√
µ2 + δ2ξ

)2


(Integration over y)

= αEg,s
[
(pτ (ϕout? (

√
ρw?s) , δg + µs)− (δg + µs))2

]
(Change of variables (ξ, z)→ (g, s))

Equation over Σ Let us conclude with the equation over Σ in eq. (73) that we encountered
in eq. (76). Let us �rst compute

αEy,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) ∂ωfout

(
y, q1/2ξ,Σ

)]
= αEy,ξ,z

[
Pout?

(
y|√ρw?

(√
1− ηz +

√
ηξ
)) 1

Σ
(∂ωpΣ (y,

√
qξ)− 1)

]
(Using eq. (74))

=
α

τ
Ey,ξ,z

[
Pout?

(
y|√ρw?

δz + µξ√
µ2 + δ2

)(
∂ωPτ

(
y,
√
µ2 + δ2ξ

)
− 1
)]

(Dictionary)

=
α

τ
Eξ,z

[
∂ωPτ

(
ϕout?

(
√
ρw?

δz + µξ√
µ2 + δ2

)
,
√
µ2 + δ2ξ

)]
− α

τ
(Integration over y)

=
1

τ
α (Eg,s [∂ωPτ (ϕout? (

√
ρw?s) , δg + µs)]− 1) (Change of variables (ξ, z)→ (g, s))
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therefore, the last equation over Σ in eq. (73) reads

Σ =
(
λ− αEy,ξ

[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) ∂ωfout

(
y, q1/2ξ,Σ

)])−1

⇔

τ =

(
λ− 1

τ
α (Eg,s [∂ωPτ (ϕout? (

√
ρw?s) , δg + µs)]− 1)

)−1

⇔
αEg,s [∂ωPτ (ϕout? (

√
ρw?s) , δg + µs)] = τλ+ α− 1 .

Noting that

Eg,s [∂ωPτ (ϕout? (
√
ρw?s) , δg + µs)] =

1

δ
Eg,s [d∂ωPτ (ϕout? (

√
ρw?s) , δg + µs)]

=
1

δ
Eg,s [∂gPτ (ϕout? (

√
ρw?s) , δg + µs)] =

1

δ
Eg,s [gPτ (δg + µsϕout? (

√
ρw?s))]

(Stein’s lemma)

where we used the Stein’s lemma in the last equality, we �nally obtain

αEg,s [∂ωPτ (ϕout? (
√
ρw?s) , δg + µs)] = τλ+ α− 1

⇔δ =
α

τλ+ α− 1
Eg,s [g · Pτ (ϕout? (

√
ρw?s) , δg + µs)] .

Gauge transformation We still remain to prove that

Es,g [g · Pτ (ϕout? (
√
ρw?s) , δg + µs)] = Es,g [g · Pτ (δg + µsϕout? (

√
ρw?s))]

Es,g [s · Pτ (ϕout? (
√
ρw?s) , δg + µs)] = Es,g [s · Pτ (δg + µsϕout? (

√
ρw?s))]

Eg,s
[
(pτ (ϕout? (

√
ρw?s) , δg + µs)− (δg + µs))2

]
= Eg,s

[
((pτ − 1) (δg + µsϕout? (

√
ρw?s)))

2
]

(77)

As ϕout?
(√
ρw?s

)
= ±1, we can transform s → sϕout?

(√
ρw?s

)
= s̃. It does not change

the distribution of the random variable s̃ that is still a normal random variable. Finally denot-
ing Pτ

(
1, δg + µsϕout?

(√
ρw?s

))
= Pτ

(
δg + µsϕout?

(√
ρw?s

))
, we obtain the equivalence

with eq. (70), which concludes the proof.
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IV Replica computation forBayes-optimal andERMestimations

In this section, we present the statistical physics framework and the replica computation leading
to the general set of �xed point equations (11) and to the Bayes-optimal �xed point equations
(13).

IV.1 Statistical inference and free entropy

As stressed in Sec. I, both ERM and Bayes-optimal estimations can be analyzed in a uni�ed
framework that consists in studying the joint distribution P (y,X) in the following posterior
distribution

P (w|y,X) =
P (y|w,X)P (w)

P (y,X)
, (78)

known as the so-called partition function in the physics literature. It is the generating function
of many useful statistical quantities and is de�ned by

Z (y,X) ≡ P (y,X) =

∫
Rd

dwPout (y|w,X)Pw (w)

=

∫
Rn

dzPout (y|z)
∫
Rd

dwPw (w) δ

(
z− 1√

d
Xw
)
,

(79)

where we introduced the variable z = 1√
d

Xw. However in the considered high-dimensional
regime (d→∞, n→∞, α = Θ(1)), we are interested instead in the averaged (over instances
of input data X and teacher weights w? or equivalently over the output labels y) free entropy Φ
de�ned as

Φ(α) ≡ Ey,X

[
lim
d→∞

1

d
logZ (y,X)

]
. (80)

The replica method is an heuristic method of statistical mechanics that allows to compute
the above average over the random dataset {y,X}. We show in the next section the classical
computation for the Generalized Linear Model hypothesis class and iid data X.

IV.2 Replica computation

IV.2.1 Derivation

We present here the replica computation of the averaged free entropy Φ(α) in eq. (80) for general
prior distributions Pw, Pw? and channel distributions Pout, Pout? , so that the computation
remain valid for both Bayes-optimal and ERM estimation (with any convex loss l and regularizer
r).
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Replica trick The average in eq. (80) is intractable in general, and the computation relies on
the so called replica trick that consists in applying the identity

Ey,X

[
lim
d→∞

1

d
logZ (y,X)

]
= lim

r→0

[
lim
d→∞

1

d

∂ logEy,X [Z (y,X)r]

∂r

]
. (81)

This is interesting in the sense that it reduces the intractable average to the computation of
the moments of the averaged partition function, which are easiest quantities to compute. Note
that for r ∈ N, Z (y,X)r represents the partition function of r ∈ N identical non-interacting
copies of the initial system, called replicas. Taking the average will then correlate the replicas,
before taking the number of replicas r → 0. Therefore, we assume there exists an analytical
continuation so that r ∈ R and the limit is well de�ned. Finally, note we exchanged the order
of the limits r → 0 and d→∞. These technicalities are crucial points but are not rigorously
justi�ed and we will ignore them in the rest of the computation.

Thus the replicated partition function in eq. (81) can be written as

Ey,X [Z (y,X)r] = Ew?,X

[
r∏

a=1

∫
Rn

dzaPouta (y|za)
∫
Rd

dwaPwa (wa) δ

(
za − 1√

d
Xwa

)]

= EX

∫
Rn

dy
∫
Rn

dz?Pout? (y|z?)
∫
Rd

dw?Pw? (w?) δ

(
z? − 1√

d
Xw?

)
×
[

r∏
a=1

∫
Rn

dzaPouta (y|za)
∫
Rd

dwaPwa (wa) δ

(
za − 1√

d
Xwa

)]

= EX

∫
Rn

dy
r∏

a=0

∫
Rn

dzaPouta (y|za)
∫
Rd

dwaPwa (wa) δ

(
za − 1√

d
Xwa

)
(82)

with the decoupled channel Pout (y|z) =
n∏
µ=1

Pout (yµ|zµ). Note that the average over y is

equivalent to the one over the ground truth vector w?, which can be considered as a new replica
w0 with index a = 0 leading to a total of r + 1 replicas.

We suppose that inputs are drawn from an iid distribution, for example a GaussianN (0, 1).
More precisely, for i, j ∈ [1 : d], µ, ν ∈ [1 : n], EX

[
x

(µ)
i x

(ν)
j

]
= δµνδij . Hence zaµ =

1√
d

∑d
i=1 x

(µ)
i wai is the sum of iid random variables. The central limit theorem insures that

zaµ ∼ N
(
EX[zaµ],EX[zaµz

b
µ]
)
, with the two �rst moments given by:

EX[zaµ] = 1√
d

∑d
i=1 EX

[
x

(µ)
i

]
wai = 0

EX[zaµz
b
µ] = 1

d

∑
ij EX

[
x

(µ)
i x

(µ)
j

]
wai w

b
j = 1

d

∑
ij δijw

a
i w

b
j = 1

dw
a ·wb .

(83)

In the following we introduce the symmetric overlap matrixQ({wa}) ≡
(

1
dw

a ·wb
)
a,b=0..r

. Let
us de�ne z̃µ ≡ (zaµ)a=0..r and w̃i ≡ (wai )a=0..r . The vector z̃µ follows a multivariate Gaussian
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distribution z̃µ ∼ Pz̃(z̃;Q) = Nz̃(0r+1, Q) and as Pw̃(w̃) =
∏r
a=0 Pw(w̃a) it follows

Ey,X [Z (y,X)r] = EX

∫
Rn

dy
r∏

a=0

∫
Rn

dzaPouta (y|za)
∫
Rd

dwaPwa (wa) δ

(
za − 1√

d
Xwa

)

=

[∫
R

dy

∫
Rr+1

dz̃Pout (y|z̃)Pz̃(z̃;Q(w̃))

]n [∫
Rr+1

dw̃Pw̃ (w̃)

]d
,

because the channel and the prior distributions factorize. Introducing the change of variable
and the Fourier representation of the δ-Dirac function, which involves a new ad-hoc parameter
Q̂:

1 =

∫
Rr+1×r+1

dQ
∏
a≤b

δ

(
dQab −

d∑
i=1

wai w
b
i

)

∝
∫
Rr+1×r+1

dQ

∫
Rr+1×r+1

dQ̂ exp
(
−dTr

[
QQ̂
])

exp

(
1

2

d∑
i=1

w̃ᵀ
i Q̂w̃i

)
,

the replicated partition function becomes an integral over the symmetric matricesQ ∈ Rr+1×r+1

and Q̂ ∈ Rr+1×r+1, that can be evaluated using a Laplace method in the d→∞ limit,

Ey,X [Z (y,X)r] =

∫
Rr+1×r+1

dQ

∫
Rr+1×r+1

dQ̂edΦ(r)(Q,Q̂) (84)

'
d→∞

exp
(
d · extrQ,Q̂

{
Φ(r)(Q, Q̂)

})
, (85)

where we de�ned

Φ(r)(Q, Q̂) = −Tr
[
QQ̂
]

+ log Ψ
(r)
w (Q̂) + α log Ψ

(r)
out(Q)

Ψ
(r)
w (Q̂) =

∫
Rr+1

dw̃Pw̃(w̃)e
1
2
w̃ᵀQ̂w̃

Ψ
(r)
out(Q) =

∫
dy

∫
Rr+1

dz̃Pz̃(z̃;Q)Pout(y|z̃) ,

(86)

and Pz̃(z̃;Q) =
e−

1
2
z̃ᵀQ−1z̃

det(2πQ)1/2
.

Finally switching the two limits r → 0 and d→∞, the quenched free entropy Φ simpli�es
as a saddle point equation

Φ(α) = extrQ,Q̂

{
lim
r→0

∂Φ(r)(Q, Q̂)

∂r

}
, (87)

over symmetric matrices Q ∈ Rr+1×r+1 and Q̂ ∈ Rr+1×r+1. In the following we will assume a
simple ansatz for these matrices in order to �rst obtain an analytic expression in r before taking
the derivative with respect to r.

40



RS free entropy Let’s compute the functional Φ(r)(Q, Q̂) appearing in the free entropy
eq. (87) in the simplest ansatz: the Replica Symmetric ansatz. This later assumes that all replica
remain equivalent with a common overlap q = 1

dw
a ·wb for a 6= b, a norm Q = 1

d‖wa‖22, and
an overlap with the ground truth m = 1

dw
a ·w?, leading to the following expressions of the

replica symmetric matrices Qrs ∈ Rr+1×r+1 and Q̂rs ∈ Rr+1×r+1:

Qrs =


Q0 m ... m
m Q ... ...
... ... ... q
m ... q Q

 and Q̂rs =


Q̂0 m̂ ... m̂

m̂ −1
2Q̂ ... ...

... ... ... q̂

m̂ ... q̂ −1
2Q̂

 , (88)

with Q0 = ρw? = 1
d‖w?‖22. Let’s compute separately the terms involved in the functional

Φ(r)(Q, Q̂) eq. (86) with this ansatz: the �rst is a trace term, the second a term Ψ
(r)
w depending

on the prior distributions Pw, Pw? and �nally the third a term Ψ
(r)
out that depends on the channel

distributions Pout? ,Pout.

Trace term The trace term can be easily computed and takes the following form:

Tr
(
QQ̂
)∣∣∣

rs
= Q0Q̂0 + rmm̂− 1

2
rQQ̂+

r(r − 1)

2
qq̂ . (89)

Prior integral Evaluated at the RS �xed point, and using a Gaussian identity also known as
a Hubbard-Stratonovich transformation Eξ exp(

√
aξ) = e

a
2 , the prior integral can be further

simpli�ed

Ψ(r)
w (Q̂)

∣∣∣
rs

=

∫
Rr+1

dw̃Pw̃(w̃)e
1
2
w̃ᵀQ̂rsw̃

= Ew?e
1
2
Q̂0(w?)2

∫
Rr
dw̃Pw̃(w̃)ew

?m̂
∑r
a=1 w̃

a− 1
2

(Q̂+q̂)
∑r
a=1(w̃a)2+ 1

2
q̂(
∑r
a=1 w̃

a)2

= Eξ,w?e
1
2
Q̂0(w?)2

[
Ew exp

([
m̂w?w − 1

2
(Q̂+ q̂)w2 + q̂1/2ξw

])]r
.

(90)

Channel integral Let’s focus on the inverse matrix

Q−1
rs =


Q−1

00 Q−1
01 Q−1

01 Q−1
01

Q−1
01 Q−1

11 Q−1
12 Q−1

12

Q−1
01 Q−1

12 Q−1
11 Q−1

12

Q−1
01 Q−1

12 Q−1
12 Q−1

11

 (91)
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with

Q−1
00 =

(
Q0 − rm(Q+ (r − 1)q)−1m

)−1

Q−1
01 = −

(
Q0 − rm(Q+ (r − 1)q)−1m

)−1
m(q + (r − 1)q)−1

Q−1
11 = (Q− q)−1 − (Q+ (r − 1)q)−1q(Q− q)−1

+(Q+ (r − 1)q)−1m
(
Q0 − rm(Q+ (r − 1)q)−1m

)−1
m(Q+ (r − 1)q)−1

Q−1
12 = −(Q+ (r − 1)q)−1q(Q− q)−1

+(Q+ (r − 1)q)−1m
(
Q− rm(Q+ (r − 1)q)−1m

)−1
m(Q+ (r − 1)q)−1

and its determinant:

detQrs = (Q− q)r−1 (Q+ (r − 1)q)
(
Q0 − rm(Q+ (r − 1)q)−1m

)
Using the same kind of Gaussian transformation, we obtain

Ψ
(r)
out(Q)

∣∣∣
rs

=

∫
dy

∫
Rr+1

dz̃e−
1
2
z̃ᵀQ−1

rs z̃− 1
2

log(det(2πQrs))Pout(y|z̃)

= Ey,ξe−
1
2

log(det(2πQrs))

×
∫

dz?Pout? (y|z?) e− 1
2
Q−1

00 (z?)2

[∫
dzPout (y|z) e−Q−1

01 z
?z− 1

2(Q−1
11 −Q−1

12 )z2−Q−1/2
12 ξz

]r
IV.3 ERM and Bayes-optimal free entropy

Taking carefully the derivative and the r → 0 limit imposes Q̂0 = 0 and we �nally obtain the
replica symmetric free entropy Φrs:

Φrs(α) ≡ Ey,X

[
lim
d→∞

1

d
log (Z (y,X))

]
(92)

= extrQ,Q̂,q,q̂,m,m̂

{
−mm̂+

1

2
QQ̂+

1

2
qq̂ + Ψw

(
Q̂, m̂, q̂

)
+ αΨout (Q,m, q; ρw?)

}
,

where ρw? = limd→∞ Ew?
1
d‖w?‖22 and the channel and prior integrals are de�ned by

Ψw

(
Q̂, m̂, q̂

)
≡ Eξ

[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZw

(
q̂1/2ξ, Q̂+ q̂

)]
,

Ψout (Q,m, q; ρw?) ≡ Ey,ξ
[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
logZout

(
y, q1/2ξ,Q− q

)]
,

(93)

where againZout? andZw? are de�ned in eq. (24) and depend on the teacher, while the denoising
functions Zout and Zw depend on the inference model. In particular, we explicit in the next
sections the above free entropy in the case of ERM and Bayes-optimal estimation.
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IV.3.1 ERM estimation

As described in eq. (21), the free entropy for ERM estimation is therefore given by eq. (92) if we
take − logP (y|z) = l(y, z) and − logP (w) = r(w). As described in Sec. I.3.2 they lead to the
following partition functions:

Zλw (γ,Λ) = lim
∆→0

e−
1
∆
MΛ−1 [r(λ,.)](Λ−1γ)e−

1
2∆
γ2Λ−1

,

Zout (y, ω, V ) = lim
∆→0

e
− 1

∆
MV

∆
[l(y,.)](ω)

√
2πV
√

2π∆
,

(94)

with the Moreau-Yosida regularization (28).

IV.3.2 Bayes-optimal estimation

In the Bayes-optimal case, we have access to the ground truth distributions P (y|z) = Pout? (y|z)
and P (w) = Pw?(w), and therefore Zout = Zout? , Zw = Zw? . Nishimori conditions in the
Bayes-optimal case [55] imply that Q = ρw? , m = q = qb, Q̂ = 0, m̂ = q̂ = q̂b. Therefore the
free entropy eq. (92) simpli�es as an optimization problem over two scalar overlaps qb, q̂b:

Φb(α) = extrqb,q̂b

{
−1

2
qbq̂b + Ψb

w (q̂b) + αΨb
out (qb; ρw?)

}
, (95)

with free entropy terms Ψb
w and Ψb

out given by

Ψb
w (q̂) = Eξ

[
Zw?

(
q̂1/2ξ, q̂

)
logZw?

(
q̂1/2ξ, q̂

)]
,

Ψb
out (q; ρw?) = Ey,ξ

[
Zout?

(
y, q1/2ξ, ρw? − q

)
logZout?

(
y, q1/2ξ, ρw? − q

)]
.

and again Zout? and Zw? are de�ned in eq. (24). The above replica symmetric free entropy in
the Bayes-optimal case has been rigorously proven in [10].

IV.4 Sets of �xed point equations

As highlighted in Sec. II, the asymptotic overlaps m, q measure the performances of the ERM
or Bayes-optimal statistical estimators, whose behaviours are respectively characterized by
extremizing the free entropy (92) and (95). This section is devoted to derive the corresponding
sets of �xed point equations.

IV.4.1 ERM estimation

Extremizing the free entropy eq. (92), we easily obtain the set of six �xed point equations

Q̂ = −2α∂QΨout , Q = −2∂Q̂Ψw

q̂ = −2α∂qΨout , q = −2∂q̂Ψw ,

m̂ = α∂mΨout , m = ∂m̂Ψw .

(96)
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These equations can be formulated as functions of the partition functions Zout? , Zw? and the
denoising functions fout? , fw? , fout, fw de�ned in eq. (25) and eq. (29). The derivation is shown
in Appendix. IV.5.3 and de�ning the natural variables Σ = Q− q, Σ̂ = Q̂+ q̂, η ≡ m2

ρw?q
and

η̂ ≡ m̂2

q̂ , it can be written as

m = Eξ
[
Zw?

(√
η̂ξ, η̂

)
fw?

(√
η̂ξ, η̂

)
fw

(
q̂1/2ξ, Σ̂

)]
,

q = Eξ
[
Zw?

(√
η̂ξ, η̂

)
fw

(
q̂1/2ξ, Σ̂

)2
]
,

Σ = Eξ
[
Zw?

(√
η̂ξ, η̂

)
∂γfw

(
q̂1/2ξ, Σ̂

)]
,

m̂ = αEy,ξ
[
Zout?(.) · fout? (y,

√
ρw?ηξ, ρw? (1− η)) fout

(
y, q1/2ξ,Σ

)]
,

q̂ = αEy,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) fout

(
y, q1/2ξ,Σ

)2
]
,

Σ̂ = −αEy,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) ∂ωfout

(
y, q1/2ξ,Σ

)]
,

(97)

and we �nally obtain the set of equations eqs. (71).

IV.4.2 Bayes-optimal estimation

Extremizing the Bayes-optimal free entropy eq. (95), we easily obtain the set of 2 �xed point
equations over the scalar parameters qb, q̂b. In fact, it can also be deduced from eq. (97) using
the Nishimori conditions fw = fw? , fout = fout? , m = q = qb,Σ = ρw? − q, m̂ = q̂ = q̂b and
Q̂ = 0 that lead to the result (13) in Thm. 2.4, from [10]

q̂b = αEy,ξ
[
Zout?

(
y, q

1/2
b ξ, ρw? − qb

)
fout?

(
y, q

1/2
b ξ, ρw? − qb

)2
]
,

qb = Eξ
[
Zw?

(
q̂

1/2
b ξ, q̂b

)
fw?

(
q̂

1/2
b ξ, q̂b

)2
]
.

(98)

IV.5 Useful derivations

In this section, we give useful computation steps that we used to transform the sets of �xed
point equations (96).

IV.5.1 Prior free entropy term

In speci�c simple cases, the prior free entropy term

Ψw

(
Q̂, m̂, q̂

)
≡ Eξ

[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZw

(
q̂1/2ξ, Q̂+ q̂

)]
in (93) can be computed explicitly. This is the case of Gaussian and binary priors Pw? with
`2 regularization. In particular, they lead surprisingly to the same expression meaning that
choosing a binary or Gaussian teacher distribution does not a�ect the ERM performances with
`2 regularization.
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Gaussian prior Let us compute the corresponding free entropy term with partition functions
Zw? for a Gaussian prior Pw?(w

?) = Nw?(0, ρw?) and Z`2,λw for a `2 regularization respectively
given by eq. (41) and eq. (47):

Zw? (γ,Λ) =
e

γ2ρw?

2(Λρw?+1)

√
Λρw? + 1

, Z`2,λw (γ,Λ) =
e

γ2

2(Λ+λ)

√
Λ + λ

.

The prior free entropy term reads

Ψw

(
Q̂, m̂, q̂

)
= Eξ

[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZ`2,λw

(
q̂1/2ξ, q̂ + Q̂

)]
= Eξ

Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

) q̂ξ2

2
(
λ+ Q̂+ q̂

) − 1

2
log
(
λ+ Q̂+ q̂

)
=

∫
dξNξ

(
0, 1 + ρw?m̂

2q̂−1
) q̂ξ2

2
(
λ+ Q̂+ q̂

) − 1

2
log
(
λ+ Q̂+ q̂

)
=

1

2

(
q̂ + ρw?m̂

2

λ+ Q̂+ q̂
− log

(
λ+ Q̂+ q̂

))
(99)

In the Bayes-optimal case for ρw? = 1, the computation is similar and is given by the above
expression with λ = 1, Q̂ = 0, m̂ = q̂:

Ψbayes
w (q̂) = =

1

2
(q̂ − log (1 + q̂)) (100)

Binary prior Let us compute the corresponding free entropy term with partition functions
Zw? for a binary prior Pw?(w

?) = 1
2 (δ(w? − 1) + δ(w? + 1)) and Z`2,λw for a `2 regularization

respectively given by eq. (42) and eq. (47):

Zw? (γ,Λ) = e−
Λ
2 cosh(γ) , Z`2,λw (γ,Λ) =

e
γ2

2(Λ+λ)

√
Λ + λ

.

The entropy term Ψw reads

Ψw

(
Q̂, m̂, q̂

)
= Eξ

[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZ`2,λw

(
q̂1/2ξ, q̂ + Q̂

)]
= Eξ

Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

) q̂ξ2

2
(
λ+ Q̂+ q̂

) − 1

2
log
(
λ+ Q̂+ q̂

)
=

∫
dξ
e−

ξ2

2√
2π
e−

m̂q̂−1m̂
2 cosh

(
m̂q̂−1/2ξ

) q̂ξ2

2
(
λ+ Q̂+ q̂

) − 1

2
log
(
λ+ Q̂+ q̂

)
=

1

2

(
q̂ + m̂2

λ+ Q̂+ q̂
− log

(
λ+ Q̂+ q̂

))
(101)

45



We recover exactly the same free entropy term than for Gaussian prior teacher eq. (99) for
ρw? = 1.

IV.5.2 Updates derivatives

Let’s compute, in full generality, the derivative of the partition functions de�ned in Sec. 22 and
that will be useful to simplify the set (96).

∂γZw (γ,Λ) = Zw (γ,Λ)× EQw [w] = Zw (γ,Λ) fw (γ,Λ)

∂ΛZw (γ,Λ) = −1

2
Zw (γ,Λ)× EQw

[
w2
]

= −1

2

(
∂γfw(γ,Λ) + f2

w(γ,Λ)
)

∂ωZout (y, ω, V ) = Zout (y, ω, V )× V −1EQout [z − ω]

= Zout (y, ω, V ) fout (y, ω, V )

∂V Zout (y, ω, V ) =
1

2
Zout (y, ω, V )×

(
EQout

[
V −2(z − ω)2

]
− V −1

)
=

1

2
Zout (y, ω, V )

(
∂ωfout (y, ω, V ) + f2

out (y, ω, V )
)

(102)

IV.5.3 Simpli�cations of the �xed point equations

We recall the set of �xed point equations eq. (96)

Q̂ = −2α∂QΨout , Q = −2∂Q̂Ψw

q̂ = −2α∂qΨout , q = −2∂q̂Ψw ,

m̂ = α∂mΨout , m = ∂m̂Ψw ,

(103)

that can be simpli�ed and formulated as functions ofZout? , Zw? ,fout? , fw? , fout, and fw de�ned
in eq. (25) and eq. (29), using the derivatives in (102).
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Equation over q̂

∂qΨout = ∂qEy,ξ
[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
logZout

(
y, q1/2ξ,Q− q

)]
= Ey,ξ [∂qω

?∂ωZout? logZout + ∂qV
?∂V Zout? logZout

+
Zout?

Zout
(∂qω∂ωZout + ∂qV ∂V Zout)

]
= Ey,ξ

[
−m

2
q−3/2ξfout?Zout? logZout +

m2q−2

2

(
∂ωfout? + f2

out?
)
Zout? logZout

+
Zout?

Zout

(
1

2
q−1/2ξfoutZout −

1

2

(
∂ωfout + f2

out

)
Zout

)]
=

1

2
Ey,ξ

[
−m2q−2∂ξ (fout?Zout? logZout) +m2q−2

(
∂ωfout? + f2

out?
)
Zout? logZout

+
(
∂ξ (foutZout?)−

(
∂ωfout + f2

out

)
Zout?

)]
(Stein lemma)

=
1

2
Ey,ξ

[
−m2q−2

(
∂ωfout? logZout + Zout?f

2
out? logZout

−
(
∂ωfout? + f2

out?
)
Zout? logZout

)]
+

1

2
Ey,ξ

[
−mq−1Zout?fout?fout

]
+

1

2
Ey,ξ

[
∂ωfoutZout +mq−1Zout?fout?fout −

(
∂ωfout + f2

out

)
Zout?

]
= −1

2
Ey,ξ

[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
f2

out

(
y, q1/2ξ,Q− q

)]
,

(Simpli�cations with (102))

that leads to

q̂ = −2α∂qΨout = αEy,ξ
[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
fout

(
y, q1/2ξ,Q− q

)2
]
.

(104)

Equation over m̂

∂mΨout = Ey,ξ
[
∂mZout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
logZout

(
y, q1/2ξ,Q− q

)]
= Ey,ξ [(∂mω

?∂ωZout? + ∂mV
?∂V Zout?) logZout]

= Ey,ξ
[(
q−1/2ξfout?Zout? −mq−1

(
∂ωfout? + f2

out?
)
Zout?

)
logZout

]
= Ey,ξ

[
∂ξ (fout?Zout? logZout)−

(
∂ωfout? + f2

out?
)
Zout? logZout

]
(Stein Lemma)

= Ey,ξ
[
mq−1 (∂ωfout?Zout? logZout + fout?∂ωZout? logZout

−
(
∂ωfout? + f2

out?
)
Zout?

)
logZout

]
+ Ey,ξ [Zout?fout?fout]

= Ey,ξ
[
Zout? (., ., .) fout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
fout

(
y, q1/2ξ,Q− q

)]
(Simpli�cations with (102))
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that leads to

m̂ = α∂mΨout

= αEy,ξ
[
Zout? (., ., .) fout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
fout

(
y, q1/2ξ,Q− q

)]
.

(105)

Equation over Q̂

∂QΨout = Ey,ξ
[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
∂Q logZout

(
y, q1/2ξ,Q− q

)]
= Ey,ξ

[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
∂QV ∂V logZout

(
y, q1/2ξ,Q− q

)]
=

1

2
Ey,ξ

[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

) (
∂ωfout + f2

out

) (
y, q1/2ξ,Q− q

)]
leading to

Q̂ = −2α∂QΨout

= −αEy,ξ
[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
∂ωfout

(
y, q1/2ξ,Q− q

)]
− q̂ .

(106)

Equation over q

∂q̂Ψw = ∂q̂Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZw

(
q̂1/2ξ, Q̂+ q̂

)]
= Eξ

[
∂q̂ω

?∂ωZw? logZw + ∂q̂V
?∂V Zw? logZw +

Zw?

Zw
(∂q̂ω∂ωZw + ∂q̂V ∂V Zw)

]
= Eξ

[
−m̂

2
q̂−3/2ξfw?Zw? logZw +

m̂2q̂−2

2

(
∂ωfw? + f2

w?
)
Zw? logZw

+
Zw?

Zw

(
1

2
q̂−1/2ξfwZw −

1

2

(
∂ωfw + f2

w

)
Zw

)]
= Eξ

[
−m̂

2
q̂−3/2∂ξ (fw?Zw? logZw) +

m̂2q̂−2

2

(
∂ωfw? + f2

w?
)
Zw? logZw

+

(
1

2
q̂−1/2∂ξ (fwZw?)−

1

2

(
∂ωfw + f2

w

)
Zw?

)]
(Stein lemma)

=
1

2
Eξ
[
−m̂2q̂−2

(
∂ωfw?Zw? logZw + Zw?f

2
w? logZw −

(
∂ωfw? + f2

w?
)
Zw? logZw

)
−m̂q̂−1Zw?fw?fw +

(
m̂q̂−1Zw?fwfw? + Zw?∂ωfw −

(
∂ωfw + f2

w

)
Zw?

)]
= −1

2
Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
fw

(
q̂1/2ξ, Q̂+ q̂

)2
]

(Simpli�cations with (102))

leading to

q = −2∂q̂Ψw = Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
fw

(
q̂1/2ξ, q̂ + Q̂

)2
]

(107)
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Equation overm

∂m̂Ψw = ∂mEξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZw

(
q̂1/2ξ, Q̂+ q̂

)]
= Eξ [(∂m̂ω

?∂ωZw? + ∂m̂V
?∂V Zw?) logZw]

= Eξ
[(
q̂−1/2ξfw?Zw? − m̂q̂−1

(
∂ωfw? + f2

w?
)
Zw?

)
logZw

]
= Eξ

[
m̂q̂−1∂ξ (fw?Zw? logZw)−

(
∂ωfw? + f2

w?
)
Zw? logZw

]
(Stein Lemma)

= Eξ
[
m̂q̂−1

(
∂ωfw?Zw? logZw + Zw?f

2
w? logZw −

(
∂ωfw? + f2

w?
)
Zw? logZw

)
+Zw?fw?fw]

= Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
fw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
fw

(
q̂1/2ξ, Q̂+ q̂

)]
(Simpli�cations with (102))

leading to

m = 2∂m̂Ψw = Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
fw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
fw

(
q̂1/2ξ, q̂ + Q̂

)]
(108)

Equation over Q

∂Q̂Ψw

(
Q̂, m̂, q̂

)
= ∂Q̂Eξ

[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZw

(
q̂1/2ξ, Q̂+ q̂

)]
= Eξ

[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

) 1

Zw
∂Q̂Λ∂ΛZw

(
q̂1/2ξ, Q̂+ q̂

)]
= −1

2
Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

) (
∂γfw + f2

w

)]
(with (102))

hence

Q = −2∂Q̂Ψw = Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
∂γfw

(
q̂1/2ξ, q̂ + Q̂

)]
+ q . (109)
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V Applications

In this section, we provide details of the results presented in Sec. 3. In particular as an illustration,
we consider a Gaussian teacher (ρw? = 1) with a noiseless sign activation:

Pout?(y|z) = δ (y − sign(z)) , Pw?(w
?) = Nw? (0, ρw?) , (110)

whose corresponding denoising functions are derived in eq. (39) and eq. (41).

Remark V.1. Note that performances of ERM with `2 regularization for a teacher with Gaussian
weights Pw?(w) = Nw (0, 1) or binary weights Pw?(w) = 1

2 (δ(w − 1) + δ(w + 1)), will be
similar. Indeed free entropy terms Ψw eq. (93) for a Gaussian prior (99) and for binary weights
(101) are equal in this setting, so do the set of �xed point equations.

V.1 Bayes-optimal estimation

Using expressions eq. (39) and eq. (41), corresponding to the teacher model eq. (110), the prior
equation eq. (98) can be simpli�ed while the channel one has no analytical expression. Hence
the set of �xed point equations eqs. (100) for the model eq. (110) read

qb =
q̂b

1 + q̂b
, q̂b = αEy,ξ

[
Zout?

(
y, q

1/2
b ξ, ρw? − qb

)
fout?

(
y, q

1/2
b ξ, ρw? − qb

)2
]
. (111)

Large α behaviour Let us derive the large α behaviour of the Bayes-optimal generalization
error eq. (55) that depends only on the overlap qb solution of eq. (111). qb measures the
correlation with the ground truth, so we expect that in the limit α→∞, qb → 1. Therefore,
we need to extract the behaviour of q̂b in eq. (111). Injecting expressions Zout? and fout? from
eq. (39), we obtain

q̂b = αEy,ξ
[
Zout?

(
y, q

1/2
b ξ, 1− qb

)
fout?

(
y, q

1/2
b ξ, 1− qb

)2
]

= 2α

∫
Dξy2

N√qξ(0, 1− qb)2

1
2

(
1 + erf

( √
qbξ√

2(1−qb)

)) =
2

π

α

1− qb

∫
Dξ

e
− qbξ

2

1−qb(
1 + erf

( √
qbξ√

2(1−qb)

)) ,

where the last integral can be computed in the limit qb → 1:

∫
Dξ

e
− qbξ

2

1−qb(
1 + erf

( √
qbξ√

2(1−qb)

)) =

∫
dξ

−e
ξ2(qb+1)
2(1−qb)√

2π(
1 + erf

( √
qbξ√

2(1−qb)

))

'
∫

dξ

−e
ξ2

1−qb√
2π(

1 + erf

(
ξ√

2(1−qb)

)) =

√
1− qb√

2π

∫
dη

e−η
2

1 + erf
(

η√
2

) =
c0√
2π

√
1− qb ,
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with c0 ≡
∫

dη e−η
2

1+erf
(
η√
2

) ' 2.83748. Finally, we obtain in the large α limit:

q̂b = k
α√

1− qb
, qb =

q̂b

1 + q̂b
,

with k ≡ 2c0
π
√

2π
' 0.720647. The above equations can be solved analytically and lead to:

qb =
1

2

(
αk
√
α2k2 + 4− α2k2

)
'

α→∞
1− 1

α2k2
, q̂b = k2α2 ,

and therefore the Bayes-optimal asymptotic generalization error is given by

ebayes
g (α) =

1

π
acos (

√
qb) '

α→∞
1

kπ

1

α
' 0.4417

α
. (112)

V.2 Generalities on ERM with `2 regularization

Combining the teacher update for Gaussian weights eq. (41) with the update associated to the
`2 regularization eq. (41), the free entropy term can be explicitly derived in (99). Taking the
corresponding derivatives, the �xed point equations for m, q,Σ eq. (96) are thus explicit and
simply read

Σ =
1

λ+ Σ̂
, q =

ρw?m̂
2 + q̂

(λ+ Σ̂)2
, m =

ρw?m̂

λ+ Σ̂
. (113)

All the following examples have been performed with a `2 regularization, so that the above
equations (113) remain valid for the di�erent losses considered in Sec. 3. In the next subsections,
we provide some details on the asymptotic performances of ERM with various losses with `2
regularization and ρw? = 1.

In general for a generic loss, the proximal eq. (29) has no analytical expression, just as the
�xed point equations (97). The square loss is particular in the sense eqs. (97) have a closed form
solution. Also the Hinge loss has an analytical proximal. Apart from that, eqs. (97) must be
solved numerically. However it is useful to notice that the proximal can be easily found for a
two times di�erentiable loss using eq. (46). This is for example the case of the logistic loss.

V.3 Ridge regression - Square loss with `2 regularization

The prior equations over m, q,Σ are already derived in eq. (113) and remain valid. Combining
eq. (39) for the considered sign channel with a potential additional Gaussian noise ∆? in (110)
and the square loss eq. (43), the channel �xed point equations for q̂, m̂, Σ̂ eqs. (97) lead to

Σ =
1

λ+ Σ̂
, Σ̂ =

α

Σ + 1
,

q =
m̂2 + q̂

(λ+ Σ̂)2
, q̂ = α

(1 + q + ∆?)− 2
√

2m2

π

(Σ + 1)2 ,

m =
m̂

λ+ Σ̂
, m̂ =

α
√

2
π

Σ + 1
.

(114)
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V.3.1 Pseudo-inverse estimator

We analyze the �xed point equations eqs. (114) for the pseudo-inverse estimator, that is in the
limit λ→ 0.

Solving Σ Combining the two �rst equations over Σ and Σ̂ in (114), we obtain

Σ =

√
(α+ λ− 1)2 + 4λ− α− λ+ 1

2λ
'
λ→0

1− α+ |α− 1|
2λ

+
1

2

(
α+ 1

|α− 1| − 1

)
, (115)

that exhibits two di�erent behaviour depending if α < 1 or α > 1.

Regime α < 1 In this regime α < 1, eq. (115) becomes

Σ =
1− α
λ

+
α

1− α ,

that leads to the closed set of equations in the limit λ→ 0

Σ =
(1− α)2 + αλ

λ (1− α)
'
λ→0

1− α
λ

, Σ̂ =
(1− α)αλ

(α− 1)2 + λ
'
λ→0

λα

1− α ,

m =
α(1− α)

λ+ (1− α)

√
2

π
'
λ→0

α

√
2

π
, m̂ =

λα
√

2
π

λ+ (1− α)
'
λ→0

λα
√

2
π

1− α ,

q '
λ→0

α(π(1 + ∆?)− 2α)

π(1− α)
, q̂ '

λ→0

αλ2(2(α− 2)α+ π(∆? + 1))

π(1− α)(1− α+ λ)2
.

(116)

Hence we obtain for α < 1:

mpseudo = α

√
2

π
qpseudo =

α(π(1 + ∆?)− 2α)

π(1− α)
(117)

and the corresponding generalization error

epseudo
g (α) =

1

π
acos

(√
2α(1− α)

π (1 + ∆?)− 2α

)
if α < 1 . (118)

Note in particular that epseudo
g (α) −→

α→1
0.5, meaning that the interpolation peak at α = 1

reaches the maximum generalization error.

Regime α > 1 Eq. (115) becomes

Σ =
1

2

(
α+ 1

α− 1
− 1

)
=

1

2

(
α+ 1

α− 1
− 1

)
=

1

α− 1
.
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In the limit λ→ 0, the �xed point equations eqs. (114) reduce to

Σ + 1 =
α

α− 1
, Σ̂ = α− 1 ,

q =
(α− 1)2 2

π + q̂

(α− 1)2 , q̂ =
(α− 1)2

α

(
(1 + q + ∆?)− 4

π

)
,

m =

√
2

π
, m̂ = (α− 1)

√
2

π
.

(119)

In particular we obtain for α > 1:

mpseudo =

√
2

π
, qpseudo =

1

α− 1

(
1 + ∆? +

2

π
(α− 2)

)
, (120)

and the corresponding generalization error

epseudo
g (α) =

1

π
acos

(√
α− 1

π
2 (1 + ∆?) + (α− 2)

)
if α > 1 . (121)

Large α behaviour From this expression we easily obtain the large α behaviour of the
pseudo-inverse estimator:

epseudo
g (α) =

1

π
acos

(√
α− 1

π
2 (1 + ∆?) + (α− 2)

)
=

1

π
acos

((
1 +

C

α− 1

)1/2
)
'

α→∞
c√
α

where C = π
2 (1 + ∆?) − 1 and c =

√
C
π . In particular for a noiseless teacher ∆? = 0,

c =
√

π−2
2π2 ' 0.240487, leading to

epseudo
g (α) '

α→∞
0.2405√

α
. (122)

V.3.2 Ridge at �nite λ

Let us now consider the set of �xed point equation eq. (114) for �nite λ 6= 0. De�ning

t0 ≡
√

(α+ λ− 1)2 + 4λ

t1 ≡ (t0 + α+ λ+ 1)−1

t2 ≡
√

2(α+ 1)λ+ (α− 1)2 + λ2

t3 ≡ (t2 + α+ λ+ 1)−1

t4 ≡
√
α2 + 2α(λ− 1) + (λ+ 1)2 ,
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the equations can be in fact fully solved analytically and read

Σ =
1

2

t0 − α− λ+ 1

λ

Σ̂ =
1

2

(
t0 + α− λ− 1

)
q =

2α
(
−8α2t1 + 2α+ π∆? + π

)
π (α2 + α (t2 + 2λ− 2) + (λ+ 1) (t2 + λ+ 1))

,

q̂ =
(
4αλ2

(
π(∆? + 1)

(
t4 + (α+ λ)

(
t2 + α+ λ

)
+ 2λ+ 1

)
− 8αt3

(
t4 + (α+ λ)

(√
2(α+ 1)λ+ (α− 1)2 + λ2 + α+ λ

)
+ 2λ

)
− 8αt3 + 4α2

))
,

m =
2
√

2
πα

t2 + α+ λ+ 1
,

m̂ =
2
√

2
παλ

t0 − α+ λ+ 1
.

Generalization error behaviour at large α Expanding the ratio m√
q in the large α limit, we

obtain
m√
q
' 1− C

2α
with C =

π

2
(1 + ∆?)− 1

leading to

eridge,λ
g (α) =

1

π
acos

(
m√
q

)
'

α→∞
c√
α

with c =

√
C

π
. (123)

Thus, the asymptotic generalization error for ridge regression with any regularization strength
λ ≥ 0 decrease as 0.2405√

α
, similarly to the pseudo-inverse result.

Optimal regularization The optimal value λopt(α), introduced in Sec. 3, which minimizes
the generalization error at a given α can be found taking the derivative of m√

q and is written as
the root of the following functional

F [α, λ,∆?] = ∂λ

(
m√
q

)
=
a1a2

a3a2
4

,

with

a1 = −4α

√
a4

α2 + α (t2 + 2λ− 2) + (λ+ 1) (t2 + λ+ 1)
,

a2 = 2
(
α2t3 + α (2λt3 + (t2 + 2) t3 − 1) + (λ+ 1) (t2 + λ+ 1) t3

)
− π(1 + ∆?) ,

a3 =
t0
t1
,

a4 = α (2− 8t1) + π (1 + ∆?) .
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Figure 3: (Left) Absolute value of the derivative of m/√q with respect to λ plotted in a
logarithmic scale. λopt is reached at the root of the functional F [α, λ] that corresponds to
the divergence in the logarithmic scale. Plotted for a wide range of α, the optimal value is
clearly constant and independent of α. Its value is approximately λopt ' 0.570796. (Right)
Bayes-optimal (black) vs ridge regression (dashed red) generalization errors with optimal `2
regularization λopt ' 0.570796.

Unfortunately, this functional cannot be analyzed analytically. Instead we plot its value for a
wide range of α as a function of λ (for ∆? = 0) and we observe in particular that there exists
a unique value λopt ' 0.570796 as illustrated in Fig. 3 (left) that is independent of α. As an
illustration, we show the generalization error of ridge regression with the optimal regularization
λopt = 0.5708 compared to the Bayes-optimal performances in Fig. 3 (right).
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V.4 Hinge regression / SVM - Hinge loss with `2 regularization

The hinge loss lhinge(y, z) = max (0, 1− yz) is linear by part and is therefore another simple
example of analytical loss to analyze. In particular its proximal map can computed in eq. (44)
and the corresponding denoising functions read:

fout

(
y, q1/2ξ,Σ

)
=


y if ξy < 1−Σ√

q

y−√qξ
Σ if 1−Σ√

q < ξy < 1√
q

0 otherwise

,

∂ωfout

(
y, q1/2ξ,Σ

)
=

−
1
Σ if 1−Σ√

q < ξy < 1√
q

0 otherwise
.

(124)

The �xed point equations eq. (97) have unfortunately no closed form and need to be solved
numerically.

V.4.1 Max-margin estimator

As proven in [34] both the hinge and logistic estimators converge to the max-margin solution
in the limit λ→ 0 as soon as the data are linearly separable. We will start with the �xed point
equations for hinge, whose denoising functions (124) are analytical. Taking the λ→ 0 limit is
non-trivial and we need therefore to introduce some rescaled variables to obtain a closed set
of equations. Numerical evidences at �nite α show that we shall use the following rescaled
variables:

m̂ = Θ (λ) , q̂ = Θ
(
λ2
)
, Σ̂ = Θ (λ) , m = Θ(1), q = Θ(1), Σ = Θ

(
λ¯1
)
.

The �xed point equations eq. (97) simplify and become

m =
m̂

1 + Σ̂
, q =

m̂2 + q̂

(1 + Σ̂)2
, Σ =

1

1 + Σ̂
,

m̂ =
2α

Σ
Im̂(q, η) , q̂ =

2α

Σ2
Iq̂(q, η) , Σ̂ =

2α

Σ
IΣ̂(q, η) ,

(125)
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with

Im̂(q, η) ≡
∫ 1√

q

−∞
dξNξ(0, 1)Nξ

(
0,

1− η√
η

)
(1−√qξ) ,

=

√
2π

(
erf
(

1√
2
√
q(1−η)

)
+ 1

)
+ 2e

− 1
2q(1−η)

√
q(1− η)

4π

Iq̂(q, η) ≡
∫ 1√

q

−∞
dξNξ(0, 1)

1

2

(
1 + erf

( √
ηξ√

2(1− η)

))
(1−√qξ)2 ,

IΣ̂(q, η) ≡
∫ 1√

q

−∞
dξNξ(0, 1)

1

2

(
1 + erf

( √
ηξ√

2(1− η)

))
.

(126)

Large α expansion Numerically at large α (and λ→ 0), we obtain the following scalings

q = Θ(α2) , m = Θ(α) , Σ = Θ(1) , q̂ = Θ(1) , m̂ = Θ(α) , Σ̂ = Θ(1) . (127)

Therefore, in order to close the equations, we introduce new variables (cq, cη) such that

q =
α→∞

cqα
2 , η = 1− cη

α2
. (128)

In this limit, we can extract the large α behaviours of integrals Im̂, Iq̂, IΣ̂:

Im̂(q, η) = I∞m̂ (cq, cη) , Iq̂(q, η) =
I∞q̂ (cq, cη)

α
, IΣ̂(q, η) =

I∞
Σ̂

(cq, cη)

α
, (129)

where I∞m̂ , I∞q̂ , I∞Σ̂ are Θ(1) and read

I∞m̂ (cq, cη) ≡

√
2π

(
erf
(

1√
2
√
cηcq

)
+ 1

)
+ 2e

− 1
2cηcq
√
cηcq

4π
,

I∞q̂ (cq, cη) ≡
e
− 1

2cηcq

(√
2π(3cηcq + 1)e

1
2cηcq

(
erf
(

1√
2
√
cηcq

)
+ 1

)
+ 4(cηcq)

3/2 + 2
√
cηcq

)
12π
√
cq

,

I∞
Σ̂

(cq, cη) ≡

√
2π

(
erf
(

1√
2
√
cηcq

)
+ 1

)
+ 2e

− 1
2cηcq
√
cηcq

4π
√
cq

.

(130)
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Hence the set of �xed-point equations eq. (125) simpli�es to:

Σ̂ =
2I∞

Σ̂
(cq, cη)

1− 2I∞
Σ̂

(cq, cη)
, Σ = 1− 2I∞

Σ̂
(cq, cη)

m̂ =
2αI∞m̂ (cq, cη)

1− 2I∞
Σ̂

(cq, cη)
, m = 2αI∞m̂ (cq, cη)

q̂ =
2I∞q̂ (cq, cη)(

1− 2I∞
Σ̂

(cq, cη)
)2 , q = 4α2 (I∞m̂ (cq, cη))

2 + 2I∞q̂ (cq, cη) ,

(131)

which can be closed by rewriting the equations eqs. (128):

η =
m2

q
≡ 1− cη

α2
= 1−

I∞q̂ (cq, cη)

2
(
I∞m̂ (cq, cη)

)2 1

α2
,

q = cqα
2 ' 4α2 (I∞m̂ (cq, cη))

2 .

(132)

Equivalently (c?q , c
?
η) is the root of the set of non-linear �xed point equations (Fη(cq, cη), Fq(cq, cη)):

Fη(cq, cη) ≡
I∞q̂ (cq, cη)

2
(
I∞m̂ (cq, cη)

)2 − cη , Fq(cq, cη) ≡ 4 (I∞m̂ (cq, cη))
2 − cq , (133)

that cannot be solved analytically. However a unique numerical solution is found and lead to
(c?q , c

?
η) = (0.9911, 2.4722). Therefore the generalization error of the max-margin estimator in

the large α regime is given by

emax−margin
g (α) =

1

π
arccos

(
m√
q

)
'

α→∞
1

π
arccos

(
1−

c?η
α2

)
'

α→∞
K

α
, (134)

with K =

√
c?η
π ' 0.5005, leading to

emax−margin
g (α) '

α→∞
0.5005

α
. (135)

V.5 Logistic regression

The logistic loss is a combination of the cross entropy loss l(y, z) = −y log(σ(z)) − (1 −
y) log(1− σ(z)) with as sigmoid activation function σ, that simpli�es for binary labels y ± 1
to llogistic(y, z) = log(1 + exp(−yz)) with the two �rst derivatives given by

∂zl
logistic(y, z) = − y

ezy + 1
, ∂2

z l
logistic(y, z) =

y2

2(1 + cosh (zy))
=

y2

4cosh
(yz

2

) .
Its proximal is not analytical, but it can be written as the solution of the implicit equation (45)
providing the corresponding denoising functions (46). Solving the �xed point equations (97),
we obtain performances that approach closely the Bayes-optimal baseline as illustrated in Fig. 4
(left).
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Figure 4: (Left) Logistic regression - Generalization error as a function of α for di�erent
regularizations strength λ. Decreasing λ, the generalization error approaches very closely the
Bayes-optimal error (black line). The di�erence with the Bayes error is shown as an inset.
Logistic �irts with Bayes error but never achieves it exactly. The asymptotic behaviour is
compared to numerical logistic regression with d = 103 and averaged over ns = 20 samples,
performed with the default method LogisticRegression of the scikit-learn package [33].
(Right) Rectangle door teacher with κ = 0.6745 - Bayes-optimal generalization error (black)
compared to asymptotic generalization performances of `2 logistic regression (dashed yellow
line) and numerical ERM (crosses).

V.6 Logistic with non-linearly separable data - A rectangle door teacher

The analysis of ERM for the linearly separable dataset generated by (110) reveals that logistic
regression with `2 regularization was able to approach very closely Bayes-optimal error. There-
fore it seems us very interesting to investigate if logistic regression could perform as well on a
more complicated non-linearly separable dataset obtained by a rectangle door channel

y = sign
(

1√
d

Xw? − κ
)
. (136)

This channel has been already considered in [10] and we �x the width of the door to κ =
0.6745 to obtain labels ±1 with probability 0.5. We then compare the ERM performances of
logistic regression with `2 regularization to the Bayes-optimal performances given by (111)
with denoising functions derived in eq. (40). We show in Fig. 4 (right) the comparison only for
an arbitrary hyper-parameter λ = 1.10−2, as results are similar for any regularization. As we
might expect, the logistic regression is not able to reach the Bayes-optimal generalization error.
Both Bayes-optimal and ERM performances are stuck in the symmetric �xed point m = 0 up
to αit ' 1.393. Above this threshold it becomes unstable and Bayes error decreases to zero in
the α → 0 limit, while the logistic regression with arbitrary λ remains stuck to its maximal
generalization error, meaning that in this non-linearly separable case, the logistic regression
largely underperforms Bayes-optimal performances.
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VI Reaching Bayes optimality

In this section, we propose a derivation inspired by [24, 37–39, 51, 52, 56–59] of the �ne-tuned
loss and regularizer (17) discussed in Sec. 4. We assume that the dataset is generated by a
teacher (18) such that Zout?(., ω, .) and Zw?(γ, .) are respectively log-concave in ω and γ. The
derivation is based on the GAMP algorithm introduced in [30] for the model eq. (1), that we
start by recalling.

VI.1 Generalized Approximate Message Passing (GAMP) algorithm

The GAMP algorithm can be written as the following set of iterative equations that depend on
the update functions (23):


ŵt+1 = fw(γt,Λt)

ĉt+1
w = ∂γfw(γt,Λt)

ftout = fout

(
y,ωt, V t

) and



Λti = −1
d

∑n
µ=1 X2

µi∂ωf
t
out,µ

γti = 1√
d

∑n
µ=1 Xµif tout,µ + Λtiŵ

t
i

V t
µ = 1

d

∑d
i=1 X2

µiĉ
t
w,i

ωtµ = 1√
d

∑d
i=1 Xµiŵti − V t

µf
t−1
out,µ

. (137)

It has been proven in [53] that the GAMP algorithm with Bayes-optimal update functions
fw = fw? and fout = fout? (25) converges to the Bayes-optimal performances in the large
size limit. Yet the GAMP denoising functions are generic and can be chosen as will depending
on the statistical estimation method. In particular we may choose the denoising functions for
Bayes-optimal estimation (25) or the ones corresponding to ERM estimation (29)

fbayes
w (γ,Λ) = ∂γ log (Zw?) ,

fbayes
out (y, ω, V ) = ∂ω log (Zout?) ,

f erm,r
w (γ,Λ) = Λ−1γ − Λ−1∂Λ−1γMΛ−1 [r(.)] (Λ−1γ) ,

f erm,l
out (y, ω, V ) = −∂ωMV [l(y, .)](ω) ,

(138)

whose corresponding GAMP algorithms (137) will achieve potentially di�erent �xed points and
thus di�erent performances. As it is proven that GAMP with Bayes-optimal updates lead to
the optimal generalization error, so that ERM matches the same performances it is su�cient
to enforce that at each time step t the Bayes-optimal and ERM denoising functions are equal
fbayes = f erm. Enforcing these two constraints will lead to the expressions for the optimal loss
lopt and regularizer ropt, so that ERM matches Bayes-optimal performances.

VI.2 Matching Bayes-optimal and ERM performances

Imposing the equality on the channel updates we obtain

fbayes
out (y, ω, V ) = f erm,l

out (y, ω, V )⇔ ∂ω log (Zout?) (y, ω, V ) = −∂ωMV

[
lopt (y, .)

]
(ω) .
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Integrating, leaving aside the constant that will not in�uence the �nal result, and taking the
Moreau-Yosida regularization on both sides, we obtain:

MV [logZout? (y, ., V )] (ω) =MV

[
−MV

[
lopt (y, .)

]
(ω)
]

= −lopt (y, ω) ,

where we invert the Moreau-Yosida regularization in the last equality that is valid as long as
Zout?(y, ω, V ) is assumed to be log-concave in ω, (see [39] for a derivation). We �nally obtain

lopt (y, z) = −MV [log (Zout?) (y, ., V )] (z) = −min
ω

(
(z − ω)2

2V
+ logZout? (y, ω, V )

)
.

(139)

Let us perform the same computation for the prior updates. First we introduce a rescaled
denoising distribution:

Q̃w?(w; γ,Λ) ≡ 1

Z̃w?(γ,Λ)
Pw?(w)e−

1
2

Λ(w−Λ−1γ)
2

,

log
(
Z̃w?(γ,Λ)

)
= log (Zw?(γ,Λ))− 1

2
Λ−1γ2 ,

(140)

so that the the prior updates read

fbayes
w (γ,Λ) = ∂γ log (Zw?) = Λ−1γ + Λ−1∂Λ−1γ log

(
Z̃w?

)
,

f erm,r
w (γ,Λ) = PΛ−1 [r] (Λ−1γ) = Λ−1γ − Λ−1∂Λ−1γMΛ−1 [r] (Λ−1γ) .

(141)

Imposing the equivalence of the Bayes-optimal and ERM prior update,

fbayes
w (γ,Λ) = f erm,r

w (γ,Λ)⇔ ∂Λ−1γ log
(
Z̃w?

)
= −∂Λ−1γMΛ−1

[
ropt

]
(Λ−1γ) , (142)

and assuming thatZw(γ,Λ) is log-concave in γ, we may invert the Moreau-Yosida regularization,
that leads to:

ropt
(
Λ−1γ

)
= −MΛ−1

[
log
(
Z̃w?

) (
.,Λ−1

)]
(w) (143)

= − min
Λ−1γ

(
(w − Λ−1γ)2

2Λ−1
+ log Z̃w? (γ,Λ)

)
= −min

γ

(
1

2
Λw2 − γw + logZw? (γ,Λ)

)
.

The last step, is to characterize the variances V and Λ involved in (139) and (143) that are so
far undetermined. To achieve the Bayes-optimal performances, we therefore need to used the
variances V and Λ solutions of the Bayes-optimal GAMP algorithm (137). In the large size limit,
these quantities concentrate and are giveen by the State Evolution (SE) of the GAMP algorithm,
that we recall herein.

State evolution of GAMP In the large size limit, the expectation of the parameter V and Λ
over the ground truth w? and the input data X lead to [53]:

Ew?,X [ V ] = ρw? − qb , Ew?,X [ Λ] = q̂b , (144)

where qb and q̂b are solutions of the Bayes-optimal set of �xed point equations eq. (13).
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VI.3 Summary and numerical evidences

Choosing the �ne-tuned (potentially non-convex depending on Zout? and Zw? ) loss and regu-
larizer

lopt (y, z) = −min
ω

(
(z − ω)2

2(ρw? − qb)
+ logZout? (y, ω, ρw? − qb)

)
ropt (w) = −min

γ

(
1

2
q̂bw

2 − γw + logZw? (γ, q̂b)

) (145)

with qb and q̂b are solutions of the Bayes-optimal set of �xed point equations eq. (13), we showed
that ERM can provably match the Bayes-optimal performances. In particular we illustrated the
behaviour of the optimal loss and regularizer λopt and ropt for the model (2) in Fig. 2 of the main
text. Note in particular that even though the loss lopt is not convex (but seems quasi-convex),
numerical simulations of ERM with (145) (black dots) presented in Fig. 5 show that ERM achieves
indeed the Bayes-optimal performances (black line) even at �nite dimension.
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Figure 5: Generalization error obtained by optimization of the optimal loss lopt and ropt for the
model (2), compared to `2 logistic regression and Bayes-optimal performances. Numerics has
been performed with scipy.optimize.minimize with the L-BFGS-B solver for d = 103 and
averaged over ns = 10 instances. The error bars are barely visible.
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