
Characterizing the impact of last-level cache

replacement policies on big-data workloads

Alexandre Valentin Jamet∗, Lluc Alvarez∗†, Daniel A. Jiménez‡, Marc Casas∗

∗Barcelona Supercomputing Center (BSC), †Universitat Politècnica de Catalunya (UPC), ‡Texas A&M University

{alexandre.jamet, lluc.alvarez, marc.casas}@bsc.es, djimenez@acm.org

Abstract—The vast disparity between Last Level Cache (LLC)
and memory latencies has motivated the need for efficient
cache management policies. The computer architecture literature
abounds with work on LLC replacement policy. Although these
works greatly improve over the least-recently-used (LRU) policy,
they tend to focus only on the SPEC CPU 2006 benchmark suite
– and more recently on the SPEC CPU 2017 benchmark suite –
for evaluation. However, these workloads are representative for
only a subset of current High-Performance Computing (HPC)
workloads.

In this paper we evaluate the behavior of a mix of graph-
processing, scientific and industrial workloads (GAP, XSBench
and Qualcomm) – along with the well-known SPEC CPU 2006
and SPEC CPU 2017 workloads – on state-of-the-art LLC
replacement policies such as Multiperspective Reuse Prediction
(MPPPB), Glider, Hawkeye, SHiP, DRRIP and SRRIP. Our
evaluation reveals that, even though current state-of-the-art
LLC replacement policies provide a significant performance
improvement over LRU for both SPEC CPU 2006 and SPEC
CPU 2017 workloads, those policies are hardly able to capture the
access patterns and yield sensible improvement on current HPC
and big data workloads due to their highly complex behavior.

In addition, this paper introduces two new LLC replacement
policies derived from MPPPB. The first proposed replacement
policy, Multi-Sampler Multiperspective (MS-MPPPB), uses mul-
tiple samplers instead of a single one and dynamically selects
the best-behaving sampler to drive reuse-distance predictions.
The second replacement policy presented in this paper, Multi-
perspective with Dynamic Features Selector (DS-MPPPB), selects
the best behaving features among a set of 64 features to improve
the accuracy of the predictions. On a large set of workloads
that stress the LLC, MS-MPPPB achieves a geometric mean
speed-up of 8.3% over LRU, while DS-MPPPB outperforms
LRU by a geometric mean speedup of 8.0%. For big data and
HPC workloads, the two proposed techniques present higher
performance benefits than state-of-the-art approaches such as
MPPPB, Glider and Hawkeye, which yield geometric mean
speedups of 7.0%, 5.0% and 4.8% over LRU, respectively.

Index Terms—cache management, big data, graph-processing,
workload evaluation, micro-architecture

I. INTRODUCTION

The vast disparity between main memory and CPU speed

has led to hierarchical caching system in modern CPUs. The

goal of the cache hierarchy is to keep data on-chip, close to the

cores that are accessing it, thus avoiding hitting the memory

wall [?]. Although computer architects highlighted the need for

multiple levels to the cache hierarchy, the Last Level Cache

(LLC) suffers from a high latency compared to the other cache

levels. In addition, the LLC suffers from poor temporal and

spatial locality in the access sequence as some accesses are

filtered by the upper levels of the hierarchy. This phenomenon

is exacerbated when considering emerging workloads such

as big data or graph-processing workloads displaying highly

irregular behavior. Thus, emerging workloads require more

sophisticated cache replacement policies that can cope with

a broader set of workloads than the traditional ones.

State-of-the-art LLC replacement policies such as

MPPPB [?], Glider [?], Hawkeye [?], SHiP [?], DRRIP, and

SRRIP [?] show significant improvement when challenged

by SPEC CPU 2006 [?] and SPEC CPU 2017 workloads.

However, when facing workloads representative of another

part of the spectrum of the HPC applications, these policies

fail at delivering significant improvement over the baseline

LRU policy. Such workloads with highly irregular behavior

prevent the LLC replacement policies mentioned above

from capturing the access patterns and, therefore, producing

meaningful predictions and decisions. To address this issue,

we argue that future work on LLC replacement policies

should consider a more extensive set of workloads such as

the one we study in this paper, which is composed of the

following benchmark suites:

• the GAP benchmark suite [?].

• the XSBench benchmark suite [?].

• Qualcomm workloads for the CVP1 [?] championship.

This paper also proposes two MPPPB variants that increase

its benefits. First, we propose Multi-Sampler Multiperspective

(MS-MPPPB), a variant of MPPPB that uses four samplers

and perceptron structures. MS-MPPPB adapts its replacement

policy to the workload in a phase-wise manner, selecting the

sampler that provides the best predictions out of the four

available and using the most accurate sampler to make predic-

tions and drive placement, promotion and bypass decisions in

the LLC. Second, this paper proposes Multiperspective with

Dynamic Features Selector (DS-MPPPB), another variant of

MPPPB that is also able to adapt its behavior to the execution

phases of the workloads by dynamically selecting the most

accurate subset of 16 features from a bigger pool of 64

features.

This paper makes the following contributions:

1) It evaluates state-of-the-art LLC replacement policies

over a broader set of benchmark suites than usually

considered in the literature. The selected benchmark

suites better represent current and emerging big data and

scientific workloads on HPC systems. The workloads



considered in this paper are the SPEC CPU 2006 and

the SPEC CPU 2017 suites, a large set of workloads

provided by Qualcomm for the CVP1 championship, the

GAP benchmark suite, and the XSBench. This paper

also takes the opportunity to build knowledge on these

workloads and analyzes their behavior and impact on the

LLC and the memory hierarchy, thus paving the way for

further work.

2) We present MS-MPPPB and DS-MPPPB, two novel

LLC replacement policies derived from MPPPB. The

main idea behind both schemes is to improve the ac-

curacy of the predictions by dynamically selecting the

most accurate features for each phase of the running

workload. On a set of 50 cache intensive benchmarks,

these new designs respectively yield a geometric mean

speed-up of 8.3% and 8.0% over LRU, and outperform

all the state-of-the-art approaches.

The rest of this paper is organized as follows: Section II

describes the different workloads studied in the paper. Section

III presents state-of-the-art replacement policies evaluated

in this work. Section IV motivates the need for additional

benchmarks in the evaluation of LLC replacement policies.

Section V proposes MS-MPPPB and DS-MPPPB, two designs

derived from MPPPB that achieve higher accuracy on the

studied benchmarks. Section VI defines the evaluation method-

ology. Section VII presents the results of our experiments and

comment on them. Finally, Section VIII remarks the main

conclusions of this work.

II. WORKLOADS

Benchmarks are of paramount importance for the computer

architecture community, as they are used in practically all the

stages of processor development, from the very initial research

to the final performance verification of the processors that are

manufactured for all market segments, from embedded devices

to the most powerful supercomputers in the world. Benchmark

suites are composed of a series of codes and representative

input sets, and their goal is to mimic the behavior of real

workloads to define the performance goals of a processor

design and to bring to light unexpected design issues. Hence,

their choice is of crucial importance. This section presents a

set of benchmarks that are commonly used in the community

to model the behavior of different types of workloads.

A. SPEC CPU Benchmark Suites

The SPEC CPU benchmark suite [?] is a set of benchmarks

aimed at studying the performance of CPU designs. These

benchmarks are well-known and highly used by the computer

architecture community, specially to evaluate new proposals

in the area of microarchitecture. These benchmarks provide

representative codes of real compute intensive workloads such

as compilers, data compression, AI algorithms, and physics.

These workloads are mostly scientific applications or com-

monly used algorithms in computer sciences such as data

compression and parsers which loop over data structures in a

reasonably predictable manner, which allows the cache struc-

tures of the CPUs to leverage the locality of these workloads.

However, although these benchmarks cover a broad spectrum

of applications, they do not represent some codes running on

current HPC systems and mobile devices.

B. GAP Benchmark Suite

To help to standardize the evaluation of big data and

graph processing algorithms, Beamer et al. proposed the GAP

Benchmark Suite [?], a set of domain specific workloads that

include graph computational kernels as well as representative

input graphs. These domain specific workloads provide com-

puter architects with the ability to extend their working sets

of workloads. The benchmark suite provides a standardized

evaluation framework for commonly used graph algorithms

such as Page Rank and Connected Components, along with

standard graph inputs available in industry and research.

1) Graph kernels: Next we provide a short description of

each of the six graph kernels available in the benchmark suite.

Breadth-First Search (BFS) was proposed in 1945 by Kon-

rad Zuse and it is one of the most well-known and widely used

graph processing algorithms. Its principle is rather simple,

and it comes down to a straightforward statement: first, one

designates a root vertex to initiate the search algorithm,

then the kernel traverses all the neighbouring vertices before

moving to the next depth level.

Single Source Shortest Path (SSSP) is a prevalent problem

in graph theory and engineering in general. This algorithm

computes the distance to any reachable vertices from a given

source vertex, being the distance between two vertices the

minimum sum of edge weights along a path connecting the

two vertices.

Page Rank (PR), invented by Larry Page to quantify the

popularity of a web page, is a widespread algorithm in our

daily life as it allows search engines to build meaningful

proposals to our questions. It is an iterative algorithm that

associates a score (a PageRank) to each vertex of the graph.

During an iteration, the algorithm updates the score of every

vertex proportionally to the sum of the scores of its incoming

neighbourhood. The algorithms stop when the variation of

PageRanks in the graph falls below a limit, which means

that the sum of the variations of the scores of all the vertices

between two steps is below a certain threshold.

Connected Components (CC) is an algorithm meant to iden-

tify and label connected components in a graph. A connected

component is a sub-graph in which its paths connect any two

vertices, and the vertices of the sub-graph are not connected

to any other vertex in the super-graph.

Betweeness Centrality (BC) is a crucial concept in graph

theory and network theory that allows measuring the influence

of a vertex in the data transfer of a network, assuming ideal

transfers through the shortest paths.

Triangle Count (TC) is an algorithm that is mostly used

in social network analysis to detect communities by detecting

triangles in a graph. Triangles are a group of three vertices

directly connected.



2) Input graphs: The GAP Benchmark suite comes with

five inputs graphs of diverse origin (synthetic versus real

world). The real world data models the connection between

people, websites and roads. When selecting these real world

graphs, the authors paid particular attention to the size of the

graphs so that they can fit in the memory of most servers while

stressing the cache hierarchy of such systems.

Twitter is a crawl of Twitter that has been commonly used

by researchers to evaluate prior work and thus allows fair

comparisons. It allows working with a typical example of

social network topology, and its real world origin gives it

interesting properties such as irregularities.

Web is a web crawl of the .sk domain. Even though it has

a large size, it exhibits good locality and high average degree.

Road is an input graph modelling the distances of all of the

roads in the USA. Although it has a modest size compared to

the other graphs available, it has a rather high diameter that

can cause some algorithms to present large execution times.

Kron provides continuity with prior work as it has been

used frequently in research. This graph uses the Kronecker

synthetic graph generator.

Urand represents a worst case scenario as all vertices have

an equal probability of being a neighbour of every other vertex.

C. XSBench workloads

XSBench workloads [?], as stated by their authors Tramm

and Siegel, are meant to represent the most computationally

intensive steps of a robust nuclear core Monte Carlo particle

transport simulation. These workloads provide a variety of

grid types, sizes and browsing algorithms allowing computer

architects to stress the memory hierarchy of a CPU in different

ways. Equally, they allow researchers to expand their working

set of workloads towards new scientific applications.

The XSBench suite allows customizing the code that will be

effectively executed in order to stress the memory hierarchy.

The benchmark suite relies on a handful of parameters to

achieve this flexibility. In this work we focus on the three

parameters that put more pressure on the cache hierarchy and,

thus, have a higher significance for this work.

1) Problem size: When solving the particle transport prob-

lem, the size of the problem has a dramatic influence on

performance and on the stress that is being put on the memory

hierarchy. Eventually, increasing the size of the problem has a

significant impact on performance as data structures are much

larger, so we use the two largest sizes of grid available.

2) Grid type: This parameter allows the user to select

among three types of grids. The nuclide grid is known as

a naive implementation and does not require any additional

memory other than what is necessary to store the point-wise

cross-section data. However, it is computationally intensive as

the benchmarks execute a binary search with high frequency.

Unionized is a grid type that allows for higher performance

as it uses an acceleration structure to reduce the number

of binary searches triggered during the execution. Here, this

optimization sacrifices memory footprint to leverage increased

performance. The hash grid is presented as a competitive

alternative to the unionized grid type as it allows to achieve

similar performance while using far less memory.

3) Number of cross-section look-ups: This parameter sets

the number of look-ups to perform per particle.

D. Industrial workloads

During the CVP1 contest, the evaluation of Value Prediction

mechanisms used a set of over 2000 workloads provided by

Qualcomm. These are typical server and database workloads

such as Redis and MongoDB, among others. Real world

database workloads traverse vast amounts of data while pro-

cessing a query and show low reuse of data over time. Thus,

these workloads are known to be memory intensive and they

stress the LLC more than the SPEC CPU 2006 and the SPEC

CPU 2017 workloads.

III. CACHE REPLACEMENT POLICIES

While developing new cache replacement algorithms for

LLCs, one needs to evaluate the policy against a set of work-

loads that show the behavior of interest. This section reviews

the most relevant cache replacement algorithms designed for

LLCs. As this work studies the impact of emerging work-

loads on the LLC, we present the state-of-the-art replacement

policies developed for this specific cache level. The cache

replacement problem is slightly more complex in the context

of the LLC than in the context of L1 and L2 caches. Although

the underlying idea remains the same, the LLC suffers from

poor locality as the upper-level caches filter accesses and

leave only a cluttered sequence to the LLC. To cope with

this particular replacement problem, researchers came up with

more and more sophisticated design ideas to leverage higher

prediction accuracy and performance.

The next subsections present the most relevant state-of-the-

art work on LLC replacement policies.

A. Reuse Distance Prediction

As reuse distance is a crucial concept when it comes to

cache replacement, recent works focused on proposing new

techniques to build run-time approximations of the distance

to the next reuse of a cache block. Re-reference Interval

Prediction (RRIP) and all its derivatives are efficient yet light-

weight implementations of reuse-distance prediction.

The main idea behind RRIP is the classification of blocks

into re-reference classes. In their work Jaleel et al. proposed

three versions of the RRIP replacement policies [?], [?]:

SRRIP, BRRIP, and DRRIP. The former, scan-resistant, is

limited to always inserting new coming blocks in a fixed class.

However, BRRIP allows for flexibility by frequently inserting

in the distance re-reference class and infrequently in the long

re-reference class. Finally, DRRIP leverages Set-Dueling to

determine which of SRRIP and BRRIP is best suited for a

given workload or program phase, making it both scan and

thrash resistant.



B. Signature-based Hit Predictor

Building on the reuse distance prediction [?], [?] framework

built by Jaleel et al. and program-counter based dead block

prediction [?], Wu et al. [?] proposed a LLC replacement

policy design that uses a program-counter based signature as

a feature.

As stated while describing reuse distance prediction mecha-

nism in Section III-A, SRRIP learns the re-reference intervals

of the living cache blocks relatively to one another. The

primary feature of Signature-based Hit Predictor (SHiP) [?]

is that, not only it allows the SRRIP policy to learn the

relative re-reference intervals, but it also tries to learn the

likelihood of cache blocks to experience hits through a feature.

The intuition being that cache blocks with the same signature

behave comparably. In order to learn the likelihood of a cache

block to experience further hits, SHiP maintains a prediction

table with an entry per signature. When a signature gets hit, the

associated saturated counter is incremented. Conversely, when

a signature misses, the associated counter is decremented.

With the prediction values thus learned, SHiP modifies SR-

RIP policy for insertion by inserting new coming cache blocks

in the distant re-reference interval if the prediction associated

with the signature of that cache blocks is zero. A zero in the

prediction table gives a strong hint that the associated signature

belongs to the distance re-reference interval.

C. Multiperspective Reuse Prediction

The Multiperpsective Reuse Prediction [?] cache replace-

ment algorithm (hereafter MPPPB) leverages perceptron learn-

ing for reuse prediction and drives placement, promotion and

bypass decisions. This replacement policy extends the idea of

features developed in previous work [?], [?], [?] to achieve

higher accuracy. It is essentially made of two components,

a sampler and a perceptron predictor. The sampler, based

on observations of block evictions relatively to its features

associativity, is responsible for triggering learning signals to

the perceptron. The perceptron, based on the learning signals

triggered by the sampler, updates its prediction tables.

MPPPB relies on the idea of correlating reuse prediction

of a cache line with a large number of features that ranges

from PCs to characterizing bursty access patterns. LLC sets

and improves a previously proposed design [?]. In this context,

a feature can be defined as a hash function applied to cache

block characteristics such as the PC or the physical address.

When a prediction request occurs, the perceptron selects

weights out of its prediction tables using hashes of multiple

features. Each feature is hashed to index its prediction table,

and the weights obtained are gathered in a single prediction

value by simple addition and compared to a set of thresholds

to drive actions such as bypass, promotion and placement.

Perceptron learning is used to update the weights of the

prediction tables through the learning algorithm. At the time

a sampled block is reused or evicted, the perceptron updates

the weights of the prediction tables associated with the last

access to this block, according to the perceptron learning rule.

For instance, if a block hits in the sampler while having its

LRU stack position lower than the associativity of a feature,

it is trained positively for that feature. Conversely, if a block

gets demoted beyond the associativity of a given feature, it is

trained negatively for that feature.

With this work, Jiménez and Teran demonstrated the useful-

ness and impact of combining multiple features. Among the

correlating features, the sequence of PCs leading to the usage

of a block is one; however, the sequence of PCs is highly

filtered by the other levels of the cache hierarchy, making it

inaccurate for predictions. The introduced additional features

such as bits extracted from the memory address help mitigating

the inaccuracy of a filtered PC sequence. MPPPB relies on

this idea of combining multiple features while significantly

augmenting the set of available features.

D. Optimal Replacement Approximation

The Hawkeye [?] replacement policy marked the birth

of a new class of cache replacement algorithms aiming at

approximating, in a relatively affordable way, optimal but

unimplementable algorithms such MIN [?].

Hawkeye and its successor, Glider, are primarily made of

two major building blocks: an optimal solution approximation

component and a predictor that learns from the former com-

ponent. The predictor is used to compute predictions and will

then trigger actions. The first component provides a binary

output about the cache line of interest: needs to be cached or

not. For this outcome, the predictor gets trained for the asso-

ciated PC as it is a PC-based predictor. When the replacement

policy requests a prediction to drive its decision making, the

predictor is indexed, and it uses its outcome to place blocks

in the matching RRIP categories, thus prioritizing eviction for

blocks classified as cache-averse. Conversely, blocks identified

as cache-friendly tend to stay in the immediate-reuse category.

Further work on the Hawkeye predictor provided it with

a more complex predictor infrastructure. That infrastructure,

named Glider [?], leveraged on the knowledge obtained

through the offline training of a machine learning model,

yielding additional performance improvements.

IV. MOTIVATION

To highlight the need for new benchmarks in the context of

the development of new cache replacement policies for LLCs

we provide a quantitative analysis to build intuition on why the

current state-of-the-art techniques need to take into account a

broader set of workloads in the process of their constructions.

This analysis relies on figures obtained through the simulation

methodology detailed in VI.

Figure 1a shows the averaged LLC MPKI for each of

the benchmark suites described in II using the baseline

LRU replacement policy. In both figure 1a & 1b, we only

show cache-intensive benchmarks of these benchamrks suites,

namely the ones which presented a LLC MPKI over 1.0 with

the baseline LRU replacement policy. The GAP benchmark

suite and all the different traced runs of XSBench, with LLC

MPKI of respectively 78.29 and 36.62, provide a significantly

higher LLC MPKI than what is provided by the SPEC CPU





holds an indices trace of the last accessed elements of the

prediction tables, which requires a maximum of 128 bits. For

each block, the sampler holds a 16-bit partial tag along with

a 5-bit LRU state and a 9-bits confidence value. The sampler

takes the form of a cache with 80 sets and 18 ways.

B. Multiperspective with Dynamic Features Selector

In the second design proposal, named DS-MPPPB, we use

an additional concept along with the already existing idea of

weights. Our new concept, Coefficients, revisits the conception

of a hashed perceptron [?] by introducing the weights used in

the mathematical definition of a perceptron [?].

We thus differentiate two key concepts. The weights are the

actual values contained in the prediction tables of a hashed

perceptron. These values are meant to reflect the learned reuse

distance based on the observation of past events. These events

can be the occurrence of a specific PC, a physical address or

any other source of information used as feature [?], [?], [?].

The concept of coefficients, which are confidence counters that

reflect how accurate is the prediction table bound to a specific

confidence counter.

The original code of MPPPB, is shipped with not just one

set of features but four, which adds up to a total of 64 features.

Each of these sets of features was developed following the hill-

climbing methodology described in Multiperspective Reuse

Prediction [?] and is designed to fit each of the possible

configurations of the CRC2 contest.

We gather all the features in a single set and build a

perceptron predictor using them all. Although we now have a

set of 64 features, we want to select only the 16 best behaving

ones among the 64 available. To do so, for each prediction

triggered by the replacement policy, the predictor searches for

the 16 features with the highest confidence values and uses

them to build a prediction, and the other features being left

unused for that prediction. However, confidence values of all

features are updated following algorithm 1.

Algorithm 1 Updating prediction tables’ confidence values

hit← false

truth← 0Bn {A n-vector of falses.}

pred ∈ J−32; 31Kn {A vector of individual predictions.}

if Accessed block hits in the sampler then

hit← false

else

hit← true

end if

for all i such that 0 ≤ i ≤ n− 1 do

truth [i]← ((pred [i] < 0) = hit)
if truth [i] = true then

confi ← max(confi + 1, confmax,i)
else

confi ← min(confi − 1, 0)
end if

end for

For clarity, we include a summary of the notations we use.

F denotes the set of features, n is the total number of features

and m the number of features we include in the prediction

value. We denote the confidence counter of the i-th feature

as conf(fi) = confi along with the upper bound of the

confidence counters confmax,i. We denote as ti the prediction

table associated with feature fi.

We thus define F̆, the set of all possible arrangements of

unique m features taken out of F and F̆max the element of

F̆ that maximizes the sum of confidence counters. Finally, we

compute the prediction value by summing the weights taken

out of the tables of the elements of F̆max.

Table I summarizes the hardware budget of each design

proposal described in this section. Along with the total hard-

ware budget required for each proposal, we also provide the

budget required by each component, namely: the replacement

states (here we use MDPP, a modified Tree-based PLRU [?],

[?] policy that uses a custom transition vector to determine

to which position an accessed block should be moved to), the

sampler(s) and perceptron(s).

Replacement states Sampler(s) Percpetron(s) Total

MS-MPPPB 3.75KiB 111.09KiB 12KiB 126.84KiB

DS-MPPPB 3.75KiB 95.27KiB 12KiB 111.02KiB

TABLE I
UPPER-BOUNDS OF THE HARDWARE BUDGET OF THE PROPOSED DESIGNS.

VI. METHODOLOGY

In this section we present the evaluation methodology

used to report results in Section VII. In particular, the next

subsections present the set of workloads used to evaluate the

different LLC replacement policies and our workload selection

methodology, a description of the simulation environment, and

the evaluated replacement policies and their configuration.

Overall, we follow the same evaluation methodology as the

one used by Shi et al. [?] with the aim of building the fairest

comparison possible against state-of-the-art techniques.

A. Workloads

For the evaluation of the different LLC replacement policies,

we consider the following sets of workloads:

• Over 2000 Qualcomm workloads used for CVP1 contest.

• All SPEC CPU 2006 and CPU 2017 benchmarks.

• All workloads included in the GAP Benchmark Suite.

• All workloads included in the XSBench Suite.

From all these benchmarks we select the 50 most intensive

workloads so that our evaluation set of workloads is a blend of

each suite designated above. We use the SimPoints [?] method-

ology to identify intervals (hereafter SimPoints) representative

of at least 5% of the SPEC, GAP and XSBench workloads.

Each SimPoint is 1 billion instructions long and characterizes a

different phase of these workloads. Each SimPoint is executed

for 200 million instructions in order to warm-up the memory

hierarchy, and then it is executed for an additional 1 billion

instructions to report experimental results.

We only evaluate these workloads in a single-thread context.

We deliberately chose to restrict our evaluation to single-core



Component Description

Branch Predictor hashed perceptron

CPU 4GHz, 4-wide out-of-order processor
6-stage pipeline, 128-entries re-order buffer

L1 ITLB 64-entry, 4-way, 1-cycle latency, 8-entry MSHR

L1 DTLB 64-entry, 4-way, 1-cycle latency, 8-entry MSHR

L2 TLB 1536-entry, 12-way, 8-cycle latency, 16-entry MSHR

L1-I Cache 32KiB, 8-way, 4-cycle latency, 8-entry MSHR

L1-D Cache 32KiB, 8-way, 4-cycle latency, 8-entry MSHR
next line prefetcher

L2 Cache 256KiB, 8-way, 12-cycle latency, 16-entry MSHR
ip-stride prefetcher

LLC 2MiB, 16-way, 26-cycle latency, 32-entry MSHR

DRAM 4GiB, DDR4 SDRAM
data-rate: 3.2GT/s, I/O bus frequency: 1.6GHz
tRP = tRCD = tCAS = 24 cycles

TABLE II
SYSTEM SIMULATION PARAMETERS.

as this work focuses on the characterization of the access

patterns of the selected workloads to the LLC. The modeled

architecture being composed of a shared LLC, modeling an

architecture using multiple cores we would not be able to

properly measure reuse-distances as the different cores would

be asking for distinct data in the same cache, thus compro-

mising our measurements. The results reported per benchmark

(for SPEC, GAP and XSBench) are the normalized weighted

averages of the results for individual SimPoints. In contrast,

the Qualcomm workloads are single-trace benchmarks that do

not use such methodology.

B. Experimental setup

Our evaluation considers ChampSim [?], a detailed trace-

based simulator that models an out-of-order CPU along with

its cache hierarchy, prefethcing mechanisms and memory sub-

system. Table II provides a detailed configuration of the

modeled CPU and the memory hierarchy.

C. Replacement policies simulated

We evaluate the workloads described in Section II against

the most relevant cache replacement policies proposed in the

literature: SRRIP, DRRIP, SHiP, MPPPB, Hawkeye and Glider,

all detailed in Section III. Although there is a vast amount

of work in reuse prediction available in the literature [?],

[?], [?], [?], [?], [?], [?], [?], [?], [?], the aforementioned

replacement policies that have been selected for the evaluation

are the most recent and relevant approaches in the state-of-

the-art. In addition, in the evaluation we also include the two

new replacement policies proposed in this paper, explained

in Section V. These two new techniques are derived from

MPPPB and leverage the usage of multiple perceptrons to

achieve higher accuracy. For MPPPB we used the code that

is publicly available on the website of the CRC2 contest [?].

For Glider we use code graciously provided by the authors.

VII. RESULTS, ANALYSIS AND DISCUSSION

This section presents our experimental campaign along

with the results obtained and characterization of the studied

workloads. VII-B presents the performance benefits yielded

by the different state of the art cache replacement policies

mentioned in VI-C and in V. VII-A studies the impact of

these workloads on the LLC in terms of misses and presents

the MPKI reduction obtained by the replacement mentioned

above policies. Finally, VII-C studies the behaviour of the

studied workloads via the reuse-distance of the cache blocks

to highlight the different behaviour of these benchmark suites.

A. Misses

Figure 2a gives the LLC MPKI of the 50 most intensives

workloads, against various techniques presented in VI-C and

in V, among all the workloads available. Each of them shows a

very high impact on the LLC compared to previous work with

an average LLC MPKI of 120. We use this to define the set

of workloads that will be used in VII-B and more precisely

in figure 2b to evaluate state-of-the-art replacement policies

along with our custom designs. These results clearly show the

high impact on the LLC of Qualcomm, GAP and XSBench

workloads. This selection of benchmarks is comprised of

each of the studied benchmark suites and allows to evaluate

replacement policies against a broader range of behaviour.

B. Performance

Figure 2 shows single-thread speedup of various techniques

presented in VI-C and in V. LLC MPKI sorts the benchmarks

with a baseline LRU policy. While figure 1b was showing

Glider standing out against MPPPB in some situations, figure

2 clearly shows the versatility of the former and its ability

to consistently deliver good performance even facing the

most intensives and hard to predict workloads. MPPPB and

Glider provide respectively 7.0% and 5.0% speedup over

baseline LRU. We also report a interesting improvement for

our proposed techniques derived from MPPPB. The two de-

signs proposed in V-A and V-B, MS-MPPPB and DS-MPPPB

respectively yield 8.3% and 8.0% speedup over the baseline

LRU. As a results, Glider, on our set of workload is not

able to deliver significant improvement over the baseline LRU

compared with MPPPB, DS-MPPPB & MS-MPPPB. This fact

suggests that the Machine Learning algorithm used to design

the predictor should be trained against a wider variety of

workloads hence the need to include the workloads presented

here in further work on LLC replacement policies.

We observe that this performance improvement is due to

the ability to adapt the set of features used for prediction in

a execution phase-wise manner, providing more versatility to

the design than the previously discussed techniques.

Besides, we justify the difference of performance improve-

ment in figure 1b and 2 between Glider and MPPPB com-

pared to the results published in Applying Deep Learning

to the Cache Replacement Problem [?] by a difference in

the methodology. As a matter of fact, we use the SimPoint

methodology to generate at most ten simpoints and we only

use the ones accounting for more than 5% of the whole

execution. Whereas, Glider’s original results where reported

with only a single trace per-benchmark. We argue that our

methodology is more robust in the sense that we cover








