Characterizing the impact of last-level cache
replacement policies on big-data workloads

Alexandre Valentin Jamet*, Lluc Alvarez*T, Daniel A. Jiménez*, Marc Casas*
*Barcelona Supercomputing Center (BSC), TUniversitat Politécnica de Catalunya (UPC), ¥Texas A&M University

{alexandre.jamet, lluc.alvarez,

Abstract—The vast disparity between Last Level Cache (LLC)
and memory latencies has motivated the need for efficient
cache management policies. The computer architecture literature
abounds with work on LLC replacement policy. Although these
works greatly improve over the least-recently-used (LRU) policy,
they tend to focus only on the SPEC CPU 2006 benchmark suite
— and more recently on the SPEC CPU 2017 benchmark suite —
for evaluation. However, these workloads are representative for
only a subset of current High-Performance Computing (HPC)
workloads.

In this paper we evaluate the behavior of a mix of graph-
processing, scientific and industrial workloads (GAP, XSBench
and Qualcomm) - along with the well-known SPEC CPU 2006
and SPEC CPU 2017 workloads — on state-of-the-art LLC
replacement policies such as Multiperspective Reuse Prediction
(MPPPB), Glider, Hawkeye, SHiP, DRRIP and SRRIP. Our
evaluation reveals that, even though current state-of-the-art
LLC replacement policies provide a significant performance
improvement over LRU for both SPEC CPU 2006 and SPEC
CPU 2017 workloads, those policies are hardly able to capture the
access patterns and yield sensible improvement on current HPC
and big data workloads due to their highly complex behavior.

In addition, this paper introduces two new LLC replacement
policies derived from MPPPB. The first proposed replacement
policy, Multi-Sampler Multiperspective (MS-MPPPB), uses mul-
tiple samplers instead of a single one and dynamically selects
the best-behaving sampler to drive reuse-distance predictions.
The second replacement policy presented in this paper, Multi-
perspective with Dynamic Features Selector (DS-MPPPB), selects
the best behaving features among a set of 64 features to improve
the accuracy of the predictions. On a large set of workloads
that stress the LLC, MS-MPPPB achieves a geometric mean
speed-up of 8.3% over LRU, while DS-MPPPB outperforms
LRU by a geometric mean speedup of 8.0%. For big data and
HPC workloads, the two proposed techniques present higher
performance benefits than state-of-the-art approaches such as
MPPPB, Glider and Hawkeye, which yield geometric mean
speedups of 7.0%, 5.0% and 4.8% over LRU, respectively.

Index Terms—cache management, big data, graph-processing,
workload evaluation, micro-architecture

I. INTRODUCTION

The vast disparity between main memory and CPU speed
has led to hierarchical caching system in modern CPUs. The
goal of the cache hierarchy is to keep data on-chip, close to the
cores that are accessing it, thus avoiding hitting the memory
wall [?]. Although computer architects highlighted the need for
multiple levels to the cache hierarchy, the Last Level Cache
(LLC) suffers from a high latency compared to the other cache
levels. In addition, the LLC suffers from poor temporal and
spatial locality in the access sequence as some accesses are

marc.casas}@bsc.es,

djimenez@acm.org

filtered by the upper levels of the hierarchy. This phenomenon
is exacerbated when considering emerging workloads such
as big data or graph-processing workloads displaying highly
irregular behavior. Thus, emerging workloads require more
sophisticated cache replacement policies that can cope with
a broader set of workloads than the traditional ones.

State-of-the-art LLC replacement policies such as
MPPPB [?], Glider [?], Hawkeye [?], SHiP [?], DRRIP, and
SRRIP [?] show significant improvement when challenged
by SPEC CPU 2006 [?] and SPEC CPU 2017 workloads.
However, when facing workloads representative of another
part of the spectrum of the HPC applications, these policies
fail at delivering significant improvement over the baseline
LRU policy. Such workloads with highly irregular behavior
prevent the LLC replacement policies mentioned above
from capturing the access patterns and, therefore, producing
meaningful predictions and decisions. To address this issue,
we argue that future work on LLC replacement policies
should consider a more extensive set of workloads such as
the one we study in this paper, which is composed of the
following benchmark suites:

o the GAP benchmark suite [?].
o the XSBench benchmark suite [?].
¢ Qualcomm workloads for the CVP1 [?] championship.

This paper also proposes two MPPPB variants that increase
its benefits. First, we propose Multi-Sampler Multiperspective
(MS-MPPPB), a variant of MPPPB that uses four samplers
and perceptron structures. MS-MPPPB adapts its replacement
policy to the workload in a phase-wise manner, selecting the
sampler that provides the best predictions out of the four
available and using the most accurate sampler to make predic-
tions and drive placement, promotion and bypass decisions in
the LLC. Second, this paper proposes Multiperspective with
Dynamic Features Selector (DS-MPPPB), another variant of
MPPPB that is also able to adapt its behavior to the execution
phases of the workloads by dynamically selecting the most
accurate subset of 16 features from a bigger pool of 64
features.

This paper makes the following contributions:

1) It evaluates state-of-the-art LLC replacement policies
over a broader set of benchmark suites than usually
considered in the literature. The selected benchmark
suites better represent current and emerging big data and
scientific workloads on HPC systems. The workloads

considered in this paper are the SPEC CPU 2006 and
the SPEC CPU 2017 suites, a large set of workloads
provided by Qualcomm for the CVP1 championship, the
GAP benchmark suite, and the XSBench. This paper
also takes the opportunity to build knowledge on these
workloads and analyzes their behavior and impact on the
LLC and the memory hierarchy, thus paving the way for
further work.

2) We present MS-MPPPB and DS-MPPPB, two novel
LLC replacement policies derived from MPPPB. The
main idea behind both schemes is to improve the ac-
curacy of the predictions by dynamically selecting the
most accurate features for each phase of the running
workload. On a set of 50 cache intensive benchmarks,
these new designs respectively yield a geometric mean
speed-up of 8.3 % and 8.0 % over LRU, and outperform
all the state-of-the-art approaches.

The rest of this paper is organized as follows: Section II
describes the different workloads studied in the paper. Section
IIT presents state-of-the-art replacement policies evaluated
in this work. Section IV motivates the need for additional
benchmarks in the evaluation of LLC replacement policies.
Section V proposes MS-MPPPB and DS-MPPPB, two designs
derived from MPPPB that achieve higher accuracy on the
studied benchmarks. Section VI defines the evaluation method-
ology. Section VII presents the results of our experiments and
comment on them. Finally, Section VIII remarks the main
conclusions of this work.

II. WORKLOADS

Benchmarks are of paramount importance for the computer
architecture community, as they are used in practically all the
stages of processor development, from the very initial research
to the final performance verification of the processors that are
manufactured for all market segments, from embedded devices
to the most powerful supercomputers in the world. Benchmark
suites are composed of a series of codes and representative
input sets, and their goal is to mimic the behavior of real
workloads to define the performance goals of a processor
design and to bring to light unexpected design issues. Hence,
their choice is of crucial importance. This section presents a
set of benchmarks that are commonly used in the community
to model the behavior of different types of workloads.

A. SPEC CPU Benchmark Suites

The SPEC CPU benchmark suite [?] is a set of benchmarks
aimed at studying the performance of CPU designs. These
benchmarks are well-known and highly used by the computer
architecture community, specially to evaluate new proposals
in the area of microarchitecture. These benchmarks provide
representative codes of real compute intensive workloads such
as compilers, data compression, Al algorithms, and physics.
These workloads are mostly scientific applications or com-
monly used algorithms in computer sciences such as data
compression and parsers which loop over data structures in a

reasonably predictable manner, which allows the cache struc-
tures of the CPUs to leverage the locality of these workloads.
However, although these benchmarks cover a broad spectrum
of applications, they do not represent some codes running on
current HPC systems and mobile devices.

B. GAP Benchmark Suite

To help to standardize the evaluation of big data and
graph processing algorithms, Beamer et al. proposed the GAP
Benchmark Suite [?], a set of domain specific workloads that
include graph computational kernels as well as representative
input graphs. These domain specific workloads provide com-
puter architects with the ability to extend their working sets
of workloads. The benchmark suite provides a standardized
evaluation framework for commonly used graph algorithms
such as Page Rank and Connected Components, along with
standard graph inputs available in industry and research.

1) Graph kernels: Next we provide a short description of
each of the six graph kernels available in the benchmark suite.

Breadth-First Search (BFS) was proposed in 1945 by Kon-
rad Zuse and it is one of the most well-known and widely used
graph processing algorithms. Its principle is rather simple,
and it comes down to a straightforward statement: first, one
designates a root vertex to initiate the search algorithm,
then the kernel traverses all the neighbouring vertices before
moving to the next depth level.

Single Source Shortest Path (SSSP) is a prevalent problem
in graph theory and engineering in general. This algorithm
computes the distance to any reachable vertices from a given
source vertex, being the distance between two vertices the
minimum sum of edge weights along a path connecting the
two vertices.

Page Rank (PR), invented by Larry Page to quantify the
popularity of a web page, is a widespread algorithm in our
daily life as it allows search engines to build meaningful
proposals to our questions. It is an iterative algorithm that
associates a score (a PageRank) to each vertex of the graph.
During an iteration, the algorithm updates the score of every
vertex proportionally to the sum of the scores of its incoming
neighbourhood. The algorithms stop when the variation of
PageRanks in the graph falls below a limit, which means
that the sum of the variations of the scores of all the vertices
between two steps is below a certain threshold.

Connected Components (CC) is an algorithm meant to iden-
tify and label connected components in a graph. A connected
component is a sub-graph in which its paths connect any two
vertices, and the vertices of the sub-graph are not connected
to any other vertex in the super-graph.

Betweeness Centrality (BC) is a crucial concept in graph
theory and network theory that allows measuring the influence
of a vertex in the data transfer of a network, assuming ideal
transfers through the shortest paths.

Triangle Count (TC) is an algorithm that is mostly used
in social network analysis to detect communities by detecting
triangles in a graph. Triangles are a group of three vertices
directly connected.

2) Input graphs: The GAP Benchmark suite comes with
five inputs graphs of diverse origin (synthetic versus real
world). The real world data models the connection between
people, websites and roads. When selecting these real world
graphs, the authors paid particular attention to the size of the
graphs so that they can fit in the memory of most servers while
stressing the cache hierarchy of such systems.

Twitter is a crawl of Twitter that has been commonly used
by researchers to evaluate prior work and thus allows fair
comparisons. It allows working with a typical example of
social network topology, and its real world origin gives it
interesting properties such as irregularities.

Web is a web crawl of the . sk domain. Even though it has
a large size, it exhibits good locality and high average degree.

Road is an input graph modelling the distances of all of the
roads in the USA. Although it has a modest size compared to
the other graphs available, it has a rather high diameter that
can cause some algorithms to present large execution times.

Kron provides continuity with prior work as it has been
used frequently in research. This graph uses the Kronecker
synthetic graph generator.

Urand represents a worst case scenario as all vertices have
an equal probability of being a neighbour of every other vertex.

C. XSBench workloads

XSBench workloads [?], as stated by their authors Tramm
and Siegel, are meant to represent the most computationally
intensive steps of a robust nuclear core Monte Carlo particle
transport simulation. These workloads provide a variety of
grid types, sizes and browsing algorithms allowing computer
architects to stress the memory hierarchy of a CPU in different
ways. Equally, they allow researchers to expand their working
set of workloads towards new scientific applications.

The XSBench suite allows customizing the code that will be
effectively executed in order to stress the memory hierarchy.
The benchmark suite relies on a handful of parameters to
achieve this flexibility. In this work we focus on the three
parameters that put more pressure on the cache hierarchy and,
thus, have a higher significance for this work.

1) Problem size: When solving the particle transport prob-
lem, the size of the problem has a dramatic influence on
performance and on the stress that is being put on the memory
hierarchy. Eventually, increasing the size of the problem has a
significant impact on performance as data structures are much
larger, so we use the two largest sizes of grid available.

2) Grid type: This parameter allows the user to select
among three types of grids. The nuclide grid is known as
a naive implementation and does not require any additional
memory other than what is necessary to store the point-wise
cross-section data. However, it is computationally intensive as
the benchmarks execute a binary search with high frequency.
Unionized is a grid type that allows for higher performance
as it uses an acceleration structure to reduce the number
of binary searches triggered during the execution. Here, this
optimization sacrifices memory footprint to leverage increased
performance. The hash grid is presented as a competitive

alternative to the unionized grid type as it allows to achieve
similar performance while using far less memory.

3) Number of cross-section look-ups: This parameter sets
the number of look-ups to perform per particle.

D. Industrial workloads

During the CVP1 contest, the evaluation of Value Prediction
mechanisms used a set of over 2000 workloads provided by
Qualcomm. These are typical server and database workloads
such as Redis and MongoDB, among others. Real world
database workloads traverse vast amounts of data while pro-
cessing a query and show low reuse of data over time. Thus,
these workloads are known to be memory intensive and they
stress the LLC more than the SPEC CPU 2006 and the SPEC
CPU 2017 workloads.

III. CACHE REPLACEMENT POLICIES

While developing new cache replacement algorithms for
LLCs, one needs to evaluate the policy against a set of work-
loads that show the behavior of interest. This section reviews
the most relevant cache replacement algorithms designed for
LLCs. As this work studies the impact of emerging work-
loads on the LLC, we present the state-of-the-art replacement
policies developed for this specific cache level. The cache
replacement problem is slightly more complex in the context
of the LLC than in the context of L1 and L2 caches. Although
the underlying idea remains the same, the LLC suffers from
poor locality as the upper-level caches filter accesses and
leave only a cluttered sequence to the LLC. To cope with
this particular replacement problem, researchers came up with
more and more sophisticated design ideas to leverage higher
prediction accuracy and performance.

The next subsections present the most relevant state-of-the-
art work on LLC replacement policies.

A. Reuse Distance Prediction

As reuse distance is a crucial concept when it comes to
cache replacement, recent works focused on proposing new
techniques to build run-time approximations of the distance
to the next reuse of a cache block. Re-reference Interval
Prediction (RRIP) and all its derivatives are efficient yet light-
weight implementations of reuse-distance prediction.

The main idea behind RRIP is the classification of blocks
into re-reference classes. In their work Jaleel et al. proposed
three versions of the RRIP replacement policies [?], [?]:
SRRIP, BRRIP, and DRRIP. The former, scan-resistant, is
limited to always inserting new coming blocks in a fixed class.
However, BRRIP allows for flexibility by frequently inserting
in the distance re-reference class and infrequently in the long
re-reference class. Finally, DRRIP leverages Set-Dueling to
determine which of SRRIP and BRRIP is best suited for a
given workload or program phase, making it both scan and
thrash resistant.

B. Signature-based Hit Predictor

Building on the reuse distance prediction [?], [?] framework
built by Jaleel et al. and program-counter based dead block
prediction [?], Wu et al. [?] proposed a LLC replacement
policy design that uses a program-counter based signature as
a feature.

As stated while describing reuse distance prediction mecha-
nism in Section III-A, SRRIP learns the re-reference intervals
of the living cache blocks relatively to one another. The
primary feature of Signature-based Hit Predictor (SHiP) [?]
is that, not only it allows the SRRIP policy to learn the
relative re-reference intervals, but it also tries to learn the
likelihood of cache blocks to experience hits through a feature.
The intuition being that cache blocks with the same signature
behave comparably. In order to learn the likelihood of a cache
block to experience further hits, SHiP maintains a prediction
table with an entry per signature. When a signature gets hit, the
associated saturated counter is incremented. Conversely, when
a signature misses, the associated counter is decremented.

With the prediction values thus learned, SHiP modifies SR-
RIP policy for insertion by inserting new coming cache blocks
in the distant re-reference interval if the prediction associated
with the signature of that cache blocks is zero. A zero in the
prediction table gives a strong hint that the associated signature
belongs to the distance re-reference interval.

C. Multiperspective Reuse Prediction

The Multiperpsective Reuse Prediction [?] cache replace-
ment algorithm (hereafter MPPPB) leverages perceptron learn-
ing for reuse prediction and drives placement, promotion and
bypass decisions. This replacement policy extends the idea of
features developed in previous work [?], [?], [?] to achieve
higher accuracy. It is essentially made of two components,
a sampler and a perceptron predictor. The sampler, based
on observations of block evictions relatively to its features
associativity, is responsible for triggering learning signals to
the perceptron. The perceptron, based on the learning signals
triggered by the sampler, updates its prediction tables.

MPPPB relies on the idea of correlating reuse prediction
of a cache line with a large number of features that ranges
from PCs to characterizing bursty access patterns. LLC sets
and improves a previously proposed design [?]. In this context,
a feature can be defined as a hash function applied to cache
block characteristics such as the PC or the physical address.
When a prediction request occurs, the perceptron selects
weights out of its prediction tables using hashes of multiple
features. Each feature is hashed to index its prediction table,
and the weights obtained are gathered in a single prediction
value by simple addition and compared to a set of thresholds
to drive actions such as bypass, promotion and placement.

Perceptron learning is used to update the weights of the
prediction tables through the learning algorithm. At the time
a sampled block is reused or evicted, the perceptron updates
the weights of the prediction tables associated with the last
access to this block, according to the perceptron learning rule.
For instance, if a block hits in the sampler while having its

LRU stack position lower than the associativity of a feature,
it is trained positively for that feature. Conversely, if a block
gets demoted beyond the associativity of a given feature, it is
trained negatively for that feature.

With this work, Jiménez and Teran demonstrated the useful-
ness and impact of combining multiple features. Among the
correlating features, the sequence of PCs leading to the usage
of a block is one; however, the sequence of PCs is highly
filtered by the other levels of the cache hierarchy, making it
inaccurate for predictions. The introduced additional features
such as bits extracted from the memory address help mitigating
the inaccuracy of a filtered PC sequence. MPPPB relies on
this idea of combining multiple features while significantly
augmenting the set of available features.

D. Optimal Replacement Approximation

The Hawkeye [?] replacement policy marked the birth
of a new class of cache replacement algorithms aiming at
approximating, in a relatively affordable way, optimal but
unimplementable algorithms such MIN [?].

Hawkeye and its successor, Glider, are primarily made of
two major building blocks: an optimal solution approximation
component and a predictor that learns from the former com-
ponent. The predictor is used to compute predictions and will
then trigger actions. The first component provides a binary
output about the cache line of interest: needs to be cached or
not. For this outcome, the predictor gets trained for the asso-
ciated PC as it is a PC-based predictor. When the replacement
policy requests a prediction to drive its decision making, the
predictor is indexed, and it uses its outcome to place blocks
in the matching RRIP categories, thus prioritizing eviction for
blocks classified as cache-averse. Conversely, blocks identified
as cache-friendly tend to stay in the immediate-reuse category.

Further work on the Hawkeye predictor provided it with
a more complex predictor infrastructure. That infrastructure,
named Glider [?], leveraged on the knowledge obtained
through the offline training of a machine learning model,
yielding additional performance improvements.

IV. MOTIVATION

To highlight the need for new benchmarks in the context of
the development of new cache replacement policies for LLCs
we provide a quantitative analysis to build intuition on why the
current state-of-the-art techniques need to take into account a
broader set of workloads in the process of their constructions.
This analysis relies on figures obtained through the simulation
methodology detailed in VI.

Figure la shows the averaged LLC MPKI for each of
the benchmark suites described in II using the baseline
LRU replacement policy. In both figure la & 1b, we only
show cache-intensive benchmarks of these benchamrks suites,
namely the ones which presented a LLC MPKI over 1.0 with
the baseline LRU replacement policy. The GAP benchmark
suite and all the different traced runs of XSBench, with LLC
MPKI of respectively 78.29 and 36.62, provide a significantly
higher LLC MPKI than what is provided by the SPEC CPU

benchmarks. Industrial Qualcomm workloads and all SPEC
CPU workloads, with respectively 10.63 and 15.76 averaged
LLC MPKI, do not show such a high impact on the LLC.

These results demonstrate that big data graph-processing
workloads like the ones modeled in the GAP benchmark suite
highly stress the cache hierarchy, and particularly the LLC,
much more than well-known workloads such as SPEC CPU
2006 and SPEC CPU 2017 suites do. This is due to the nature
of these workloads, where moving from edge to edge in a
graph structure leads to extremely unpredictable and sparse
access patterns [?], [?]. Also, the memory footprint of the
inputs is an important factor, as jumping from edges to edges
in an extensively large graph exhibits very low spatial and
temporal locality, which are two key concepts in the design of
cache replacement policies.

Figure 1b shows the speed-up of the state-of-the-art cache
replacement policies presented in III over the baseline LRU
policy for the different benchmark suites presented in II. Each
bar represents a single replacement policy, and each bar group
stands for a benchmark suite. Results show that the different
policies can catch a different kind of access patterns and are
beneficial for different kind of workloads.

For the SPEC benchmarks, the plot shows that every single
replacement policy is consistently delivering improvements
over the baseline LRU and the previously proposed replace-
ment policies in the literature, incrementally improving the
performance of these benchmarks.

The replacement policies based on Reuse Distance Predic-
tion (SRRIP and DRRIP) are consistent in their improvement
over the baseline LRU, while more complex policies such as
SHiP, Hawkeye, Glider and MPPPB have more difficulties
generalizing to all the benchmark suites. The main reason
behind this observation is that all these replacement policies
rely either on assumptions about the access patterns (e.g.,
SHiP and Hawkeye) or on a training phase over a set of
workloads (e.g., Glider and MPPPB). On the one hand, SHiP
and Hawkeye use the observation that they can accurately
learn the access patterns to the LLC using the PCs that
triggered the memory accesses as a classification feature. On
the other hand, both Glider and MPPPB rely on a learning
algorithm that learns the access patterns of a couple of
workloads and provide correlating features such as the -
th PC of the history or some bits of the physical address
of the accessed block. Thus, although these state-of-the-art
replacement policies deliver some performance improvements,
they suffer from a structural bias that prevents them from
generalizing to unexplored benchmarks in an optimal way.

The main conclusions arising from our analysis are:

1) The commonly used SPEC CPU 2006 and SPEC CPU
2017 suites no more represent a challenge for computer
architects, as they are well studied and there are plenty
of ingenious mechanisms that cope with their behavior.

2) The current state-of-the-art LLC replacement policies do
not generalize well to new benchmarks.

3) Emerging big data and HPC workloads do represent a
challenge for architects, as they stress more the cache

70 k70
60 I 60
g 50 1 I 50
Ay
= 40 |40
2
3 30 A F30
204 F20
10 F10
SPEC XSBench Qualcomm GAPBS
()
3 W SRRIP ™ Hawkeye [3
= DRRIP Glider
= SHIP MPPPB
2 2
B
(=1
=l
b l j
Q
[
,
w
o] J - I Lo
-1 . : - : -1
SPEC XSBench Qualcomm GAPBS
(b)
Fig. 1. 1la presents the per-suite average normalized LLC MPKI (< 1 is

better) using the LRU policy. 1b present the geomean peed-up over LRU of
state-of-the-art LLC replacement policies for the different benchmark suites..

hierarchy than traditional workloads. Nevertheless, they
reveal the need to take into account their behavior in the
design of forthcoming CPUs.

V. DESIGN PROPOSALS

Along with the state-of-the-art cache replacement policies
presented in III, we introduce MS-MPPPB and DS-MPPPB,
two new LLC replacement policies derived from the original
MPPPB. These two policies try, in distinct manners, to adapt
themselves to the behavior of the emerging big data and HPC
workloads.

A. Multi-Sampler Multiperspective

With MPPPB, Jiménez and Teran provided a replacement
policy based on a reuse predictor, which ultimately relies on
a hashed perceptron table.

Our first proposed design, named MS-MPPPB, is based on
the idea that having not just one but many hashed perceptron
tables can yield higher prediction accuracy and improved
performance by dynamically choosing one of the perceptrons
to trigger predictions. To perform the selection of the best
behaving perceptron that will eventually trigger predictions,
all perceptrons are competing against each other though a
two-rounds decision tree scheme [?] that duels each of the
four available perceptrons and selects the one that minimizes
misses in the LLC.

Although not used to produce a prediction, the three per-
ceptrons left unused are concurrently updated following the
process described by Jiménez and Teran in Multiperspective
reuse prediction [?].

The additional hardware budget required for this proposal
is rather high, as a naive implementation would lead to
the instantiation of 4 individual samplers along with the 4
perceptron tables bound to them. Each block of the sampler

holds an indices trace of the last accessed elements of the
prediction tables, which requires a maximum of 128 bits. For
each block, the sampler holds a 16-bit partial tag along with
a 5-bit LRU state and a 9-bits confidence value. The sampler
takes the form of a cache with 80 sets and 18 ways.

B. Multiperspective with Dynamic Features Selector

In the second design proposal, named DS-MPPPB, we use
an additional concept along with the already existing idea of
weights. Our new concept, Coefficients, revisits the conception
of a hashed perceptron [?] by introducing the weights used in
the mathematical definition of a perceptron [?].

We thus differentiate two key concepts. The weights are the
actual values contained in the prediction tables of a hashed
perceptron. These values are meant to reflect the learned reuse
distance based on the observation of past events. These events
can be the occurrence of a specific PC, a physical address or
any other source of information used as feature [?], [?], [?].
The concept of coefficients, which are confidence counters that
reflect how accurate is the prediction table bound to a specific
confidence counter.

The original code of MPPPB, is shipped with not just one
set of features but four, which adds up to a total of 64 features.
Each of these sets of features was developed following the hill-
climbing methodology described in Multiperspective Reuse
Prediction [?] and is designed to fit each of the possible
configurations of the CRC2 contest.

We gather all the features in a single set and build a
perceptron predictor using them all. Although we now have a
set of 64 features, we want to select only the 16 best behaving
ones among the 64 available. To do so, for each prediction
triggered by the replacement policy, the predictor searches for
the 16 features with the highest confidence values and uses
them to build a prediction, and the other features being left
unused for that prediction. However, confidence values of all
features are updated following algorithm 1.

Algorithm 1 Updating prediction tables’ confidence values
hit + false
truth < Og» {A n-vector of falses.}
pred € [—32;31]™ {A vector of individual predictions.}
if Accessed block hits in the sampler then
hit « false
else
hit < true
end if
for all i suchthat 0 <7 <n—1do
truth [i] < ((pred[i] < 0) = hit)
if truth [i] = true then
conf; < max(conf; + 1, confmaz.i)
else
conf; < min(conf; —1,0)
end if
end for

For clarity, we include a summary of the notations we use.
I denotes the set of features, n is the total number of features
and m the number of features we include in the prediction
value. We denote the confidence counter of the :-th feature
as conf(f;) = conf; along with the upper bound of the
confidence counters con fr,qz,;. We denote as ¢; the prediction
table associated with feature f;.

We thus define [, the set of all possible arrangements of
unique m features taken out of F and Fmam the element of
IF that maximizes the sum of confidence counters. Finally, we
compute the prediction value by summing the weights taken
out of the tables of the elements of]P“max.

Table I summarizes the hardware budget of each design
proposal described in this section. Along with the total hard-
ware budget required for each proposal, we also provide the
budget required by each component, namely: the replacement
states (here we use MDPP, a modified Tree-based PLRU [?],
[?] policy that uses a custom transition vector to determine
to which position an accessed block should be moved to), the
sampler(s) and perceptron(s).

Replacement states Sampler(s) Percpetron(s) Total
MS-MPPPB 3.75KiB 111.09 KiB 12KiB 126.84 KiB
DS-MPPPB 3.75KiB 95.27KiB 12KiB 111.02KiB
TABLE I

UPPER-BOUNDS OF THE HARDWARE BUDGET OF THE PROPOSED DESIGNS.
VI. METHODOLOGY

In this section we present the evaluation methodology
used to report results in Section VII. In particular, the next
subsections present the set of workloads used to evaluate the
different LLC replacement policies and our workload selection
methodology, a description of the simulation environment, and
the evaluated replacement policies and their configuration.

Overall, we follow the same evaluation methodology as the
one used by Shi et al. [?] with the aim of building the fairest
comparison possible against state-of-the-art techniques.

A. Workloads

For the evaluation of the different LLC replacement policies,
we consider the following sets of workloads:

o Over 2000 Qualcomm workloads used for CVP1 contest.

« All SPEC CPU 2006 and CPU 2017 benchmarks.

o All workloads included in the GAP Benchmark Suite.

o All workloads included in the XSBench Suite.

From all these benchmarks we select the 50 most intensive
workloads so that our evaluation set of workloads is a blend of
each suite designated above. We use the SimPoints [?] method-
ology to identify intervals (hereafter SimPoints) representative
of at least 5% of the SPEC, GAP and XSBench workloads.
Each SimPoint is 1 billion instructions long and characterizes a
different phase of these workloads. Each SimPoint is executed
for 200 million instructions in order to warm-up the memory
hierarchy, and then it is executed for an additional 1 billion
instructions to report experimental results.

We only evaluate these workloads in a single-thread context.
We deliberately chose to restrict our evaluation to single-core

Component Description

Branch Predictor hashed perceptron

CPU 4 GHz, 4-wide out-of-order processor
6-stage pipeline, 128-entries re-order buffer
L1 ITLB 64-entry, 4-way, 1-cycle latency, 8-entry MSHR
L1 DTLB 64-entry, 4-way, 1-cycle latency, 8-entry MSHR
L2 TLB 1536-entry, 12-way, 8-cycle latency, 16-entry MSHR
L1-I Cache 32 KiB, 8-way, 4-cycle latency, 8-entry MSHR
L1-D Cache 32 KiB, 8-way, 4-cycle latency, 8-entry MSHR
next line prefetcher
L2 Cache 256 KiB, 8-way, 12-cycle latency, 16-entry MSHR
ip-stride prefetcher
LLC 2MiB, 16-way, 26-cycle latency, 32-entry MSHR
DRAM 4 GiB, DDR4 SDRAM

data-rate: 3.2 GT/s, I/O bus frequency: 1.6 GHz
trp = trep = toas = 24 cycles

TABLE II
SYSTEM SIMULATION PARAMETERS.

as this work focuses on the characterization of the access
patterns of the selected workloads to the LLC. The modeled
architecture being composed of a shared LLC, modeling an
architecture using multiple cores we would not be able to
properly measure reuse-distances as the different cores would
be asking for distinct data in the same cache, thus compro-
mising our measurements. The results reported per benchmark
(for SPEC, GAP and XSBench) are the normalized weighted
averages of the results for individual SimPoints. In contrast,
the Qualcomm workloads are single-trace benchmarks that do
not use such methodology.

B. Experimental setup

Our evaluation considers ChampSim [?], a detailed trace-
based simulator that models an out-of-order CPU along with
its cache hierarchy, prefethcing mechanisms and memory sub-
system. Table II provides a detailed configuration of the
modeled CPU and the memory hierarchy.

C. Replacement policies simulated

We evaluate the workloads described in Section II against
the most relevant cache replacement policies proposed in the
literature: SRRIP, DRRIP, SHiP, MPPPB, Hawkeye and Glider,
all detailed in Section III. Although there is a vast amount
of work in reuse prediction available in the literature [?],
[?1, 1?1, 1?1, 1?01, 1?1, [?), [?], [?], [?], the aforementioned
replacement policies that have been selected for the evaluation
are the most recent and relevant approaches in the state-of-
the-art. In addition, in the evaluation we also include the two
new replacement policies proposed in this paper, explained
in Section V. These two new techniques are derived from
MPPPB and leverage the usage of multiple perceptrons to
achieve higher accuracy. For MPPPB we used the code that
is publicly available on the website of the CRC2 contest [?].
For Glider we use code graciously provided by the authors.

VII. RESULTS, ANALYSIS AND DISCUSSION

This section presents our experimental campaign along
with the results obtained and characterization of the studied
workloads. VII-B presents the performance benefits yielded

by the different state of the art cache replacement policies
mentioned in VI-C and in V. VII-A studies the impact of
these workloads on the LLC in terms of misses and presents
the MPKI reduction obtained by the replacement mentioned
above policies. Finally, VII-C studies the behaviour of the
studied workloads via the reuse-distance of the cache blocks
to highlight the different behaviour of these benchmark suites.

A. Misses

Figure 2a gives the LLC MPKI of the 50 most intensives
workloads, against various techniques presented in VI-C and
in V, among all the workloads available. Each of them shows a
very high impact on the LLC compared to previous work with
an average LLC MPKI of 120. We use this to define the set
of workloads that will be used in VII-B and more precisely
in figure 2b to evaluate state-of-the-art replacement policies
along with our custom designs. These results clearly show the
high impact on the LLC of Qualcomm, GAP and XSBench
workloads. This selection of benchmarks is comprised of
each of the studied benchmark suites and allows to evaluate
replacement policies against a broader range of behaviour.

B. Performance

Figure 2 shows single-thread speedup of various techniques
presented in VI-C and in V. LLC MPKI sorts the benchmarks
with a baseline LRU policy. While figure 1b was showing
Glider standing out against MPPPB in some situations, figure
2 clearly shows the versatility of the former and its ability
to consistently deliver good performance even facing the
most intensives and hard to predict workloads. MPPPB and
Glider provide respectively 7.0% and 5.0 % speedup over
baseline LRU. We also report a interesting improvement for
our proposed techniques derived from MPPPB. The two de-
signs proposed in V-A and V-B, MS-MPPPB and DS-MPPPB
respectively yield 8.3 % and 8.0 % speedup over the baseline
LRU. As a results, Glider, on our set of workload is not
able to deliver significant improvement over the baseline LRU
compared with MPPPB, DS-MPPPB & MS-MPPPB. This fact
suggests that the Machine Learning algorithm used to design
the predictor should be trained against a wider variety of
workloads hence the need to include the workloads presented
here in further work on LLC replacement policies.

We observe that this performance improvement is due to
the ability to adapt the set of features used for prediction in
a execution phase-wise manner, providing more versatility to
the design than the previously discussed techniques.

Besides, we justify the difference of performance improve-
ment in figure 1b and 2 between Glider and MPPPB com-
pared to the results published in Applying Deep Learning
to the Cache Replacement Problem [?] by a difference in
the methodology. As a matter of fact, we use the SimPoint
methodology to generate at most ten simpoints and we only
use the ones accounting for more than 5% of the whole
execution. Whereas, Glider’s original results where reported
with only a single trace per-benchmark. We argue that our
methodology is more robust in the sense that we cover

LLC MPKI
N W
o

—_

o O

Speed-up (%)

O||| 0
O~ Y YOI N OO g ON L N O ONT NNONNOLE 0O AN —~YOONNOLYD ¥Y OS5 bNS T
TR PR RN RE R AT IR R TR S R R N

- 55 3 ; ES
wlaleld G elE &L 18 wE wEre 28 SEE selnee LS B TR se e el nswlf s et 5E
EEES 558 52 S 575~ EN §&F g S § 5855888 §5 85985558885 85885 5§83
NBNBN RN BT IS - R R N T I S A NI I i B B B DA B P - A=A U B B B I e - T B T TN B Rl

- - 17
gge pekFfeoadesese LR25ES59 g'eeepes o 95 2eeeeed oloied oo
55F B545E5 58555 E5555% 555535 E “LEEEEBEE°EEE iR
S5F 55 SE°FSESE FEsugs FEEFSF 5§ 555555 S5 5%

G G OC S o <] <] [3] o © ol G G GO 0o [G O OO O O S G o S c
()
e T

5 0 H Hawkeye DS-MPPPB 5 0
M Glider MS-MPPPB
= MPPPB
0_‘1'"'_' L'HJ ,Iii _ljl' _ _|J_..._._.__‘- - __,j' j,i_o

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rr U117 T T T T T T T T T T T T 11
O YTy YOI DG OIS FNT O QNTY DNNOSNDLE OT 5N ODNNDODY ¥ HWOH NS T
ISR BIE I E52805¢8 %’S”,E-l"”«fa‘@&%%%’%§%§§”,%’£Q§S£§$£ﬁ§&"é’j%g
- 5 E e 3 3 3
ol wl Wl 8 Qr“rﬁ(&“/ ,gﬂl'su/g‘,rm‘ ! /E'gg's;‘,/u/ur“rul‘_,l_; u/§§'ggru/u/“r“/u/§ “Iululé‘ u/u’;.;’SE
5558 §80 o 8§8&S 5578y §&=5 2 F s S §5 58 5858&f §5 % 755585858585 §58% 5§88 5§
T I8 E o2 oS 8 Y 0o FS8E oo oo oS o0 8L ey o g T NN o o 28
22828 E«S’NS&’Q;;JE:S:E u;':SS:QSSEEuS-QE 2523232220 222820
555 F34F35588555 E5BRJF 5583535 5 “pE55555"35335 53
§8E 8 SESXESESE F55:%55 EEFs5f 5 SEEEFSE 85 F§8
SENSINS) S g g 3 S dc g s § o g o g 33388 ¢S IS S 33 gggg SIS S g
o O © o © © (5] © © © o 0 0 o0 © 0O © 0o O 0 O O © o O © © o
(b)

Fig. 2. 2a presents the MPKI using the LRU policy of the 50 most intensives workloads. 2b presents the speedup over the baseline LRU policy of both

state-of-the-art LLC replacement policies and our custom policies for the 50 most intensives workloads.
and give intuition about the results obtained in sub-section
VII-B and VII-A. Blocks that do not experience a single reuse
during the whole execution of a workload are not represented
on figure 3. However, in order to still provide that valuable
information — as it tells how useful a dead-block predictor is
— we show in table III the average proportion of accesses to

more distinct behaviours, thus challenging more the different

techniques studied.
C. Reuse distances
Figure 3 shows the distribution of reuse-distances for each
benchmark suite used in this work. For readability purposes,
we cut the box plot to only show whiskers but not flyers.
Figure 3 is organized as a box plot; the horizontal line of
each distribution representing its median, the box ranging from
the first to the third quartiles and the whiskers representing
extreme values through the first and ninth deciles of the
distributions. For instance, the distribution of reuse-distances
of the GAP workloads have ninth decile around 2000 and
a median of 116. We complete figure 3 with table III as
it provides additional characteristics of the distribution such
as maximum, median, mean and standard deviation of the

a dead-block during the simulation time.
For the rest of this section, we define as cache-friendly

blocks with a reuse-distance under the LLC’s associativity
Conversely, we define cache-averse blocks as blocks with a
reuse-distance higher than the LLC associativity. Assuming
an LRU policy for the cache, if one block gets inserted in
the LLC and the cache sees 16 accesses to different blocks,
the previously inserted block would have been evicted. This
block used part of the cache capacity that could have been
allocated to another block, hopefully cache-friendly, and could

have provided a hit instead of miss.

observed reuse-distances.
In this work, we define reuse distance as the number of

accesses to different cache blocks between two consecutive

accesses coming from the CPU (e.g. read and writes but not
prefetches and write-backs) to the same cache block. Looking
at this figure, it is quite clear that every benchmark suite
presented suffer from the presence of dead-block in their
access patterns. However, having a closer look at each of the

1) SPEC benchmarks: As figure 3a & table III show, with
an average reuse distance of 126 and a standard deviation
as low as 572.94, SPEC CPU 2006 & SPEC CPU 2017, the
aggregated distribution of reuse-distances for SPEC workloads
focuses mainly on low values with a relatively weak standard
deviation which translates into a cache-friendly behaviour.
Also, most accesses being cache-friendly, a bypass policy is

distribution presented can provide us with valuable knowledge

Parameter (in accesses) SPEC XSBench all XSBench unionized XSBench others Qualcomm GAP all GAP kron & urand GAP others

Maximum 21076 12677 2248 12677 59934 34836 33771 34836

Median 10 61 84 55 4 116 45 27

Mean 126.23 343.23 193.21 385.36 93.76 907.89 380.88 349.25

Standard deviation 572.94 875.68 256.33 977.54 541.80 2106.41 1885.68 1050.23

Avg. proportion of dead-block accesses 48.03 % 37.32% 46.63 % 28.01% 10.54 % 55.84 % 59.31% 54.06 %
TABLE IIT

REUSE DISTANCE DISTRIBUTIONS PARAMETERS.

2000 | 2000

1500 r 1500

1000 r 1000

500 F 500
ol —_— ; Lo

GAl;B S

Reuse distance

Qualcomm

(@)

SPEC XSBench

4000 A 4000

3000 - 3000

2000 A r 2000

Reuse distance

1000 r 1000

. = .

GAPBS other inputs

GAPBS kr:;n & urand
(®)

Fig. 3. 3a shows the distribution of the reuse-distances of the cache blocks per
benchmark suite. 3b shows a breakdown on GAP workloads between krand
& urand inputs and others.

not required to achieve reasonable performance over LRU.
This behaviour explains why policies such as Hawkeye and
Glider demonstrate good behaviour when applied to SPEC
workloads. These policies are focusing on prioritizing eviction
for blocks that previously showed cache-averse behaviour. Do-
ing so allows to free space for cache-friendly blocks, however,
as we will see in details for GAP benchmarks & XSBench
benchmarks in VII-C4 & VII-C2, replacement policies in
general turn out to be completely irrelevant when memory
footprint increases and access patterns become unpredictable.
2) XSBench benchmarks: As expected, while introducing
this new benchmark suite, XSBench, based on the reuse-
distance characteristics established in table III, demonstrates a
very distinct behaviour from the well-known SPEC CPU 2006
& SPEC CPU 2017 workloads. As a matter of fact XSBench
workloads, with an average reuse-distance of 343.23 and a
standard deviation as high as 875.68, reveal a harder to predict
behaviour. However, they do experience less dead accesses to
the LLC, the proportion of dead-block accesses being 37.32 %.
With both mean and median reuse-distances being the
double of the SPEC ones, it is quite straight-forward that
these workloads are much more biased towards a cache-averse
behaviour than the SPEC workloads. However, with such
high distribution parameters, we can still still make a crucial
observation when it comes to reuse-prediction, dead-blocks.
We observe that, even though XSBench workloads experience
reasonable reuse of cache-blocks that are accessed more than

once during the execution, that is only the tip of the iceberg
as the LLC is suffering from poor reuse of cache blocks. This
behaviour is particularly dominant in the workloads using the
unionized grid type, which is known for its substantial memory
footprint than other grid types.

We explain such behaviour by the vast amount of data that
the solver needs to traverse during the workloads’ execution
along with the algorithms used to do so.

3) Qualcomm benchmarks: When it comes to Qualcomm
workloads, we observe that the distribution of reuse-distances
stretches towards higher values (table III shows that the tail
of the distribution goes as high as 60 000 accesses). However,
these workloads are relatively biased towards a cache-friendly
behaviour as the standard deviation is 541.80 and the dead-
block accesses proportion is of 10.54 %. This stretched shape
leads to a rather low standard deviation and to the appearance
of low reuse-distances with higher probability than of high
reuses distances. We understand the long and wide tail of the
distribution as a low amount of dead-blocks thrashing the LLC,
occupying space that would be better occupied by low reuse-
distance blocks.

Thus, this observation gives us intuition about the behaviour
of Glider on the Qualcomm benchmarks presented in figures
2 & 1b. Glider being a replacement policy that does not
implement a bypass, it keeps on inserting dead-blocks in the
cache even though it has learned that these blocks are cache-
averse. The absence of bypass policy explains the poor results
of Glider compared to MPPPB and derived techniques.

4) GAP benchmarks: Based on the characteristics of the
reuse-distance distribution shows in table III & figure 3 of
the GAP benchmark suite, these graph processing workloads
shows a very cache-averse behaviour as the average reuse-
distance is 907.89 — around 5.8 times higher than the one of
SPEC —, and a proportion of dead-block accesses of 55.84 %.
Such behaviour is expected as GAP workloads are executing
graph processing algorithm and are known to traverse vast
amount of data in a very unpredictable way.

Table III shows a median of 28 accesses that provides
us with useful information as 50 % of the blocks accessed
experience a reuse-distance of 28 or fewer accesses. This
characteristic suggests that having higher LLC associativity
could help to achieve higher performance.

Though, these benchmarks show incredibly high standard
deviation on reuse-distances which suggests that the CPU
triggers, with relatively uniform probabilities, accesses to both
cache-averse & cache-friendly which results in the eviction of
useful blocks. Thus, we deduce that using a bypass policy
such as MPPPB would provide performance benefits. Results

shown for GAP benchmarks on figure 2 highlight this property
of graph processing workloads.

As we observed that GAP benchmarks with inputs kron
and urand were showing dramatically low reuse of cache
blocks during execution, we categorize GAP benchmarks in
two categories: (i) GAP workloads using kron & urand
inputs; (ii)) GAP workloads using other inputs.

As figure 3 shows, workloads using these inputs tend to
stress more the LLC. As stated by Beamer et al. in the
specification of the benchmark, these inputs present both a
very high memory footprint as compared to other inputs used
in this work and a very distinct topology. Urand represents
a worst-case as every vertex has an equal probability of being
a neighbour of every other vertex. Thus, the graph processing
kernel in charge of traversing these inputs would possibly have
to request memory blocks very distant from another, which
will eventually show poor reuse.

As a result, we see that LLC replacement policies are
impractical solutions in this context as these workloads are
biased towards a cache-averse behaviour, all accesses being
cache-averse. Although replacement policies cannot improve
performance for these workloads, an excellent way to cope
with these workloads and deliver superior performance would
be to increase the capacity of the cache substantially or to
improve the access patterns to memory blocks. To demonstrate
the need for increased cache capacity, we modify the modelled
architecture and specifically the on-chip LLC, its size going
from 2 MiB to 16 MiB and present results about LLC MPKI.

®
o
L

r 80

MPKI reduction (%)

60 60
40 A ‘ 40
20 | I | F20
T i b ar

ST AT ST AT ST AT ST ETRA g AT ATUA g
259 [=) o Qg0 859 A) QS0
I L LR L
S SR S8 GORAIREaE ae8 TS
89 _‘§-c: 8 ° _ %m‘?m{{,”’l =
S
g
£ 40 F 40
Q
A
3
<
]
£ 20+ L 20
=3
: |II Lt 1|
°
e od - 1l 1 _I_ -_-Il_l o0,
2 —TTTTTT"TTTT T
» T AT
S S S S50 TS5 558385848885
RS T S N NN NI E Y E R Y
5 O FO 4w = 5 O 20 =3 S = 850
EEEFEEE S R FER L LY RS Rl
59 59 g ° Q, mwvm?’;ﬁ”’ = &
. .) .
Fig. 4. LLC MPKI reduction and speedup of a 16 MiB LLC over the baseline

2MiB LLC.

Results in figure 4 show a clear benefit from the increased
capacity of the last-level cache. It turns the average MPKI
over the whole set of GAP benchmarks drop by roughly 18 %
which delivers a geometric mean speedup of 6.1 % compared
with a 2 MiB LLC managed by an LRU policy. However, we
note that some traces and benchmarks exhibit reduced MPKI
while suffering from an IPC speed-down. We explain this
phenomenon by additional DRAM latencies. While increasing
the LLC capacity, these traces have similar statistics in terms
of cache accesses and miss rate, but the miss rate in the

DRAM row buffers increases. We interpret this behaviour as
a symptom of workloads with extremely poor temporal and
spatial locality.

This clearly shows the need for improved memory allocation
policy when it comes to graph-processing algorithms. To
illustrate this example, we focus on pr.road, as Page Rank
is an algorithm that should show excellent locality compared
to the others. When computing the score of an edge of the
graph, the algorithm only visits neighbouring edges to that
edge. Thus the only way for the DRAM to exhibit higher
row buffer miss rate is that neighbouring edges in graphs are
stored in very distant places in the main memory. Hence, the
need for a memory allocation policy that takes into account
the topology of the graph.

Another way to improve on these graph-processing work-
loads would be to have a dedicated on-chip storage structure
able to serve on-demand, at a low cost, not only the required
edges but also their neighbours.

To wrap up on this discussion about GAP workloads, with
the results shown through the different figures and tables
provided in this work there is still a good amount of work to be
done on the algorithmic and software side of these workloads
to make them cache-friendly in the sense that they demonstrate
no such thing as locality. Thus, these characteristics leave
architects helpless as none of prior hardware optimization has
outstanding potential on such workloads.

VIII. CONCLUSIONS

To mitigate the memory wall issue and particularly the
performance bottleneck incurred by the latencies due to LLC
on the evaluated benchmark suites, we design custom replace-
ment policies that attempt to capture, at run-time, the different
phases of the workloads in order to adapt the behaviour of
the replacement policies. Through their ability to dynamically
adapt to the execution phases of the workloads, these proposed
techniques leverage interesting performance improvement over
current state-of-the-art. Thus we argue that such designs, based
on the run-time selection of correlating features could lead
to further improvements. Although, we propose a detailed
analysis of the behaviour of the studied workloads in order to
build intuition on why bypass-based LLC replacement policies
tend to behave better.

This analysis highlights the very high impact of graph-
processing workloads and the inability of current hardware
systems and optimizations to be any help to leverage speed-
up with these workloads.

ACKNOWLEDGMENTS

This work has been partially supported by the European
Union’s Horizon 2020 research and innovation program under
the Mont-Blanc 2020 project (grant agreement 779877). Marc
Casas has been partially supported by the Spanish Ministry of
Economy, Industry and Competitiveness under Ramon y Cajal
fellowship number RYC-2017-23269. This research was sup-
ported by National Science Foundation grant CCF-1912617,
Semiconductor Research Corporation project 2936.001, and
generous gifts from Intel Labs.

