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Introduction 
 
Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to 

orchestrate collective behaviors in response to changes in cell population density and 

species composition of the community [1]. QS relies on the production, release, and 5 

group-wide detection of and response to extracellular signaling molecules called 

autoinducers (AI) [1]. Recent studies demonstrate that bacteria-infecting viruses, called 

phages, also employ chemical communication to regulate collective activities. Phages 

can encode exclusive phage QS-like systems, or they can tune into and manipulate their 

host bacterial QS-mediated communication pathways to optimize the timing of the lysis-10 

lysogeny switch. These research advances suggest that phage-mediated QS signaling 

and phage eavesdropping on bacterial QS signaling drive bacteria-phage interactions, 

possibly contributing to mechanisms that shape both phage and bacterial biology [2–6]. 

Here, we briefly review QS in bacteria, and we summarize recent advances in chemical 

communication among phages and across the bacterial and phage domains.  15 

 

The Bacterial Chemical Lexicon 
 
QS-mediated communication systems are widespread in the bacterial world. QS controls 

group behaviors including bioluminescence, competence for DNA uptake, virulence factor 20 

production, biofilm formation, and the regulation of anti-phage defense strategies [1,7,8]. 

Commonly, bacteria integrate information encoded in multiple AIs, enabling intra-species, 

intra-genera, and inter-species cell-cell communication (Fig 1, top). Gram-negative 

bacteria typically use acyl-homoserine lactones (AHL) as AIs [1]. AHLs are usually 

produced by LuxI-type synthases and are detected by partner LuxR-type cytoplasmic 25 



receptor-transcription factors. Gram-positive bacteria predominantly use oligopeptides as 

AIs, which are detected by membrane-bound two-component sensor histidine kinases 

and the information is relayed to cognate cytoplasmic response regulators [9]. New AIs 

continue to be discovered expanding our knowledge of the bacterial chemical lexicon. For 

example, a family of AIs based on rearranged forms of 4,5-dihydroxy-2,3-pentanedione, 30 

collectively referred to as autoinducer 2 (AI-2) [10–12], and the pyrazine AI 3,5-dimethyl-

pyrazin-2-ol (DPO) [13] are broadly produced among Gram-negative and Gram-positive 

bacteria and enable inter-species communication. AI-2 AIs are detected by periplasmic 

binding proteins homologous to the first known AI-2 receptor, LuxP [12,14–16], and DPO 

is detected by a cytoplasmic transcription factor called VqmA [13]. 35 

 

Curiously, some bacterial QS systems appear to foster “one-way” conversations (Fig 1, 

top). In one scenario, bacteria cannot produce an AI but can detect it. For example, 

neither Escherichia coli nor Salmonella enterica possess a LuxI-type AI synthase and 

therefore they make no AHL AIs [17]. However, both E. coli and S. enterica encode the 40 

SdiA LuxR-type receptor that detects exogenously supplied AHLs [17]. Thus, collective 

behaviors in these bacteria are presumed to be driven by other AHL-producing bacteria 

in the vicinal community. In a second scenario, bacteria can produce an AI but do not 

possess an apparent partner AI receptor. This arrangement is relevant to both the AI-2 

and DPO AIs. The capacity to produce these AIs is widespread among bacteria, however, 45 

few receptors have been shown capable of AI-2 recognition [10,12,15,16], and to our 

knowledge, among bacteria, only Vibrios possess VqmA DPO-receptors [7]. Thus, 

presumably, only select bacteria can garner information from these two AI inputs. It 



remains possible that bacteria make AIs (i.e., AHLs) by atypical routes and/or they 

possess unconventional AI-2 and DPO receptors. Alternatively, these asymmetric AI 50 

production and detection patterns could confer particular advantages exclusively to 

subsets of bacteria existing in mixed-species communities.   

 

Phage Lingo  
 55 
Phages employ two strategies to control their proliferation: dissemination and 

persistence. Lytic phages, upon entering the bacterial host, replicate and lyse the infected 

host cells [18]. By contrast, lysogenic or temperate phages can remain dormant in host 

cells and are passed down via the host cells’ progeny [18]. Importantly, temperate phages 

can harbor the ability to convert from the lysogenic mode to the lytic mode [18,19]. 60 

Seminal studies of phage lambda from E. coli have guided our understanding of the lysis-

lysogeny lifestyle switch [19]. Common to many phages is that inhibition of the phage lytic 

repressor, called cI, is crucial for launching the phage lytic cascade that drives host-cell 

killing.   

 65 

Coordination of group behaviors among viruses is far less understood than is the 

choreography of collective traits in bacteria. Recently, a small-molecule QS-like phage 

communication process was discovered, termed the arbitrium system (Fig 1, middle) [20]. 

Following phage phi3T infection of Bacillus species, a phage-encoded precursor peptide 

called AimP is produced and secreted. AimP is processed by extracellular proteases into 70 

the final arbitrium signaling peptide. The mature peptide is internalized by bacteria, and if 

they are phage infected, the peptide is detected by the phage AimR receptor, which is a 



transcription factor. In the unliganded state, AimR binds DNA and activates transcription 

of the gene encoding the AimX small RNA. AimX represses expression of the arbitrium 

cI repressor gene, and subsequently, the lytic cascade is deployed [21]. At sufficient 75 

concentration, the AimP peptide binds and inactivates AimR. Consequently, aimX is not 

expressed, cI is made and represses lytic development, and lysogeny is established. 

Thus, newly-infecting phages can avoid triggering the lytic cascade when there is low 

availability of uninfected hosts in the vicinity [20,21]. 

 80 

Arbitrium-like systems exist among numerous phage groups and in conjugative elements, 

with the majority identified in Bacillus species [21]. The native B. subtilis conjugation 

plasmids pLS20 and ICEBs1 use peptide-based signaling systems to regulate expression 

of plasmid genes [22,23]. Analogous to the phage arbitrium system, accumulation of the 

plasmid-produced signaling peptide represses conjugation. Thus, DNA transfer is 85 

suppressed under conditions when few non-plasmid carrying (i.e., “uninfected”) cells are 

present.  

 
A Shared Bacterial-Phage Vocabulary  
 90 
The potential for QS-like chemical communication between bacteria and phages emerged 

from the discovery that phages can encode homologs of QS components. Specifically, 

sequencing of the Clostridrium difficile temperate phage phiCDHM1, revealed genes 

homologous to the bacterial accessory gene regulator (Agr) QS system, a peptide-based 

QS system used by Gram-positive bacteria [24]. Phage phiCDHM1 possesses genes 95 

encoding predicted homologs of AgrD, AgrB, and AgrC, which are required to produce 

and secrete the Agr autoinducing peptide [9]. The phage lacks a gene specifying the QS 



receptor-transcription factor AgrA. The hypothesis is that the phage-produced signal 

could be detected by the C. difficile community [24]. Thus, infection of only a few host 

cells could drive community-wide collective bacterial behaviors. Similarly, DNA 100 

sequencing shows that an uncharacterized Myoviridae phage encodes a predicted LuxI-

LuxR QS pair [25]. While verification is needed, this arrangement could enable two-way 

inter-domain communication: the phage-produced AI could be detected by the bacterial 

LuxR, and/or the host-produced AI could be detected by the phage LuxR. If so, each 

entity could control the other’s behavior. Our early knowledge of possible bacteria-phage 105 

QS interactions relies primarily on genomic sequencing data. As more viral genomes are 

sequenced, additional assemblies of phage-encoded QS components are being revealed 

[25,26]. We anticipate future identification of the outputs controlled by these systems.  

 

A concrete link between host QS and the control of the phage lysis-lysogeny transition is 110 

established via the example of Vibriophage VP882 (Fig 1, bottom). Specifically, phage 

VP882 encodes a homolog of the bacterial VqmA DPO-binding QS receptor and 

transcription factor [27,28]. The phage homolog is called VqmAPhage [28]. When the 

bacterial-produced DPO AI accumulates at high-cell density, VqmAPhage binds DPO. 

Subsequently, DPO-bound VqmAPhage activates transcription of the phage gene qtip, 115 

encoding a novel antirepressor, Qtip. Qtip binds and sequesters the phage VP882 

repressor, called cIVP882, to the cell poles [28,29]. The consequence of Qtip-directed 

inactivation of cIVP882 is derepression of the lytic gene activator Q, and expression of 

genes required for host-cell lysis [28]. The notion is that by monitoring the host-produced 

QS AI, phage VP882 is able to tune the timing of lysis to conditions of high host-cell 120 



density [28]. Thus, phage VP882 exclusively triggers dissemination from its current host 

when the probability of infection of the next Vibrio cell is maximized [28,30].  Finally, while 

phage VP882 does not possess the capacity to synthesize DPO, VqmAPhage can activate 

expression of host-encoded vqmR, the transcriptional target of bacterial VqmA [13,28,31]. 

VqmR is a small RNA that, in Vibrio cholerae, regulates genes required for pathogenicity 125 

[13,31]. Thus, phage VP882, beyond connecting its own biology to host QS, directly 

regulates host gene expression, and specifically, host QS-controlled genes.  

 

Observations analogous to those regarding phage VP882 and DPO were recently 

reported for the E. coli phage T1 and for Enterococcus faecalis temperate phages. 130 

Specifically, administration of synthetic AI-2 to cell cultures induced phage lytic 

development [32,33]. How the AI-2 input drives phage induction is unknown, and the 

phage T1 and the E. faecalis phage genomes harbor no obvious AI-2 receptors. Finally, 

in Vibrio anguillarum, QS represses φH20-like phage p41 lytic development at high-cell 

density, again by an unknown mechanism [34]. We speculate that many more phages 135 

can derive information from host-produced QS signals to regulate their lysis-lysogeny 

transitions.  

 
 
Concluding Remarks  140 
 
Here, we have focused on newly-discovered QS-mediated chemical interactions between 

phages and bacteria. These studies reveal that phages, like bacteria, have mechanisms 

that foster collective processes. From the phage side, using or eavesdropping on QS 

provides an insidious strategy for phages to optimally prey on bacterial hosts. From the 145 



bacterial side, QS-controlled anti-phage defense mechanisms provide bacteria enhanced 

tactics for combatting these very same predators. In particular, at high-cell density, QS 

represses production of cell-surface phage receptors [8,35], activates transcription of 

CRISPR anti-phage systems [7,36], and induces phage-inactivating proteases [37,38], all 

of which defend bacteria against their viral foes. Given that the risk of phage infection 150 

escalates with increasing bacterial cell density, placing anti-phage defense mechanisms 

under QS control presumably enables those defenses to be deployed precisely when 

vulnerability to phage infection is high.  

 

We note that examples also exist of QS-mediated inter-domain communication between 155 

bacteria and eukaryotes. Specifically, fungi, plant cells, and mammalian cells can 

synthesize AI mimics that modulate bacterial QS-controlled behaviors [39–42]. Eukaryotic 

host factors can likewise modulate QS via inactivation or sequestration of bacterial AIs 

[43–46]. The role of phages in phage-bacterial relationships and in three-way phage-

bacterial-eukaryotic partnerships, both harmful and beneficial, represents an exciting 160 

research frontier. Given the prevalence of phages in bacterial communities combined with 

the prevalence of microbiome bacteria in and/or on eukaryotic hosts, defining the 

contributions of phages to QS could prove central to a comprehensive understanding of 

the functioning of QS in natural settings. 

 165 
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Figure Captions 
 
Fig 1. Quorum-sensing-mediated communication.  
 
Shown are representative chemical communication systems highlighted in the text that 330 

occur between: Top, Bacteria-Bacteria; Middle, Phage-Phage; and Bottom, Bacteria-

Phage. In each case, the low- and high-cell density or low- and high-phage infection 

states are shown on the left and right sides, respectively. In each panel, dashed arrows 

represent release and uptake of AIs, solid arrows represent peptide/protein production or 

gene regulation, and the horizontal line represents the bacterial membrane. In the middle 335 

panel, the scissors signify processing of the signaling peptide. See text for details about 

each system.  
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