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Abstract—Applications with irregular memory access patterns
do not benefit well from the memory hierarchy as applications
that have good locality do. Relatively high miss ratio and long
memory access latency can cause the processor to stall and de-
grade system performance. Prefetching can help to hide the miss
penalty by predicting which memory addresses will be accessed
in the near future and issuing memory requests ahead of the time.
However, software prefetchers add instruction overhead, whereas
hardware prefetchers cannot efficiently predict irregular memory
access sequences with high accuracy. Fortunately, in many
important irregular applications (e.g., iterative solvers, graph
algorithms, and sparse matrix-vector multiplication), memory
access sequences repeat over multiple iterations or program
phases. When the patterns are long, a conventional spatial-
temporal prefetcher can not achieve high prefetching accuracy,
but these repeating patterns can be identified by programmers.

In this work, we propose a software-assisted hardware
prefetcher that focuses on repeating irregular memory access
patterns for data structures that cannot benefit from conventional
hardware prefetchers. The key idea is to provide a programming
interface to record cache miss sequence on the first appearance of
a memory access pattern and prefetch through replaying the pat-
tern on the following repeats. The proposed Record-and-Replay
(RnR) prefetcher provides a lightweight software interface so that
the programmers can specify in the application code: 1) which
data structures have irregular memory accesses, 2) when to start
the recording, and 3) when to start the replay (prefetching).
This work evaluated three irregular workloads with different
inputs. For the evaluated workloads and inputs, the proposed
RnR prefetcher can achieve on average 2.16× speedup for graph
applications and 2.91× speedup for an iterative solver with a
sparse matrix-vector multiplication kernel. By leveraging the
knowledge from the programmers, the proposed RnR prefetcher
can achieve over 95% prefetching accuracy and miss coverage.

Keywords—hardware prefetcher; irregular memory access;
iterative algorithm

I. INTRODUCTION

Modern processors have a large processor-memory fre-
quency gap [34]. Small and fast on-chip caches are beneficial
to applications that have good spatial and temporal locality.
However, many important applications (e.g., web search [14],
recommendation system [18], machine learning [56], and sci-
entific computing [40]) have large memory footprints and poor
locality. As transistor scaling slows down, caching provides
limited benefits for these applications. Prefetchers can help to
hide long memory access latency and improve performance by
predicting which data will be needed and fetching them earlier
from the off-chip memory. Various hardware prefetchers have
been proposed to predict future memory accesses based on
access sequence observed in the past [9], [10], [25], [36], [38],
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Fig. 1. Prefetcher coverage and accuracy of PageRank [48] on amazon
graph [32].

[41], [47], [52], [53], [60]. Commercial high-performance pro-
cessors have also adopted increasingly sophisticated hardware
prefetchers [21], [30], [51].

Prefetcher designs are typically tailored to common behav-
iors in application memory access patterns. Regular memory
access patterns like streaming or stride are easy to detect and
predict using simple hardware prefetchers [45], [46], [55].
Irregular memory accesses patterns require complicated hard-
ware designs for recording memory access history or training
model parameters to predict future access patterns. In most
of the hardware prefetchers, common patterns are recorded
in shared tables during the program execution. Because these
pattern tables have limited capacity, hardware prefetchers
face the challenge of differentiating similar memory accessed
patterns [9], [25], [36], [38], [41], [47], [52], [53]. In addition,
hardware prefetchers do not know precisely when will the
data be needed. One class of hardware prefetcher focus on
identifying spatial correlations rather than the order or timing
of memory accesses [9], [47], [53]. Another class of hardware
prefetchers exploit temporal correlations [8], [25], [38], [58],
[59]. Meanwhile, commonly used data structures (e.g., graph
representations [44], [48] and sparse matrix storage format
[23]) can provide information on which data will be needed in
what order. Software prefetchers [5], [7] reply on programmer
knowledge or common program behaviors to determine how
to issue prefetch instructions. However, software prefetchers
adds instructions to generate addresses, which might offset
the performance gains from prefetching. Moreover, software
prefetchers do not know the runtime dynamics of the system—
bus congestion and cache contention can cause variable latency
for prefetches to return data. Hence, software prefetchers face
the challenge of issuing timely prefetches.

An ideal prefetching mechanism should 1) accurately iden-
tify when and which data to prefetch and 2) decouple address
generation from processors. In this work, a novel software-
assisted record-and-replay (RnR) hardware prefetcher is pro-
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 For r in Matrix.rows:
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          Ind = Matrix.col[i]
          Result[r] += Matrix.val[i] * Vector.val[Ind]
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(e.g. PageRank.update,SPMV )
     … 
For iter in Iterations:
     …                        // RnR adds a light sw-hw interface
     Sparse_Kernel()  // iter=1: record; iter>1: replay  
     …

// 2) Page Rank Update Kernel
For v in Vertex Array:
     For i in VertexPointer[v] to VertexPointer[v+1]:
           Ind = Edge Array[i]
           pr_next[v] += pr_curr[Ind] / pr_curr[Ind].degree();
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Fig. 2. Motivation and key idea of the RnR prefetcher.

posed to allow programmers to control when and which
data to prefetch. RnR prefetcher provides light programming
interface to identify which data structures and code regions
in the applications have repeating memory access patterns.
The cache misses due to the first appearance of the targeted
memory accesses on the predefined data structures will be
recorded in memory. Timing information of when will the
data be used with respect to the execution of the program
is recorded in the metadata for timely prefetches in the
future. The prefetcher will be invoked to replay the recorded
address sequence and fetch the corresponding data blocks
when repeating memory access patterns are expected during
the program execution. The prefetching speed is controlled
by hardware to enable timely prefetches. The proposed RnR
prefetcher is directed by the software. Therefore, it has better
knowledge of which data to record, when to record, and
when to replay. The proposed RnR prefetcher hence can
achieve close to 100% miss coverage and prefetching accuracy
for applications with long repeating irregular memory access
patterns. Figure 1 shows the miss coverage and prefetch
accuracy comparison of the proposed RnR prefetcher with
five existing hardware prefetchers representing different types
of prefetchers when running a PageRank application [48]: a
regular pattern prefetcher (Next-line [50]), a spatial prefetcher
(Bingo [9]), a temporal prefetcher (MISB [59]), a spatial-
temporal prefetcher (SteMS [52]), and a domain-specific
prefetcher (DROPLET [10]).

The contributions of this work are listed below:
(1) This work proposes to separate mixed memory access se-
quences via programmer-defined temporal and spatial regions.
Prior hardware temporal prefetcher designs are trained to
recognize common access patterns during the entire execution
[38], prior spatial prefetcher designs are trained on memory
patterns within a pre-defined spatial region (normally OS
page) [53]. These prefetchers differentiate and detect patterns
using memory address, offset, program counter (PC), or a
combination of them. The proposed work allows programmers
to specify static data structures that are accessed repetitively
in the same order.
(2) A new prefetch timing control mechanism is proposed.

Existing prefetchers issues prefetches triggered by cache ac-
cess or miss. In this work, the starting point of the replay
prefetching is controlled by the software. For the following
prefetches, the RnR prefetcher records the timing information
as part of the metadata and adjusts the prefetching speed
according to the progress of the program execution when
issuing replay prefetches.
(3) A software-assisted record-and-replay prefetcher is pro-
posed, which passes information on spatial and temporal
regions of interest through a light hardware-software interface
to the hardware prefetcher. the proposed RnR prefetcher can
achieve a high accuracy and coverage, as well as timeliness,
thus can successfully hide the irregular memory access latency
and improve system performance.

II. MOTIVATION AND KEY IDEA

The motivation of this work comes from observations on
a set of important applications that have repeatitive irregular
memory access patterns, which are difficult to predict using
conventional hardware prefetchers. Take the Sparse Matrix-
Vector multiplication kernel (SpMV) [57] as an example, when
the sparse matrix is stored in a CSR format, the row pointer,
column array, and matrix value array are accessed in sequence
and have good spatial locality. However, the dense vector array
is accessed based on the column array of the matrix, which
does not have constant stride or other regular patterns (Figure 2
(a)). When the SpMV kernel is used in a sparse conjugate
gradient (spCG) solver [20] to get a numerical solution for a
partial differential equation, the algorithm starts with an initial
guess of the solution and update it according to the conjugate
gradients. This process repeats for several iterations until the
residual is small enough. This type of iterative solver normally
requires tens to hundreds of iterations to converge. In each it-
eration, the sparse kernel does not change and hence the access
sequence to any dense vector that multiplies with the kernel
does not change. Similar repeating irregular memory access
behaviors are also ubiquitous in iterative graph algorithms
(PageRank [39], belief propagation [28], community detec-
tion [31], and neighbourhood function approximation [13]).
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An observation from the above examples is that the repeat-
ing patterns is within certain spatial and temporal regions of
the program. As shown in Figure 2 (a), running the spCG or
PageRank algorithm produces two kinds of repeating patterns,
one type is the regular pattern from reading the matrix array in
SpMV, or reading the edge array in PageRank. Another type is
the irregular pattern comes from reading the dense vector array
in SpMV, or the vertex value (pr curr). These two different
patterns are from two different spatial regions (namely s1 and
s2 in Figure 2) of the program since different arrays are stored
at different memory location. The two patterns are repeating at
the time domain when the program is executing. In this case,
an iteration is the temporal region that contains the unique
pattern.

When the irregular memory access patterns are long (e.g.,
large graphs and vectors), existing hardware prefetchers are
not efficient to prefetch for these applications. An example
is shown in Figure 2 (b). Assume a memory access se-
quence from two spatial regions s1 and s2 are observed when
missed in the last level cache (LLC): one with streaming
address pattern 1,2,3, another with irregular address pattern
9,12,9,20,1. These memory accesses arrives at the memory
controller within a close time window. This type of behavior is
common in SpMV and graph algorithms. For example, SpMV
touches both matrix and vector when doing the computation.
The mixed pattern could repeat many times when the same
sparse matrix is used in an iterative algorithm.

A global history buffer (GHB) [38] based temporal
prefetcher will record the global address correlations and use
the address as the index to retrieve the pattern. When an
address is followed by different addresses in the sequence (e.g.,
address 9 is followed by 12 and 20), the prefetcher will pick
the most recently used one for the prediction and thus may lead
to mis-prediction. What’s more, a GHB based approach could
not differentiate two mixed patterns, thus may lose prefetching
opportunity and result in low miss coverage. More recent
works such as ISB [25] and MISB [59] utilize PC and address
to differentiate different streams and enables efficient meta-
data management. However, pattern-based prediction faces the
fundamental challenge of differentiating similar patterns.

Existing spatial prefetchers [53] also do not work well for
this type of applications. The spatial region set for the spatial
prefetcher to detect pattern is normally an OS page. The page
size is small and no ordering information is recorded within
a page. Spatial prefetchers are efficient in observing the same
spatial patterns among different spatial regions. In a prior
spatial-temporal prefetcher [52], the access order information
are recorded among different sequences, but order information
within spatial region is not recorded. In the example in
Figure 2 (a), the repeating patterns are within a spatial region,
but across different temporal region. The size of the spatial
region could vary for different data structures and could be
much larger than a page size.

The challenges faced by these existing prefetchers can be
solved by providing programmer knowledge—if the prefetcher
can know when and where will the repeating pattern start
and end, it could achieve higher prediction accuracy and
prefetch in a timely manner. In this example, if the timing

information of when the iteration starts and ends is known
by the prefetcher, it could record the cache miss pattern at
the first appearance of the sequence, and replay the exactly
same sequence for the following repeats. What’s more, if
the information of the spatial region could be known by the
prefetcher (i.e., the address range of the matrix and vector
array in this example), the prefetcher could differentiate the
streaming pattern from the irregular pattern and thus avoid
recording the stream one.

Another observation is that the existing prefetchers could
suffer a lot from ill-timed prefetches. An example is shown in
Figure 2 (d). Most of the existing hardware prefetchers trigger
the prefetches when a demand miss or access happens. Nor-
mally, when a demand miss occurs, the prefetcher will prefetch
several recorded address in sequence. However, the actual
timing information for two correlated address are unknown,
which could lead to either early or late prefetches. Prior
prefetchers only record miss order, if the timing information
corresponding to recorded memory accesses can be stored as
part of the metadata as well, more timely prefetches could be
issued.

Fortunately, the repeating irregular patterns are not difficult
to identify in the source code of applications like graph
algorithms and iterative solvers with sparse matrix. First,
the spatial regions can be identified by knowing which data
structures are accessed in a repeating irregular fashion. The
temporal regions can be specified by programmers at the
start and end of each iterations or evocations. More precise
timing information can be estimated by observing miss ra-
tios with respect to progressing time windows during the
first occurrence of a target sequence. Besides performance
considerations, metadata management is an important issue
for prefetcher design, especially for temporal prefetchers that
records data correlations. With software assists, metadata
could be stored in a contiguous storage region, which makes
metadata prefetching fast and efficient. What’s more, since
the hardware now equipped with the programmer knowledge
of the temporal region, the metadata storage space could be
released as soon as the target executing phase ends, other
than waiting for the entire program to finish. This scheme
provides more efficient metadata management as compared to
prior works.

This work proposes a software-assisted record-and-replay
prefetcher. The key ideas of this design include: 1) leveraging
the software knowledge of when the repeating memory access
sequence starts and ends to record the cache misses and
prefetch by replay; (2) allowing the software to set regions of
interest to reduce recording overhead and focus on irregular
patterns; and (3) recording timing information as part of the
metadata to enable a more timely prefetching.

III. DESIGN CHOICES

While the key ideas are simple, to design an efficient RnR
prefetcher many design choices need to be carefully reviewed.
RnR targets accurately recording and replay of repeating
irregular sequences using software assisted hardware. In this
design, a lightweight software interface is provided to allow
the software/programmer to communicate to the hardware the
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temporal/spatial information about when to record, when to
replay, and when to stop recording the memory access se-
quence. A more detailed explanation of the software-hardware
interface will be introduced in Section IV. The next question
is what to record. A naive approach is to record every data
access within the defined range, which is inefficient. Although
the sparse structures have poor spatial and temporal locality
in general, sometimes locality does exist, such as neighboring
vertexes sharing some common neighbors in a social network
graph. Recording all of the structure accesses may lead to
redundant record and prefetch, and thus waste the storage
space and bandwidth. Therefore, the proposed design chooses
to record the miss sequence from the private L2 cache in a
multi-level cache hierarchy. At this stage, memory accesses
that could benefit from locality are filtered by the private
L1 and L2 caches. Regarding where to store the recorded
information, the proposed design puts these data into a pre-
defined memory space allocated by the programmer using a
programming interface that will be introduced in Section IV.
Since the access latency to get the recorded metadata is long,
RnR uses a metadata prefetching scheme similar to [25]. An-
other important question is when to prefetch. Previous designs
trigger the prefetch event based on a single cache access, or a
single cache miss, or a combination of them with a confidence
threshold. RnR starts prefetching at the replay phase. Hard-
ware gets knowledge about the optimal timing and phasing
of the prefetch stream through the software interface. Within
the replay phase, RnR uses an efficient reply timing-control
mechanism to ensure timely prefetching. This is achieved by
recording timing information as part of the metadata, which
will be introduced in details in Section V-C. Finally, regarding
where to put the prefetched data, RnR chooses the private L2
cache. This is based on the observation in DROPLET [10] that
using the L2 cache for this purpose shows negligible influence
of cache pollution.

IV. PROGRAMMING INTERFACE

This section describes the architectural states and program-
ming interface of the RnR prefetcher (IV-A), an example use
case (IV-B), and the operating system supports (IV-C).

A. Architectural States and RnR Functions

To achieve an effective “Record and Replay” of the memory
accesses, the proposed RnR prefetcher requires the following
additional architectural states: (1) a address space identifier
(ASID) register for permission check, (2) a set of boundary
checking address registers 1 and their associated size and
active states (enable vs. disable), (3) a base address register
for a Sequence Table, (4) a window size register, (5) a base
address register for a window Division Table, and (6) a prefetch
state register. The sequence table is used for recording miss
sequence. The window size and window division table are used
for recording miss ratios during each time window such that
this information can be used to control the replay prefetching
pace (Section V-C)). Both the sequence table and the window
division table are stored in memory spaces allocated by the

1The number of address registers can be variable, two are used in the
evaluation.

programmer, hence the registers only need to store the base
addresses of these two tables. All of the these architectural
states are implemented as special registers per core. All of the
address registers store virtual addresses. The ASID register
stores the identifier of the process that is currently using the
prefetcher.

The programmer needs to first identify which target data
structures to be recorded. The target data structures can be
defined at the memory allocation time. By passing down the
base addresses and the corresponding sizes to the boundary
registers, the prefetcher can recognize whether the access is
within the target range or not (Section V-A). Accesses out of
the target range will not be recorded or replayed (prefetched).
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1

2

3
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PrefetchState.replay()PrefetchState.end()4
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PrefetchState.pause()

PrefetchState.
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5

6

PrefetchState.end()
7

PrefetchState.
pause()

PrefetchState.
resume()98

Fig. 3. State transition diagram of the RnR prefetch state.

TABLE I
RNR FUNCTION CALLS.

Function Explanation
Set ASID for permission check, allocate memory

RnR.init() for SequenceTable and DivisionTable, and
set the default window size

AddrBase.set(addr, size) Add a base address with its corresponding size
AddrBase.enable(addr) Enable the address boundry check for addr
AddrBase.disable(addr) Disable the address boundry check for addr

WindowSize.set(size) Set a window size different from the default
PrefetchState.start() Enable RnR, start recording

PrefetchState.replay() Start replay from the beginning
PrefetchState.end() Disable RnR

PrefetchState.pause() Pause replaying
PrefetchState.resume() Resume replaying from the pause state

RnR.end() Free the memory space for metadata

Moreover, the software also needs to define where will the
miss sequence be stored, 2) how large will be the window size
for pace control, and 3) where will the window division table
be stored. Window size determines the number of structure
misses that are recorded in each of the window. To provide
the timing information that indicate how long each of the
window is, the window division table stores the total number
of demand accesses within each of the window, which is used
for controlling prefetching aggressiveness (Section V-C).

The prefetch state is also controlled by the software. 1 At
first, the programmer needs to enable the RnR prefetcher to
start recording the miss sequence during the first appearance
of the sequence. At the end of the recording, a replay function
can be invoked to disabled the recording and start the replaying
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Algorithm 1: PageRank using RnR Prefetcher.
1 Procedure Init():
2 pcurr = { 1

|V | , ...,
1
|V |}

3 pnext = {0.0, ..., 0.0}
4 diff = {}
5 Frontier = {0, ..., |V | − 1}
6 error = ∞
7 RnR.init()
8 RnR.AddrBase.set(pcurr, N)
9 RnR.AddrBase.set(pnext, N)

10 return 1
11
12 Procedure PRUpdate(s, d):
13 AtomicIncrement(pnext[d],

pcurr[s]
deg+[s]

)
14 return 1
15
16 Procedure PRNormlize(i):
17 pnext[i] = (γ × pnext[i] +

1−γ
|V | )

18 diff[i] = |pnext[i]− pcurr[i]|
19 pcurr[i] = 0.0
20 return 1
21
22 Procedure PageRank(G, γ, ε):
23 Init()
24 RnR.AddrBase.enable(pcurr)
25 RnR.PrefetchState.start()
26 while (error > ε) do
27 EdgeMap(G,Frontier,PRUpdate)
28 VertexMap(γ,Frontier,PRNormlize)
29 error = sum of diff entries
30 SWAP(pcurr, pnext)
31 RnR.PrefetchState.replay()
32 RnR.AddrBase.enable(pnext)
33 RnR.AddrBase.disable(pcurr)
34 end while
35 RnR.PrefetchState.end()
36 RnR.end()
37 return pcurr

2 (start prefetching from the beginning of the stored sequence
in the memory). If the repeating sequence is not expected
immediately, a pause can be used to stop recording 8 . At the
end of each of the replay, either a replay 3 or pause 5 can
be used to stop the replay. After all of the repeated iteration
finished, and end function can be called 4 to terminate the
“Record and Replay” process. The record or replay can be
paused 5 8 in the middle and resumed 6 9 from where
it is paused to support context switch.

B. An Example of Using the Programming Interface

The PageRank from Ligra [48] is used as an example to
show an use case of the programming interface (Algorithm 1,
RnR related codes are colored in blue). Note that this example
includes an out-of-place update for pcurr and pnext, which means
the base pointer will be exchanged at the end of each iteration
(line 33). Therefore the full address range of pcurr in each
iteration is not the same. However, the element in the array
can be divided into Base+Offset. Even if the Base changes,
the Offset are kept the same. To correctly select which Base
to use, the programmer also needs to swap the Base at the
end of each iteration. Line 7 initializes the RnR prefetcher
by setting internal parameters and allocating memory space

for metadata. RnR.init() also sets the Window Size for replay
timing controller (described in Section V-C) to a default value.
Since the prefetching destination is the L2 cache as described
in Section III, the default window size is set to half of the L2
size for double buffering.

Line 8-9 defines the virtual address range for pcurr and pnext,
with their corresponding size N (N is the number of vertices
in this case). Line 24 enables the address range for pcurr before
the recording starts. Line 25 starts the recording process. Line
31-33 enable and disable the swapped base address pcurr and
pnext for prefetching the next iteration. Line 35 terminates RnR
prefetcher. Line 36 free out the reserved storage for all of the
metadata stored in memory.

C. Operating System Supports
The operating system can schedule a process or thread

to different cores to optimize for resource utilization. A
process can also be switched out due to long latency events
such as page faults. Conventional hardware prefetchers need
retraining after context switching. However, RnR does not
need retraining if the same access order is expected because
the metadata is stored in allocated heap space. During context
switch or process migration [22], the on-going recording or
replaying need to be paused. The corresponding architectural
states as well as RnR internal states (Section V) need to be
copied to memory. For migration and switching in a process
that has paused RnR prefetching, the values of these registers
will be copied in before resuming the execution of the process
and the prefetching. RnR requires to save/restore a total of
86.5B of additional states (Section V) , which is not expected
to add a significant performance overhead. This is because
context switching overhead comes from losing register, TLB,
branch predictor, and cache states. Cache warmup penalties
are typically the bottleneck [26], [33].

V. RNR ARCHITECTURE

Since the programmer can now define when to start and
end the record and replay using the programming interface,
the proposed RnR prefetcher executes according to the archi-
tectural state diagram in Figure 3. In Figure 4, arrow A, B, C,
D, and E are software interfaces that updates RnR architectural
states to guide the RnR prefetcher. In addition to the registers
that are visible to software, the RnR prefetcher also requires
internal registers, which include: (1) a current structure read
counter; (2) a 128B buffer for sequence table and a 128B
buffer for division table; (3) length registers for the two tables
respectively; (4) current physical addresses to write or read the
two tables; (5) a number of prefetcher counters; (6) a current
window counter; and (7) a current prefetch pace register that
stores the desired number of demand reads per prefetch during
the current prefetch window.

A. Record
After the prefetch state register is set to ‘Record’, RnR starts

to record the L2 miss sequence of the target data structure.
Figure 4 shows how does the record iteration performed before
the programmer stops recording. 1 All demand accesses need
to check the address boundaries stored in the boundary table
before the virtual to physical address translation. 2 If the
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Check Cur Seq/Div Page Addr    
   Prefetch Seq Table/Div Table to Buffer
   Increase Seq/Div Table Len 

6 If Cur Struct Read%Prefetch Pace==0 &&
Prefetch Count <= Div Buffer [CurWindow+1]:
   Check Cur Seq/Div Page Addr  
   Prefetch to L2 Cache  
   If Access a New Physical Page:
      Access TLB, update Cur Seq/Div Page Addr 
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Fig. 4. RnR system architecture.

demand access is within the range of an entry in boundary
table, the Cur Struct Read counter increments. This counter is
used for providing the pacing information for the replay. 3
Demand accesses check the TLB and caches as usual. Only the
memory request within the address range will be marked with
a flag to let the RnR prefetcher know it is from the targeted
data structure in case it is also a L2 miss. 4 Cache misses out
of the RnR prefetch range can be trained by other prefetchers
(Section V-D). 5 If the demand acccess misses in the private
L2 cache and within the target range, the RnR prefetcher will
write a new entry in the sequence table buffer and increase the
sequence table length. 6 For every X number of misses the
sequence table record, where X is the window size, the current
structure read count will be recorded in window division table.
This provides the miss ratio information of this window, which
can be used to guide the prefetch speed during the replay
(Section V-C). 7 To minimize the write traffic, the metadata
writes are grouped at cache line granularity (write back every
64B). The RnR prefetcher now needs to find the reserved
memory space for writing metadata. The virtual address of the
metadata head pointer can be calculated by calculating Table
Base Addr + Cur Table Len. To find the physical address,
a TLB lookup is needed. Performing TLB lookups for each
metadata write might block demand accesses. Since metadata
writes are sequential and have good spatial locality, a current
physical page address buffer is added to only perform one
TLB lookup per 4MB page. 8 Finally, the content in the
sequence table and window division table are written back
to the corresponding addresses. The RnR terminates the entire
recording iteration when the programmer changes the prefetch
state to ‘Pause’ or ‘Replay’.

B. Replay

When the RnR prefetch state is transitioned to ‘Replay’, the
Cur Struct Read, Cur Div Table Len, Cur Seq Table Len are
reset to zero. Every demand access goes through 1 , 2 , 3 ,
and 4 is similar to when the prefetch is in a ‘Record’
state. The Cur Struct Read counter will count accesses to
the targeted structures again to estimate the progress of the
program. 5 The miss sequence and timing information inside
the sequence table and window division table are proactively

prefetched into their corresponding buffers (the 128B buffer
size allows double buffering) and the table length is updated.
Since the metadata is stored in a contiguous address space,
metadata prefetching for the sequence table and the division
table has a streaming pattern and does not incur timely lookup.
6 Similar to the ‘Record’ state, the RnR prefetcher needs

to calculate the addresses in order to prefetch for both the
sequence table and the division table. One TLB lookup is
needed for a 4MB page to perform the virtual to physical
address translation. Once the address is generated, the prefetch
requests could be issued to LLC based on the prefetch pace.
If the request hit in the LLC, the data will be fetched to
the L2 cache, otherwise the request goes to the memory. 7
The prefetching aggressiveness (how much ahead to prefetch)
needs to be adjusted to match with the application progress,
which can be tuned at the granularity of the prefetching
window. The proposed design stores the prefetched blocks
into L2 cache, hence the aggressiveness is bounded by the L2
cache size. For the evaluated benchmarks, double buffering
(one window ahead) is enough to provide timely prefetches.
The RnR prefetcher also adjust the frequency of issuing
prefetches within a prefetch window to minimize contention
with demand accesses without delaying the prefetches, which
will be discussed in Section V-C. When the Cur Struct Read
matches with the recorded count for the next window, the
current window counter is incremented and the RnR can start
to prefetch misses for the next window after finishing all of
the prefetches for the current window. The prefetching pace
will be hence updated with window switching.

C. Replay Timing Control

Traditional memory prefetchers can be triggered for differ-
ent levels of aggressiveness. Nexline prefetch requests the next
cache line after each access. Spatial and temporal prefetchers
can trigger an new prefetch request when the miss sequence
matches with the recorded common pattern. RnR stores one
sequence per core to prefetch. As described in Section V-A,
RnR also stores the miss ratio information per prefetch win-
dow. This allows the RnR prefetcher to match prefetching
speed with the progress of the program execution. As shown
in the Figure 5 (a), different window may have different miss
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Fig. 5. Prefetching timing control example with window size = 3.

ratios according to whether the data region has relatively good
locality or not. In this example, Window 1 has a miss ratio
of 50%, whereas the window 2 has a miss ratio of 33.3%.
If the prefetcher does not consider the miss ratio information
and issues a prefetch on every demand access as shown in
Figure 5 (b), the prefetches would be too aggressive and the
prefetched data would be easily evicted out of the L2 cache
by the time the data is needed. However, if the miss ratio
information is stored, the replay prefetch controller can know
when to stop. In the example in Figure 5 (c), after the third
prefetch is issued, the RnR prefetcher will wait until the sixth
access to the targeted data structure before it issues prefetches
of the next window. To further optimize the prefetch traffic, the
prefetches can be evenly distributed within a prefetch window
to avoid congestion and interference with demand accesses.
The frequency of issuing prefetch requests can be calculated
by NPace =

StructAccessesInCurrentWindow
WindowSize . This means a prefetch is

issued every NPace structure accesses (Figure 5 (d)).

D. Integrate with Other Prefetchers
As shown in Figure 4, the L2 stream prefetcher excludes

the target sparse data structure so that the conventional stream
prefetcher [21], [30], [51] will be trained by L2 misses outside
of the Record-and-Replay address range. The proposed RnR
prefetcher can support both regular and irregular memory
accesses, but a streaming or constant stride prefetcher would
be more efficient at predicting regular memory access patterns.
The proposed RnR prefetcher can be easily integrated with
other hardware prefetchers by filtering out temporal and spatial
regions of interest.

E. Scalability for Multicore Systems
There are two questions to answer regarding the scalabil-

ity of this design in a multicore system: 1) how will the
hardware overhead grow as the number of cores increases?
and 2) how will the metadata storage overhead grow as the
number of cores increases? RnR collects the private L2 miss
sequences from the target data structure. The special registers
to store architectural states and RnR internal states are per
core. Therefore, the hardware overhead increases linearly with
respect to the core count. Given the fact that the total hardware
overhead for each core is small, the hardware area overhead is
negligible as compared to the chip area (Section VII-B). The
total storage overhead depends on the number of L2 cache
misses from the target data structure. For parallel workloads,
the data structures of a large problem are typically partitioned
and assigned to multiple threads to run on different cores.
Accesses to another core’s data partition might increase the

total number of cache accesses. But when more cores are opted
in, the total capacity of private caches is also increased. Hence
the total L2 misses might be reduced. Moreover, partitioning
algorithms [29], [49] typically aim to improve locality and
reduce cross-partition communication. After partitioning the
data structure, each worker thread executes on different cores
will primarily access their own data partition. The data regions
of interest should also be set for each data partition. In such
cases, the total storage overhead will not increase significantly
when running on multicore systems.

VI. EXPERIMENTAL SETUP

This work uses ChampSim [3], a trace-based simulation in-
frastructure, to evaluate the proposed RnR prefetcher. Champ-
Sim is adopted in the 3rd Data Prefetching Championship
(DPC3) [1]. The cache subsystem in ChampSim includes
FIFO read and prefetch queues. The demand requests have
a higher priority than prefetch and metadata requests. The
main memory model simulates data bus contention, bank
contention, and bus turnaround delays. When there are more
contentions, memory access latency is increased. The baseline
configuration is shown in Table II. Cache sizes and latency are
modeled based on Intel i7-6700 [4]. Cadence Genus Synthesis
Solution [15] is used to analyze the RnR prefetcher hardware
area. The area is estimated based on FreePDK45nm [54]
standard cell library, and is scaled to 22 nm. The memory
timing constraint comes from Micron MT40A2G4 DDR4-
2400-CL17 data sheet [2]. We mark the region of interest
(ROI) of the code and using the PIN tool [35] to extract the
kernel trace for trace-based simulation. 20 million instructions
are used to warm up the on-chip caches and at least 500 million
instructions of the kernel are simulated. 2

TABLE II
BASELINE CONFIGURATION.

Processors 4 cores, 4 Ghz, 4-wide OoO, 256-entry ROB, 64-entry LSQ
perceptron branch predictor [27], 16-entry issue queue

L1-Ds/Is private, 64KB, 8-way, 8-entry MSHR, delay = 4 cycles
L2s private, 256KB, 8-way, 16-entry MSHR, delay = 12 cycles
LLC shared, 8 MB, 16-way, 128-entry MSHR, delay = 42 cycles
Memory
Controller

FCFS, read queue size = 64, write queue size = 32
write queue draining: high/low threshold = 75%/25%

Main
Memory

4GB, 2400 Mhz, 1 channel, 1 rank, 16 banks
tCL = tRCD = tRP = 17 cycles

This work evaluated vertex-centric PageRank algorithm
from Ligra [48], sparse CG from Adept [23], and edge-
centric Hyper-anf from x-stream [44], which have repeated
access trace across different iterations. Graph and sparse
matrix inputs of the application are listed in Table III, which
covers representative inputs with different characteristics (i.e.,
size, sparsity). Graph algorithm and scientific applications
have many different libraries support for parallelization [16],
[24], [43]. In this work, we implement the applications as
Single Program Multiple Data (SPMD) [17] model (every
task executes the same program), which is commonly used in
many pull-based graph algorithm [12] with graph partitioning

2Trace sizes for different applications and inputs varies a lot. We simulate
the whole record iteration and replay iteration regardless of how large the
traces are.
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[29], [49]. The master process initializes the array, sends
the partitioning information to worker processes, performs
its own share of the computation and wait for all of the
worker processes to finish. Each worker process receives the
partitioning information, performs its share of computation,
and sends results back to the master. We use METIS [29] to
partition graph inputs into four partitions and assign each of
the worker processes a partition to run.

TABLE III
INPUT DATASETS.

Graph Input
Names Edges Nodes Size Type

amazon [32] 3.3M 0.4M 47.9MB purchase network
com-orkut [32] 117M 3.1M 1.7GB social network

urand [11] 260M 16.8M 2.1GB synthetic
roadUSA [11] 57.7M 23.9M 1.3GB road network

Sparse Matrix
Names Rows Nonzeros Size Type

atmosmodj [19] 1.2M 8.8M 214MB fluid dynamics
bbmat [19] 38.7K 1.7M 42.4MB fluid dynamics

nlpkkt80 [19] 1.1M 28.1M 350MB PDE optimization
pdb1HYS [19] 36.4K 4.3M 86.0MB protein data bank

VII. EVALUATION RESULTS

The proposed RnR prefetcher is compared against
three general-purpose prefetchers and one domain-specific
prefetcher for graph algorithm: 1) Next-Line, 2) SteMS [52],
3) BINGO [9], and 4) DROPLET [10]. Since DROPLET is
designed for graph algorithms, the evaluation results do not
include DROPLET when running spCG.

A. Performance
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Fig. 6. Speedup over no prefetcher baseline.

1) Speedup: The proposed RnR prefetcher does not
prefetch for the target structure during the recording state. The
effective performance of RnR depends on how many times it
can reuse the recorded pattern to prefetch. The more replays,
the higher speedup the RnR can achieve. For PageRank and
HyperAnf, the total number of the iterations depends on
the graph inputs and the stopping criteria (e.g., Line 29 in
Algorithm 1). For all given inputs and the default ε value of
the benchmark suite, both PageRank and Hyper-Anf take more
than a hundred iterations to converge. For spCG, the algorithm
converges when the residual is equal or smaller than the default
value, which typically takes hundreds of iteration to finish.
Therefore, the overhead of the record iteration can easily be
amortized by the replay iterations. We use 100 iterations for
all tested applications and inputs for simplicity. As shown in
Figure 6, RnR refers to using the proposed prefetcher for only
the irregularly-accessed data structure, RnR-Combined refers
to using the RnR prefetcher for the irregularly-accessed data

structure and using stream prefetcher (next-line) for all other
data. The ideal case is analyzed by having an infinite-sized
LLC.

For graph algorithms, RnR achieves the highest performance
improvement for most of the graph inputs and can increase
performance significantly for the synthetic graph urand, which
has random connections and poor data locality. General-
purpose prefetchers (next-line, bingo, SteMS) are typically
ineffective for the graphs that have many random connections
due to the lack of a common spatial or temporal pattern
to exploit. DROPLET achieves near zero performance im-
provement for PageRank with the urand graph input. This
is because DROPLET first prefetches the edge data in a
streaming fashion and then uses the prefetched edge data to
generate vertex addresses to prefetch for indirect accesses. The
address generation latency of this extra level of indirection can
take away the potential opportunity of timely prefetching for
random graph like urand, in which the vertices are lack of
spatial locality and hence take longer time to fetch.

The proposed RnR prefetcher does not have dependen-
cies when generating prefetch addresses. The metadata is
prefetched from recording without recomputing. Therefore, the
RnR prefetcher is effective for all of the graph inputs and can
achieve the highest performance. RoadUSA is a road map and
presents a relatively regular connection pattern, so that even
the general-purpose prefetchers are effective.

For spCG, RnR prefetcher can deliver higher speedups
because it can separate stream and sparse access patterns. In
general, the proposed RnR can achieve 2.11×, 2.23×, and
2.90× performance improvement for PageRank, Hyper-Anf,
and spCG kernel respectively.
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Fig. 7. L2 MPKI.

The proposed RnR prefetcher uses the private L2 as the
prefetching destination. To create a fair comparison, all of the
evaluated prefetchers are prefetching data into the private L2.
We believe this does not handicap the other prefetchers as the
partitioned graphs utilized for the parallel benchmarks have
minimal sharing between threads. As shown in Figure 7, the
proposed RnR-Combined prefetcher can reduce the demand
miss ratio by 97.3%, 94.6%, and 98.9% for PageRank, Hyper-
Anf, and spCG kernel respectively. And for graph algorithms
with urand and com-orkut as the inputs, the MPKI can still
be reduced by more than a half.

2) Coverage: The miss coverage refers to the total number
of misses that the prefetcher can reduce from the baseline,
which is a direct indication of the effectiveness of the over-
all prefetcher design. 100% coverage means the prefetcher
can correctly prefetch all of the misses observed in the
baseline (i.e., a “perfect” prefetcher). Hence, Coverage =

Useful Prefetches
Total Baseline Misses . The higher the coverage, the more misses the
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Fig. 8. Miss coverage.

prefetcher can detect and correctly prefetch. Spatial-temporal
prefetchers reply on the shared common access pattern, which
are not as prevalent in the evaluated applications as database
and transaction applications. Therefore, only part of the miss
sequence can be detected. For roadUSA with good locality, the
bingo and SteMS can achieve good performance. DROPLET
covers the dependent load by using edge data to predict the
dependent load of the vertex data, which can achieve better
coverage for edge-centric Hyper-Anf as compared to vertex-
centric PageRank. The proposed RnR prefetcher can detect all
of miss sequences for the target data structure without sharing
patterns and data dependencies. Therefore, RnR can achieve
on an average of 91.4%, 84.5%, and 88.7% of miss coverage.
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Fig. 9. Prefetcher accuracy.

3) Accuracy: The prefetching accuracy is the fraction of
useful prefetches out of the total issued prefetches. Accuracy =
Useful Prefetches
Total Prefetches . General purpose prefetchers (bingo and SteMS)

have problems with sequence miss-matches for accesses with
similar spatial-temporal patterns. Therefore, for applications
dominated by irregular memory accesses, general-purpose
prefetchers achieve the lowest accuracy. For some inputs with
a good spatial locality, for example, roadUSA, they can aver-
age nearly 50% accuracy. DROPLET achieves better accuracy
as compared to bingo and SteMS. This is because DROPLET
is able to capture the data-dependent indirect access for graph
algorithms. However, for graph algorithms where the edge
array can not be fetched early enough (PageRank-urand),
DROPLET will have lower prefetching accuracy.

RnR can achieve on an average of 97.18% of prefetching
accuracy. This is because the replay iteration will have exactly
the same miss sequence as the record iteration. By matching
prefetching speed with demand access, most of the prefetched
data will be used before it is evicted.

4) Effectiveness of replay timing control: RnR issues timely
prefetches by matching the number of prefetches per window
(Section V-C). As shown in the Figure 10, replay without
the window-based control cannot improve performance due
to the mismatch of prefetch timing with the demand access
(Figure 5 (b)). After applying window control (Figure 5 (c)),
RnR prefetch one window ahead without evicting prefetched
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Fig. 10. Effectiveness of replay timing control.

blocks before uses. Therefore, the performance is improved
significantly (2.31×). For most of the evaluated workload,
window control is already good enough for controlling the
prefetching speed.
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Fig. 11. Prefetch timeliness breakdown (Left bar: no control, middle bar:
window control, right bar: window+pace control).

5) Timeliness: Besides coverage and accuracy, timeliness is
also essential to the effectiveness of prefetching. Prefetching
too early will cause prefetched data to be evicted out of the
cache before it is needed. On the other hand, prefetching too
late can not help to hide the miss penalty. To understand
the timeliness of the proposed RnR prefetcher, we divide
the total prefetched data into four categories: 1) on time
prefetch, 2) early prefetch (prefetches that are demanded in
the corresponding window but are evicted when the accesses
arrive), 3) late prefetch (prefetches that are demanded in the
corresponding window but are issued later than the accesses
arrive L2), 4) out of the window (prefetches that are not
demanded in the corresponding window). All of those four
categories sum up to the total issued prefetches. As shown
in Figure 11, most of the applications can match the prefetch
speed perfectly with the demand access speed. Only two graph
algorithms with urand show 7-8% of prefetches that are either
early or late. This is because the off-chip demand access
may overtake or delay the prefetch requests since the demand
accesses are prioritized over prefetches. Applying pace control
on top of window control does not significantly improve the
prefetching timeliness. Only for graph algorithms with urand
as input, pace control slightly reduce early prefetch by 3-4%.

6) Record Iteration Overhead: The first recorded iteration
will have some performance degradation for metadata manage-
ment. Given the fact that the write traffic is not on the critical
path of the applications, the latency of writing metadata back
to memory can be largely hidden using non-temporal (over-
writing) stores. The evaluated memory system uses a write
queue draining policy, which prioritizes a demand read over
the write. Based on our observation, the PageRank with urand
incur the largest performance degradation with only 1.75% of
IPC lower than the baseline. This is because the total amount
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of writing traffic depends on the size of metadata. Since the
synthetic graph has the highest miss rate, the writing overhead
for this application is the highest. On average, the record
iteration cost 1.02% of performance slow down as compared
to the baseline with no prefetcher.

7) Additional Off-chip Traffic: The additional off-chip traf-
fic is determined by TotalPrefetch × (1 − Accuracy) +
MetadataTraffic. On an average, bingo, SteMS, nextline,
and MISB generate more than 2× of the total prefetch
requests as compared to RnR. The high accuracy of RnR is
the main reason for relatively low additional off-chip traffic.
Metadata traffic is the main source of RnR’s additional off-
chip traffic. Accessing to metadata is streamed and has good
spatial locality, which can efficiently utilize DRAM row buffer
and memory internal parallelism. Next-line, bingo, SteMS,
MISB, DROPLET, RnR, and RnR-Combined add on average
of 45.2%, 67.1%, 58.4%, 19.7%, 12.2%, 12.0%, and 27.6%
of additional off-chip traffic respectively. DROPLET and the
RnR prefetcher add a similar amount of additional traffic.
DROPLET adds additional traffic because of the inaccurate
prefetching; whereas the RnR prefetcher adds extra traffic due
to metadata prefetching. Inaccurate prefetching may offset the
performance gains by polluting the cache space. However, the
metadata are not stored in cache. MISB also stores metadata
off-chip, and uses on-chip cache storage to reduce metadata
traffics. The reason why MISB has a little higher off-chip
traffics is also because of lower prefetching accuracy. For
graph algorithms with urand as input, the metadata overhead is
higher as compared to other inputs, hence incurs higher addi-
tional traffic using RnR as compared to MISB and DROPLET.
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Fig. 12. Additional off-chip traffic.

B. Hardware Overhead
RnR prefetcher needs architectural state registers (Sec-

tion IV), internal state registers (Section V), and a modest
amount of control logic per core. The total hardware over-
head for RnR prefetcher is less than 1KB for each core
(2.7E−3mm2), which consumes less than 0.01% of the total
on-chip area (46.19 mm2).

C. Storage Overhead
RnR prefetcher requires a sequence table for the recorded

miss sequence and a window division table for replay timing
control. As compared to the sequence table, the window
division table is much smaller as it only needs to store one
word per window (thousands of addresses per window in
sequence table) Therefore, most of the storage overhead comes
from the miss sequence table.

The total storage overhead for each of the application and
inputs depend on how large the inputs are and the data locality.
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Fig. 13. Metadata storage overhead of sequence table and window division
table (normalized to input dataset sizes).

For example, PageRank with the roadUSA input has good
spatial/temporal locality and would require 7.64% of storage
overhead of the original input size; whereas PageRank with
the urand input needs 22.43% of the storage overhead due
to its poor locality. Hyper-Anf with the amazon input has a
4% more storage overhead as compared to PageRank with
the same input. This is because Hyper-Anf has a higher miss
ratio. On average, RnR requires 12.1%, 13.0%, and 11.58%
of the storage overhead for PageRank, spCG, and Hyper-Anf
respectively (Figure 13).

D. Window Size
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Fig. 14. Average speedup and storage for different window sizes.

The window size defines the granularity for RnR prefetcher
to match the prefetch aggressiveness with the program exe-
cution (Section V-C). The smaller the window is, the more
frequent the RnR prefetcher can adjust prefetching frequency.
However, the smaller the window, the larger the Window
Division Table. Because the RnR prefetches into the private
L2, the window size should not exceed the half of L2 cache
size. We observed that window size between 64 to 2048 cache
lines achieves similar speedup as well as storage overhead
(Figure 14). Window size below 64 will significantly reduce
the effectiveness of RnR prefetching and increase storage
overhead.

VIII. RELATED WORK

To understand the differences of the proposed prefetcher as
compared to prior work, Table IV summarizes the key design
decisions made by four most related designs.

Temporal prefetchers [8], [25], [38], [58], [59] capture the
irregular access pattern by memorizing the temporal address
correlations. It is effective for pointer chasing based applica-
tions. Because the correlation information grows in proportion
to the application’s memory footprint, temporal prefetchers
normally requires a large amount of metadata to achieve good
performance. MISB [59] stores the metadata off-chip and
prefetches them to a near core location before it is needed.
MISB needs to lookup the metadata to find the corresponding
address to prefetch, which requires 49KB of on-chip storage
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TABLE IV
COMPARISON TO OTHER IRREGULAR HARDWARE PREFETCHERS.

Prefetcher
Design

Prefetchering Target
Properties and Applications

What Structure
to Prefetch

How to Generate
Prefetch Addresses

When to
Prefetch System Overhead

RnR
(Proposed)

Repeating patterns
e.g. iterative solver,

iterative graph kernel

Defined by
software Record and replay

Software assist,
replay timing

control mechanism

Hardware:less than 1KB
Software: light interface

Storage: 12% input

DROPLET [10] Indirect memory access
e.g. graph algorithms

Edge and
vertex data

Compute based
on dependency

Edge access
or refill

Hardware: 12KB
Software: light interface

IMP [60]
Indirect memory access,

e.g. applications with SpMV
kernel, graph algorithms

Index and
indirect data

Compute based
on dependency

Index data
access Hardware: 0.7KB

Bingo [9] Repeating spatial patterns,
e.g. OLTP, DSS No constraint Predict based

on history Cache access Hardware: 119KB

MISB [59] Repeating temporal patterns
e.g. database, caching No constraint Predict based

on history Cache miss Hardware: 49KB
Storage: 8% input

for metadata caching. RnR does not requires metadata lookup
and only neeeds 1KB per core. In terms of prefetching
effectiveness, there are three reasons why RnR outperforms
MISB: 1) MISB is designed for applications with common
temporal patterns. As discussed in Section II , using MISB
with PC localization is hard to differentiate similar temporal
sequences. However, similar temporal sequences is commonly
exists in graph algorithms (e.g., traversing nodes within a
cluster). 2) MISB can only prefetch the next few structural
addresses (MISB uses a maximum prefetch degree of eight);
whereas RnR can start prefetch one window ahead (up to 2048
cachelines). 3) MISB is trained at arbitrary application phase
and data, which is difficult to filter out irrelevant accesses.

Spatial prefetchers [9], [47], [53] observe patterns within
a spatial region, which are suitable for high-end server ap-
plications such as online transaction processing (OLTP) and
decision support system (DSS) [42]. These applications nor-
mally utilize data structures that have repetitive layouts, thus
recurring patterns emerge in the relative offsets of accessed
data. Because the patterns are restricted within a memory
region and no temporal order information is recorded, a
state-of-the-art spatial prefetcher normally requires a minimal
amount of metadata, which could be stored in an on-chip
hardware table.

IMP [60] is designed for indirect memory accesses to follow
the A[B[i]] indirect accesses, which shares some common
targets with RnR. However, IMP is a purely hardware design,
which generates indirect addresses by predicting the correlated
index stream. This approach suffers from low prefetching
accuracy and ill-timed prefetches, which leads to low miss
coverage. Programmable Prefetcher [6] focused on indirect
memory access (e.g, C[B[A[x]]]), where accessing array A
has memory-level parallelism and prefetching array B, C does
not need to wait. This technique needs compiler assistance,
which offload software prefetches to programmable hardware.

DROPLET [10] is a more recent work that targets on
indirect memory accesses in graph algorithms. It also has
a lightweight software interface to define the targeted data
structure (spatial region). DROPLET generates the addresses
for an indirectly accessed vertex value by prefetching the edge
array. Since DROPLET is equipped with software knowledge,
it’s accuracy and coverage is higher than IMP. However, the
vertex data prefetching is triggered when edge data refills the
DRAM read queue, which is often too late. As compared to

DROPLET, RnR records the miss address patterns as well
as the timing information. Although it requires additional
storage space, the RnR improves both the prefetch accuracy
and timeliness.

Software prefetchers [37] often achieve higher accuracy
and coverage as compared to hardware prefetchers. Several
related works propose inserting prefetching instructions at an
appropriate place through programmer and compiler efforts.
However, software prefetching schemes are difficult to migrate
to a different microarchitectures because it lacks of the hard-
ware knowledge. Furthermore, it could incur large instruction
overhead, which may offset the prefetching benefits.

Compared to prior work, the novelties and advantages
of the proposed RnR prefetcher include: 1) It provides a
lightweight software interface to communicate the spatial and
temporal information of the prefetch region of interest to the
hardware prefetcher, which improves prefetching accuracy and
miss coverage. 2) It records the private cache miss addresses
and miss ratio in each prefetch window for the targeted data
structure, and uses a replay timing control mechanism to
achieve timely prefetches. and 3) RnR is not bound to a
particular microarchitecture, it is scalable and can co-exist with
other prefetchers.

IX. CONCLUSION

In this work, a novel software-assisted RnR hardware
prefethcer is proposed to improve prefethching accuracy and
miss coverage for applications that have long repeating ir-
regular memory access patterns. By allowing programmer to
decide when and what to record and replay, the proposed RnR
prefetcher can efficiently record miss sequence of the target
data structure and prefetch through replay in a timely manner.
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