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ABSTRACT

This paper presents an investigation of zeros in the SISO
dynamics of an undamped three-DoF LTI flexible system. Of
particular interest are non-minimum phase zeros, which
severely impact closed-loop performance. This study uses
modal decomposition and zero loci to reveal all types of zeros —
marginal minimum phase (MMP), real minimum phase (RMP),
real non-minimum phase (RNMP), complex minimum phase
(CMP) and complex non-minimum phase (CNMP) — that can
exist in the system under various parametric conditions. It is
shown that if CNMP zeros occur in the dynamics of an
undamped LTI flexible system, they will always occur in a
quartet of CMP-CNMP zeros. And, that the simplest undamped
LTI flexible system that can exhibit CNMP zeros in its
dynamics is a three-DoF system. Motivated by practical
examples of flexible systems that exhibit CNMP zeros, the
undamped three-DoF system considered in this paper
comprises of one rigid-body mode and two flexible modes. For
this system, the following conclusions are mathematically
established: (1) This system exhibits all possible types of zeros.
(2) The precise conditions on modal frequencies and modal
residues associated with every possible zero provide a
mathematical formulation of the necessary and sufficient
conditions for the existence of each type of zero. (3)
Alternating signs of modal residues is a necessary condition for
the presence of CNMP zeros in the dynamics of this system.
Conversely, avoiding alternating signs of modal residues is a
sufficient condition to guarantee the absence of CNMP zeros in
this system.

1. INTRODUCTION AND MOTIVATION

The dynamics of flexible systems is of interest in a wide
range of motion and vibration control applications including
space structures [1-3], dexterous manipulation [4-8],
locomotion [9-10], hard-disk drives [11-13], and flexure
mechanisms [14-16], among others. These applications
typically require a combination of range, speed, settling time,
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noise and disturbance rejection, control robustness, motion
accuracy, etc. — performance specifications that are met by
careful choice of sensors, actuators, and associated electronics,
as well as design of various control strategies [17-19]. Yet, the
presence of resonant peaks along with ill-behaved zero
dynamics, such as non-minimum phase behavior [20-24],
severely limits the performance that can be achieved through
the feedback and feedforward control strategies [25-28].
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Fig.1 Types of zeros in an LTI system

Fig.1 shows the various types of zeros that can appear in the
SISO dynamics of an LTI system — marginal minimum phase
(MMP) that lie on the imaginary axis, real minimum phase
(RMP), real non-minimum phase (RNMP), complex minimum
phase (CMP) and complex non-minimum phase (CNMP).
These zeros are dictated by the physical design of the LTI
system, including the location of sensor and actuator, and
cannot be altered by output or state feedback. Given the critical
role that zeros play (particularly NMP zeros) in control
performance, an intimate knowledge of the existence of the
various types of zeros and their dependence on the various
system parameters is of interest.

Section 2 of this paper provides a review of the extensive
literature on system zeros. But the existing results fail to
present an analysis of systems that include all possible types of
zeros. Furthermore, an interpretation of the genesis of zeros
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(particularly CNMP zeros) based on physical parameters and
design is still lacking. In our previous work, we mathematically
predicted [21] and experimentally demonstrated [22] the
existence of CNMP zeros under certain combinations of
physical parameters and operating conditions in flexure
mechanisms. However, this was a system specific investigation,
and did not provide a more fundamental understanding into the
origin of these zeros.

To achieve such an understanding, we employ modal
decomposition [29] to study zeros in the SISO dynamics of an
undamped three-DoF LTI flexible system in this paper. This
undamped three-DoF flexible system comprises of one rigid-
body mode and two flexible modes. The genesis of different
types of zeros and their transition from one type to another is
shown to depend on precise mathematical conditions that
involve the modal frequencies and residues of the flexible
system. Since these modal parameters (i.e. frequencies and
residues) can be expressed in terms of physical parameters of
the system (e.g. stiffness and mass), the mathematical
framework presented here offers a direct connection between
the zeros and the physical parameters of the system. Therefore,
the mathematical framework and associated results of this
paper can be used to derive key physical insights into the zero
dynamics of any flexible system that can be approximated by
the undamped three-DoF LTI flexible system investigated here.

2. LITERATURE REVIEW

There is a significant body of research literature on the
zero dynamics of flexible systems. Existing frequency domain
studies may be broadly classified into three groups: (1) studies
that focus on fundamental system types irrespective of the type
of zeros, (2) studies that focus on gaining physical meaning
into various types of zeros, and (3) studies that focus on
specific types of zeros (e.g. CNMP) irrespective of the system
type.

Studying the zeros of LTI systems using fundamental
system types is based on the idea of modal decomposition [29].
Since a single mode cannot lead to any zeros, the simplest
flexible system type to study zeros is a system with two modes
or DoF. A simpler variation of this two-DoF system is one
where the first mode has zero natural frequency (i.e. is a rigid-
body mode). In the literature, Miu [30] used such a two-DoF
model for a torsional system and studied the variation of zeros
due to the variation of sensor location. Rankers [31] studied the
interaction between the rigid body mode and the flexible mode
on a frequency response plot. It was demonstrated that the
variation of zeros arises due to the variation of modal residues
(magnitude and signs) associated with these two modes.
Colingh [32] studied a motion stage with flexible guidance and
showed the mapping between sensor/actuator locations and
various types of zeros. Using a two-DoF flexible system model,
this work demonstrated marginally minimum phase (MMP),
real minimum phase (RMP) zeros, and real non-minimum
phase (RNMP) zeros, but did not capture complex non-
minimum phase (CNMP) zeros.

Studying the zeros of systems with a single flexible beam
has also been an active area of research. Spector and Flashner
[33-34] studied a non-collocated pinned-free beam model and
identified the migration of zeros on the real and imaginary axes
due to variation in the sensor location. Wie and Bryson [35]
studied the pole-zero patterns in flexible structures including
beams, membranes and triangular trusses. Lee and Speyer [36]
used a Bernoulli-Euler beam model and studied the migration
of zeros in various input-output transfer functions. In addition,
Aphale [37] studied the zeros of a cantilever beam with the
impact of a feed-through term, and Vakil [38] studied the
location of zeros for a single flexible beam under the variation
of different physical parameters. In all this work, the migration
of zeros is restricted to the real and imaginary axes, i.e. zeros
are MMP, RMP, or RNMP, but not CMP or CNMP.

There are also studies that focus on zeros of systems that
extend beyond a two-DoF model. Tohyama and Lyon [39-40]
used a system with two modes and a constant remainder to
study the transfer function in room acoustics. By varying the
remainder, they identified marginally minimum phase (MMP)
zeros and complex non-minimum phase (CNMP) zeros. These
studies, however, only provide the variation of the remainder
without investigating the influence of changing the two modal
residues or frequencies. As a result, RMP and RNMP zeros are
not captured in this work. Duffour and Woodhouse [41] studied
the transfer function of linearized systems with frictional
contact. In their investigation, analytical and graphical locus
techniques were used to examine cases with only two modes,
with two modes with a constant remainder, and with three
modes. While MMP zeros and CNMP zeros are reported in this
work, RNMP zeros were not captured due to inadequate
spanning of the parameter space. Martin [24] proposed modal
decomposition to identify MMP, RNMP, RMP and CNMP
zeros by studying a numerical model with three modes, but he
did not draw any broader conclusions from his numerical
results. He concluded that for the situation of sensor and
actuator collocation, the zeros are MMP, wherein zeros are
alternately located between the system poles. He also argued
that such a system is robust against modelling uncertainties and
un-modeled high frequency dynamics when operated in closed
loop.

The second group of studies on zeros focus on gaining
physical meaning into various types of zeros. Miu [42] studied
the MMP zeros in serially connected spring mass systems. He
concluded that for this simple class of systems, the MMP zeros
indicate the natural frequencies of several sub-systems defined
by the actuator and sensor locations. Chandrasekar [43] showed
that all the zeros in such serially connected spring-mass
systems are MMP zeros. Stracte [44] used the approach of bond
graphs to study all types of zeros and reached the physical
insight that zeros are related to subsystems where energy is
“trapped”. In addition, Calafiore’s [45] analysis also
characterized how sub-systems are related to zeros.
Nevertheless, in all of this work, a sub-system based physical
insight is applicable only in simple class of systems, namely



serially connected spring-mass systems. For a general flexible
system, sub-systems and any associated physical insights are
difficult to identify. Examples include Coelingh’s model [32]
and the multi-axis flexure mechanism [21-22] that exhibits
dynamic coupling between the modes in different axes.

The third group of studies focus on specific types of zeros
irrespective of the system type. In particular, CNMP zeros have
been reported in flexible systems [21-23], [46-48] but there
remains very little physical understanding of these zeros.
Cannon and Schmitz [23] identified RNMP and CNMP zeros
numerically in the transfer function of a pinned-free beam.
Loix et al. [48] studied a four-DoF spring-mass model with
spring stiffness variation. They numerically identified the
existence of CNMP zeros and the corresponding zero locus.
They also provided an experimental observation of CNMP
zeros in a cantilever beam set-up but did not present a
mathematical formulation for these =zeros. Hoagg [49]
investigated a three DoF spring-mass-damper model that also
captured CNMP zeros. However, they assumed an unusually
large damping ratio ({>1.3) to create the CNMP zeros. Awtar
[47] predicted and experimentally measured CNMP zeros in the
non-collocated transfer function of a multiple spring-mass
servo system. Electromagnetic modeling showed that these
zeros arise due to a coupling between the DC motor and
tachometer in this servo system. In our recent work, CNMP
zeros have been modeled [21] and measured [22] in a lightly
damped flexure mechanism based motion stage.

In all these studies, the advantage of focusing on specific
systems is that it allows one to validate the existence of certain
types of zeros (particularly RNMP and CNMP) via models and
experiments. Furthermore, the relationship between physical
parameters and the location/existence of zeros can be
demonstrated. Yet, all these existing studies are system-specific
and do not provide a deeper understanding into the existence of
zeros for flexible systems in general.

Thus, the gap in the existing literature on zeros may be
summarized via two key points. First, while zeros of flexible
systems have been studied using the technique of modal
decomposition by varying modal parameters, the existing
results are incomplete in terms of capturing all possible types
of zeros in a single, general flexible system. Second, there
remains a lack of physical understanding of the conditions for
which certain zeros (especially RNMP and CNMP) appear or
change from one type to another.

This paper addresses this gap by identifying the simplest
LTI system — an undamped three-DoF flexible system — that
exhibits all types of zeros. A mathematical framework based on
modal decomposition is used to relate system zeros to modal
parameters. Specifically, for a three-DoF flexible system with
one rigid-body mode, the precise conditions on modal
parameters (frequencies and residues) are derived for every
possible zero type. This leads to a comprehensive set of
necessary and sufficient conditions on modal parameters for the
existence of each type of zero. Since modal parameters can be
ultimately correlated to physical parameters of the system (e.g.

stiffness and mass), the mathematical framework presented
here can be used to not only gain physical insights into the
origin of zero dynamics but also influence them through
appropriate choice of physical parameters.

The rest of this paper is organized as follows. Section 3
captures zero dynamics via modal decomposition and presents
key results that help narrow down the scope of this
investigation to a three-DoF system. Section 4 provides an
explicit mathematical and graphical correlation between the
modal frequencies and residues of a three-DoF flexible system
(with one rigid-body mode) and associated zeros. This leads to
several important mathematical observations and physical
insights. Section 5 concludes the paper with a summary of the
conclusions and design insights obtained in this work and a
brief discussion on the future course of this research.

3. ZERO DYNAMICS AND MODAL DECOMPOSITION

The input-output dynamics of an LTI SISO system given
by transfer function G(s) can be expressed as the sum of the
contributions of its decomposed modes.
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Assumption 1: The LTI SISO flexible system investigated in
this paper is assumed such that all the decomposed modes are
second order, and that there are no first order modes.
Additionally, it is assumed that these second order modes are
all oscillatory in nature, i.e. the poles associated with each
mode lie on the imaginary axis and not on the real axis. This is
a reasonable assumption for many continuous structural and
discrete spring-mass systems.

Assumption 2: Next it is assumed that the flexible system is
undamped. This assumption is reasonable for flexible systems
such as flexure mechanisms that are monolithic with no rolling
or sliding joints [14-16], for space structures [1-3], and for
machines that operate in vacuum [50], where damping is
negligible.

Assumption 3: If force is assumed to be the input and
displacement is selected as the output of such an LTI SISO
flexible system, then the input-output transfer function G(s)
from Eq.(1) can be restated as follows:
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Here the total number of second order modes is n, which is
also the DoF of the system per the nomenclature of this paper,
and @ is the natural frequency of the i mode. Additionally, it
is assumed that G(s) represents a physical system (as opposed
to a mathematical system), and is strictly proper, i.e. m < n. In
other words, the number of zero pairs are less than the number
of modes in the system.

From Eq. (2), it may be seen that the variation of modal
residues (&) leads to the variation of the numerator coefficients
(b)), and thus, the variation of the zeros of G(s). There are some
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key results that can be readily derived for an LTI SISO flexible
system defined by the above assumptions.

Result 1: For an undamped LTI flexible system whose SISO
dynamics is given by Eq.(2), if a pair of complex non-
minimum phase (CNMP) zeros occurs, it will always occur in a
quartet along with a pair of complex minimum phase (CMP)
ZEeros.

Proof: Transfer function G(s) can be expressed in terms of its
numerator N(s) and denominator D(s), as follows:
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As a consequence of the assumptions made above, it is evident
that N(s) and D(s) are even functions, i.e., N(s) = N(-s) and
D(s) = D(-s).

Therefore, if atib (where a > 0) are CNMP zeros of G(s), i.e.
N(axib) = 0, and N(a+ib) = N(-(a+ib)) because N(s) is an even
function, then it follows that N(-a+ib) = 0. In other words,
-a+ib are also zeros of the G(s). Since a > 0 these two zeros
constitute a CMP zero pair. Thus, zeros that are neither on the
imaginary axis nor on the real axes of the s-plane, always
appear as a CMP-CNMP quartet (+a+ib).

Result 2: An undamped LTI flexible system has to have a
minimum of three modes (i.e. three DoF) to exhibit a CMP-
CNMP zero quartet in its SISO dynamics.

Proof: According to Result 1, CMP-CNMP zeros always
appear as a quartet. This means that for such a quartet to
appear, the numerator N(s) in Eq.(3) should be at least a 4%
order polynomial in s. Further, because the physical system is
strictly proper, the denominator D(s) should at least be a 6™
order polynomial in s. Since all the decomposed modes of G(s)
are second order, it follows that the system should consist of at
least three such modes to exhibit a CMP-CNMP zero quartet.

Based on these results, since a three-DoF undamped LTI
flexible system is the simplest system that exhibits CMP-
CNMP zeros, we choose this system for the intended
investigation that captures all zero types. As discussed in the
Literature Review in Section 2, two-DoF undamped LTI
flexible systems have been extensively studied [30-32] but
exhibit only MMP, RMP and RNMP zeros.

3)

4. THREE-DOF FLEXIBLE LTI SYSTEM

A three-DoF undamped LTI flexible system that follows
Assumptions 1 through 3 can be expressed as:
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where wr < w, < m, Here we make one more assumption — that

the first mode is much lower in frequency compared to the

subsequent two modes. While a general three-DoF system can

be considered, this assumption offers some practical

advantages. In previous modeling [21] and experimental [22]

work, we have shown that CNMP zeros appear in systems that
have a low-frequency mode and at least two higher frequency
closely-spaced modes. This provides the motivation to
investigate a slightly simpler system by setting g to zero in
Eq.(4). This additional assumption also helps simplify the
mathematical and graphical analysis of the zero locus in the
section, which allows for better physical interpretation of the
results.

Yet, the three-DoF model that stems from this assumption
can still be used to explain the dynamics of flexible systems
that are characterized by a low frequency rigid body mode and
a couple of relatively high frequency flexible modes. In such
instances, the low-frequency flexible mode is approximated as
a pure rigid body mode to study its interaction with the two
higher frequency modes, that give rise to the CMP-CNMP zero
quartet trapped between them.

Assuming the first mode to be a rigid-body mode, the
three-DoF flexible system of Eq.(4) reduces to:

« R Oéu (&%
Gls) s’ - s’ "‘%2 * s? +w3 )

Furthermore, az can be set to be +1, without any loss in
generality. This helps reduce the number of parameters that
need to be carried through the subsequent mathematical steps.
The system transfer function from Eq.(5) maybe further
expressed as: G(s) =
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Next, if we define:
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Now, we create a transfer function 7(s) = A(s)/B(s), which
has no physical meaning and simply serves as a mathematical
tool, as described next. First, the poles of 7(s) are the poles
associated with modes « and v. Second, 7(s) has two pairs of
zeros. One pair is fixed at the origin and the other pair changes
position based purely on the ratio @, /a,. For a given a,/a,
ratio, ay,, and ,, if a, is varied, then the root locus of T{(s) with
unity feedback is obtained. But note that the root-locus of T(s)
is also the zero-locus of G(s). Moreover, if the sign of o, is
flipped, then the complementary root locus is obtained. Thus,
T(s) serves as an intermediate mathematical tool to obtain the
zero-locus of G(s) for various modal parameters.

The root-loci of 7(s), which correspond to the full zero-
loci of G(s), are shown in Fig.2 for four different value ranges



of a, /a,. For ease of illustration, only the first quadrant is
shown in each case. As noted above, the value ranges of o, / &,
determine the location range of the second zero pair of 7(s)
(shown in blue) as follows:
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The top panel of Fig.2 shows the zero-loci of G(s) for
positive &, (varying from 0 to o), and the bottom panel shows
the zero-loci of G(s) for negative a, (varying from -co to 0). A
key observation here is that CNMP zeros arise in instances (b),
(c), and (d) of the top panel, where the zero-locus branches
break-away from the imaginary axis and subsequently re-join at
the real or imaginary axes, as o, increases. To find the o, value
at these break-away and re-join points, one simply needs to
find the repeated roots of s? in N(s), where
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To find the repeated roots, one can set the discriminant of the
above quadratic expression in s° to 0,
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Here, the smaller value of a, corresponds to the break-away
point and the larger value corresponds to the re-join point:
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Another key observation in Fig.2 is that a pair of MMP
zeros can approach infinity and then transition over to a RMP-
RNMP pair, as seen in instance (d) of the top panel and
instances (a), (b), and (c) of the bottom panel. The value of «,
for which this transition happens can be determined by finding
the condition when N(s) has only one pair of roots.
N(s)=a,A(s) + B(s)
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Fig.2. Zero loci of G(s)



This condition corresponds to setting the coefficient of s in the
above expression to zero.
{I+a,(0+£K)}=0
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Based on these results and Fig.2, the following conclusions can

be drawn:

1. By varying a, / o, and a,, all types of zeros (i.e. MMP, RMP-
RNMP pair and CMP-CNMP quartet) are obtained in the
zero loci of a three-DoF flexible system (with one rigid-body
mode).

2.CNMP zeros occur in cases (b), (c) and (d) of the top panel
where (o, / o) < 0 and 0 < a, < . Therefore, the necessary
condition for the existence of CNMP zeros is the alternating
sequence of modal residue signs i.e. ag > 0 (already assumed
to be +1), a, < 0 and a, > 0. This necessary condition is
nevertheless not a sufficient condition. As seen in cases (b),
(¢) and (d) of the top panel, even when the necessary
conditions are satisfied, there exist values of a, for which the
zeros are either MMP or RMP-RNMP. These are the values
of a, before the break-away and after the re-join of the zero
loci, given by Eq.(7).

3.Conversely, avoiding the alternating sequence of modal
residue sign is a sufficient condition for the elimination of
CNMP zeros. However, this is not a necessary condition for
the elimination of CNMP zeros. The value of a, can be tuned
such that it does not lie between the break-away and re-join
points given by Eq.(7). This would guarantee that CNMP
zeros do not occur in the system dynamics even in the
presence of alternating modal residue signs.

4.Eq.(7) gives the break-away point of the zero loci from the
imaginary axis and the subsequent re-join of the zero loci
onto the imaginary axis or the real axis. This equation
mathematically shows the precise conditions under which
MMP zeros transition to CMP-CNMP quartet and then back
to either MMP zeros or RMP-RNMP pair. These break-away
and re-join points can be easily visualized in instances (b),
(c) and (d) of the top panel (i.e. 0 < a, < ) of Fig.2.

5.Based on Eq.(7), it can be mathematically observed that as
n(Ew’ / w,? ) tends to 1, the values of @, at which break-

away and re-join occur tend to zero. Therefore, in the
presence of alternating sequence of modal residue signs
(represented by (b), (¢) and (d) when 0 < a, < ), if a three-
DoF flexible system has two closely spaced flexible modes
(given by ntending to 1), then the occurrence of CNMP
zeros (in form of quartet) becomes very sensitive to small
values of a,. In the presence of closely spaced flexible
modes, even a small non-zero value of a, (modal residue
associated with the flexible mode v), can lead to the presence
of CNMP zeros in the system dynamics.

6.Eq.(8) gives the mathematical condition when MMP zeros
transition into RMP-RNMP pair. This point of transition only
depends on the ratio of modal residues (x) of the two flexible
modes. If x tends to -1, then the transition from MMP zeros

to RMP-RNMP pair happens for very large values of a,. In
other words, the transition becomes insensitive to the value
of a.

7.There are two cases, namely case (a) of the top panel and
case (d) of the bottom panel where NMP zeros do not occur
in the zero locus for any value of a,. Case (a) of the top panel
leads to a configuration of modal residue signs given by ar >
0, @, > 0 and a, > 0. This is in agreement with [24] where it
was shown that when all modal residues have the same sign,
it only leads to MMP zeros in the system dynamics.

5. CONCLUSION AND FUTURE WORK

This paper investigates the zero dynamics of an undamped
3 DoF flexible system that consists of one rigid body mode and
two flexible modes. Precise mathematical conditions are used
to provide the necessary and sufficient conditions for the
existence of every type of zero (MMP, RMP-RNMP pair and
CMP-CNMP quartet) in the system. Particular emphasis is
given to NMP zeros, which severely impact the closed loop
performance of flexible systems. Based on this investigation, it
is found that whenever CNMP zeros occur in the system
dynamics, they always occur in a quartet of CMP-CNMP zeros
and alternating signs of modal residues are a necessary
condition for their occurrence. Therefore, in order to avoid
CNMP zeros in the system dynamics, avoiding alternating
sequence of modal residue signs is a sufficient condition. The
signs of modal residues are closely tied to the location of
actuators and sensors on a flexible system through the mode
shapes of the associated flexible modes [24]. The mathematical
insight from this investigation can be combined with the
knowledge of mode shapes of specific flexible systems that can
be approximated by an undamped three-DoF flexible system
model. This will enable optimal placement of actuators and
sensors in order to avoid NMP zeros.

This investigation also reveals that the occurrence of
CNMP zeros in undamped three-DoF flexible systems with
closely spaced flexible modes is very sensitive to variations in
the modal residues and by extension very sensitive to variations
in physical parameters of the flexible system [21]. This
phenomenon is usually observed in the dynamics of flexure
mechanisms that make use of symmetric/periodic building
blocks (or flexure modules) to achieve large range of motion,
high constraint direction stiffness and low sensitivity to thermal
effects [51]. The symmetric/periodic structure gives rise to
closely spaced flexible modes and large range of motion gives
rise to geometric non-linearities which lead to varying system
parameters [21-22].

In this paper, we only presented the investigation on the
zeros of an undamped flexible system. In the future, we will
also investigate the zero dynamics of damped flexible systems
and draw key physical insights on the impact of damping on
zero dynamics. We will use these insights to choose actuator-
sensor location and damping strategies to show how NMP
zeros can be eliminated from the dynamics of large-range
multi-axis flexure mechanisms.
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