
Learning New Tricks From Old Dogs: Multi-Source
Transfer Learning From Pre-Trained Networks

Joshua Ka-Wing Lee
Dept. EECS, MIT
jk_lee@mit.edu

Prasanna Sattigeri
MIT-IBM Watson AI Lab, IBM Research

psattig@us.ibm.com

Gregory W. Wornell
Dept. EECS, MIT
gww@mit.edu

Abstract

The advent of deep learning algorithms for mobile devices and sensors has led to
a dramatic expansion in the availability and number of systems trained on a wide
range of machine learning tasks, creating a host of opportunities and challenges in
the realm of transfer learning. Currently, most transfer learning methods require
some kind of control over the systems learned, either by enforcing constraints dur-
ing the source training, or through the use of a joint optimization objective between
tasks that requires all data be co-located for training. However, for practical, pri-
vacy, or other reasons, in a variety of applications we may have no control over the
individual source task training, nor access to source training samples. Instead we
only have access to features pre-trained on such data as the output of “black-boxes.”
For such scenarios, we consider the multi-source learning problem of training a
classifier using an ensemble of pre-trained neural networks for a set of classes that
have not been observed by any of the source networks, and for which we have
very few training samples. We show that by using these distributed networks as
feature extractors, we can train an effective classifier in a computationally-efficient
manner using tools from (nonlinear) maximal correlation analysis. In particular,
we develop a method we refer to as maximal correlation weighting (MCW) to build
the required target classifier from an appropriate weighting of the feature functions
from the source networks. We illustrate the effectiveness of the resulting classi-
fier on datasets derived from the CIFAR-100, Stanford Dogs, and Tiny ImageNet
datasets, and, in addition, use the methodology to characterize the relative value of
different source tasks in learning a target task.

1 Introduction

Recently, the development of efficient algorithms for training deep neural networks on diverse
platforms with limited interaction has created both opportunities and challenges for deep learning.
An emerging example involves training networks on mobile devices [8, 23, 14]. In such cases, while
each user’s device may be training on a different set of data with a different classification objective,
multi-task learning techniques can be used to leverage these separate datasets in order to transfer to
new tasks for which we observe few samples.

However, most existing methods require some aspect of control over the training on the source
datasets. Either all the datasets must be located on the same device for training based on some joint
optimization criterion, or the overall architecture requires some level of control over the training
for each individual source dataset. In the case of, e.g., object classification in images collected by
users, sending this data to a central location for processing may be impractical, or even a violation of
privacy rights. Alternatively, it is possible that one might wish to use older, pre-trained classifiers for
which the original training data is no longer available, and to transfer them for use in a new task. In
either case, it could be acceptable to transmit the neural network features learned by the device in an

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

anonymized fashion, and to then combine the networks learned by multiple users in order to classify
novel images.

This would be an example of a multi-task learning problem in which we have not only multiple
source datasets, but access to only pre-trained networks (whose learning objective we cannot control)
from those datasets, not the underlying training data used, and we wish to train a classifier for some
new target label set given only a few target samples.

Fine-tuning methods can be used when the source network is frozen to transfer to a target domain, but
these methods tend not to work very well in a few-shot setting when there are multiple networks due
to the number of parameters necessary for fine-tuning, especially in an environment where features
cannot be learned with the intention of transfer [4].

In this paper, we apply the methodology of (nonlinear) maximal correlation analysis that originated
with Hirschfeld [9] to this problem. In particular, we exploit a useful and convenient interpretation of
the features in a neural network as maximal correlation functions, as described in, e.g., [10]. The
result is a method we refer to as maximal correlation weighting (MCW) for combining multiple
pre-trained neural networks to carry out few-shot learning of a classifier to distinguish a set of
never-before-seen classes. Attractively, this method allows for the computation of combining weights
on individual feature functions in a completely decoupled fashion.

This paper is organized as follows. In Section 2, we describe the problem formulation and related
work. In Section 3, we introduce the the relevant aspects of maximal correlation analysis for
combining neural networks, and develop the MCW methodology and processing used to train our
classifier. Section 4 describes experimental results on the CIFAR-100, Stanford Dogs, and Tiny
ImageNet datasets, and Section 5 contains concluding remarks.

2 Background and Problem Description

2.1 Problem Formulation and Notation

Consider a multi-task learning setup in which we have N different source classification
tasks {Ts

1, . . . ,T
s
N}, for which we have labeled data {(xsn1 , ysn1), . . . , (xsnkn

, ysnkn
)} for task

Ts
n, n ∈ {1, . . . , N}. We also have a single target task Tt, with associated labeled data
{(xt1, yt1), . . . , (xtk, ytk)}.
For this problem we assume that xsni ∈ X for all n and i, and xti ∈ X for all i. That is, the data for the
target and each source task are drawn from some common alphabet (e.g., all data are natural images).
We do not assume any overlap between labels for any pair of datasets (i.e., ysni ∈ Ysn for all n and i,
and yti ∈ Yt for all i, where Yt 6= Ys1 6= · · · 6= YsN).

For each source task Ts
n, we have access to a pre-trained neural network which we assume to have

been trained to classify ysn from xsn . We assume that the network has some number of layers
corresponding to the extraction of features from xsn , followed by a final classification layer which
maps the features to a predicted class label ŷsn . We denote the output of the penultimate layer as
fsn : X→ Rln , of which the ith feature is fsni : X→ R, where ln is the number of features output by
this layer. We denote the final layer as hsn : Rln → Ysn , so that the entire neural network classifier
can be written as ŷ = (hsn ◦ fsn)(x).
We seek to train a classifier on the target task given training samples {(xt1, yt1), . . . , (xtk, ytk)}, with
access to hsn and fsn for each source dataset, but without any access to the underlying source training
samples {(xsn1 , ysn1), . . . , (xsnkn

, ysnkn
)}.

As an example context, this reflects a situation in which there are many devices collecting and
analyzing data, but where the target learner is not allowed to access the data, either because the
devices have limited bandwidth and cannot transmit everything they have detected, the data is personal
(i.e. pictures taken by users of a mobile app) and cannot be transmitted for privacy purposes, or the
original data is otherwise lost (if the data was collected a long time ago). However, in these cases, it
may still be possible to query the classifier trained on each device to get their intermediate features,
which would require less information to be transmitted.

2

2.2 Related Work

Multi-task learning is a well-studied problem, with several variations and formulations. One standard
approach is to learn a common feature function f(·) across all tasks which optimize some joint
objective, followed by a final classification layer for each task [19, 24]. This is a technique which has
some theoretical guarantees as given by Ben-David, et al., [2]. While effective, this method requires
joint training, which our formulation precludes.

Gupta and Ratinov [7] propose a method of combining the outputs of multiple pre-trained classifiers
by training on their raw predictions, but this method is designed for pre-trained classifiers specially
selected to work well in combination with the target task, with an emphasis on cases where the
number of possible class labels (i.e. the value of each |Ysn |) is large, which we do not assume in our
problem formulation.

Other methods involve some kind of sequential learning [27] or shared memory unit [18], which
could decentralize data storage, but which still require joint control over the training [17].

Meta-learning algorithms have also gained popularity in recent years [21, 22]. These algorithms
attempt to learn a suitably general learning rule or model from a set of source tasks which can be
fine-tuned with data from a target task [4]. While these methods allow for the combining of multiple
source datasets, they are still bound by the need for centralized training.

Finally, the notion of transferring from a single pre-trained network onto a new target task has also
been studied before. Yosinski, et al., explore the transferability of different layers of a neural net
to other tasks in the context of learning general features [28], while Bao, et al., propose a score for
measuring transferability of features across tasks [1].

3 Multi-Source Transfer Learning via Maximal Correlations

3.1 Maximal Correlation Analysis

Our methodology is based on the use of maximal correlation analysis, which originated with the work
of Hirschfeld [9], and has been further developed in a wide range of subsequent work , including by
Gebelein and Rényi [6, 26], and as a result is sometimes referred to as Hirschfeld-Gebelein-Renyi
(HGR) maximal correlation analysis. (For a more detailed summary of this literature, see, e.g., the
references and discussion in [10].)

Given 1 ≤ k ≤ K − 1 with K = min{|X|, |Y|}, the maximal correlation problem for random
variables X ∈ X and Y ∈ Y is

(f∗,g∗) , argmax
f : X→Rk, g : Y→Rk

E[f(X)]=E[g(Y)]=0,

E[f(X)fT(X)]=E[g(Y)gT(Y)]=I

E
[
fT(X)g(Y)

]
, (1)

where expectations are with respect to joint distribution PX,Y . We refer to f∗ and g∗ as the maximal
correlation functions. With f∗ = (f∗1 , . . . , f

∗
k)

T and g = (g∗1 , . . . , g
∗
k)

T, we further define the
associated maximal correlations σi = E [f∗i (X) g∗i (Y)] for i = 1, . . . , k. In turn, the optimizing
functions satisfy

EpX|Y (·|y) [f
∗
i (X)] = σi g

∗
i (y) and EpY |X(·|x) [g

∗
i (Y)] = σi f

∗
i (y),

which underlies the alternating conditional expectations (ACE) algorithm of Breiman and Friedman
[3] for computing these functions. Indeed, for a given f , the correlation maximizing g has components

ĝi(y) ∝ EpX|Y (·|y) [f
∗
i (X)] , i = 1, . . . , k. (2)

As described in [11, 10], the maximal correlation problem is a variational form of a modal decompo-
sition (i.e., generalized SVD) of joint distributions of the form

PX,Y (x, y) = PX(x)PY (y)

[
1 +

K−1∑
i=1

σi f
∗
i (x) g

∗
i (y)

]
, (3)

3

via which predictions are made according to

PY |X(y|x) = PY (y)

(
1 +

k∑
i=1

σif
∗
i (x)g

∗
i (y)

)
, (4)

where suitable estimates of PY are obtained from the data or domain knowledge about label distribu-
tions.

Moreover, the maximal correlation features arise naturally in a local version of softmax regression
[10], and thus have a direct interpretation in the context of neural networks. In particular, given
(normalized) features f , [10] shows that such regression produces EpX|Y (·|y) [f(X)] as combining
weights. Moreover, [10] establishes that optimizing over the choice of features yields the maximal
correlation ones, i.e., f∗, and that as a result the corresponding combining weights correspond to
g∗ (weighted by σ1, . . . , σk). (And as as such, it also highlights the connection between the ACE
algorithm and the use of traditional neural network training.)

3.2 Combining Maximal Correlation Functions

The preceding relationships motivate our approach to their application to the multi-task learning
problem. Given a fixed set of feature functions {fs1 , . . . , fsN } we seek to maximize the total maximal
correlation

L = EP̂ t
X,Y

[
fT(X)g(Y)

]
(5)

with respect to g, where f = (fs1 , . . . , fsN)T and g = (gs1 , . . . ,gsN)T, and where the optimization
is over all valid (zero-mean and unit-variance with respect to the empirical distribution of the target
class labels) g for fixed f . P̂ t

X,Y is the empirical joint target distribution of X and Y .

Expanding (5) as
L =

∑
i,n

EP̂ t
X,Y

[fsni (X) gsni (Y)] , (6)

we can then maximize each term separately, yielding

gsni (y) = argmax
g̃sn
i

L = argmax
g̃sn
i

EP̂ t
X,Y

[fsni (X)g̃sni (Y)] . (7)

Then, for each gsni (y), for a fixed fsni , we have from (2) that the optimal gsni is given by the
conditional expectation

gsni (y) = EP̂ t
X|Y (·|y) [f

sn
i (X)] , (8)

which can easily be computed from the target samples.

In turn, we compute the corresponding maximized correlation for each pair of functions fsni and gsni
via

σn,i = EP̂ t
X,Y

[fsni (X) gsni (Y)] . (9)

3.3 The Maximal Correlation Weighting (MCW) Algorithm

Using the combining weights thus derived, a predictor for the target labels is formed in accordance
with (4); specifically,

P̂Y |X(y|x) = P̂ t
Y (y)

1 +
∑
n,i

σn,if
sn
i (x)gsni (y)

 , (10)

from which are classification y for a given test sample x is

ŷ = argmax
y

P̂Y |X(y|x) = argmax
y

P̂ t
Y (y)

1 +
∑
n,i

σn,if
sn
i (x)gsni (y)

 , (11)

where P̂ t
Y is an estimate of the target label distribution.

4

Algorithm 1 Extracting maximal correlation parameters
Data: zero-mean, unit-variance feature functions {fsni } from source tasks and target task samples

{(xt1, yt1), . . . , (xtk, ytk)}
Result: associated maximal correlations {σn,i} and correlation functions {gsni }
for n = 1, . . . , N do // Iterate over all source tasks

for i = 1, . . . , ln do // Iterate over features in each network
for y ∈ Yt do // Iterate over all target class labels

gsni (y) ← EP t
X|Y (·|y) [f

sn
i (X)] // Compute feature and label-specific

weight
end
σn,i ← EP̂ t

X,Y
[fsni (X) gsni (Y)] // Compute feature-specific weight

end
end
return {gsni }, {σn,i}

Algorithm 2 Prediction with the maximal correlation weighting method
Data: maximal correlation functions {fsni } and {gsni } with associated correlations {σn,i}, empirical

class label distribution P̂ t
Y , and target task sample xt

Result: class label prediction ŷt given xt

Initialize P̂ t
Y |X(y|xt) = P̂ t

Y (y) ∀y ∈ Yt

for n = 1, . . . , N do // Iterate over all source tasks
for i = 1, . . . , ln do // Iterate over features in each network

for y ∈ Yt do // Iterate over all target class labels
P̂ t
Y |X(y|xt) = P̂ t

Y |X(y|xt) + P̂ t
Y (y)σn,if

sn
i (xt)gsni (y)// Apply Equation (9)

end
end

end
return argmaxy P̂

t
Y |X(y|x)

The resulting algorithms for learning the MCW parameters and computing the MCW predictions are
summarized in Algorithm 1 and Algorithm 2.

Computing the empirical conditional expected value requires a single pass through the data, and so
has linear time complexity in the number of target samples. We also need to compute one conditional
expectation for each feature function. Thus, the time complexity of the fine-tuning is O(C +NKk),
where C is the time needed to extract features from all the pre-trained networks, N is the number of
networks, K is the maximum number of features per network, and k is the number of target training
samples. The number of parameters grows as O(NK|Yt|), which is the number of entries needed to
store all the g functions. |Yt| is the number of target class labels.

To compute a prediction from one target test sample, the time complexity is O(C +NK|Yt|). This
arises from the fact that we must compute the quantity

∑
n,i σn,if

sn
i (x)gsni (y) for each possible

class label.

5

Figure 1: Example images from the (a) CIFAR-100, (b) Stanford Dogs, and (c) Tiny ImageNet
datasets.

4 Experimental Results

4.1 General Experimental Setup

In order to illustrate the effectiveness of the MCW method, we perform experiments on three different
image classification datasets: CIFAR-100, Stanford Dogs, and Tiny ImageNet. Example images from
each dataset can be found in Figure 1.

For each dataset, we divide the classes into a set of mutually exclusive subsets, select one subset as
our target task, and several others as the source datasets. We use the LeNet architecture [15] as our
neural network for each source dataset, and train a different network for each source dataset. We
implemented the network in PyTorch [25], and trained it with learning rate=0.001, momentum=0.9,
and number of epochs = 100.

We remove the means and normalize to unit variance all of the feature functions with respect to the
target samples, and then compute the maximal correlations and associated functions for each output
in the penultimate layer using the target data according to Algorithm 1. We then use them to compute
predictions on the test set for the target task according to Algorithm 2.

We compare the classification accuracies on the test set with that of a Support Vector Machine (SVM)
trained on the penultimate layers with the same target training data (similar to the setup in [7]), as
well as the best results from the MCW method and SVM method using only one source dataset/neural
network. We also include the "upper bound" baseline performance on the dataset by a LeNet neural
network trained on a number of target training samples equal to the number of training samples
provided for each source dataset. The reported results are over 20 runs using the same set of tasks for
each run.1

4.2 CIFAR-100 Dataset

The CIFAR-100 dataset2 [13] is a collection of color images of size 32x32 drawn from 100 different
categories of real-world subjects. Because of the low resolution of the images, CIFAR-100 is
generally seen as a difficult classification problem. For our experiment, we construct a series of
binary classification tasks from the classes. We randomly selected "apple" vs. "fish" as our target
binary classification task, and randomly selected 10 other pairs of non-overlapping categories for the
source tasks. For each source task, we extracted 500 samples per class for training, and we used 1, 5,
10, and 20 samples per class to compute the maximal correlation functions in the target task. We used
the training/test splits included with the dataset, and report results over all test samples with the target
labels.

Table 1 shows the test accuracies of our algorithm as applied to the CIFAR-100 dataset. We can
see that the MCW method performs significantly better than an SVM when there are few samples,

1Code for the experiments can be found at http:/allegro.mit.edu/~gww/multitransfer
2https://www.cs.toronto.edu/ kriz/cifar.html

6

Table 1: Experimental results for the CIFAR-100 dataset. Accuracies are reported with 95% confi-
dence intervals.

Method 1-Shot Acc. 5-Shot Acc. 10-Shot Acc. 20-Shot Acc.

Best Single Source SVM 56.9 ± 2.5 67.0 ± 3.0 70.4 ± 1.9 70.9 ± 1.2
Best Single Source MCW 59.2 ± 2.1 69.0 ± 3.0 67.0 ± 2.4 70.4 ± 1.5
Multi-Source SVM 64.7 ± 3.0 72.8 ± 2.7 76.2 ± 1.8 81.5 ± 0.6
Multi-Source MCW 69.0 ± 3.0 78.1 ± 0.8 80.1 ± 0.8 81.7 ± 0.6
Baseline (All Target Samples) 90.7 ± 0.1

Figure 2: Average values of
∑

i σn,i for each source task sn for the 5-shot transfer learning task on
the CIFAR-100 dataset, with the target task of "apple vs. fish." Points are plotted with 95% confidence
intervals.

likely due to its ability to work with fewer target data points in learning, but that this performance gap
closes as more target training samples are added, likely due to the fact that the models which require
joint training over the features begin to have enough target samples to properly learn their parameters.
In addition, we can see that combining multiple networks provides performance that is better than
any one network can achieve with the same methods, once again suggesting that our algorithm is
taking in contributions from multiple sources instead of just one.

In order to investigate the functioning of the MCW method, we plot the sum of correlations for each
of the 10 tasks for the 5-shot case in Figure 2. We can see a significant variation among tasks, which
provides a clear indication of which tasks are being preferred and which do not contribute as much to
the overall performance. To verify this, we run two additional experiments in which we first remove
the source task with the lowest total correlation ("camel" vs. "can") and see how well the MCW
method performs with the remaining 9 source datasets, and then remove the task with the highest
total correlation ("dolphin" vs. "elephant") while keeping the other 9 sources in and run the same test.

Without the least-favoured task, the classification accuracy drops to 76.8 ± 1.0, which is not a
significant difference from using all 10 source tasks. However, when we remove the most-favoured
task, the accuracy plummets to 73.0 ± 1.3, which indicates that "dolphin" vs. "elephant" had a
significant impact on the quality of the classifier, but that the MCW method still takes the input of the
other tasks into account in order to construct a good classifier on the target set.

7

Table 2: Experimental results for the Stanford Dogs dataset. Accuracies are reported with 95%
confidence intervals.

Method 5-Shot Accuracy

Best Single Source SVM 35.8 ± 0.8
Best Single Source MCW 38.2 ± 0.6
Multi-Source SVM 38.9 ± 0.3
Multi-Source MCW 41.6 ± 0.5
Baseline (All Target Samples) 55.2 ± 0.1

Table 3: Experimental results for the Tiny ImageNet dataset. Accuracies are reported with 95%
confidence intervals.

Method 5-Shot Accuracy

Best Single Source SVM 31.4 ± 0.9
Best Single Source MCW 33.9 ± 1.0
Multi-Source SVM 42.5 ± 1.4
Multi-Source MCW 47.4 ± 1.1
Baseline (All Target Samples) 53.8 ± 0.1

4.3 Stanford Dogs Dataset

The Stanford Dogs dataset3 [12] is a subset of the ImageNet dataset designed for fine-grained image
classification. It consists of 22,000 images of varying sizes covering 120 classes of dog breeds. For
this task we construct a random 5-way target classification task (differentiating between "Chihuahua",
"Japanese Spaniel", "Maltese Dog", "Pekinese", and "Shih-Tzu") and 10 other random 5-way source
classification tasks with no overlapping classes. For the target set, we take 5 samples per class for
training and use the rest for testing. For the source sets, we take 100 samples per class for training.
All images were resized to size 144x144.

Table 2 shows the test accuracies of our algorithm as applied to the Stanford Dogs dataset. This
time, we observe a loose hierarchy whereby the MCW method outperforms the SVM, which in turn
outperforms any single source transfer. We can thus conclude that the MCW method is effective in
the case of m-way learning for m > 2, and that we can still leverage multiple networks to get a gain
in cases where the classes are very similar.

4.4 Tiny ImageNet Dataset

The Tiny ImageNet dataset4 [16] is another subset of the ImageNet dataset, consisting of images of
size 64x64 drawn from 200 categories, with 500 images provided for each category. The categories
cover a much wider range than the Stanford Dogs dataset, including animals, natural and man-made
objects, and even abstract concepts (e.g. "elongation"). As with the Stanford Dogs dataset, we
constructed 11 random 5-way classification tasks, and selected one as the target task ("Lighthouse"
vs. "Rocking Chair" vs. "Bannister" vs. "Jellyfish" vs. "Chain") and the others as source tasks. We
used 5 training samples per class for the target task (with 250 samples per class for testing) and all
500 samples per class for the source training samples. For the baseline, we only trained with the 250
samples per class in the target dataset that were not in the test split.

Table 3 shows the test accuracies of the MCW method as applied to the Tiny ImageNet dataset.
Compared to the Stanford Dogs dataset, we see a larger gain from leveraging multiple sources
compared to a single source, which suggests that if the source classes are much more dissimilar than
the target classes, then integrating more networks (and thus leveraging a wider range of features)
will have a greater effect on target task accuracy, likely due to the ability of different source tasks
to "cover" the feature set needed for the target task, as opposed to the Dogs setup where the classes
were highly similar.

3http://vision.stanford.edu/aditya86/ImageNetDogs/
4https://tiny-imagenet.herokuapp.com/

8

5 Concluding Remarks

We presented a new multi-task learning problem inspired by advances in the modern Deep Learning
ecosystem in which a target task learner has access to only a few target task samples, and access to
the neural networks already trained by the sources, but not the underlying data. By leveraging the
Hirschfeld-Gebelein-Rényi maximal correlation, we were able to develop a fast, easily-computed
method for combining the features extracted by these neural networks to build a classifier for the
target task.

We showed that this method was effective for binary and 5-way classification on image data, and that
combining multiple nets was more effective when there were no similar classes in the source datasets
to those in the target dataset.

It is possible that the maximal correlation can also be a tool to measure how important each neural
network is relative to training the target task, as we showed in our experiments with the CIFAR-100
dataset. In an online setting, this could encourage a procedure whereby more-relevant networks are
queried more often compared to less-relevant networks if data transfer is limited, since it is more
important that the more-relevant networks are "correct" (i.e. trained with more training data).

In addition, the privacy implications of our setup could be considered, as it is possible to reconstruct
training data from the learned features [5], which means that our method as-is does not erase all
privacy concerns. These methods can be countered with differential privacy measures [20], such as
adding noise to the feature functions, but their effect on transfer quality is as-of-yet unknown.

Indeed, with the advent of mass small-scale Deep Learning, many opportunities and challenges will
arise, allowing us to leverage the power of crowdsourcing for learning in a novel application of the
principle of the Wisdom of the Crowd.

Acknowledgments

This work was supported in part by the MIT-IBM Watson AI Lab, and by NSF under Grant No. CCF-
1717610.

References
[1] Yajie Bao, Yang Li, Shao-Lun Huang, Lin Zhang, Amir R. Zamir, and Leonidas J. Guibas. An

information-theoretic metric of transferability for task transfer learning. https://openreview.
net/forum?id=BkxAUjRqY7, 2019. [Online; accessed 13-May-2019].

[2] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. In Advances in Neural Information Processing Systems, pages 137–144,
2007.

[3] Leo Breiman and Jerome H. Friedman. Estimating optimal transformations for multiple
regression and correlation. J. Am. Stat. Assoc., 80(391):580–598, September 1985.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proc. Int. Conf. Machine Learning (ICML), volume 70, pages
1126–1135, 2017.

[5] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit
confidence information and basic countermeasures. In Proc. ACM SIGSAC Conf. Computer,
Communications Security, pages 1322–1333, 2015.

[6] Hans Gebelein. Das statistische problem der korrelation als variations- und eigenwertproblem
und sein zusammenhang mit der ausgleichsrechnung. Z. Angewandte Math., Mech., 21(6):364–
379, 1941.

[7] Rakesh Gupta and Lev-Arie Ratinov. Text categorization with knowledge transfer from hetero-
geneous data sources. In Proc. AAAI Conf. Artificial Intelligence, volume 2, pages 842–847,
2008.

9

https://openreview.net/forum?id=BkxAUjRqY7
https://openreview.net/forum?id=BkxAUjRqY7

[8] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In Proc. Int. Conf. Machine Learning (ICML), pages 1737–
1746, 2015.

[9] Hermann O. Hirschfeld. A connection between correlation and contingency. Proc. Cambridge
Phil. Soc., 31:520–524, 1935.

[10] Shao-Lun Huang, Anuran Makur, Gregory W. Wornell, and Lizhong Zheng. On univer-
sal features for high-dimensional learning and inference. preprint, October 2019. http:
//allegro.mit.edu/~gww/unifeatures.

[11] Shao-Lun Huang, Anuran Makur, Lizhong Zheng, and Gregory W. Wornell. An information-
theoretic approach to universal feature selection in high-dimensional inference. In Proc. Int.
Symp. Inform. Theory (ISIT), pages 1336–1340, 2017.

[12] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for
fine-grained image categorization: Stanford dogs. In Proc. CVPR Workshop on Fine-Grained
Visual Categorization (FGVC), 2011.

[13] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, Toronto, Canada, 2009.

[14] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao, Lorena
Qendro, and Fahim Kawsar. Deepx: A software accelerator for low-power deep learning
inference on mobile devices. In Proc. Int. Conf. Information Processing in Sensor Networks,
page 23, 2016.

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proc. IEEE, 86(11):2278–2324, 1998.

[16] Fei-Fei Li, Andrej Karpathy, and Justin Johnson. Tiny imagenet visual recognition challenge.
https://tiny-imagenet.herokuapp.com/, 2015. [Online; accessed 13-May-2019].

[17] Chee Peng Lim and Robert F. Harrison. Online pattern classification with multiple neural
network systems: an experimental study. IEEE Trans. Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 33(2):235–247, 2003.

[18] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Deep multi-task learning with shared memory.
CoRR, abs/1609.07222, 2016. http://arxiv.org/abs/1609.07222.

[19] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning transferable
features with deep adaptation networks. CoRR, abs/1502.02791, 2015. http://arxiv.org/
abs/1502.02791.

[20] Giuseppe Manco and Giuseppe Pirrò. Differential privacy and neural networks: A preliminary
analysis. In Proc. Int. Workshop Personal Analytics, Privacy, pages 23–35, 2017.

[21] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. Meta-learning with temporal
convolutions. CoRR, abs/1707.03141, 2017. http://arxiv.org/abs/1707.03141.

[22] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
CoRR, abs/1803.02999, 2018. http://arxiv.org/abs/1803.02999.

[23] Kaoru Ota, Minh Son Dao, Vasileios Mezaris, and Francesco G. B. De Natale. Deep learning
for mobile multimedia: A survey. ACM Trans. Multimedia Computing, Communications, and
Applications, 13(3s):34, 2017.

[24] Sinno Jialin Pan, James T. Kwok, and Qiang Yang. Transfer learning via dimensionality
reduction. In Proc. AAAI Conf. Artificial Intelligence, volume 8, pages 677–682, 2008.

[25] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In Autodiff Workshop, Conf. Neural Information Processing Systems, Long Beach,
CA, 2017.

10

http://allegro.mit.edu/~gww/unifeatures
http://allegro.mit.edu/~gww/unifeatures
https://tiny-imagenet.herokuapp.com/
http://arxiv.org/abs/1609.07222
http://arxiv.org/abs/1502.02791
http://arxiv.org/abs/1502.02791
http://arxiv.org/abs/1707.03141
http://arxiv.org/abs/1803.02999

[26] Alfréd Rényi. On measures of dependence. Acta Mathematica Academiae Scientiarum Hungar-
ica, 10(3–4):441–451, September 1959.

[27] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR,
abs/1606.04671, 2016. http://arxiv.org/abs/1606.04671.

[28] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features
in deep neural networks? In Advances in Neural Information Processing Systems, pages
3320–3328, 2014.

11

http://arxiv.org/abs/1606.04671

