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Abstract. Random permutation is observed to be powerful for optimization algorithms:
for multiblock ADMM (alternating direction method of multipliers), whereas the classical
cyclic version diverges, the randomly permuted version converges in practice; for BCD
(block coordinate descent), the randomly permuted version is typically faster than other
versions. In this paper we provide strong theoretical evidence that random permutation
has positive effects on ADMM and BCD, by analyzing randomly permuted ADMM (RP-
ADMM) for solving linear systems of equations, and randomly permuted BCD (RP-BCD)
for solving unconstrained quadratic problems. First, we prove that RP-ADMM converges
in expectation for solving systems of linear equations. The key technical result is that the
spectrum of the expected update matrix of RP-BCD lies in (−1/3, 1), instead of the typical
range (−1, 1). Second, we establish expected convergence rates of RP-ADMM for solving
linear systems and RP-BCD for solving unconstrained quadratic problems. This expected
rate of RP-BCD isO(n) times better than the worst-case rate of cyclic BCD, thus establishing
a gap of at least O(n) between RP-BCD and cyclic BCD. To analyze RP-BCD, we propose a
conjecture of a new matrix algebraic mean-geometric mean inequality and prove a weaker
version of it.

Funding: This research is supported by the leading talents of Guangdong Province program [Grant
00201501]; the Development and Reform Commission of Shenzhen Municipality; Air Force Office
of Scientific Research [Grant FA9550-12-1-0396]; National Science Foundation of China [Grant
61731018]; and the National Science Foundation [Grant CCF 1755847].
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1. Introduction
A simple yet powerful idea for solving large-scale computational problems is to iteratively solve smaller
subproblems. The applications of this idea include coordinate descent (CD), projection onto convex sets), and
SGD (stochastic gradient descent). They are well suited for large-scale unconstrained optimization problem
(see, e.g., Wright [44], Shi et al. [35] for recent reviews of CD methods) because it decomposes a large problem
into small subproblems. The decomposition idea is crucial for huge problems owing to both the cheap per-
iteration cost and small memory requirement. Moreover, this idea is “orthogonal” to other large-scale op-
timization ideas, such as first-order methods (using only gradient information) and random projection, and
thus can be easily combined with other ideas.

This paper is motivated by a natural question: how should we extend the decomposition idea to solve
problems with constraints? We consider a constrained minimization problem with a convex objective function
and linear constraints (this is for motivation; our analysis is for a much simpler version):

min
x1,...,xn

f (x1, x2, . . . , xn),
s.t. A1x1 + · · · + Anxn � b,

xi ∈ -i, i � 1, . . . , n,

(1)

where Ai ∈ RN×di , b ∈ RN×1,-i ⊆ Rdi is a closed convex set, i � 1, . . . , n, and f : Rd1+d2+···+dn → R is a closed convex
function. Many machine learning and engineering problems can be cast into linearly constrained optimization
problems with two blocks (see Boyd et al. [3] for many examples) or more than two blocks (e.g., linear
programming, robust principal component analysis, composite regularizers for structured sparsity; see Chen
et al. [6] and Wang et al. [43] for more examples).
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To apply the decomposition idea to a constrained problem, one possible way is to form the augmented La-
grangian function and perform coordinate descent for the primal problem and a gradient step for the dual problem
(i.e., combining block coordinate descent [BCD] with the augmented Lagrangian method) to obtain the so-called
alternating direction method of multipliers (ADMM). ADMM was originally proposed in Glowinski and Marroco
[12] (see also Chan and Glowinski [5], Gabay and Mercier [11]) to solve problem (1) when there are only two
blocks (i.e., n � 2) and the objective function is separable. It is natural and computationally beneficial to extend
the original ADMM directly to solve the general n-block problem (1) via the following procedure:

xk+11 � argmin
x1∈-1

+ x1, xk2, . . . , x
k
n;μ

k
( )

,

..

.

xk+1n � argmin
xn∈-n

+ xk+11 , . . . , xk+1n−1, xn;μk
( )

,

μk+1 � μk − β A1xk+11 + · · · + Anxk+1n − b
( )

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

where the augmented Lagrangian function

+ x1, . . . , xn;μ
( ) � f x1, . . . , xn( ) − μT

∑
i
Aixi − b

( )
+ β

2

∑
i
Aixi − b

⃦⃦⃦⃦
⃦

⃦⃦⃦⃦
⃦2. (3)

The convergence of the direct extension of ADMM to a multiblock case had been an open question, until a
counter-example was recently given in Chen et al. [6]. More specifically, Chen et al. [6] showed that even for
the simplest scenario in which the objective function is 0 and the number of blocks is 3, ADMM can be
divergent for a certain choice of A � [A1,A2,A3]. There are several proposals to overcome the drawback (see,
e.g., [4, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 37]), but they either need to restrict the range of
original problems being solved, add additional cost in each step of computation, or limit the stepsize in
updating the Lagrange multipliers. These solutions typically slow down the performance of ADMM for
solving most practical problems. Moreover, it is not clear how to compare the convergence speed of these
algorithms because they typically contain different parameters. One may ask whether a “minimal” modi-
fication of cyclic multiblock ADMM (2) can lead to convergence, and whether we can provide some con-
vergence speed analysis that is easy to interpret.

One of the simplest modifications of (2) is to add randomness to the update order. Randomness has been
very useful in the analysis of BCD methods and SGD methods. In particular, a recent work by Sun and Ye [41]
showed that randomized CD (R-CD) can be up to O(n2) times faster than cyclic CD (C-CD) for quadratic
minimization in the worst case, where n is the number of variables.1 Another example is the comparison of
incremental aggregated gradient in Blatt et al. [2] and its randomized version, stochastic average gradient
(Schmidt et al. [33]); it turns out that the introduction of randomness leads to better iteration complexity
bounds. There is also some recent study on a randomly permuted version of pure SGD (Gürbüzbalaban et al. [13]).
These examples show that randomization may improve the algorithm in theory and in practice.

It is important to note that the iteration complexity bounds for randomized algorithms are usually established for
independent randomization (sampling with replacement), whereas in practice, random permutation (sampling
without replacement) has been reported to exhibit faster convergence (e.g., Shalev-Shwartz and Zhang [34],
Recht and Ré [32], Sun [38]). Interestingly, our simulation shows that for solving linear system of equations,
randomly permuted ADMM (RP-ADMM) always converges, but independently randomized versions of ADMM
can be divergent even for Gaussian data. Therefore, we focus on the analysis of RP-ADMM in this paper.

Random permutation is known to be notoriously difficult to analyze. Even for unconstrained quadratic
minimization, the convergence rate of randomly permuted BCD (RP-BCD) is poorly understood. Many
existing works treated cyclic BCD and RP-BCD together (Beck and Tetruashvilie [1], Sun and Hong [39],
Tseng [42]), and thus the best known convergence rate of RP-BCD for general convex problems are in fact the
same as that of C-BCD (Sun and Hong [39]). However, in light of a recent study that established an up to O(n2)
gap between cyclic CD and R-CD [41], it is unlikely that RP-CD has the same convergence rate as C-CD,
because that would imply RP-CD could be O(n2) times slower than R-CD. For the special example that
demonstrates the gap between C-CD and R-CD, it was shown recently that RP-CD is faster than R-CD2

(Wright and Lee [45]). However, the general quadratic case seems to be quite difficult, probably owing to its
close connection to a matrix AM-GM (algebraic mean-geometric mean) inequality (Recht and Ré [31]), the
difficulty of which is essentially to prove an inequality in noncommutative algebra.

Sun, Luo, and Ye: Efficiency of Random Permutation
234 Mathematics of Operations Research, 2020, vol. 45, no. 1, pp. 233–271, © 2019 INFORMS



1.1. Summary of Contributions
We consider two extremes of a general RP-ADMM: (i) the objective is zero (i.e., RP-ADMM for solving a linear
system); (ii) the constraint is zero and the objective is a quadratic function (i.e., RP-BCD for solving quadratic
minimization). Owing to the lack of understanding of random permutation for quadratic minimization as
discussed previously, we restrict to the two cases in this paper.

The first result of this paper is the expected convergence of RP-ADMM for solving linear systems. More
specifically, when the objective function is zero and the constraint is a nonsingular square linear system of
equations, the expected output of randomly permuted ADMM converges to the unique primal-dual optimal
solution. A major technical result in this proof is that the eigenvalues of the expected iteration matrix of RP-
BCD for quadratic problems lie in (−1/3, 1), instead of the typical range (−1, 1).

The second result is about the expected convergence rate of RP-ADMM for solving linear systems and RP-
BCD for solving quadratic problems. We show that RP-BCD for a convex quadratic minimization problem
with equal diagonal entries has expected iteration complexity O(n λavg

λmin
log(1/ε)), where λavg and λmin are the

average eigenvalue and the minimum eigenvalue of the coefficient matrix, and one “iteration” here means a
cycle of updating all blocks. This improves an existing bound of O(n2 λavg

λmin
log(1/ε)) for RP-BCD by a factor of n.

Built on this result, we further show that RP-ADMM for solving linear systems achieves the same expected
iteration complexity bound O(n λavg

λmin
log(1/ε)).

Technically, we provide a simple and clean proof of the expected convergence, by applying a classic result
on the eigenvalues of Jordan product. For proving the expected convergence rate, we propose a new variant of
the matrix AM-GM inequality conjecture and prove a weaker version of this conjecture.

Our result shows that random permutation may be a good answer to the question of “how to apply the
decomposition idea to solve constrained problems.” Becuase multiblock BCD is widely used for large-scale
unconstrained problems, we expect multiblock RP-ADMM to be a good candidate for large-scale linearly
constrained problems. Our result provides one of the few direct analyses of random permutation in opti-
mization algorithms and offers an explanation of the mysterious gap between RP-ADMM and cyclic ADMM.
As reflected by the proof, the intuition is that random permutation provides “three-level symmetrization” that
adjusts the spectrum of the update matrix. On the basis of the analysis for RP-ADMM, we are able to improve
the best known complexity of RP-BCD for equally diagonal quadratic problems by a factor of n, when expressing
the complexity only in terms of the quantity λavg

λmin
.

1.2. Related Works
This paper is a stronger version of a previous technical report by Sun et al. [40], which was not published.
Another related work is the paper by Chen et al. [7], which modifies the proof of [40] to make it work with a
quadratic objective function.

We highlight a few novel contributions of the present paper (neither in the original technical report [40] nor
in the paper [7]).

i. The present paper provides a much simpler proof for the result of expected convergence.
ii. The present paper provides the first convergence rate analysis of RP-ADMM. See Theorem 4 and the

proof in Section 4.5, Section 7.2, and Section 7.1.
iii. The present paper provides an improved convergence rate analysis of RP-BCD. See Theorem 3 and the

proof in Section 4.3 and Section 7.3.
iv. The present paper introduces a theory-motivated algorithm, Bernoulli-ADMM, which reduces the

sampling time yet still achieves the expected convergence. To our knowledge, this update order has not
appeared before even in other algorithm setups. See Section 2.5 and Proposition 1.

Besides the technical contributions, we want to emphasize that the present paper is not just adding new results to our
previous technical report [40] but actually completes a missing step of the story. From a mathematical point of
view, the most striking consequence of our original proof is that the spectral radius of RP-BCD lies in a smaller
region (−1/3, 1). It is natural to think that this fundamental fact should have an impact on the analysis of
original RP-BCD. The present paper fills this gap by showing that this result can help build an O(n) gap
between the (expected) onvergence rate of RP-BCD and cyclic BCD. A general message is that, on one hand, to
understand constrained optimization we have to understand unconstrained optimization (analyzing ADMM reduces to
analyzing BCD); on the other hand, analyzing constrained optimization helps improve the understanding
of unconstrained optimization (the analysis of ADMM leads to progress in BCD). We find this interaction
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between unconstrained optimization (BCD) and constrained optimization (ADMM) fascinating. The whole story
is only revealed in the present paper but not in the previous technical report [40] or [7].

Besides the above unique aspects, the present paper inherits some interesting numerical findings from the
technical report [40] that do not appear in [7]. We find that cyclic ADMM diverges with probability 1 for many
random distributions of data, thus showing that the seemingly surprising divergence behavior reported in
Chen et al. [6] is quite common. However, it is easy to miss this finding if one uses the Gaussian distribution to
generate data. Another interesting finding is that the independently randomized version of ADMM diverges
with probability 1 for Gaussian data but not for the counter-example in [6], preventing us from analyzing the
independently randomized version. Without these findings, the motivation of studying RP-ADMM would be
less clear. See Section 2.4 and Section 8.

1.3. Notation and Organization
1.3.1. Notation. For a matrix X, we denote X(i, j) as the (i, j)-th entry of X, eig(X) as the set of eigenvalues of X,
ρ(X) as the spectral radius of X (i.e., the maximum modulus of the eigenvalues of X), ‖X‖ as the spectral norm
of X, and XT as the transpose of X. When X is block partitioned, we use X[i, j] to denote the (i, j)-th block of X.
When X is a real symmetric matrix, let λmax(X) and λmin(X) denote the maximum and minimum eigenvalue of
X, respectively. For two real symmetric matrices X1 and X2, X1 � X2 (resp. X1 � X2) means X1 − X2 is positive
definite (resp. positive semidefinite). We use Im to denote the identity matrix with dimension m, and we will
simply use I when it is clear from the context what the dimension is. For square matrices Ui ∈ Rui×ui , i � 1, . . . , k,
we denote Diag(U1,U2, . . . ,Uk) as the block-diagonal matrix with Ui being the i-th diagonal block.

1.3.2. Organization. In Section 2, we present three versions of randomized ADMM, with an emphasis on RP-
ADMM. In Section 3, we present our main results Theorems 1 and 2 and their proofs. The subsequent sections
are devoted to the proofs of the two technical results Lemmas 1 and 2, which are used in the proof of Theorem 2.
In particular, the proof of Lemma 1 is given in Section 5, and the proof of Lemma 2 is given in Section 6.

2. Algorithms
In this section, we will present both randomly permuted and independently randomized versions of ADMM
for solving (1) and specialize RP-ADMM for solving a square system of equations. We also present a rather
novel algorithm, Bernoulli-randomized ADMM (motivated by our proof).

2.1. Randomly Permuted ADMM
In this subsection, we first propose RP-ADMM for solving the general optimization problem (1), then we
present the update equation of RP-ADMM for solving a linear system of equations.

Define Γ as
Γ≜ σ | σ is a permutation of 1, . . . , n{ }{ }

. (4)

At each round, we draw a permutation σ of {1, . . . ,n} uniformly at random from Γ, and update the primal
variables in the order of the permutation, followed by updating the dual variables in a usual way. Obviously,
all primal and dual variables are updated exactly once at each round. See Algorithm 1 for the details of
RP-ADMM. Note that with a little abuse of notation, the function +(xσ(1), xσ(2), . . . , xσ(n);μ) in this algorithm
should be understood as +(x1, x2, . . . , xn;μ). For example, when n � 3 and σ � (231), +(xσ(1), xσ(2), xσ(3);μ) �
+(x2, x3, x1;μ) should be understood as +(x1, x2, x3;μ).
Algorithm 1 (n-Block Randomly Permuted ADMM (RP-ADMM))

Initialization: x0i ∈ Rdi×1, i � 1, . . . , n; μ0 ∈ RN×1.
Round k (k � 0, 1, 2, . . .):
1. Primal update.

Pick a permutation σ of {1, . . . ,n} uniformly at random.
For i � 1, . . . , n, compute xk+1σ(i) by

xk+1σ(i) � argmin
xσ(i)∈-σ(i)

+ xk+1σ(1), . . . , x
k+1
σ(i−1), xσ(i), x

k
σ(i+1), . . . , x

k
σ(n);μ

k
( )

. (5)

2. Dual update. Update the dual variable by

μk+1 � μk − β
∑n
i�1

Aixk+1i − b

( )
. (6)
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2.1.1. Optimization Formulation of Solving a Linear System of Equations. Consider a special case of (1) in which
fi � 0, -i � Rdi ,∀i, and N � ∑

i di (i.e., the constraint is a square system of equations). Then problem (1) becomes

min
x∈RN

0,

s.t. A1x1 + · · · + Anxn � b,
(7)

where Ai ∈ RN×di , xi ∈ Rdi×1, b ∈ RN×1. Solving this feasibility problem (with 0 being the objective function) is
equivalent to solving a linear system of equations

Ax � b, (8)

where A � [A1, . . . ,An] ∈ RN×N , x � [xT1 , . . . , xTn]T ∈ RN×1, b ∈ RN×1.
Throughout this paper, we assume A is nonsingular. Then the unique solution to (8) is x � A−1b, and

problem (7) has a unique primal-dual optimal solution (x, μ) � (A−1b, 0). The augmented Lagrangian function
(3) for the optimization problem (7) becomes

+(x, μ) � −μT(Ax − b) + β

2
‖Ax − b‖2. (9)

Throughout this paper, we assume β � 1; note that our algorithms and results can be extended to any β> 0 by
simply scaling μ.

2.1.2. Example of Three-Block ADMM. Before presenting the update equation of general RP-ADMM for solving
(7), we consider a simple case N � n � 3, di � 1,∀i and σ � (123) and let ai � Ai ∈ R3×1. The update Equations (5)
and (6) can be rewritten as

−aT1μk + aT1 a1xk+11 + a2xk2 + a3xk3 − b
( ) � 0,

−aT2μk + aT2 a1xk+11 + a2xk+12 + a3xk3 − b
( ) � 0,

−aT3μk + aT3 a1xk+11 + a2xk+12 + a3xk+13 − b
( ) � 0,

a1xk+11

( ) +a2xk+12 + a3xk+13 − b
( ) + μk+1 − μk � 0.

Denote yk � [xk1; xk2; xk3; (μk)T] ∈ R6×1, then the above update equation becomes

aT1 a1 0 0 0
aT2 a1 aT2 a2 0 0
aT3 a1 aT3 a2 aT3 a3 0
a1 a2 a3 I3×3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦y

k+1 �
0 −aT1 a2 −aT1 a3 aT1
0 0 −aT2 a3 aT2
0 0 0 aT3
0 0 0 I3×3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦y

k + ATb

b

[ ]
. (10)

Define

L≜
aT1 a1 0 0
aT2 a1 aT2 a2 0
aT3 a1 aT3 a2 aT3 a3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, R≜

0 −aT1 a2 −aT1 a3
0 0 −aT2 a3
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (11)

The relation between L and R is

L − R � ATA.

Define

L̄≜
L 0
A I3×3

[ ]
, R̄≜

R AT

0 I3×3

[ ]
, b̄ � ATb

b

[ ]
(12)

then the update Equation (10) becomes L̄yk+1 � R̄yk + b̄, that is,

yk+1 � L̄
( )−1R̄yk + L̄−1b̄. (13)
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As a side remark, Chen et al. [6] provide a specific example of A ∈ R3×3 so that ρ((L̄)−1R̄)> 1, which implies the
divergence of the above iteration if the update order σ � (123) is used all the time. This counterexample
disproves the convergence of cyclic three-block ADMM.

2.1.3. General Update Equation of RP-ADMM. In general, for the optimization problem (7), the primal update (5)
becomes

−AT
σ(i)μ

k + AT
σ(i)

∑i

j�1
Aσ(j)xk+1σ(j) +

∑n
l�i+1

Aσ(l)xkσ(l) − b

( )
� 0, i � 1, . . . ,n. (14)

Replacing σ(i), σ( j), σ(l) by i, j, l, we can rewrite the above equation as

−AT
i μ

k + AT
i

∑
σ−1(j)≤σ−1(i)

Ajxk+1j + ∑
σ−1(l)>σ−1(i)

Alxkl − b

( )
� 0, i � 1, . . . ,n, (15)

where σ−1 denotes the inverse mapping of a permutation σ, that is, σ(i) � t⇔ i � σ−1(t). Denote the output of
Algorithm 1 after round (k − 1) as

yk ≜ xk;μk[ ] � xk1; . . . ; x
k
n;μ

k
[ ] ∈ R2N×1. (16)

The update equations of Algorithm 1 for solving (7) (i.e., (15) and (6)) can be written in the matrix form as
(when the permutation is σ and β � 1)

yk+1 � L̄−1σ R̄σyk + L̄−1σ b̄, (17)

where L̄σ, R̄σ,Lσ,Rσ, b̄ are defined by

L̄σ ≜
Lσ 0
A IN×N

[ ]
, R̄σ ≜

Rσ AT

0 IN×N

[ ]
, b̄ � ATb

b

[ ]
, (18)

in which Lσ ∈ RN×N has n × n blocks and the (i, j)-th block is defined as

Lσ[i, j]≜ AT
i Aj σ−1( j) ≤ σ−1(i),

0 otherwise,

{
(19)

and Rσ is defined as
Rσ ≜ Lσ − ATA. (20)

Another expression of Lσ, equivalent to (19), is the following:

Lσ[σ(i), σ( j)]≜ AT
σ(i)Aσ( j) j ≤ i,

0 j> i.

{
(21)

To illustrate the above expression of Lσ, we consider the n-coordinate case that di � 1,∀i. In this case, each
block xi is a single coordinate, and each Ai is a vector. Denote ai ≜Ai ∈ RN×1. Let Lσ(k, l) denote the (k, l)-th entry
of the matrix Lσ, then the definition (21) becomes

Lσ(σ(i), σ( j))≜ aTσ(i)aσ( j) j ≤ i,
0 j> i.

{
(22)

A user-friendly rule for writing Lσ is described as follows (use σ � (231) as an example). Start from a zero
matrix. First, find all reverse pairs of σ; here, we say (i, j) is a reverse pair if i appears after j in σ. For the
permutation (231), all the reverse pairs are (1, 3), (3, 2), and (1, 2). Second, in the positions corresponding to the
reverse pairs, write down the corresponding entries of ATA (i.e., aT1 a3, a

T
3 a2, and aT1 a2, respectively). At last,

write aTi ai in the diagonal positions. Using this rule, we can write down the expression of L(231) as

L(231) �
aT1 a1 aT1 a2 aT1 a3
0 aT2 a2 0

0 aT3 a2 aT3 a3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

A user-friendly rule to quickly check the correctness of an expression of Lσ is the following (still take σ � (231)
as an example). According to the order of the permutation (231), the second row, the third row, and the first
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row should have a strictly decreasing number of zeros (two zeros, one zero, and no zero). In contrast, the
second column, the third column, and the first column should have a strictly increasing number of zeros.

For the general case that di ≥ 1,∀i, we can write down the block partitioned Lσ in a similar way. For example,
when n � 3 and σ � (231), we have

L(231) �
AT

1A1 AT
1A2 AT

1A3

0 AT
2A2 0

0 AT
3A2 AT

3A3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

2.2. Randomly Permuted BCD
RP-ADMM is a generalization of RP-BCD. In fact, when the constraint does not exist, RP-ADMM reduces to
RP-BCD. In this subsection, we present RP-BCD for solving convex quadratic problems. Note that RP-ADMM
for solving linear systems and RP-BCD for solving quadratic problems are two extremes of general RP-
ADMM: in the former case the objective function is zero, and in the latter case the constraint is zero. In-
terestingly, the two extreme cases are related because the expected iteration matrix of RP-BCD appears as a
component of the expected iteration matrix of RP-ADMM. We will show later that their eigenvalues are closely
related.

Consider a special case of (1) in which f (x) � 1
2 ‖Ax − b‖2, -i � Rdi ,∀i, and there is no constraint. With abuse of

notation, we use A to denote the coefficient matrix, whereas in the original formulation A denotes the
constraint matrix. We “recycle” the notation A so that we can build a connection with RP-ADMM for solving
linear systems later. Assume N � ∑

i di. Then problem (1) becomes a least-squares problem

min
x∈RN

1
2
‖Ax − b‖2 � 1

2
‖A1x1 + · · · + Anxn − b‖2, (23)

where Ai ∈ RN×di , xi ∈ Rdi×1, b ∈ RN×1. Similar to Section 2.1.1, we assume A is nonsingular. Then the unique
solution to (8) is x � A−1b.

In the augmented Lagrangian function given in (9), if we delete the first term, which depends on the dual
variable μ, we obtain the quadratic function 1

2 ‖Ax − b‖2. Thus if we eliminate the dual variable μ in the update
equations of RP-ADMM, we will obtain the update equations for RP-BCD. Suppose xk is the iterate after the
k-th epoch (i.e., go through all coordinates once), and σ is the order used in the k-th iteration; then, as a simpler
version of (17), we have

xk+1 � L−1σ Rσxk + L−1σ b, (24)

where Lσ and Rσ are defined as in (21) and (20), and σ is a random permutation.

2.3. Residual Trick for Efficient Implementation of ADMM and BCD
We note here that when di � 1,∀i (in this case BCD becomes CD), per-epoch computation time of ADMM and
CD (no matter what order) is O(n2); or in other words, per-coordinate-update time is O(n). For instance,
updating xk+1 by (24) in RP-BCD or updating yk+1 by (17) in RP-ADMM only takes time O(n2). As mentioned
in section 3.1 of Nesterov [30], the trick is to keep track of the residual. For both efficient practical imple-
mentation and calculation of computation complexity, one should use this residual trick, but for the ease of
theoretical analysis we use the matrix update forms (17) and (24) in this paper; there is no contradiction
because our theory only depends on the value of xk but not the specific procedure to compute xk.

For completeness, we briefly explain how this trick works in our settings. Suppose di � 1,∀i, and we use CD
methods to solve (23) with a certain update order (could be any order, such as cyclic, randomized, or
randomly permuted). Suppose the coordinate i is picked, then xi is updated by by

x+i � 1
AT

i Ai
AT

i (b − A−ix−i)[ ]
, (25)

where A−i contains all columns of A except Ai, x−i contains all elements of x except xi and represents the current
values, and x+i represents the new value. A straightforward implementation of (25) requires multiplying x−i by
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A−i, which takes O(n2) operations. With the residual trick (e.g., Nesterov [30]), we introduce the residual
r � Ax − b and replace (25) by

x+i � xi − 1
AT

i Ai
AT

i r,

r+ � r + Ai x+i − xi
( )

.

Now the calculation of xTi and r+ takes time O(n), and thus one epoch of BCD takes time O(n2). The same trick
can be applied to the primal update of ADMM; with this trick, the dual update (6) can be rewritten as
μ+ � μ − βr, which takes time O(n), and thus one epoch of ADMM takes time O(n2).

Finally, when di > 1, similar update equations can still be used except a minor difference that 1
AT

i Ai
should be

replaced by (AT
i Ai)−1. In a special case that di � d,∀i and N � dn, each iteration of BCD takes time O(Nd + d3)

and each epoch takes time O(N2 +Nd2). This cost can be reduced if we use BCGD (i.e., not solving the
subproblem exactly but updating each block of variables by a gradient step). To not make the paper more
complicated, we will not discuss the inexact versions of BCD and ADMM in this paper.

2.4. Two Versions of Independently Randomized ADMM
In this subsection, we present two other versions of randomized ADMM which can be divergent according
to simulations. The failure of these versions makes us focus on analyzing RP-ADMM in this paper. These
versions can be viewed as natural extensions of R-BCD (randomized BCD) (Leventhal and Lewis [24],
Nesterov [30]).

In the first algorithm, called primal-dual randomized ADMM (PD-RADMM), the whole dual variable
is viewed as the (n + 1)-th block. In particular, at each iteration, the algorithm draws one index i from
{1, . . . ,n, n + 1}, then performs the following update: if i ≤ n, update the i-th block of the primal variable; if
i � n + 1, update the whole dual variable. The details are given in Algorithm 2. We have tested PD-RADMM
for the counter-example given in Chen et al. [6], and found that PD-RADMM always diverges (for random
initial points).

A variant of PD-RADMM has been proposed in Hong et al. [20], with two differences: first, instead of
minimizing the augmented Lagrangian +, that algorithm minimizes a strongly convex upper bound of +;
second, that algorithm uses a diminishing dual stepsize. With these two modifications, Hong et al. [20] show that
each limit point of the sequence generated by their algorithm is a primal-dual optimum with probability 1.
Note that [20] also proves the same convergence result for the cyclic version of multiblock ADMM with these
two modifications, thus it does not show the benefit of randomization.

Algorithm 2 (Primal-Dual Randomized ADMM (PD-RADMM))

Iteration t (t � 0, 1, 2, . . .):
Pick i ∈ {1, . . . ,n, n + 1} uniformly at random;

If 1 ≤ i ≤ n:
xt+1i � argminxi∈-i + xt1, . . . , x

t
i−1, xi, xti+1, . . . , xtn;μt

( )
,

xt+1j � xtj , ∀ j ∈ {1, . . . ,n}\{i},
μt+1 � μt.

Else if i � n + 1:
μt+1 � μt − β

∑n
i�1 Aixt+1i − b

( )
,

xt+1j � xtj , ∀j ∈ {1, . . . , n}.
End

In the second algorithm, called primal randomized ADMM (P-RADMM), we only perform randomization
for the primal variables. In particular, at each round, we first draw n independent random variables j1, . . . , jn
from the uniform distribution of {1, . . . ,n} and update xj1 , . . . , xjn sequentially, then update the dual variable in
the usual way. The details are given in Algorithm 3. This algorithm looks quite similar to RP-ADMM because
they both update n primal blocks at each round; the difference is that RP-ADMM samples without replacement,
whereas this algorithm P-RADMM samples with replacement. In other words, RP-ADMM updates each block
exactly once at each round, whereas P-RADMM may update one block more than one time or does not update
one block at each round.

We have tested P-RADMM in various settings. For the counter-example given in Chen et al. [6], we found
that P-RADMM does converge. However, if n ≥ 30 and A is a Gaussian random matrix (each entry is drawn
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independent and identically distributed from 1(0, 1)), then P-RADMM diverges in almost all cases we have
tested. This phenomenon is rather strange because for random Gaussian matrices A the cyclic ADMM actually
converges (according to simulations). An implication is that randomized versions do not always outperform
their deterministic counterparts in terms of convergence.

Because both Algorithms 2 and 3 can diverge in certain cases, we will not further study them in this paper.
In the rest of the paper, we will focus on RP-ADMM (i.e., Algorithm 1).

Algorithm 3 (Primal Randomized ADMM (P-RADMM))

Round k (k � 0, 1, 2, . . .):
1. Primal update.

Pick l1, . . . , ln independently from the uniform distribution of {1, . . . ,n}.
For i � 1, . . . , n:

t � kn + i − 1,
xt+1li � argminxli∈-li

+ xt1, . . . , x
t
li−1, xli , x

t
li+1, . . . , x

t
n;μ

t
( )

,

xt+1j � xtj , ∀j ∈ {1, . . . ,n}\ li{ },
μt+1 � μt.

End.
2. Dual update.

μ(k+1)n � μkn − β
∑n

i�1 Aix
(k+1)n
i − b

( )
.

2.5. Bernoulli-Randomized ADMM
To implement randomly permuted ADMM, one needs to sample from all blocks without replacement. To save
the sampling time, we propose another algorithm, which we call Bernoulli-randomized ADMM. This al-
gorithm is motivated by the proof of Theorem 1. This updating scheme can be applied to other algorithms,
such as SGD and coordinate descent methods.

The new update order combines the well-known double-sweep order and Bernoulli-randomization. The original
double-sweep order is (1, 2, . . . , n − 1, n,n − 1,n − 2, . . . , 1), meaning that x1, x2, . . . , xn−1, xn, xn−1, xn−2, . . . , x1 are
updated sequentially in each “cycle.” It combines the normal cyclic order (1, 2, . . . , n) and a reverse order
(n,n − 1, . . . , 1). We propose the following updating scheme: add a check box to each block, and in each cycle
we perform the following operations.

1. Phase I: go through the blocks x1, x2, . . . , xn one by one sequentially as follows: for each block xi, flip a fair
coin and:

a. if the outcome is “heads,” update the block xi and check the check box;
b. if the outcome is “tails,” do nothing about xi and uncheck the check box.

2. Phase II: go through the blocks xn, xn1 , . . . , x1 in the reverse order, and update xi if the box is unchecked.
Note that in each cycle we go through each block twice but update each block exactly once so that the

number of totally updated blocks remains n. For example, when n � 5, (35421) is a possible update order, as
shown in the following diagram. Similarly, (13542) is also a possible update order.

But (13524) and (35412) are not possible. The set of all possible update orders is given by

ΓBR ≜ {σ ∈ Γ | ∃ i ∈ {1, . . . ,n − 1} such that σ(1)< σ(2)< · · · < σ(i) and σ(i + 1)> · · · > σ(n)},
where Γ is the set of permutations of {1, 2, . . . ,n} as defined in (4). In other words, a sequence from ΓBR is a
concatenation of an increasing sequence and a decreasing sequence. Note that the permutation (1, 2, . . . , n) is in
ΓBR because it can be viewed as the concatenation of an increasing sequence (1, 2, . . . ,n − 1) and a “decreasing
sequence” (n), and we can let i � n − 1 in the above definition to cover this case. Similarly, the permutation
(n,n − 1, . . . , 1) is also in ΓBR because i � 1 will cover this case.

1 2 3 4 5

Phase I begin skip → skip → 3 → skip → 5
↓

Phase II end 1 ← 2 ← skip ← 4 ← skip
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The algorithm Bernoulli-randomized ADMM (BR-ADMM) is formally described below. We skip the epoch
index k because otherwise the notation would be cumbersome.

Algorithm 4 (n-Block Bernoulli-Randomized ADMM (BR-ADMM))

Initialization: x0i ∈ Rdi×1, i � 1, . . . , n; μ0 ∈ RN×1.
Round k (k � 0, 1, 2, . . .):
1. Primal update.

Set ci � 0, i � 1, . . . ,n.
Phase I.
For i � 1, 2, . . . , n:

Draw a random variable ξ ∼ Bernoulli(1/2), that is, Pr(ξ � 1) � Pr(ξ � 0) � 1/2.
If ξ � 1: set ci � 1 and update xi by

xi ← argmin
xi∈-i

+ x1, . . . , xi−1, xi, xi+1, . . . , xn;μ
( )

. (26)

Phase II.
For i � n,n − 1, . . . , 1: if ci � 0, update xi by (26).

2. Dual update. Update the dual variable by

μ ← μ − β
∑n
i�1

Aixi − b

( )
. (27)

For solving linear systems of equations, the update formula is the same as (17), the update formula of RP-
ADMM. The difference is that for RP-ADMM σ can be an arbitrary permutation, whereas for BR-ADMM there
is some restriction on σ: it has to be a permutation in ΓBR.

3. Main Results
3.1. Expected Convergence of RP-ADMM
Let σi denote the permutation used in round i of Algorithm 1, which is a uniform random variable drawn from
the set of permutations Γ. After round k, Algorithm 1 generates a random output yk+1, which depends on the
observed draw of the random variable

ξk � (σ0, σ1, . . . , σk). (28)

We will show that the expected iterate (the iterate yk is defined in (16))

φk � Eξk−1 yk
( )

(29)

converges to the primal-dual solution of the problem (7). Although the expected convergence does not nec-
essarily imply the convergence in a particular realization, it serves as an evidence of convergence. Our proof
seems much different from and more difficult than previous proofs for other randomized methods, because
random permutation and spectral radius of nonsymmetric matrices are difficult objects to deal with—not
many existing mathematical tools are available to help.3 Note that the extension of this result to the nonsquare
full column-rank case is simple.4

Theorem 1. Assume the coefficient matrix A � [A1, . . . ,An] of the constraint in (7) is a nonsingular square matrix. Suppose
Algorithm 1 is used to solve problem (7); then the expected output converges to the unique primal-dual optimal solution to (7),
that is,

φk{ }
k→∞ −→ A−1b

0

[ ]
. (30)

Because the update matrix does not depend on previous iterates, we claim (and prove in Section 4.1)
that Theorem 1 holds if the expected update matrix has a spectral radius less than 1 (i.e., if the following
Theorem 2 holds).

Theorem 2. Suppose A � [A1, . . . ,An] ∈ RN×N is nonsingular, and L̄−1σ , R̄σ are defined by (18) for any permutation σ. Define

M≜Eσ L̄−1σ R̄σ

( ) � 1
n!

∑
σ∈Γ

L̄−1σ R̄σ

( )
, (31)
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where the expectation is taken over the uniform random distribution over Γ, the set of permutations of {1, 2, . . . ,n}. Then
the spectral radius of M is smaller than 1, that is,

ρ(M)< 1. (32)

Remark 1. For the counterexample in Chen et al. [6] in which A � [1, 1, 1; 1, 1, 2; 1, 2, 2], it is easy to verify that
ρ(Mσ)> 1.02 for any permutation σ of (1, 2, 3). Interestingly, Theorem 2 shows that even if each Mσ is “bad”
(with spectral radius larger than 1), the average of them is always “good” (with spectral radius smaller than 1).

Theorem 2 is just a linear algebra result and can be understood even without knowing the details of the
algorithm. However, the proof of Theorem 2 is rather nontrivial. This proof will be provided in Section 4.2,
and the technical results used in this proof will be proved in Sections 5 and 6.

The convergence rate of RP-ADMM for solving linear systems of equations is closely related to the con-
vergence rate of RP-BCD (randomly permuted BCD) for solving quadratic problems. We will discuss their
relation and how our results in this paper improve our understanding for RP-BCD.

A similar convergence result holds for BR-ADMM proposed in Section 2.5, as presented below. The proof is
a simple modification of the proof of Theorem 1 and can be found in Section 6.4.

Proposition 1. Assume the coefficient matrix A � [A1, . . . ,An] of the constraint in (7) is a nonsingular square matrix.
Suppose Algorithm 4 is used to solve problem (7); then the expected output converges to the unique primal-dual optimal
solution to (7).

3.2. Expected Convergence Rate of RP-ADMM and RP-BCD
There is a close relation between RP-ADMM for solving linear systems and RP-CD for solving quadratic
problems (see Lemma 2). Thus it is not surprising that we need to understand RP-BCD before understanding
RP-ADMM. We will first present an expected convergence rate of RP-BCD (in terms of the expected iterates)
for solving quadratic problems, which improves the best existing convergence rate (one type of rates, to be
precise) by a factor of n.5 The result is proved via establishing a weak version of matrix AM-GM inequality.
This result also establishes a large gap of O(n) between RP-BCD and C-BCD (cyclic BCD). Second, built upon
the result for RP-BCD, we establish a convergence rate of RP-ADMM that is similar to RP-BCD and also n
times better than that of C-BCD.

The first result is about the expected convergence rate of RP-BCD for the case AT
i Ai � I. This assumption is

made so that the expression is simple, and the case for general Ai is given in the next result.

Theorem 3 (Rate of RP-BCD for Quadratic Functions with Identity Diagonal Blocks). Assume the coefficient matrix A �
[A1, . . . ,An] is a nonsingular square matrix, and AT

i Ai � I,∀ i. Suppose RP-BCD is used to solve problem (23), where xk

denotes the variable after k epochs (each epoch represents one cycle of updating all coordinates). Denote the unique optimal
solution as x∗ � A−1b. Then

E xk
( ) − x∗

⃦⃦ ⃦⃦ ≤ max 1 − 1
n
λmin(AAT), 1

3

{ }k
x0 − x∗

⃦⃦ ⃦⃦
. (33)

To put this convergence rate result in the context, we consider the simple case that each di � 1 (i.e., each block
consists of a single coordinate). In this case, every diagonal entry of ATA is 1; thus, the average eigenvalue of
ATA is 1. Throughout the paper, we consider the total computation complexity6; note that we assume the
residual trick as described in Section 2.3 is always used for all methods.

Our Theorem 3 provides an expected computational complexity upper bound O(n3κCD log 1
ε) for RP-CD,

because each epoch takes O(n2) time and it requires O(n2 log 1
ε) epochs to achieve error ε according to (33). It is

known that the computational complexity of R-CD (randomized coordinate descent) to achieve relative
accuracy ε7 is O(n2κCD log 1

ε), where κCD � λavg(ATA)/λmin(ATA) � 1/λmin(ATA) is the ratio of the average
eigenvalue over the minimum eigenvalue. It was recently shown that in terms of κCD and n only, the worst-
case complexity of C-CD (cyclic CD) is O(n4κCD log 1

ε), which is n2 times worse than R-CD and n times worse
than GD. This shows a large gap between C-CD and R-CD in the worst case.

It was widely conjectured that RP-CD is at least as fast as R-CD, but this conjecture is considered to be rather
difficult to prove. For a special class of matrices, recent works (Lee and Wright [23], Wright and Lee [45])
validated the conjecture. However, to our knowledge, even for a general quadratic function with equal
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diagonal entries 1, the previously best known convergence rate of RP-CD is almost the same as C-CD (see Sun
and Hong [39], Sun and Ye [41]), which can be n2 times worse than that of R-CD. Our Theorem 3 provides an
expected computational complexity upper bound O(n3κCD log 1

ε) for RP-CD, which is n times faster than C-CD
and n times slower than R-CD. This improves the best existing rate by a factor of n.8 We summarize the
comparison of the complexity for C-CD, R-CD, and RP-CD in Table 1.

The following proposition generalizes Theorem 3 to the non-identity-diagonal case (i.e., AT
i Ai does not need

to be an identity matrix).

Proposition 2 (Rate of RP-BCD for Quadratic Functions, with Nonidentity Blocks). Assume the coefficient matrix A �
[A1, . . . ,An] is a nonsingular squarematrix. Suppose RP-BCD is used to solve problem (23). Denote D � diag(AT

1A1, . . . ,AT
nAn)

as a block-diagonal matrix, and the norm ‖z‖D � ̅̅̅̅̅̅̅
zTDz

√
. Then

E xk
( ) − x∗

⃦⃦ ⃦⃦
D ≤ max 1 − 1

n
λmin D1/2ATAD−1/2( )

,
1
3

{ }k
x0 − x∗

⃦⃦ ⃦⃦
D. (34)

The proof of Proposition 2 is given in Section 4.4. One can easily transform the quantity λmin(D1/2ATAD−1/2) to
a certain quantity that only depends on the eigenvalues of AT

i Ai and ATA. However, as noted in [41], it is far
from clear how tight the transformation is, thus we skip the transformation here. In fact, it is related to some
open question on the so-called Jacobi preconditioning. We refer the interested readers to [41] for a detailed
discussion of the subtle issues in the non-identity-diagonal case.

At last, we present a result on the expected convergence rate of RP-ADMM for solving linear systems, under
the assumption that AT

i Ai � I, ∀i. Very similar to Proposition 2, we can also generalize this result to the non-
identity-diagonal case (i.e., AT

i Ai �� I), but to save space we skip the generalization here. The proof of Theorem 4
is given in Section 4.5.

Theorem 4 (Expected Convergence Rate of RP-ADMM for Linear Systems). Assume the coefficient matrix A �
[A1, . . . ,An] of the constraint in (7) is a nonsingular square matrix and AT

i Ai � Idi . Suppose Algorithm 1 is used to solve
problem (7). Denote y∗ � [ A−1b

0 ] as the unique primal-dual optimal solution to the problem (7), then

E yk
( ) − y∗

⃦⃦ ⃦⃦ ≤ 1 − 1
2n

λmin AAT( )( )k
y0 − y∗

⃦⃦ ⃦⃦
. (35)

This result implies that similar to RP-CD for solving quadratic problems, the complexity of RP-ADMM in
terms of the expected iterates for solving linear systems is also at most

TRP-ADMM � O n3κCD log(1/ε)( )
.

In light of the fact that C-CD has been shown to only achieve a rate O(n4κCD log(1/ε)) [41], the rate of RP-
ADMM we obtain is already quite good. Nevertheless, we conjecture that this complexity upper bound can be
improved to O(n2κCD log(1/ε)), the same as the conjectured complexity for RP-CD. However, an improved rate
of RP-ADMM leads to an improved rate of RP-BCD (this should be clear via the comparison of (50) and (57)), thus
proving this conjecture is an even more difficult problem than the long-standing open question on RP-CD.

3.3. Matrix AM-GM Inequality
To analyze the convergence rate of randomly permuted algorithms, one major technical challenge is matrix
AM-GM (algebraic mean-geometric mean) inequality. The following conjecture of matrix AM-GM inequality
was proposed in Recht and Ré [31]: for any positive semidefinite matrix A1, . . . ,An ∈ Rn×n,

1
n!

∑
σ�(σ1,...,σn)∈Γ

AσnAσn−1 . . .Aσ1

⃦⃦⃦⃦
⃦

⃦⃦⃦⃦
⃦ ≤ 1

n

∑
i
Ai

( )n⃦⃦⃦⃦
⃦

⃦⃦⃦⃦
⃦. (36)

The original version is more general: the number of matrices does not need to be the same as the dimension of
the matrix. For simplicity, we just present a simpler version here.

Table 1. Worst-Case Computation Complexity Comparison, Using Only κCD as Parameter, for Equal-Diagonal Quadratic
Case (Ignore O(log 1

ε) Factor) and Considering the Error in the Expected Iterates for RP-CD

GD C-CD R-CD RP-CD (Theorem 3) RP-CD (conjectured)

Computation complexity n3κCD n4κCD n2κCD n3κCD n2κCD
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The matrix AM-GM inequality is a generalization of the well-known AM-GM inequality: for nonnegative
numbers a1, . . . , an, the geometric mean (a1a2 . . . an)1/n is no more than the algebraic mean 1

n
∑n

i�1 ai. When
extending this inequality to matrix domain, the noncommutative nature of matrix multiplication makes the
problem rather difficult to prove.

We observe that we only need to prove a matrix AM-GM inequality for projection matrices. We conjecture
that the following matrix AM-GM inequality holds.

Conjecture 1 (Matrix AM-GM Inequality for Projection Matrices). Suppose Pi ∈ RN×N , i � 1, . . . , n are projection matrices, then

1
n!

∑
σ�(σ1,...,σn)∈Γ

PσnPσn−1 . . .Pσ1 � 1
n

∑
i
Pi

( )n
. (37)

Compared with (36), our conjecture makes a stronger claim on the relation, but it only applies to projection
matrices. We have found examples to show that (37) does not hold for general positive semidefinite matrices,
but it holds for projection matrices in all of our experiments.

We are not able to prove the new conjecture—that would solve the open question of the best convergence
rate of RP-CD for quadratic problem. Nevertheless, inspired by the new conjecture, we prove a weaker version
(see Lemma 3), which can lead to an improved convergence rate estimate for RP-CD.

4. Proof of Main Results
4.1. Proof of Theorem 1
Denote σk as the permutation used in round k, and define ξk as in (28). Rewrite the update Equation (17) below
(replacing σ by σk):

yk+1 � L̄−1σk R̄σk y
k + L̄−1σk b̄. (38)

We first prove (30) for the case b � 0. By (18) we have b̄ � 0, then (38) is simplified to yk+1 � L̄−1σk R̄σky
k. Taking

the expectation of both sides of this equation in ξk (see its definition in (28)), and noting that yk is independent
of σk, we get

φk+1 � Eξk L̄−1σk R̄σky
k

( )
� Eσk Eξk−1 L̄−1σk R̄σky

k
( )( )

� Eσk L̄−1σk R̄σkφ
k

( )
� Mφk.

Because the spectral radius of M is less than 1 by Theorem 2, we have that {φk} → 0, that is, (30).
We then prove (30) for general b. Let y∗ � [A−1b; 0] denote the optimal solution. Then it is easy to verify that

y∗ � L̄−1σk R̄σky
∗ + L̄−1σk b̄

for all σk ∈ Γ (i.e., the optimal solution is the fixed point of the update equation for any order). Computing the
difference between this equation and (38) and letting ŷk � yk − y∗, we get ŷk+1 � L̄−1σk R̄σk ŷ

k. According to the
proof for the case b � 0, we have E(ŷk) −→ 0, which implies E(yk) −→ y∗.

4.2. Proof of Theorem 2
The difficulty of proving Theorem 2 (bounding the spectral radius of M defined in (31)) is two-fold. First, M is
a nonsymmetric matrix, and there are very few tools to bound the spectral radius of a nonsymmetric matrix. In
fact, spectral radius is neither subadditive nor submultiplicative (see, e.g., Kittaneh [22]). Note that the spectral
norm of M can be much larger than 1 (there are examples that ‖M‖> 2), thus we cannot bound the spectral
radius simply by the spectral norm. Second, although it is possible to explicitly write each entry of M as a
function of the entries of ATA, these functions are very complicated (n-th order polynomials), and it is not clear
how to utilize this explicit expression.

The proof outline of Theorem 2 and the main techniques are described below. In Step 0, we provide an
expression of the expected update matrix M. In Step 1, we establish the relationship between the eigenvalues
of M and the eigenvalues of a simple symmetric matrix AQAT, where Q is defined in (39). As a consequence,
the spectral radius of M is smaller than one if and only if (iff) the eigenvalues of AQAT lie in the region (0, 4/3).
This step partially resolves the first difficulty (i.e., how to deal with the spectral radius of a nonsymmetric
matrix). In Step 2, we show that the eigenvalues of AQAT do lie in (0, 4/3) using mathematical induction. The
induction analysis circumvents the second difficulty (i.e., how to utilize the relation between M and A).
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Step 0. Compute the Expression of the Expected Update Matrix M.
Define

Q≜Eσ L−1σ
( ) � 1

n!

∑
σ∈Γ

L−1σ . (39)

It is easy to prove that Q defined by (39) is symmetric. In fact, note that LTσ � Lσ̄,∀σ ∈ Γ, where σ̄ is a reverse
permutation of σ satisfying σ̄(i) � σ(n + 1 − i),∀ i, thus Q � 1

n!
∑

σ Qσ � ( 1n!
∑

σ Qσ̄)T � QT, where the last step is
because the sum of all Qσ̄ is the same as the sum of all Qσ.
Denote

Mσ ≜ L̄−1σ R̄σ � L̄−1σ
Rσ AT

0 I

[ ]
. (40)

Substituting the expression of L̄−1σ into the above relation, and replacing Rσ by Lσ − ATA, we obtain

Mσ � L−1σ 0
−AL−1σ I

[ ]
Lσ − ATA AT

0 I

[ ]
� I − L−1σ ATA L−1σ AT

−A + AL−1σ ATA I − AL−1σ AT

[ ]
. (41)

Because Mσ is linear in L−1σ , we have

M � Eσ(Mσ) � I − Eσ L−1σ
( )

ATA Eσ L−1σ
( )

AT

−A + AEσ L−1σ
( )

ATA I − AEσ L−1σ
( )

AT

[ ]

� I −QATA QAT

−A + AQATA I − AQAT

[ ]
.

(42)

Step 1. Relate M to a Simple Symmetric Matrix.
The main result of Step 1 is given below, and the proof of this result is relegated to Section 5.

Lemma 1. Suppose A ∈ RN×N is nonsingular and Q ∈ RN×N is an arbitrary matrix. Define M ∈ R2N×2N as

M � I −QATA QAT

−A + AQATA I − AQAT

[ ]
. (43)

Then

λ ∈ eig(M) ⇐⇒ (1 − λ)2
1 − 2λ

∈ eig QATA
( )

. (44)

Furthermore, when Q is symmetric, we have

ρ(M)< 1 ⇐⇒ eig QATA
( ) ⊆ 0,

4
3

( )
. (45)

Remark 2. For our problem, the matrix Q as defined by (39) is symmetric (see the argument after Equation (39)),
thus the relation (45) indeed holds according to Lemma 1. For a general nonsymmetricQ, (45) does not need to hold,
but the first conclusion (44) still holds.

Step 2. Bound the Eigenvalues of QATA.
The main result of Step 2 is summarized in the following Lemma 2. The proof of Lemma 2 is given in

Section 6.

Lemma 2. Suppose A � [A1, . . . ,An] ∈ RN×N is nonsingular. Define Q as

Q≜Eσ L−1σ
( ) � 1

n!

∑
σ∈Γ

L−1σ , (46)

in which Lσ is defined by (21) and Γ is defined by (4). Then all eigenvalues of QATA lie in (0, 4/3), that is

eig QATA
( ) ⊆ 0,

4
3

( )
. (47)
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Remark 3. The upper bound 4
3 in (47) is probably tight, because we have found numerical examples with

eig(QATA)> 1.3333. Now the expected convergence of RP-ADMM seems to be a pleasant coincidence: Lemma 1
shows that to prove the expected convergence we need to prove supA eig(QATA), a quantity that can be defined
without knowing ADMM, is bounded by 4/3; Lemma 2 and numerical experiments show that this quantity
happens to be exactly 4/3, so that RP-ADMM can converge (in expectation).

Theorem 2 follows immediately from Lemmas 1 and 2.

4.3. Proof of Theorem 3
We first describe the outline of the proof. The expected update matrix of RP-BCD is I −QATA, and the ei-
genvalues of this matrix lie in (−1, 1). The expected convergence speed of RP-BCD depends on the distance
between the eigenvalues and the two extremes −1 and 1. Lemma 2 shows that the distance to −1 is at least 1/3,
which is a constant. We will show that the distance to 1 is at least λmin(ATA)/n, by proving a weaker version of
matrix AM-GM inequality. Combining the two results, we obtain the expected convergence speed of RP-BCD.

The formal proof is presented below.
According to (24), we have xk+1 − x∗ � (I − L−1σ ATA)(xk − x∗), where σ is the randomly picked permutation

at the k-th epoch. Therefore, the expected update formula of RP-BCD for solving the least squares
problem is

E xk+1
( ) − x∗ � I −QATA

( )
E xk
( ) − x∗

( )
. (48)

It implies

E xk+1
( ) − x∗

⃦⃦ ⃦⃦ ≤ ρ I −QATA
( )

E xk
( ) − x∗

⃦⃦ ⃦⃦
. (49)

Suppose the eigenvalues of QATA are η1 ≥ η2 ≥ · · · ≥ ηn; then, according to Lemma 2,

4/3> η1 > · · · > ηn > 0.

The eigenvalues of I −QATA are

− 1
3
< 1 − η1 ≤ · · · ≤ 1 − ηn < 1,

thus the spectral radius of I −QATA is

ρ I −QATA
( ) � max 1 − ηn, |1 − η1|{ } ≤ max 1 − ηn,

1
3

{ }
� max λmax I −QATA

( )
,
1
3

{ }
. (50)

An interesting phenomenon occurs here. The spectral radius is either 1 − ηn or |1 − η1|. In the latter case,
ρ(I −QATA) � |1 − η1| ≤ 1/3, implying that ‖E(xk) − x∗‖ ≤ 1

3k ‖E(x0) − x∗‖, or equivalently, the relative error
|E(xk) − x∗‖/|E(x0) − x∗‖ achieves ε in log 3 log(1/ε) epochs. We do not even need to compute η1 because it will
only affect the convergence speed when the speed is already very fast. From a theoretical perspective, the
improvement from log 3 to log(1/(1 − |1 − η1|)) is just an improvement in the constant. Therefore, it is rea-
sonable to ignore η1 and focus on the estimate of 1 − ηn.

To estimate the maximum eigenvalue of I −QATA (or equivalently, that of I − AQAT), we first provide a
useful identity that connects I − AQAT and projection matrices Pi � I − AiAT

i .

Claim 1. Suppose A � [A1, . . . ,An] is a nonsingular square matrix, and AT
i Ai � I,∀ i. For a permutation σ �

(σ1, . . . , σn) ∈ Γ, Lσ is defined as in (21), and Qσ � L−1σ . Denote Pi � I − AiAT
i , i � 1, . . . ,n. Then we have

I − AQσAT � PσnPσn−1 . . .Pσ1 , (51a)

I − AQAT � 1
n!

∑
σ�(σ1,...,σn)∈Γ

PσnPσn−1 . . .Pσ1 . (51b)
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The proof of Claim 1 is given at the end of this subsection. Claim 1 states that I − AQAT is exactly equal to
1
n!
∑

σ�(σ1,...,σn)∈Γ PσnPσn−1 . . .Pσ1 , thus we only need to estimate the maximal eigenvalue of the latter expression.
This is achieved by the following lemma (the proof is given in Section 7.3).

Lemma 3 (Weak Matrix AM-GM Inequality). Suppose Pi ∈ RN×N , i � 1, . . . ,n are projection matrices, then

1
n!

∑
σ�(σ1,...,σn)∈Γ

PσnPσn−1 . . .Pσ1 � 1
n

∑
i
Pi. (52)

The above Lemma 3 and Claim 4.1 immediately lead to the following corollary.

Corollary 1. Suppose A � [A1, . . . ,An] is a nonsingular square matrix, and AT
i Ai � I,∀ i. Suppose Pi � I − AiAT

i , ∀ i. Lσ is
defined as in (21), and Q � Eσ(L−1σ ). Then

I − AQAT � 1
n

∑
i
Pi. (53)

Note that 1
n
∑

i Pi � 1
n (nI −

∑
i AiAT

i ) � I − 1
n AA

T, thus (53) implies

I − AQAT � I − 1
n
AAT,

which implies

λmax I − AQAT( ) ≤ 1 − 1
n
λmin AAT( )

. (54)

Substituting into (50), we get

ρ I −QATA
( ) ≤ max λmax I −QATA

( )
,
1
3

{ }
≤ max 1 − 1

n
λmin AAT( )

, 1/3
{ }

.

Substituting this relation into (49), we obtain

E xk+1
( ) − x∗

⃦⃦ ⃦⃦ ≤ max 1 − 1
n
λmin AAT( )

,
1
3

{ }
E xk
( ) − x∗

⃦⃦ ⃦⃦
. Q.E.D.

Remark 4. There is a coefficient 1/n in front of λmin(AAT) in (54), and this is why the complexity of RP-CD we
establish is n times worse than the conjectured one in Table 1. If Conjecture 1 holds, then this factor of 1/n would
be removed and the conjectured (expected) complexity of RP-CD in Table 1 would hold.

4.3.1. Proof of Claim 1. We prove (51a) by induction on n. Without loss of generality, we can assume
σ � (1, 2, . . . ,n), then

Lσ �

AT
1A1 0 . . . 0

AT
2A1 AT

2A2 . . . 0

..

. ..
. . .

. ..
.

AT
nA1 AT

nA2 . . . AT
nAn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case, (51a) becomes

I − AL−1σ AT � PnPn−1 . . .P1.

The expression obviously holds for n � 1. Suppose the expression holds for n − 1 (i.e., for Â � [A1, . . . ,An−1]);
we have

Ẑ≜ I − Â L̂−1σ̂ Â
T � Pn−1 . . .P2P1, (55)
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where σ̂ � (1, 2, . . . ,n − 1) is a permutation of n − 1 elements and L̂σ̂ is the counterpart of Lσ for n − 1 blocks
defined as

L̂σ̂ �

AT
1A1 0 . . . 0

AT
2A1 AT

2A2 . . . 0

..

. ..
. . .

. ..
.

AT
n−1A1 AT

n−1A2 . . . AT
n−1An−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The two matrices Lσ and L̂σ′ are related by

Lσ � L̂σ̂ 0
AT

n Â I

[ ]
,

which implies

L−1σ � L̂−1σ̂ 0

−AT
n ÂL̂

−1
σ̂ I

[ ]
.

Therefore, we have

AL−1σ AT � Â,An
[ ] L̂−1σ̂ 0

−AT
nÂL̂

−1
σ̂ I

[ ]
Â,An
[ ]T � ÂL̂−1σ̂ ÂT − AnAT

nÂL̂
−1
σ̂ ÂT + AnAT

n

� Ẑ − AnAT
nẐ + AnAT

n

� I − I − AnAT
n

( )
I − Ẑ
( )

� I − PnPn−1 . . .P1,

where in the last step we use the induction hypothesis (55). Thus we have proved (51a). Summing up (51a) for
all possible permutations σ and dividing by n!, we obtain (51b). Q.E.D.

4.4. Proof of Proposition 2
According to (48), the (expected) update equation of RP-BCD is given by E(xk+1) − x∗ � (I −QATA)(E(xk) − x∗) �
Z(E(xk) − x∗), where Z � I −QATA � I − E(L−1σ ATA).

Consider a new coefficient matrix Ã � [Ã1, . . . , Ãn], where Ãi � Ai(AT
i Ai)−1

2. Clearly ÃT
i Ãi � Idi . Denote the

corresponding matrices as L̃σ, Z̃. Define Λ≜Diag((AT
1A1)

1
2, . . . , (AT

nAn)
1
2) � D1/2. When σ � (1, 2, . . . ,n), we have

Lσ �

AT
1A1 0 . . . 0

AT
2A1 AT

2A2 . . . 0

..

. ..
. . .

. ..
.

AT
nA1 AT

nA2 . . . AT
nAn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, L̃σ �

ÃT
1 Ã1 0 . . . 0

ÃT
2 Ã1 ÃT

2 Ã2 . . . 0

..

. ..
. . .

. ..
.

ÃT
nÃ1 ÃT

nÃ2 . . . ÃT
nÃn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� Λ−1LσΛ−1.

It is not hard to verify that the above relation L̃σ � Λ−1LσΛ−1 is true for any σ. Similarly, we have
ÃTÃ � Λ−1ATAΛ−1, thus

L̃−1σ ÃTÃ � ΛL−1σ ΛΛ−1ATAΛ−1 � ΛL−1σ ATAΛ−1.

This implies

Z̃ � E I − L̃−1σ ÃTÃ
( ) � Λ I − E L−1σ ATA

( )( )
Λ−1 � ΛZΛ−1.

Consider a sequence x̃k � Λxk and define x̃∗ � Λx∗. Then from the original update equation we have
Λ−1(E(x̃k+1) − x̃∗) � ZΛ−1(E(x̃k) − x̃∗), that is,

E x̃k+1
( ) − x̃∗ � ΛZΛ−1 E x̃k

( ) − x̃∗
( ) � Z̃ E x̃k

( ) − x̃∗
( )

.

According to Theorem 3, we have

E x̃k
( ) − x̃∗

⃦⃦ ⃦⃦ ≤ 1 − 1
n
λmin ÃTÃ

( )
,
1
3

{ }k
x̃0 − x̃∗

⃦⃦ ⃦⃦
. (56)
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Note that ‖E(x̃k) − x̃∗‖ � ‖Λ(E(xk) − x∗)‖ � ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(E(xk) − x∗)TΛ2E(xk) − x∗
√ � ‖E(xk) − x∗‖D, and ÃTÃ � Λ−1ATAΛ−1 �

D−1/2ATÃD−1/2. Substituting into (56), we obtain the desired inequality. Q.E.D.

4.5. Proof of Theorem 4
Now we consider the expected convergence rate of RP-ADMM. The difference with the analysis for RP-BCD is
that here we need to consider the distance between the eigenvalues of I − AQAT with −1/3, whereas for RP-
BCD what matters is the distance between the eigenvalues of I − AQAT and −1, which is at least 2/3 and thus
can be ignored.

Claim 2. Suppose the minimum and maximum eigenvalues of QATA are 0< τmin ≤ τmax < 4/3. Then

ρ(M) � max
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(1 − τmin)+

√
, (τmax − 1)+ + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

τmax(τmax − 1)+
√{ }

,

where z+ � max{z, 0}. Furthermore, we have

ρ(M) ≤ max 1 − 3
4
(4 − 3τmax), 1 − 1

2
τmin

{ }
. (57)

The proof of Claim 2 is given in Section 7.1. The next lemma provides a universal estimate of the maximum
eigenvalules of QATA.

Lemma 4. The maximum eigenvalues of QATA is at most 4
3 − 4

9
1

n+1, that is,

τmax � λmax QATA
( ) ≤ 4

3
− 4
9

1
n + 1

. (58)

The proof of Lemma 4 is given in Section 7.2

According to (54), which is established in the proof of the expected convergence rate of RP-BCD, we have

τmin � λmin QATA
( ) ≥ 1

n
λmin ATA

( )
. (59)

Substituting the bounds (58) and (59) into (57), we obtain

ρ(M) ≤ max 1 − 3
4
(4 − 3τmax), 1 − 1

2
τmin

{ }
� max 1 − 1

n + 1
, 1 − 1

2n
λmin ATA

( ){ }
. (60)

Because λmin(ATA) ≤ 1, 1
2n ≤ 1

n+1 , this bound can be simplified to

ρ(M) ≤ 1 − 1
2n

λmin ATA
( )

. Q.E.D.

Remark 5. The eigenvalues of QATA lie in the region (0, 4/3), which guarantees the expected convergence of RP-
ADMM. To obtain the expected convergence rate, we need to know the distance of the spectrum to the two
extremes 0 and 4/3. We conjecture that the bound can be improved to ρ(M) ≤ 1 − 1

2λmin(ATA). This requires more
effort than the conjecture of RP-CD: besides showing τmin ≥ O(λmin(ATA)), we also need to show τmax ≤
4
3 −O(λmin(ATA)). This is left as future work.

5. Proof of Lemma 1
The proof of Lemma 1 relies on two simple techniques. The first technique, as elaborated in Step 1 below, is to
factorize M and rearrange the factors. The second technique, as elaborated in the Step 2 below, is to reduce the
dimension by eliminating a variable from the eigenvalue equation.

Step 1. Factorizing M and Rearranging the Order of Multiplication.
The following observation is crucial: the matrix M defined by (43) can be factorized as

M � I 0
−A I

[ ]
QAT I
I A

[ ] −A I
I 0

[ ]
.
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Switching the order of the products by moving the first component to the last, we get a new matrix

M′ ≜ QAT I
I A

[ ] −A I
I 0

[ ]
I 0

−A I

[ ]
� QAT I

I A

[ ] −2A I
I 0

[ ]
� I − 2QATA QAT

−A I

[ ]
. (61)

Note that eig(XY) � eig(YX) for any two square matrices, thus

eig(M) � eig(M′).
To prove (44), we only need to prove

λ ∈ eig(M′) ⇐⇒ (1 − λ)2
1 − 2λ

∈ eig QATA
( )

. (62)

Step 2. Relate the Eigenvalues of M′ to the Eigenvalues of QATA (i.e., Prove (62)).
This step is simple because we only use the definition of eigenvalues. However, note that, without Step 1,

just applying the definition of eigenvalues of the original matrix M may not lead to a simple relationship
as (62).

We first prove one direction of (62):

λ ∈ eig(M′) �⇒ (1 − λ)2
1 − 2λ

∈ eig QATA
( )

. (63)

Suppose v ∈ C2N×1\{0} is an eigenvector of M′ corresponding to the eigenvalue λ, that is,

M′v � λv.

Partition v as v � [ v1v0 ], where v1, v0 ∈ CN×1. Using the expression of M′ in (61), we can write the above
equation as

I − 2QATA QAT

−A I

[ ]
v1
v0

[ ]
� λ

v1
v0

[ ]
,

which implies

I − 2QATA
( )

v1 +QATv0 � λv1, (64a)
−Av1 + v0 � λv0. (64b)

We claim that (63) holds when v1 � 0. In fact, in this case we must have v0 �� 0 (otherwise v � 0 cannot be an
eigenvector). By (64b) we have λv0 � v0, thus λ � 1. By (64a) we have 0 � QATv0 � QATA(A−1v0), which
implies (1−λ)2

1−2λ � 0 ∈ eig(QATA), therefore (63) holds in this case.
We then prove (63) for the case

v1 �� 0. (65)

The Equation (64b) implies (1 − λ)v0 � Av1. Multiplying both sides of (64a) by (1 − λ) and invoking this
equation, we get

(1 − λ) I − 2QATA
( )

v1 +QATAv1 � (1 − λ)λv1.
This relation can be simplified to

(1 − 2λ)QATAv1 � (1 − λ)2v1. (66)

We must have λ �� 1
2 ; otherwise, the above relation implies v1 � 0, which contradicts (65). Then (66) becomes

QATAv1 � (1 − λ)2
1 − 2λ

v1. (67)
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Therefore, (1−λ)
2

1−2λ is an eigenvalue of QATA, with the corresponding eigenvector v1 �� 0, which finishes the proof
of (63).

The other direction9

λ ∈ eig(M)⇐� (1 − λ)2
1 − 2λ

∈ eig QATA
( )

(68)

is easy to prove. Suppose (1−λ)2
1−2λ ∈ eig(QATA). We consider two cases.

Case 1. (1−λ)2
1−2λ � 0.

In this case λ � 1. Because 0 � (1−λ)2
1−2λ ∈ eig(QATA), there exists v0 ∈ CN\{0} such that QATAv0 � 0, and let

v1 � (0, . . . , 0)T ∈ CN×1; then v0, v1 and λ � 1 satisfy (64). Thus, v�[ v1v0 ] ∈ C2N\{0} satisfies Mv � λv, which
implies λ � 1 ∈ eig(M).

Case 2. (1−λ)2
1−2λ �� 0, then λ �� 1.

Let v1 be the eigenvector corresponding to (1−λ)2
1−2λ (i.e., pick v1 that satisfies (67)), and define v0 � v1/(1 − λ). It

is easy to verify that v�[ v1v0 ] satisfies Mv � λv, which implies λ ∈ eig(M).

Step 3. When Q is symmetric, prove (45) by simple algebraic computation.
Because Q is symmetric, we know that eig(QATA) � eig(AQAT) ⊆ R. Suppose τ ∈ R is an eigenvalue of

QATA; then any λ satisfying (1−λ)2
1−2λ � τ is an eigenvalue of M. This relation can be rewritten as λ2 +

2(τ − 1)λ + (1 − τ) � 0, which, as a real-coefficient quadratic equation in λ, has two roots:

λ1 � 1 − τ + ̅̅̅̅̅̅̅̅̅̅̅
τ(τ − 1)√

, λ2 � 1 − τ − ̅̅̅̅̅̅̅̅̅̅̅
τ(τ − 1)√

. (69)

Note that when τ(τ − 1)< 0, the expression
̅̅̅̅̅̅̅̅̅̅̅
τ(τ − 1)√

denotes a complex number i
̅̅̅̅̅̅̅̅̅̅̅
τ(1 − τ)√

, where i is the
imaginary unit. To prove (45), we only need to prove

max |λ1|, |λ2|{ }< 1⇐⇒ 0< τ<
4
3
. (70)

Consider three cases.

Case 1. τ< 0.
Then τ(τ − 1) � |τ|(|τ| + 1)> 0. In this case, λ1 � 1 + |τ| + ̅̅̅̅̅̅̅̅̅̅̅̅̅|τ|(|τ| + 1)√

> 1.

Case 2. 0< τ< 1.
Then τ(τ − 1)< 0, and (69) can be rewritten as

λ1,2 � 1 − τ ± i
̅̅̅̅̅̅̅̅̅̅̅
τ(1 − τ)√

,

which implies |λ1| � |λ2| �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(1 − τ)2 + τ(1 − τ)√ � ̅̅̅̅̅̅̅

1 − τ
√

< 1.

Case 3. τ> 1.
Then τ(τ − 1)> 0. According to (69), it is easy to verify λ1 > 0>λ2 and

|λ2| � τ − 1 + ̅̅̅̅̅̅̅̅̅̅̅
τ(τ − 1)√

> 1 − τ + ̅̅̅̅̅̅̅̅̅̅̅
τ(τ − 1)√ � |λ1|.

Then we have

max{|λ1|, |λ2|}< 1⇐⇒|λ2| � τ − 1 + ̅̅̅̅̅̅̅̅̅̅̅
τ(τ − 1)√

< 1⇐⇒ 1< τ<
4
3
.

Combining the conclusions of the three cases immediately leads to (70).

6. Proof of Lemma 2
This section is devoted to the proof of Lemma 2. We first give a proof overview in Section 6.1. The formal
proof of Lemma 2 is given in Section 6.2. The proofs of the technical results involved in the proof are given in
the subsequent subsections.

Without loss of generality, we can assume

AT
i Ai � Idi×di , i � 1, . . . ,n.
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To show this, let us write Mσ,M as Mσ(A1, . . . ,An) and M(A1, . . . ,An) respectively, that is, functions of the
coefficient matrix (A1, . . . ,An). Define Ãi � Ai(AT

i Ai)− 1
2 and

D≜Diag AT
1A1

( )− 1
2, . . . , AT

nAn
( )− 1

2, IN×N
( )

.

It is easy to verify that Mσ(A1, . . . ,An) � D−1Mσ(Ã1, . . . , Ãn)D, which implies

M(A1, . . . ,An) � D−1M Ã1, . . . , Ãn
( )

D.

Thus ρ(M(A1, . . . ,An)) � ρ(M(Ã1, . . . , Ãn)). In other words, normalizing Ai to Ãi, which satisfies ÃT
i Ãi � Idi×di ,

does not change the spectral radius of M.

6.1. Proof Overview
In the proof overview, we discuss a few issues one may encounter when proving the result, and how we
resolve these issues.

The simulations show that ‖QATA‖< 4
3 � ‖Q‖ ‖ATA‖, thus, we cannot relax ‖QATA‖ to the product of ‖Q‖

and ‖ATA‖ and have to treat QATA as a single subject. However, each entry of QATA is a complicated function
(in fact, a high order polynomial) of the entries of ATA. In other words, Q is like a black box. To open the
“black box,” we use a simple expression of Z � I − AQAT proved in Claim 1, that is, Z � Eσ(Pσ1 . . . ,Pσn), where
Pi � I − AiAT

i is directly related to Ai. The problem becomes how to connect the eigenvalues of Eσ(Pσ1 . . . ,Pσn)
with those of AAT � ∑

i AiAT
i � n −∑

i Pi.
Although this is a clear linear algebra problem, it is not easy to obtain a lower bound of Eσ(Pσ1 . . . ,Pσn). In

fact, even though we know the eigenvalues of Z � Eσ(Pσ1 . . . ,Pσn) are lower bounded by −1 because RP-CD
converges, it is not clear how to prove this lower bound directly from a linear algebra perspective.

In our solution, we apply two tricks. The first trick is to view Eσ(Pσ1 . . . ,Pσn ) as an induction formula that
connects it and its lower dimensional analogs. This is based on a simple observation that any permuta-
tion (σ1σ2 . . .σn) can be written as the concatenation of (σ1σ2 . . .σn−1) and σn, thus the expression of Z �
Eσ(Pσ1 . . . ,Pσn) can be decomposed accordingly. We then reduce the problem to bounding the eigenvalues of a
Jordan product PnẐ + ẐPn, where Pn is a projection matrix and Ẑ is the lower dimensional analog of Z. The
second trick is to apply a formula on the eigenvalues of Jordan product developed by Strang in 1962 [36].
Somewhat surprisingly, his formula exactly leads to the desired lower bound of −1/3.
6.2. Proof of Lemma 2
The proof can be divided into three steps: first provide an alternative expression of AQAT, then prove an
induction formula, and finally apply Strang’s formula to perform mathematical induction. This subsection
contains the major part of the proof, and the intermediate technical results will be proved in later subsections.

Step 0. Expression of I − AQAT.
As proved in Claim 1, we have a simple expression of the update matrix I − AQAT:

I − AQAT � 1
n!

∑
σ�(σ1,...,σn)∈Γ

PσnPσn−1 . . .Pσ1 .

Step 1. Induction Formula.
For any k ∈ [n], define

Γk ≜ {σ′ | σ′ is a permutation of [n]\{k}}. (71)

For any σ′ ∈ Γk, we define Lσ′ ∈ R(N−dk)×(N−dk) as a (n − 1) × (n − 1) block-partitioned matrix, with the
(σ′(i), σ′( j))-th block being

Lσ′ [σ′(i), σ′( j)]≜ AT
σ′(i)Aσ′( j) i ≥ j,

0 i< j.

{
(72)

We then define Q̂k ∈ R(N−dk)×(N−dk) by

Q̂k ≜
1
|Γk |

∑
σ′∈Γk

L−1σ′ , k � 1, . . . ,n. (73)
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Define Wk as the k-th block-column of ATA excluding the block AT
k Ak, that is,

Wk � AT
k A1, . . . ,AT

k Ak−1,AT
k Ak+1, . . . ,AT

k An
[ ]T, ∀k ∈ [n]. (74)

On the basis of the expression of I − AQAT presented before, we build a connection between the update matrix
I − AQAT and its lower dimensional analogs. The proof of Proposition 3 is given in Section 6.3.

Proposition 3. Define

Z � I − AQAT, Ẑk � I − ÂkQ̂kÂT
k ,

where Q is defined as in (39), Âk � [A1, . . . ,Ak−1,Ak+1, . . . ,An], and Q̂k is defined in (73), and Pk � I − AkAT
k . Then

we have

Z � 1
2n

∑n
k�1

PkẐk + ẐkPk
( )

. (75)

Step 2. Applying Strang’s Result on Jordan Product to Perform Mathematical Induction.
It is obvious that the product of two symmetric matrices is not necessarily symmetric, so it is common to

encounter the symmetrized product XY + YX, which is called Jordan product of two matrices X and Y. Our
induction formula basically states that Z is the average of the Jordan product of the lower dimensional analog
and Pk.

The eigenvalues of the Jordan product of two matrices have been studied before. The following result is
proved in Strang [36].

Lemma 5 (Strang [36, theorem 1]; Eigenvalues of Jordan Product). Suppose two symmetric positive-semidefinite matrices X
and Y satisfy

α1I � X � αnI, β1I � Y � βnI,

then the maximal (resp. minimal) eigenvalue of the Jordan product XY + YX are the largest (resp. smallest) of the set

2αiβj, i, j ∈ {1,n}, 16α1αnβ1βn − (β1 − βn)2(α1 − αn)2
4(α1 + αn)(β1 + βn)

{ }
. (76)

Let us come back to the proof of Lemma 2. We use mathematical induction to prove Lemma 2. For the basis of
the induction (n � 1), Lemma 2 holds because QATA � Id1×d1 . Assume Lemma 2 holds for n − 1; we will prove
Lemma 2 for n.

Consider one term of (75) PkẐk + ẐkPk. Note that Pk � I − AkAT
k is a projection matrix, because we have assumed

AT
k Ak � I. Combining with the induction hypothesis, we have

0 � Pk � I, − 1
3
I ≺ Ẑk ≺ I.

Let α1 � 0, αn � 1, β1 � −1/3, βn � 1; then the set (76) becomes (keep the repeated values)

{0, 0,−2/3, 2,−2/3}.
Then by Lemma 5 we have

− 1
3
I � 1

2
PkẐk + ẐkPk
( ) � I.

Note that because by the induction hypothesis the eigenvalues of Ẑk cannot achieve the extreme values of
region (−1/3, 1), the eigenvalues of 1

2 (PkẐk + ẐkPk) also cannot.10 So we have

− 1
3
I ≺ 1

2
PkẐk + ẐkPk
( ) ≺ I.

Thus, according to (75) we have

− 1
3
I ≺ Z ≺ I.

This finishes the induction step. Q.E.D.
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Remark 6. Where does the magical number −1/3 come from? It is actually the strange and complicated term
16α1αnβ1βn−(β1−βn)2(α1−α2

n)
4(α1+αn)(β1+βn) in Strang’s result (76), which occurs owing to the special structure of the Jordan product.

6.3. Proof of Proposition 3 (the Induction Formula)
It is easy to build an induction formula from the expression (51b). For example, when n � 3, the matrix∑

σ Pσ1Pσ2Pσ3 can be decomposed as the sum of P1(P2P3 + P3P2) + (P2P3 + P3P2)P1 and two other similar terms
(changing the outside part P1 to P2,P3 and the inside part P2P3 + P3P2 correspondingly). The inside part P2P3 +
P3P2 only involves two matrices, thus is a lower-dimensional analog. To make this even easier to see, denote
X � P1,Y � P2,Z � P3, then

2
∑

permutateX,Y,Z
XYZ � [X(YZ + ZY) + (YZ + ZY)X] + [Y(XZ + ZX) + (XZ + ZX)Y]

+[Z(XY + YX) + (XY + YX)Z].
A rigorous argument based on the above intuition is given as follows. Applying the Formula (51b) to the
matrix P1, . . . ,Pk−1,Pk+1, . . . ,Pn, and by the definition Âk � [A1, . . . ,Ak−1,Ak+1, . . . ,An] and the definition of Q̂k in
(73), we have

I − ÂkQ̂kÂk � 1
(n − 1)!

∑
σ�(σ1,...,σn−1)∈Γk

Pσn−1Pσn−1 . . .Pσ1 .

We then have

2 I − AQAT( ) � 2
n!

∑
σ�(σ1,...,σn)∈Γ

PσnPσn−1 . . .Pσ1

� 1
n

1
(n − 1)!

∑n
k�1

∑
σ�(σ1,...,σn−1)∈Γk

PkPσn−1Pσn−1 . . .Pσ1 + Pσn−1Pσn−1 . . .Pσ1Pk
( )

� 1
n

∑n
k�1

Pk I − ÂkQ̂kÂT
k

( ) + I − ÂkQ̂k Âk
( )

Pk
( )

,

which is the desired formula.

6.4. Proof of Proposition 1
We provide the proof of the expected convergence of BR-ADMM here, because this proof is a slightly smaller
subset of the proof of Theorem 1. We will just describe the necessary modifications.

We only need to prove a similar version of Theorem 2 (i.e., the spectral radius of the expected update matrix
of BR-ADMM is less than 1). Throughout the proof, we need to change the matrix Q � 1

|Γ|
∑

σ∈Γ Qσ to another
one defined as

QBR ≜
1

|ΓBR|
∑
σ∈ΓBR

Qσ, (77)

where ΓBR denotes the set of all possible permutations according to the Bernoulli randomization rule. It is easy
to see that |ΓBR| � 2n. Other matrices such as M should be changed accordingly.

The proof of Theorem 2 mainly consists of Lemma 1 and Lemma 2. Because Lemma 1 has nothing to do with
the specific expression of Q, we only need to prove Lemma 2 for BR-ADMM; that is, the matrix AQBRAT has all
eigenvalues in the region (0, 4/3). Following the proof of Lemma 2, we divide the proof into three steps.

Step 0. Expression of ZBR ≜ I − AQBRAT.
In Claim 1, we have proved the expression (51a) that I − AQσAT � PσnPσn−1 . . .Pσ1 for any permutation σ,

which implies

ZBR � I − AQBRAT �(77) 1
2n

∑
σ∈ΓBR

PσnPσn−1 . . .Pσ1 .
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Step 1. Induction Formula.
Notice that a characteristic of the Bernoulli randomization rule is that the first block is either updated first or

updated last. For instance, when n � 4, (1, 3, 4, 2) is a feasible permutation in ΓBR and (3, 4, 2, 1) is also a feasible
permutation, but (3, 1, 4, 2) is not feasible. After removing the first block, the rest n − 1 blocks form a per-
mutation in Γ̂BR, where Γ̂BR is the set of all permutation of 2, 3, . . . ,n according to the Bernoulli randomization
rule. In other words, we have ΓBR � {(1, σ̂), (σ̂, 1), where σ̂ ∈ Γ̂BR}. Thus we have an induction formula

ZBR � 1
2n

∑
σ�(σ1,...,σn−1)∈Γ̂BR

P1Pσn−1 . . .Pσ1 + Pσn−1 . . .Pσ1P1
( ) � 1

2
P1ẐBR + ẐBRP1
( )

, (78)

where ẐBR is the lower dimensional analog of ZBR for the rest n − 1 blocks (after removing the first block).

Step 2. Applying Mathematical Induction.
This step is almost the same as Step 2 of the proof of Lemma 2. More specifically, combining the induction

hypothesis that eig(ẐBR) ∈ (−1/3, 1), Strang’s result Lemma 5 and (78), we obtain the desired result eig(ZBR) ∈
(−1/3, 1). This finishes the proof.

7. Proof of Technical Results for Expected Convergence Rates
7.1. Proof of Claim 2
Suppose all the distinct eigenvalues of I −QATA are 0< τN′ < · · · < τ1 < 4/3, where 1 ≤ N′ ≤ N. Denote τmin �
τN′ , τmax � τ1. According to Lemma 1, the expected update matrix of RP-ADMM M has 2N′ distinct eigen-
values λk,1, λk,2 given by

λk,1 � 1 − τk +
̅̅̅̅̅̅̅̅̅̅̅̅̅
τk(τk − 1)√

, λk,2 � 1 − τk −
̅̅̅̅̅̅̅̅̅̅̅̅̅
τk(τk − 1)√

, k � 1, . . . ,N′.

Suppose the integer m ∈ [1,N′ + 1] satisfies τm ≤ 1< τm−1. When m � 1, every τk ≤ 1; when m � N′ + 1, ev-
ery τk > 1.

For N′ ≥ k ≥ m, that is, τk ≤ 1, we have τk(τk − 1) ≤ 0; thus, the two corresponding eigenvalues of M are

λk,1 � 1 − τ ± i
̅̅̅̅̅̅̅̅̅̅̅
τ(1 − τ)√

, λk,2 � 1 − τ ± i
̅̅̅̅̅̅̅̅̅̅̅
τ(1 − τ)√

,

which implies |λk,1| � |λk,2| �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(1 − τk)2 + τk(1 − τk)

√ � ̅̅̅̅̅̅̅̅
1 − τk

√
. Thus, ρ1 � maxN′≥k≥m{|λk,1|, |λk,2|} �

̅̅̅̅̅̅̅̅̅̅
1 − τN′

√ �̅̅̅̅̅̅̅̅̅̅̅
1 − τmin

√
if such k exists; when such k does not exist (i.e., τk > 1 ∀ k), we denote ρ1 � 0, which equals̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(1 − τmin)+

√
. In summary, we have ρ1 �

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(1 − τmin)+
√

.
For m − 1 ≥ k ≥ 1 (i.e., τk > 1), we have τk(τk − 1)> 0. It is easy to verify λk,1 > 0>λk,2 and

|λk,2| � τk − 1 + ̅̅̅̅̅̅̅̅̅̅̅̅̅
τk(τk − 1)√

> 1 − τk +
̅̅̅̅̅̅̅̅̅̅̅̅̅
τk(τk − 1)√ � |λk,1|.

Denote ρ2 � maxm−1≥k≥1{|λk,1|, |λk,2|}, then
ρ2 � max

m−1≥k≥1
{|λk,2|} � max

m−1≥k≥1
τk − 1 + ̅̅̅̅̅̅̅̅̅̅̅̅̅

τk(τk − 1)√{ }
� τmax − 1 + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

τmax(τmax − 1)√
if such k exists; when such k does not exist (i.e., τk ≤ 1 ∀ k), we denote ρ2 � 0, which equals
(τmax− 1)+ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
τmax((τmax−1)+)

√
.

Combining the two scenarios, we have ρ(M) � maxN′≥k≥1{|λk,1|, |λk,2|} � max{ρ1, ρ2} � max{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(1 − τmin)+
√

,

(τmax − 1)+ + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
τmax((τmax − 1)+)

√ }.
Next, we prove

(τmax − 1)+ + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
τmax(τmax − 1)+

√ ≤ max 1 − 3
4
(4 − 3τmax), 0

{ }
,̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(1 − τmin)+

√ ≤ 1 − 1
2
τmin.

(79)

In fact, when 4/3≥ τ≥ 1, we have

1 − τ − 1 + ̅̅̅̅̅̅̅̅̅̅̅
τ(τ − 1)√( )

� 2 − τ − ̅̅̅̅̅̅̅̅̅̅̅
τ(τ − 1)√ � (2 − τ)2 − τ(τ − 1)

2 − τ + ̅̅̅̅̅̅̅̅̅̅̅
τ(τ − 1)√ � 3 − 4τ

2 − τ + ̅̅̅̅̅̅̅̅̅̅̅
τ(τ − 1)√ ≥ 3

4
(3 − 4τ),
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thus τ − 1 + ̅̅̅̅̅̅̅̅̅̅̅
τ(τ − 1)√ ≤ 1 − 3

4 (3 − 4τ). When τ< 1, clearly τ − 1 + ̅̅̅̅̅̅̅̅̅̅̅
τ(τ − 1)√ � 0. Thus (τ − 1)+ + ̅̅̅̅̅̅̅̅̅̅̅̅

τ(τ − 1)+
√ ≤

max{0, 1 − 3
4 (4 − 3τ)}. For the second relation, if 0 ≤ τ< 1 then

̅̅̅̅̅̅̅
1 − τ

√ � 1 − τ
1+ ̅̅̅̅

1−τ√ ≤ 1 − τ
2 ; if 1 ≤ τ ≤ 4/3, then̅̅̅̅̅̅̅̅̅̅̅(1 − τ)+

√ � 0< 1 − 1
2 τ. Thus,

̅̅̅̅̅̅̅̅̅̅̅(1 − τ)+
√ ≤ 1 − 1

2 τ holds for any τ ∈ [0, 4/3].
Substituting (79) into the expression of ρ(M), we obtain the desired inequality

ρ(M) ≤ max 1 − 3
4

4 − 3τmax( ), 1 − 1
2
τmin

{ }
.

7.2. Proof of Lemma 4
This is one of the two main lemmas of proving the expected convergence rate of RP-ADMM (the other is the
expected convergence rate of RP-CD).

The proof outline of Lemma 4 and the main techniques are described below. The previous proof for the
expected convergence of RP-ADMM in Section 6 is not strong enough to prove a convergence rate. We have to
obtain a more refined estimate of the spectral radius of AQAT. To do so, we transform the induction formula in
Proposition 3 to a “dual” form: instead of AQAT, we consider a similar matrix QATA. We then apply the two
simple techniques used in the proof of Lemma 1: factorize and rearrange, and reduce the dimension by
eliminating a variable from the eigenvalue equation. We obtain a somewhat complicated inequality relating
λmax(QATA) and its lower-dimensional analog λmax(Q̂ÂTÂ). Finally, we perform a detailed analysis of the
inequality to prove the desired bound.

7.2.1. Step 1. Mathematical Induction and Induction Formula.
Define a sequence {αk}∞k�1 such that

α1 � 1/3, αk+1 � h(αk)≜ αk

8
16 − 3αk

2 + 3αk
. (80)

It is easy to verify that 0<αk+1 <αk ≤ 1/3 for all k. The following claim provides a bound of αk (the proof will
be given in Section 7.2.4).

Claim 3. Suppose the sequence {αk}∞k�1 satisfies (80); then αk ≥ 4
9(k+1) ,∀ k ≥ 1.

According to this claim, to prove the desired result λmax(AQAT) ≤ 4
3 − 4

9(k+1) , we only need to prove the
following result:

eig AQAT( ) ⊆ 0,
4
3
− αn

( ]
. (81)

We prove this result by mathematical induction. When n � 1, because ATA � AT
1A1 � I, we have

λmin(AQAT) � λmax(AQAT) � 1 � 4
3 − α1.

Suppose the result holds for n − 1 (i.e., for a problem with n − 1 blocks); the eigenvalues of the corresponding
matrix ÂQ̂ÂT lie in the region (0, 43 − αn−1).

Next, we build the induction formula, which is the dual form of the one we derived before. According to
(75), we have

2 I − AQAT( ) � 1
n

∑n
k�1

Pk I − ÂkQ̂kÂk
( ) + I − ÂkQ̂kÂk

( )
Pk

( )
,

which can be rewritten as

AQAT � 1
n

∑n
k�1

I − 1
2
Pk I − ÂkQ̂kÂk

( ) − 1
2

I − ÂkQ̂kÂk
( )

Pk

[ ]
. (82)

Note that

I − Pk I − ÂkQ̂kÂk
( ) � I − I − AkAT

k

( )
I − ÂkQ̂kÂT

k

( )
� AkAT

k + ÂkQ̂kÂT
k − AkAT

k ÂkQ̂k ÂT
k

� Âk,Ak
[ ] Q̂k 0

−AT
k ÂkQ̂k I

[ ]
Âk,Ak
[ ]T.
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Thus the symmetrized version

I − 1
2
Pk I − ÂkQ̂kÂk

( ) − 1
2

I − ÂkQ̂kÂk
( )

Pk (83)

� Âk,Ak
[ ] Q̂k − 1

2
Q̂T

k Â
T
k Ak

− 1
2
AT

k ÂkQ̂k I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Âk,Ak
[ ]T (84)

� ĀkQk ĀT
k , (85)

where in the last step we use the definitions

Āk ≜ Âk,Ak
[ ]

, Qk ≜
Q̂k − 1

2
Q̂kWk

− 1
2
WT

k Q̂k Idk×dk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (86)

Summing up (85) for k � 1, . . . ,n and applying (82), we have

AQAT � 1
n

∑n
k�1

ĀkQkĀT
k . (87)

Consequently,

1
n

∑n
k�1

λmin ĀkQkĀT
k

( ) ≤ λmin AQAT( ) ≤ λmax AQAT( ) ≤ 1
n

∑n
k�1

λmax ĀkQkĀT
k

( )
. (88)

To prove eig(AQAT) ⊆ (0, 43 − αn], we only need to prove for any k � 1, . . . , n,

eig ĀkQkĀT
k

( ) ⊆ 0,
4
3
− αn

( )
. (89)

Note that Q̂k only depends on the entries of ÂT
k Âk ∈ R(N−dk)×(N−dk), which has (n − 1) × (n − 1) blocks; thus by the

induction hypothesis, we have

eig Q̂kÂT
k Âk

( ) ⊆ 0,
4
3
− αn−1

( ]
. (90)

Proposition 4. Suppose A � [Ân,An] ∈ RN×N is a nonsingular matrix, where Ân ∈ RN×(N−dn), and An ∈ RN×dn satisfies
AT

nAn � Idn×dn . Suppose Q̂n ∈ R(N−dn)×(N−dn) is symmetric, satisfying

eig AQ̂nAT( ) ⊆ 0,
4
3
− αn−1

( ]
, (91)

where {αk} is defined in (80). Define

Wn ≜ ÂT
nAn ∈ R(N−dn)×dn , Qn ≜

Q̂n − 1
2
Q̂nWn

− 1
2
WT

n Q̂n Idn×dn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (92)

Then eig(AQnAT) ⊆ (0, 43 − αn].
The proof of Proposition 4 will be divided into two parts and given in Sections 7.2.2 and 7.2.3.
We claim that (89) follows from the induction hypothesis (90) and the expressions of Āk and Qk in (86). In

fact, the above proposition directly proves (89) for k � n. If we replace A, Ân,An, Q̂n,Qn by Āk, Âk,Ak, Q̂k,Qk,
respectively, in the following proposition, we will obtain (89) for any k. Finally, as mentioned earlier, the
desired result eig(AQAT) ⊆ (0, 34 − αn] in Lemma 2 follows immediately from (89) and (88).

7.2.2. Step 2. Relation Between λmax(AnQAT
n ) and Its Analog.

In this subsection, we provide a proof of a weaker result eig(AQnAT) ⊆ (0, 43) under the conditions of
Proposition 4; the proof of the desired result eig(AQnAT) ⊆ (0, 43 − αn] will be provided in the next subsection.
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For simplicity, throughout this proof, we denote

W≜Wn ∈ R(N−dn)×dn , Q̂≜ Q̂n ∈ R(N−dn)×(N−dn), Â≜ Ân ∈ RN×(N−dn).

According to the assumption of Proposition 4, we have

λ̂≜λmax AQ̂AT( ) ∈ 0,
4
3
− αn−1

( ]
. (93)

We first prove

0 � Θ≜WTQ̂W ≺ 4
3
I. (94)

Because eig(Q̂ÂTÂ) ⊆ (0,∞) and Â is nonsingular, thus Q̂ � 0. Then we have Θ � WTQ̂W � 0, which proves the
first relation of (94). By the definition W � ÂTAn we have

ρ(Θ) � ρ AT
nÂQ̂ÂTAn

( ) � max
v∈Rdn×1,‖v‖�1

vTAT
nÂQ̂ÂTAnv

≤ ρ ÂQ̂ÂT( )
max

v∈Rdn×1,‖v‖�1
‖Anv‖2 � ρ ÂQ̂ÂT( )‖An‖2 � ρ ÂQ̂ÂT( )

<
4
3
,

(95)

where the last equality is due to the assumption AT
nAn � I, and the last inequality is due to the assumption (91).

By (95) we have Θ ≺ 4
3 I, thus (94) is proved.

We apply a trick that we have previously used: factorize Qn and change the order of multiplication. To be
specific, Qn defined in (92) can be factorized as

Qn �
I 0

− 1
2
WT I

[ ]
Q̂ 0

0 I − 1
4
WTQ̂W

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ I − 1

2
W

0 I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � J

Q̂ 0

0 C

[ ]
JT, (96)

where

J≜
I 0

− 1
2
WT I

[ ]
,

I in the upper left block denotes the (N − dn)-dimensional identity matrix, I in the lower right block denotes the
dn-dim identity matrix, and

C≜ I − 1
4
WTQ̂W ∈ Rdn×dn . (97)

It is easy to prove

eig AQnAT( ) ⊆ (0,∞). (98)

In fact, we only need to prove Qn � 0. According to (96), we only need to prove [ Q̂ 0
0 C ] � 0. This follows from

Q̂ � 0 and the fact C � I − 1
4W

TQ̂W �(94) I − 1
3 I � 0. Thus (98) is proved.

It remains to prove

ρ AQnAT( )
<

4
3
. (99)

Denote B̂≜ ÂTÂ ∈ R(N−dn)×(N−dn); then we can write ATA as

ATA � B̂ W
WT I

[ ]
. (100)

We simplify the expression of ρ(AQnAT) as follows:

ρ AQnAT( ) � ρ AJ Q̂ 0
0 C

[ ]
JTAT

( )
� ρ Q̂ 0

0 C

[ ]
JTATAJ

( )
. (101)
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By algebraic computation, we have

JTATAJ � I − 1
2
W

0 I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ B̂ W

WT I

[ ] I 0

− 1
2
WT I

[ ]

� I − 1
2
W

0 I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ B̂ − 1

2
WWT W

1
2
WT I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

B̂ − 3
4
WWT 1

2
W

1
2
WT I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(102)

thus,

Y≜ Q̂ 0
0 C

[ ]
JTATAJ � Q̂ 0

0 C

[ ] B̂ − 3
4
WWT 1

2
W

1
2
WT I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

Q̂B̂ − 3
4
Q̂WWT 1

2
Q̂W

1
2
CWT C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (103)

Suppose λ> 0 is the maximal eigenvalue of Y. According to (101) that ρ(AQnAT) � ρ(Y), we also have λ �
λmax(AQnAT). To prove (99), we only need to prove

λ<
4
3
. (104)

Suppose v ∈ RN×1\{0} is the eigenvector corresponding to λ (i.e., Zv � λv). Partition v into v � v1
v0

[ ]
, where

v1 ∈ RN−dn , v0 ∈ Rdn . According to the expression of Z in (103), Zv � λv implies

Q̂B̂ − 3
4
Q̂WWT

( )
v1 + 1

2
Q̂Wv0 � λv1, (105a)

1
2
CWTv1 + Cv0 � λv0. (105b)

If λI − C is singular (i.e., λ is an eigenvalue of C), then by (94) we have 2
3 I ≺ C � 1 − 1

4Θ � I, which implies λ ≤ 1,
thus (104) holds. In the following, we assume

λI − C is nonsingular. (106)

An immediate consequence is

v1 �� 0,

because otherwise (105b) implies Cv0 � λv0, which combined with (106) leads to v0 � 0 and thus v � 0, a
contradiction.

By (105b) we get

v0 � 1
2
(λI − C)−1CWTv1.

Plugging into (105a), we obtain

λv1 � Q̂B̂ − 3
4
Q̂WWT

( )
v1 + 1

2
Q̂W

1
2
(λI − C)−1CWTv1 � Q̂B̂ + Q̂WΦWT( )

v1, (107)

where

Φ≜ − 3
4
I + 1

4
(λI − C)−1C � −I + 1

4
I + (λI − C)−1C[ ]

� −I + λ

4
(λI − C)−1 � −I + λ (4λ − 4)I +Θ[ ]−1.

(108)

Here we have used the definition C � I − 1
4W

TQ̂W � I − 1
4Θ. Because Θ is a symmetric matrix, Φ is also a

symmetric matrix.
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Define

H̃≜ Q̂WΦWT ∈ R(N−dn)×(N−dn), ,H≜WTQ̂WΦ � ΘΦ ∈ Rdn×dn . (109)

As a well-known linear algebra result, H̃ and H have the same nonzero eigenvalues. Note that λmax(H) may
not be equal to λmax(H̃) owing to the possible zero eigenvalues. Nevertheless, we can define λ+

max(X)≜
max{λmax(X), 0}, and then we have

λ+
max H̃

( ) � λ+
max(H).

According to (109) and (108), we know

H � ΘΦ � Θ −I + λ (4λ − 4)I +Θ[ ]−1( )
� −Θ + λΘ (4λ − 4)I +Θ[ ]−1
� −Θ + λ I − 4λ − 4( ) 4λ − 4( )I +Θ[ ]−1( )( )
� −Θ + λI − λ 4λ − 4( ) 4λ − 4( )I +Θ[ ]−1.

It is well known that if αI +Θ is invertible, then Θ has an eigenvalue θ iff (αI +Θ)−1 has an eigenvalue (α + θ)−1,
and the corresponding eigenvectors are the same. Similarly, because we already assumed (4λ − 4) I +Θ is invertible,
θ is an eigenvalue of Θ iff H � −Θ + λI − λ(4λ − 4)[(4λ − 4)I +Θ]−1 has an eigenvalue −θ + λ − λ(4λ−
4)[(4λ − 4) + θ]−1. Recall that Θ � WTQ̂W satisfies 0 � Θ � λ̂I; thus any eigenvalue θ satisfies 0 ≤ θ ≤ λ̂. Therefore

λmax(H) ≤ max
θ∈[0,λ̂]

−θ + λ − λ 4λ − 4( )
4λ − 4( ) + θ

{ }
≜ g(θ). (110)

Because v1 �� 0, without loss of generality, we can assume ‖v1‖ � 1. We have

λ � vT1 Q̂B̂v1 + vT1 H̃v1 ≤ λ̂ + vT1 H̃v1 ≤ λ̂ + λ+
max(H̃) � λ̂ + λ+

max(H)

≤ λ̂ +max 0, max
θ∈[0,λ̂]

−θ + λ − λ 4λ − 4( )
(4λ − 4) + θ

{ }{ }
,

(111)

where the first equality is due to (107), the first inequality is due to the induction hypothesis, the second
inequality uses the obvious relation λmax(H̃) ≤ λ+

max(H̃), and the last inequality is due to (110).
To prove (104), we consider two cases.

Case 1. maxθ∈[0,λ̂] g(θ) ≤ 0.
In this case, λ ≤ λ̂< 4/3, where the first inequality is due to (111), and the second inequality is due to the

induction hypothesis. Thus, in Case 1 (104) holds.

Case 2. maxθ∈[0,λ̂] g(θ)> 0.
Then there exists some θ ≥ 0 such that g(θ)> 0. Note that g(θ) can also be expressed as g(θ) �

θ(−1 + λ
(4λ−4)+θ); thus

−1 + λ

4λ − 4( ) + θ
> 0. (112)

If λ< 1, then (104) already holds; so we can assume λ> 1. Thus (112) implies 1< λ
(4λ−4)+θ ≤ λ

4λ−4 , which leads to
λ< 4

3. Thus in Case 2 (104) also holds. This finishes the proof of (104).

Remark 7. The proof of this subsection can lead to an alternative proof of Lemma 2. In particular, the induction step
(Step 2) of Section 6.2 can be replaced by the proof here. The proof presented here is more complicated and less
intuitive than the one in Section 6.2 (which is just a straightforward application of Strang’s result Lemma 5), but the
benefit is that it can help establish a stronger bound of λ, as done in the next subsection.

7.2.3. Step 3. More Precise Bound of λ. We will continue the proof in Section 7.2.2, to further prove

λ � λmax AQnAT( ) ≤ 4/3 − αn. (113)
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We rewrite (111) as follows:

λ ≤ λ̂ +max 0, max
θ∈[0,λ̂]

g(θ)
{ }

, where g(θ) � λ − λ(4λ − 4)
4λ − 4 + θ

− θ. (114)

If λ< 1, then we are done because 1 ≤ 4/3 − αn. Assume 1 ≤ λ< 4/3 from now on.
We first analyze the function g(θ). Taking the derivative of g, we get

g′(θ) � λ(4λ − 4)
(4λ − 4 + θ)2 − 1 �

̅̅̅̅̅̅̅̅̅̅̅̅̅
λ 4λ − 4( )√ + 4λ − 4 + θ

( ) ̅̅̅̅̅̅̅̅̅̅̅̅̅
λ(4λ − 4)√ − 4λ + 4 − θ

( )
(4λ − 4 + θ)2 .

Because λ> 1 and θ ≥ 0, the term in the first bracket in the numerator is positive. Define

θ∗ � ̅̅̅̅̅̅̅̅̅̅̅̅̅
λ 4λ − 4( )√ − 4λ + 4> 0,

where the inequality holds due to λ< 4/3. Then we have

g′(θ) ≥ 0, θ ≤ θ∗;
≤ 0, θ>θ∗.

{
Therefore, g(θ) is increasing in [0, θ∗] and decreasing in [θ∗,∞). This implies

g(θ) ≤ g θ∗( ), ∀θ ≥ 0. (115)

According to 0<λ< 4/3, we have λ>
̅̅̅̅̅̅̅̅̅̅̅̅̅
λ(4λ − 4)√ � 4λ − 4 + θ∗ ⇒ −1 + λ

4λ−4+θ∗ > 0 ⇒ g(θ∗)> 0. Together with
(115) we obtain max{0,maxθ∈[0,λ̂] g(θ)} ≤ g(θ∗). Substituting into (114), we obtain

λ ≤ λ̂ + g θ∗( ).
We will derive an inequality on λ and λ̂ from the above relation as below. Substituting the expression of g(·)
into the relation, we obtain

λ ≤ λ̂ + λ − λ 4λ − 4( )
4λ − 4 + θ∗ − θ∗ �⇒ λ̂ ≥ λ(4λ − 4)

4λ − 4 + θ∗ + θ∗ � ̅̅̅̅̅̅̅̅̅̅̅̅̅
λ(4λ − 4)√ + θ∗ � 2

̅̅̅̅̅̅̅̅̅̅̅̅̅
λ(4λ − 4)√ − 4λ + 4.

This implies

λ̂2 + 4λ − 4( )2 + 2λ̂ 4λ − 4( ) ≥ 4λ 4λ − 4( )
⇐⇒ λ̂2 − λ2 + 2 λ̂ − λ

( )
4λ − 4( ) + λ − 4λ − 4( )( )2 ≥ 0

⇐⇒ λ̂ − λ
( )

λ̂ + λ
( ) + 2 λ̂ − λ

( )
4λ − 4( ) + 4 − 3λ( )2 ≥ 0.

(116a)

Define

δ � 4/3 − λ ∈ (0, 1/3), δ̂ � 4/3 − λ̂ ∈ (0, 4/3). (117)

Substituting into (116a), we obtain

δ − δ̂
( )

8/3 − δ − δ̂
( ) + δ − δ̂

( )
8/3 − 8δ( ) + 9δ2 ≥ 0

⇐⇒ δ − δ̂
( )

16/3 − 9δ − δ̂
( ) + 9δ2 ≥ 0

⇐⇒ 16
3
δ − 16

3
δ̂ + 8δ̂δ + δ̂2 ≥ 0

⇐⇒ δ ≥ δ̂ 16 − 3δ̂
( )
8 2 + 3δ̂
( ) � h δ̂

( )
.

It is easy to verify that h(t) is increasing in t ∈ [0, 4/3]; in fact, h′(t) � 36
(2+3t)2 − 1 � (8+3t)(4−3t)

(2+3t)2 ≥ 0 for t ∈ [0, 4/3].
According to (93), we have δ̂ � 4/3 − λ̂ ≥ αn−1. Applying the monotonicity of h, we have

δ ≥ h δ̂
( ) ≥ h αn−1( ) � αn,

which combined with (117) leads to (113). This finishes the proof of Proposition 4.
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7.2.4. Proof of Claim 3. Define another sequence as ωk � 16
3αk

− 9k. Then αk � 16
3

1
9k+ωk

and ω1 � 7, ω2 � 38/5. We
then derive the recurrence equation of ωk. According to (80), we have

16
3

1
9k + 9 + ωk+1

� 2
3

1
9k + ωk

16 − 16/(9k + ωk)
2 + 16/(9k + ωk) � 2

3
1

9k + ωk

16(9k + ωk − 1)
2(9k + ωk + 8)

�⇒9k + 9 + ωk+1 � (9k + ωk) 9k + ωk + 8( )
9k + ωk − 1

�⇒ωk+1 � ωk + 1
9k + ωk − 1

(9k + ωk)(9k + ωk + 8) − (9k + ωk − 1)(9k + 9 + ωk)[ ]

�⇒ωk+1 � ωk + 9
9k + ωk − 1

.

It is easy to see that ωk > 0 ⇒ ωk+1 >ωk > 0, thus

ωk >ω1 � 7, ∀ k.

Furthermore, ωk+1 � ωk + 9
9k+ωk−1 ≤ ωk + 1

k , thus

ωk ≤ ω1 +
∑k−1
j�1

1
j
≤ 8 + log(k − 1).

The lower bound and upper bound on ωk imply upper and lower bounds on αk:

16
3

1
9k + 7

≥ αk ≥ 16
3

1
9k + 8 + log(k − 1) . (118)

As a side comment, this implies that limk→∞ αk � 16
27k ≈ 0.59

k . For our purpose, we need a universal lower bound
on αk. When k ≥ 3, we have 3k ≥ 8 + log(k − 1), thus 12k ≥ 9k + 8 + log(k − 1), which further implies

16
3

1
9k + 8 + log(k − 1) ≥

4
9k

, ∀k ≥ 3.

Combining with the bound (118), we obtain

αk ≥ 4
9k

>
4

9(k + 1) , ∀ k ≥ 3.

Notice that α1 � 1
3 >

4
9 · 12 , and α2 � 5

24 >
4
9 · 13 ; we have αk >

4
9(k+1) for any k ≥ 1. This finishes the proof of

the claim.

7.3. Proof of Lemma 3
We rewrite the lemma statement below. Suppose Pi ∈ RN×N , i � 1, . . . ,n are projection matrices; then the lemma
claims that

1
n!

∑
σ�(σ1,...,σn)∈Γ

PσnPσn−1 . . .Pσ1 � 1
n

∑
i
Pi. (119)

We first prove the case n � 2, n � 3, and n � 4, then prove the general case n � 2k and n � 2k + 1 separately.
When n � 2, (119) reduces to P1P2 + P2P1 � P1 + P2. Notice that Pi � P2

i because Pi is a projection matrix, we
have P1 + P2 − P1P2 + P2P1 � P2

1 + P2
2 − P1P2 + P2P1 � (P1 − P2)2 � (P1 − P2)T(P1 − P2) � 0.

When n � 3, (119) reduces to 1
6
∑

i,j,k are distinct PiPjPk � 1
3 (P1 + P2 + P3). Note that (Pi − Pk)Pj(Pi − Pk) � 0, thus

PiPjPi + PkPjPk � PiPjPk + PkPjPi.

Summing up the above inequality for all possible triples (i, j, k), we get∑
i��j

PiPjPi �
∑

i,j,k are distinct
PiPjPk. (120)
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We then need to bound the left-hand-side of the above inequality. Because I − Pj � 0, we have Pi(I − Pj)Pi � 0,
which implies Pi � PiPjPi. Summing up this inequality for all pairs i �� j, we obtain 1

6
∑

i ��j PiPjPi � 1
3 (P1 + P2 + P3).

Combining with (120), we obtain the desired inequality 1
6
∑

i,j,k are distinct PiPjPk � 1
3 (P1 + P2 + P3).

The proof for n � 4 illustrates partially the gist of a general proof, so we present this proof. When n � 4, (119)
reduces to 1

24
∑

i,j,k,l are distinct PiPjPkPl � 1
4 (P1 + P2 + P3 + P4). Similar to (120) in the n � 3 case, we first prove

1
24

∑
i,j,k,l are distinct

PiPjPkPl ≤ 1
12

∑
i��j

PiPjPi. (121)

To prove this inequality, we need the following two basic inequalities:

Pi − Pl( ) Pj + Pk
( )2(Pi − Pl) � 0,

(Pi + Pl) Pj − Pk
( )2(Pi + Pl) � 0.

Summing up these two inequalities, we can eliminate terms like PiPjPkPi (with three distinct subscripts) and
keep the terms like PiPjPi (with two distinct subscripts) and PiPjPkPl (with four distinct subscripts), to obtain

PiPjPi + PiPkPi + PlPjPl + PlPkPl � PiPjPkPl + PiPkPjPl + PlPjPkPi + PlPkPjPi.

Summing up this inequality for all possible (i, j, k, l) that are distinct, we obtain (121). Similar to the proof of
n � 3 case, we have 1

12
∑

i��j PiPjPi ≤ 1
4 (P1 + P2 + P3 + P4); thus combining with (121) we obtain the desired result.

We next prove the case n � 2k, where k ≥ 2 is a positive integer. We will prove that

Eσ∈Γ PσnPσn−1 . . .Pσ1

( ) � Eπ∈Γk Pπ1 . . .Pπk−1PπkPπk−1 . . .Pπ1

( )
, (122)

where Γk is the set of k-permutations of 1, 2, . . . ,n (here, a k-permutation is a permutation of k distinct numbers
chosen from 1, 2, . . . ,n), and Eσ∈Γ and Eπ∈Γk denote the expectation over a uniform distribution on Γ and Γk,
respectively.

To prove (122), we need the following fact: for any ε � (ε1, . . . , εk) ∈ {1,−1}k, we have

Gσ,ε ≜ Pσn + ε1Pσ1

( )
Pσn−1 + ε2Pσ2

( )
. . . Pσk+1 + εkPσk

( )
Pσk+1 + εkPσk

( )
. . . Pσn + ε1Pσ1

( ) � 0. (123)

This relation holds because for any positive-semidefinite matrix X and any symmetric matrix Y, we have
YXY � YTXY � 0. Applying this fact k times leads to (123).

The expression of Gσ,ε in (123) involves 2k terms in the form of Pi1Pi2 . . .Pin . To prove (122), only two terms
are of interest to us. The strategy is to pick εi’s properly so that summing up a bunch of relations of the form
(123) will eliminate all but the two desired terms. We elaborate this strategy below.

Define

Λk ≜ ε1, . . . , εk( ) ∈ 1,−1{ }k | the number of − 1 in ε1, . . . , εk is odd
{ }

,

Λc
k � ε1, . . . , εk( ) ∈ 1,−1{ }k | the number of − 1 in ε1, . . . , εk is even

{ }
.

For example, when k � 3, Λ3 � {(−1, 1, 1), (1,−1, 1), (1, 1,−1), (−1,−1,−1)}, and the complement Λc
3 � {(1, 1, 1),

(−1,−1, 1), (−1, 1,−1), (1,−1,−1)}. As a well-known fact,

Λc
k

⃒⃒ ⃒⃒ − |Λk | �
∑

i is even,0≤i≤n,

n
i

( )
− ∑

i is odd,0≤i≤n

n
i

( )
� (1 − 1)k � 0. (124)

This matrix Gσ,ε can be expressed as the sum of 2k terms, and each term is of the form ±Pπ1 . . .Pπn , where
πi ∈ {σi, σn+1−i}. For the fixed permutation σ, define a set

Ω(σ) � π1, . . . , πn( ) | πi ∈ σi, σn+1−i{ },∀i{ }.
We partition the set into three subsets:

Ω0(σ) � π1, . . . , πn( ) ∈ Ω | πi � πn+1−i,∀i{ },
Ω1(σ) � π1, . . . , πn( ) ∈ Ω | πi �� πn+1−i,∀i{ },
Ω2(σ) � Ω\ Ω0 ∩Ω1( ).
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For most of the proof, we will use the abbreviation Ωt � Ωt(σ), t � 0, 1, 2. For any π � (π1, . . . , πn) ∈ Ω, define an
indicator vector of π as δ(π) � (δ1, . . . , δk), where each δi is determined by

δi � I πi − πn+1−i( ) � 0, πi � πn+1−i,
1, πi �� πn+1−i,

{
(125)

where I(z) equals 0 if z � 0 and equals 1 if z �� 0. For example, when n � 6 and π � (σ1, σ2, σ3, σ4, σ2, σ6), the
corresponding indicator vector is (0, 0, 1); when π � (σ1, σ2, σ3, σ3, σ2, σ1), the indicator vector is (0, 0, 0). Clearly,
we have

δ(π) � (0, 0, . . . , 0), ∀π ∈ Ω0; δ(π) � (1, 1, . . . , 1), ∀π ∈ Ω1; δ(π) /∈ 0k, 1k{ }, ∀π ∈ Ω2. (126)

In the expression of Gσ,ε, half of the terms have coefficient 1 and the other half have coefficient −1. To
understand which terms have coefficient 1 and which have coefficient −1, consider a special ε � (−1, 1, . . . , 1)
(i.e., ε1 � −1 and all other εi � 1). A term with coefficient −1 has the form Pσ1Pπ2 . . .Pπn−1Pσn or PσnPπ2 . . .Pπn−1Pσ1

(i.e., with an indicator vector whose first element δ1 � 1), and a term with coefficient 1 has the form Pσ1Pπn−1 . . .
Pπ2Pσ1 or PσnPπn−1 . . .Pπ2Pσn (i.e., with an indicator vector whose first element δ1 � 0). We can see that the co-
efficient is in fact εδ11 . For general ε ∈ Λ and π ∈ Ω, the coefficient of PπnPπn−1 . . .Pπ2Pπ1 in Gσ,ε is (ε1)δ1 . . . (εk)δk ,
where δ � δ(π) is defined as in (125). We can then write the expression of Gσ,ε as

Gσ,ε �
∑
π∈Ω

εδ11 . . . εδkk PπnPπn−1 . . .Pπ1 .

Summing up this relation for all ε in Λk, we have∑
ε∈Λk

Gσ,ε �
∑
ε∈Λk

∑
π∈Ω

εδ11 . . . εδkk PπnPπn−1 . . .Pπ1 �
∑
π∈Ω

PπnPπn−1 . . .Pπ1

∑
ε∈Λk

εδ11 . . . εδkk

( )
. (127)

Note that in this expression, δ1, . . . , δk depend on π.
Denote 0k � (0, 0, . . . , 0) ∈ Rk, 1k � (1, . . . , 1) ∈ Rk. Define

gk(δ)≜
∑
ε∈Λk

εδ11 . . . εδkk , hk(δ)≜
∑
ε∈Λc

k

εδ11 . . . εδkk .

For any δ �� 0k, we have gk(δ) + hk(δ) � ∑
ε∈{1,−1}k ε

δ1
1 . . . εδkk � (1δ1 + (−1)δ1) . . . (1δk + (−1)δk ) � 0, thus

hk(δ) � −gk(δ), ∀δ �� 0k. (128)

It is easy to see that
1

|Λk | gk(δ) �
1, δ � (0, 0, . . . , 0),
−1, δ � (1, 1, . . . , 1).

{
(129)

We will prove that for any δ /∈ {0k, 1k},
gk(δ) �

∑
ε∈Λk

εδ11 . . . εδkk � 0. (130)

We prove (130) by induction on k. When k � 2, Λ2 � {(−1, 1), (1,−1)}, we have:

when δ � (0, 1), g2(δ) � (−1)011 + 10(−1)1 � 1 − 1 � 0,

when δ � (1, 0), g2(δ) � (−1)110 + 11(−1)0 � −1 + 1 � 0.

Assume (130) holds for k − 1, that is,

gk−1(δ̂) � 0, ∀ δ̂ ∈ {0, 1}k−1\ 0k−1, 1k−1{ }. (131)

According to (128), we have

hk−1(δ̂) � 0,∀ δ̂ ∈ {0, 1}k−1\ 0k−1, 1k−1{ }. (132)

Now consider k. Because δ �� 0k, there must exist some j such that δj � 1; without loss of generality, we assume

δk � 1. (133)
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Partition Γk into two sets:

Λk,1 ≜ ε ∈ Λk | εk � 1{ }, Λk,2 ≜ ε ∈ Λk | εk � −1{ }. (134)

If ε contains an odd number of −1 and the last element εk � 1 (or εk � −1), then the first k − 1 elements contain
an odd (or even) number of −1. Thus

Λk,1 � (ε̂, 1) | ε̂ ∈ Λk−1{ }, Λk,2 � (ε̂,−1) | ε̂ ∈ Λc
k−1

{ }
.

Split gk(δ) into two parts gk(δ) � gk,1(δ) + gk,2(δ), where

gk,1(δ) �
∑
ε∈Λk,1

εδ11 . . . εδkk , gk,2(δ) �
∑
ε∈Λk,2

εδ11 . . . εδkk .

Denote δ̂ � (δ1, . . . , δk−1). We already assume δ �� 1k and δk � 1, so we know

δ̂ �� 1k−1. (135)

But it is possible that δ̂ � 0k−1. Consider two cases.

Case 1. δ̂ � 0k−1, That Is, δ � (0k−1, 1).
In this case

gk,1(δ) �
∑
ε∈Λk,1

εδ11 . . . εδkk � ∑
ε∈Λk,1

ε01 . . . ε
0
k−1ε

1
k �

∑
ε∈Λk,1

ε1k �
∑
ε∈Λk,1

11 � |Λk,1| � |Λk−1|,

gk,2(δ) �
∑
ε∈Λk,2

εδ11 . . . εδkk � ∑
ε∈Λk,2

ε01 . . . ε
0
k−1ε

1
k �

∑
ε∈Λk,2

ε1k �
∑
ε∈Λk,2

(−1)1 � −|Λk,2| � −|Λc
k−1|,

thus

gk(δ) � gk,1(δ) + gk,2(δ) � |Λk−1| − |Λc
k−1| � 0,

where the last step is due to (124).

Case 2. δ̂ �� 0k−1.
Together with (135), we have

δ̂ /∈ 0k−1, 1k−1{ }.
This enables us to apply the induction hypothesis (131) and its corollary (132). In fact,

gk,1(δ) �
∑
ε∈Λk,1

εδ11 . . . εδkk
(133),(134)� ∑

ε∈Λk,1

εδ11 . . . εδk−1k−11
1 � ∑

ε̂∈Λk−1
ε̂δ11 . . . ε̂δk−1k−1 � gk−1(δ̂) (131)� 0,

gk,2(δ) �
∑
ε∈Λk,2

εδ11 . . . εδkk
(133),(134)� ∑

ε∈Λk,2

εδ11 . . . εδk−1k−1 (−1)1 � − ∑
ε̂∈Λc

k−1

ε̂δ11 . . . ε̂δk−1k−1 � hk−1(δ̂) (132)� 0.

Thus gk(δ) � gk,1(δ) + gk,2(δ) � 0.
In both cases, we have proved gk(δ) � 0, which finishes the induction step. Therefore (130) holds for any k.
Next, we analyze the sum

∑
ε∈Λk Gσ,ε. According to (127), we have∑

ε∈Λk

Gσ,ε �
∑
π∈Ω

PπnPπn−1 . . .Pπ1

∑
ε∈Λk

εδ11 . . . εδkk

( )
� ∑

π∈Ω
PπnPπn−1 . . .Pπ1gk(δ(π))

(i)� ∑
π∈Ω0

PπnPπn−1 . . .Pπ1 · gk(0k) +
∑
π∈Ω1

PπnPπn−1 . . .Pπ1 · gk(1k) +
∑
π∈Ω2

PπnPπn−1 . . .Pπ1 · gk δ(π)( )
(ii)� ∑

π∈Ω0

PπnPπn−1 . . .Pπ1 · |Γk | +
∑
π∈Ω1

PπnPπn−1 . . .Pπ1 · (−1)|Γk | +
∑
π∈Ω2

PπnPπn−1 . . .Pπ1 · 0

� |Γk |
∑
π∈Ω0

PπnPπn−1 . . .Pπ1 −
∑
π∈Ω1

PπnPπn−1 . . .Pπ1

( )
,
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where (i) is due to (126) and (ii) is due to (129), (130). According to (123), any Gσ,ε � 0; thus the above relation
implies the following important relation∑

π∈Ω0

PπnPπn−1 . . .Pπ1 �
∑
π∈Ω1

PπnPπn−1 . . .Pπ1 . (136)

Note that this relation holds for a fixed permutation σ and the corresponding set Ω0 � Ω(σ) and Ω1(σ). Each
π ∈ Ω0 corresponds to a k-permutation χ of (12 . . .n) determined by π � (χ1 . . .χk−1χkχkχk−1 . . .χ1), and each
π ∈ Ω1 corresponds to a permutation of (12 . . . n). We rewrite (136) as∑

π∈Ω0(σ)
PπnPπn−1 . . .Pπ1 �

∑
π∈Ω1(σ)

PπnPπn−1 . . .Pπ1 ,

and summing up this relation for all possible permutations σ ∈ Γ leads to

Eχ∈Γk Pχ1 . . .Pχk−1PχkPχkPχk−1 . . .Pχ1

( ) � Eσ∈Γ PσnPσn−1 . . .Pσ1

( )
,

which is exactly (122).
It remains to prove

Eχ∈Γk Pχ1 . . .Pχk−1PχkPχk−1 . . .Pπ1

( ) � 1
n

∑
i
Pi. (137)

In fact, for any positive-semidefinite matrix X and any symmetric matrix Y, we have YXY � YTXY � 0.
Applying this fact k − 1 times leads to (137).

Combining (122) and (137), we immediately obtain the desired result (119) for the case n � 2k.
The case that n � 2k − 1 is an odd number is almost the same, except that the key quantity Gσ,ε is now

defined as

Gσ,ε ≜ Pσn + ε1Pσ1

( )
. . . Pσk+1 + εk−1Pσk−1

( )
Pσk Pσk+1 + εk−1Pσk−1

( )
. . . Pσn + ε1Pσ1

( )
. (138)

In words, we pair Pσi with Pσn+1−i for i � 1, . . . , k − 1 and leave Pσk alone (following the same rule it would have
been paired with itself). The rest of the proof is almost the same as the even case, so we skip it. Q.E.D.

8. Numerical Experiments
In this section, we test the performance of cyclic ADMM and RP-ADMM for solving various kinds of linear
systems. As a benchmark, we also test the gradient descent method (GD) with a constant stepsize α �
1/λmax(A′A) for solving the least square problem minx∈RN ‖Ax − b‖2/2. Of course there are many other ad-
vanced algorithms for solving the least square problem, such as the conjugate gradient method, but we do not
consider them because our focus is on testing the two ADMM algorithms. These two ADMM algorithms can
be used to solve far more general problems than just linear systems, and we believe that the performance
comparison for solving linear systems can shed light on more general scenarios.

In the numerical experiments, we set b � 0, thus the unique optimal solution is x∗ � 0. The coefficient matrix
A will be generated according to one of the random distributions below:

• Gauss: independent Gaussian entries Ai,j ∼ 1(0, 1).
• Log-normal: independent log-normal entries Ai,j ∼ exp(1(0, 1)).
• Uniform: each entry is drawn independently from a uniform distribution on [0, 1].
• Circulant Hankel: circulant Hankel matrix with independent standard Gaussian entries. More specifically,

generate δ1, δ2, . . . , δN ∼ 1(0, 1) and let Ai,j � δi+j−1 (define δk � δk−N if k>N). Note that the entries of the
circulant Hankel matrix are not independent because one δi can appear in multiple positions.

For the two ADMM algorithms, we only consider the n-coordinate versions (i.e., each block consists of only
one coordinate). We let the three tested algorithms start from the same random initial point y0 � [x0;λ0] (GD
will start from x0). To measure the performance, we define the epoch complexity k to be the minimum k so that
the relative error

‖Axk − b‖/‖Ax0 − b‖< ε,

where ε is a desired accuracy (we consider 10−2 and 10−3 11). For the two ADMM algorithms, one epoch refers
to one round of primal and dual steps; for GD, one epoch refers to one gradient step. The total computation
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time should be proportional to the epoch complexity because GD and the two ADMM variants have similar
per-epoch cost12: a gradient descent step xk+1 � xk − αAT(Ax − b) contains two matrix-vector multiplications and
thus takes time 2N2 +O(N), and an ADMM round also takes time 2N2 +O(N) (the primal update step of
ADMM takes time 2N2 +O(N), and the dual update step of ADMM takes time O(N)). We test 1,000 random
instances for N ∈ {3, 10} and 300 random instances for N � 100 and record the geometric mean of the number
of epochs. In Table 2, “Diverg. ratio” represents the percentage of tested instances for which cyclic ADMM
diverges, and “CycADMM” represents “cyclic ADMM” (note that RP-ADMM converges in all instances we
tested, so its divergence ratio is 0). Note that for cyclic ADMM we only report the epoch complexity when it
converges, while for RPADMM and GD we report the epoch complexity in all tested instances. If restricting to
the successful instances of cyclic ADMM, we find that the epoch complexity of RPADMM does not change too
much, whereas the epoch complexity of GD will be reduced (significantly in some settings).

The simulation results are summarized in Table 2. The main observations from the simulation are:
• For all random distributions of A we tested, cyclic ADMM does not always converge even when N is fixed

to be 3. For N � 100 and many random distributions, cyclic ADMM diverges with probability 1. This means
that the divergence of cyclic ADMM is not merely a “worst-case” phenomenon but actually quite common.
When the dimension increases, the divergence ratio will increase.

• For standard Gaussian entries, cyclic ADMM converges with high probability. When cyclic ADMM
converges, it converges faster than RP-ADMM and sometimes much faster.

• RPADMM typically converges faster than the basic gradient descent method and sometimes more than 10
times faster.

We have also tested BR-ADMM for solving the same problems, though the simulation results are not listed
in Table 2. As expected, BR-ADMM also always converges for solving these linear systems. The convergence
speed is usually slower than RP-ADMM. Nevertheless, BR-ADMM can save some sampling time compared
with RP-ADMM and may be more favorable if random permutation is not available owing to system ar-
chitecture constraint. The detailed comparison of BR-ADMM and RP-ADMM and the design of other ran-
domized schemes or even deterministic schemes that outperform RP schemes are left as future work.

9. Concluding Remarks
In this paper, we prove the expected convergence of randomly permuted ADMM (RP-ADMM) for solving a
nonsingular square system of equations (extension to nonsquare systems is straightforward). We also prove a
bound on the expected convergence rate of RP-ADMM for solving linear systems and the expected con-
vergence rate of RP-BCD for solving quadratic problems. The motivation is to resolve the divergence issue of
cyclic multiblock ADMM. Our result shows that RP-ADMM may serve as a simple remedy, and we expect RP-
ADMM to be one of the important solvers in large-scale optimization. One interesting finding along the path is
that the update matrix of RP-BCD has spectrum lying in (−1/3, 1) instead of the commonly seen (−1, 1).

Table 2. Results of Solving Linear Systems by Cyclic ADMM, RP-ADMM, and GD

N Diverg. ratio

Epochs for ε � 0.01 Epochs for ε � 0.001

CycADMM13 RPADMM GD CycADMM RPADMM GD

Gaussian
3 0.7% 1.4e01 3.4e01 5.0e01 3.2e01 8.8e01 1.4e02
10 1.1% 4.1e01 1.8e02 2.0e02 1.2e02 1.1e03 1.5e03
100 3% 1.7e02 4.3e02 3.6e02 1.0e03 7.4e03 6.5e03

Log-normal
3 0.8% 1.5e01 3.7e01 5.7e01 3.3e01 9.6e01 1.7e02
10 39.2% 1.2e02 3.4e02 6.4e02 3.2e02 2.4e03 6.3e03
100 100% N/A 5.5e02 5.4e03 N/A 8.8e03 1.0e05

Uniform
3 3.2% 2.8e01 7.4e01 1.5e02 7.0e01 2.6e02 6.0e02
10 83.0% 2.1e02 4.1e02 1.2e03 5.2e02 3.0e03 9.1e03
100 100% N/A 9.1e02 1.4e04 N/A 1.4e04 9.7e04

Circulant Hankel
3 5.6% 1.2e01 1.7e01 1.5e01 1.7e01 2.8e01 2.6e01
10 54.3% 4.2e01 6.0e01 6.5e01 7.5e01 1.3e02 1.7e02
100 100% N/A 1.3e02 1.7e02 N/A 2.9e02 6.5e02

Note. For the two ADMM variants, one epoch refers to one round of primal and dual steps; for GD, one epoch refers to one gradient step.
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Random permutation is widely known to be empirically better than independently randomized versions,
but little was known about its theoretical properties in general. Note that most existing analyses of BCD (e.g.,
Beck and Tetruashvilie [1], Sun and Hong [39], Tseng [42]) are applicable to both the cyclic update rule and the
random permutation update rule. However, in light of a recent study that established an up to O(n2) gap
between cyclic CD and R-CD (Sun and Ye [41]), it is unlikely that RP-CD will have the same rate as cyclic CD.
Our result in this paper established, for the first time, an O(n) gap between RP-CD and cyclic-CD for general
quadratic problems, making some progress toward the conjecture that RP-CD is faster than R-CD.

We emphasize that the convergence speed analysis of large-scale optimization has mostly been limited
to independently randomized update order in the past decade. Going beyond independent randomized
order is an important topic for enlarging the scope of large-scale optimization. Not only is the analysis of
random permutation quite challenging, even the analysis of the most classic cyclic order is highly nontrivial
(Sun and Ye [41]). There are quite a few open questions regarding the convergence rate of non-independent-
randomized order. Regarding the random permutation order, a very interesting open question is the worst-
case convergence rate of RP-BCD for quadratic problems. Owing to the close relation with matrix AM-GM
inequality, this problem seems to be a quite fundamental problem. Moving to ADMM, the similar questions
about the convergence rate of various variants of ADMM, including RP-ADMM and BR-ADMM, are
also open.
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Endnotes
1Rigorously speaking, these two bounds are not directly comparable because the result for the randomized version only holds with high
probability, whereas the result for the cyclic version always holds; in any event, this O(n2) gap is still meaningful if ignoring this difference
between deterministic and randomized algorithm.
2This paper appeared after the first version of the present paper.
3There has been some effort in using randommatrix theory to tackle this problem, but no progress has been reported to our knowledge. This is
partially because the desired result seems to be rather tight, such that even a small relaxation can lead to failure.
4 Suppose A is an m × n full column-rank matrix, where m ≥ n, and the system Ax � b is feasible. The update formula is yk+1 � (I − L−1σ ATA)yk,
which is same as the update formula for solving a square system of equations Āx � b, where Ā ∈ Rn×n is the square root matrix of the matrix
ATA ∈ Rn×n. Now the matrix Ā is a square invertible matrix; thus by applying the result for square system of equations, we can obtain the
convergence of the sequence φk � E(yk).
5Rigorously speaking this is not a fair comparison because the complexity of C-CD is deterministic complexity.
6The computation complexity equals the iteration complexity times the per-iteration cost. We do not present iteration complexity because there
may be confusion about whether “one iteration”means n coordinate updates or 1 coordinate update. Presenting iteration complexity is better if
one considers a general convex problem, but then one needs to discuss the per-iteration cost. We are considering quadratic problems throughout
the paper, so we believe it is more clear to stick to computation complexity.
7Here, the relative accuracy ε means ‖E(xk) − x∗‖/‖x0 − x∗‖ or ‖E( f (xk)) − f ∗‖/‖ f (x0) − f ∗‖.
8Note that this “improvement” is validwhen the convergence rate is characterized by only κCD and n. It is common to use other parameters, such
as the maximum eigenvalue, to characterize the convergence rate (see Sun and Ye [41] for a detailed discussion), and our result here does not
provide improvement for other kinds of convergence rate.
9 For the purpose of proving Theorem 2, we do not need to prove this direction. Here we present the proof because it is quite straightforward and
makes the result more comprehensive.
10Amore detailed argument is as follows. Because −I/3 � Ẑk , we can let β1 � −1/3 + ε for a sufficiently small positive number ε, while keeping

α1 � 0, αn � 1, βn � 1. The set (76) now becomes {0, 0,−2/3 + 2ε, 2,− (4/3−ε)2
4(2/3+ε)}. Both −2/3 + 2ε and − (4/3−ε)2

4(2/3+ε) are strictly larger than 2/3, thus the
extreme value −2/3 cannot be achieved. By a similar argument the other extreme value 2 also cannot be achieved.
11 For high accuracy such as ε � 10−6, it takes toomany epochs for the algorithms to converge when n � 100 becausemost matrices we generated
are highly ill-conditioned, so we do not report the results. Based on the limited experiments for high accuracy, similar gaps between RP-ADMM
and GD are observed.
12 In MATLAB simulations each epoch of GD takes much less time than a round of ADMM because MATLAB implements matrix operations
much faster than a “for” loop. For a more fair central processing unit time comparison, one should use other programming languages such as C.
13 For cyclic ADMM, only record the iteration complexity in convergent instances.
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