Towards a Better Global Loss Landscape of GANs

Ruoyu Sun, Tiantian Fang, Alex Schwing
University of Illinois at Urbana-Champaign
ruoyus,tf6,aschwing@illinois.edu

Abstract

Understanding of GAN training is still very limited. One major challenge is its
non-convex-non-concave min-max objective, which may lead to sub-optimal local
minima. In this work, we perform a global landscape analysis of the empirical
loss of GANs. We prove that a class of separable-GAN, including the original
JS-GAN, has exponentially many bad basins which are perceived as mode-collapse.
We also study the relativistic pairing GAN (RpGAN) loss which couples the
generated samples and the true samples. We prove that RpGAN has no bad basins.
Experiments on synthetic data show that the predicted bad basin can indeed appear
in training. We also perform experiments to support our theory that RpGAN has
a better landscape than separable-GAN. For instance, we empirically show that
RpGAN performs better than separable-GAN with relatively narrow neural nets.
The code is available at https://github. com/AilsaF/RS-GAN.

1 Introduction

Generative Adversarial Nets (GANs) [34] are a successful method for learning data distributions.
Current theoretical efforts to advance understanding of GANs often focus on statistics or optimization.

On the statistics side, Goodfellow et al. [34] built a link between the min-max formulation and the J-S
(Jenson-Shannon) distance. Arjovsky and Bottou [3]] and Arjovsky et al. [4] proposed an alternative
loss function based on the Wasserstein distance. Arora et al. [[3]] studied the generalization error and
showed that both the Wasserstein distance and J-S distance are not generalizable (i.e., both require
an exponential number of samples). Nevertheless, Arora et al. [5] argue that the real metric used in
practice differs from the two statistical distances, and can be generalizable with a proper discriminator.
Bai et al. [7]] and Lin et al. [56] analyzed the potential “lack of diversity”: two different distributions
can have the same loss, which may cause mode collapse. Bai et al. [7] argue that proper balancing of
generator and discriminator permits both generalization and diversity.

On the optimization side, cyclic behavior (non-convergence) is well recognized [62} 18} 33, 11]. This
is a generic issue for min-max optimization: a first-order algorithm may cycle around a stable point,
converge very slowly or even diverge. The convergence issue can be alleviated by more advanced
optimization algorithms such as optimism (Daskalakis et al. [23]]), averaging (Yazici et al. [84]) and
extrapolation (Gidel et al. [32])).

Besides convergence, another general optimization challenge is to avoid sub-optimal local minima. It
is an important issue in non-convex optimization (e.g., Zhang et al. [86], Sun [78]]), and has received
great attention in matrix factorization [30, 14} 20] and supervised learning [38, 145} 12} 187, 27]]. For
GAN:s, the aforementioned works [[62} 18133, [11] either analyze convex-concave games or perform
local analysis. Hence they do not touch the global optimization issue of non-convex problems.
Mescheder et al. [62]] and Feizi et al. [29] prove global convergence only for simple settings where
the true data distribution is a single point or a single Gaussian distribution. The global analysis of
GAN:Ss for a fairly general data distribution is still a rarely touched direction.

The global analysis of GANs is an interesting direction for the following reasons. First, from
a theoretical perspective, it is an indispensable piece for a complete theory. To put our work in
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Table 1: Comparison of theoretical works.

Supervised Learning GANs
paper description paper brief description
Generalization analysis Bartlett et al. [9] generalization bound for neural-nets Aroraetal. [3] generalization bound for GANs

convex problem, divergence of Adam
convergence of AMSGrad
Any distinct input data
‘Wide neural-nets have no sub-optimal basins

bi-linear game, non-convergence of GDA
convergence of optimistic GDA
Any distinct input data
SepGAN has bad basins; RpGAN does not

* This table does NOT show a complete list of works. The goal is to list various types of theoretical works. Only one or two works are listed as examples of that class.

Optimization: convergence analysis | Reddi et al. [73 Daskalakis et al. [23

Optimization: global landscape 1691 147 This work

perspective, we compare representative works in supervised learning with works on GANs in Tab. [T}
Second, it may help to understand mode collapse. Bai et al. [[7] conjectured that a lack of diversity
may be caused by optimization issues, albeit convergence analysis works [62} 18] 33} [11] do not link
non-convergence to mode collapse. Thus we suspect that mode collapse is at least partially related
to sub-optimal local minima, but a formal theory is still lacking. Third, it may help to understand
the training process of GANs. Even understanding a simple two-cluster experiment is challenging
because the loss values of min-max optimization are fluctuating during training. Global analysis can
provide an additional lens in demystifying the training process.

Additional related work is reviewed in Appendix [A!

Challenges and our solutions. While the idea of a global analysis is natural, there are a few
obstacles. First, it is hard to follow the path of supervised learning [38} 45, 12,187,127 to prove global
convergence of gradient descent for GANs, because the dynamics of non-convex-non-concave games
are much more complicated. Therefore, we resort to a landscape analysis. Note that our approach
resembles an “equilibrium analysis” in game theory. Second, it was not clear which formulation can
cure the landscape issue of JS-GAN. Wasserstein GAN (W-GAN) is a candidate, but its landscape is
hard to analyze due to the extra constraints. After analyzing the issue of JS-GAN, we realize that the
idea of “paring”, which is implicitly used by W-GAN, is enough to cure the issue. This leads us to
consider relativistic pairing GANs (RpGANs) [40, 41] that couple the true data and generated dat
We prove that RpGANs have a better landscape than separable-GANSs (generalization of JS-GAN).
Third, it was not clear whether the theoretical finding affects practical training. We make a few
conjectures based on our landscape theory and design experiments to verify those. Interestingly, the
experiments match the conjectures quite well.

Our contributions. This work provides a global landscape analysis of the empirical version of
GANSs. Our contributions are summarized as follows:

e Does the original JS-GAN have a good landscape, provably? For JS-GAN [34], we prove
that the outer-minimization problem has exponentially many sub-optimal strict local minima.
Each strict local minimum corresponds to a mode-collapse situation. We also extend this
result to a class of separable-GANSs, covering hinge loss and least squares loss.

o [s there a way to improve the landscape, provably? We study a class of relativistic paring
GANs (RpGAN:Ss) [40] that pair the true data and the generated data in the loss function.
We prove that the outer-minimization problem of RpGAN has no bad strict local minima,
improving upon separable-GANs.

e Does the improved landscape lead to any empirical benefit? We empirically demonstrate
that RpGANs are more robust to data size, network width and initialization than their
separable counter-parts. Although the empirical benefit of RpGANs were observed before
[40l], the aspects we demonstrate are closely related to our landscape theory. In addition,
using synthetic experiments we explain why mode-collapse (as bad basins) can slow down
JS-GAN training.

2 Difference of Population Loss and Empirical Loss

Goodfellow et al. [34] proved that the population loss of GANs is convex in the space of probability
densities. We highlight that this convexity highly depends on a simple property of the population
loss, which may vanish in an empirical setting.

Suppose pdata is the data distribution, pg is a generated distribution and D € C(O’l)(Rd), where

C(0,1)(R?) is the set of continuous functions with domain R¢ and codomain (0,1). Consider the
JS-GAN formulation [34]]

N @5 (Pg; Pdata), Where ¢35 (e Paata) = SUP Eovpya g, [108(D (@) +log(1 = D(y))].
g

'In fact, we proposed this loss in a first version of this paper, but later found that [40l 41] considered the
same loss. We adopt their name RpGAN from [41].
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Figure 1: (a) Population loss: probability density changes; (b) Empirical loss: samples move.

Claim 2.1. (/34 in proof of Prop. 2]) The objective function ¢3s(Dg; Pdata) iS convex in pq.

The proof utilizes two facts: first, the supremum of (infinitely many) convex functions is convex;
second, Eypy,,a,y~p, [108(D(2)) +log(1 — D(y))] is a linear function of pg. The second fact is the
essence of the argument, which we restate below in a more general form.

Claim 2.2. E,, [f*"(y)] is a linear function of pg, where f*(y) is an arbitrary function of .

Claim [2.2|implies that min,,, E,.,, [f*(y)] is a convex problem. One approach to solve it is to
draw finitely many samples (particles) y;,7 = 1,...,n from p,, and approximate the population loss
by the empirical loss. See Fig.[I for a comparison of the probability space and the particle space.
For an arbitrarily complicated function such as 2 (y) = sin(||y||® + 2||y||* + log(||y||* + 1)), the
population loss is convex in p,, but clearly the empirical loss is non-convex in (y1, .. .,¥y). This
example indicates that studying the empirical loss may better reveal the difficulty of the problem
(especially with a limited number of samples). See Appendix [G for more discussions.

We focus on the empirical loss in this work. Suppose there are n data points x4, . .., x,. We sample
n latent variables 2, ..., z, € R% according to a rule (e.g., i.i.d. Gaussian) and generate artificial
datay; = G(z;),i = 1,...,n. The empirical version of JS-GAN addresses miny ¢35(Y, X) where

n

1
¢ss(Y, X) £ sup o > llog(D(w:)) +log(1 — D(y:))]. (1)
D 4o
Note that the empirical loss is considered in Arora et al. [5] as well, but they study the generalization
properties. We focus on the optimization properties, which is complementary to their work.

3 Landscape Analysis of GANs: Intuition and Toy Results

In this section, we discuss the main intuition and present results for a 2-point distribution.

Intuition of Bad “Local Minima” and Separable-GAN:

Consider an empirical data distribution consisting of two ~ Uedated: A A o o
samples x1, zo € R. The generator produces two data points l RGN *2
Y1, Y2 to match x1, zo. We illustrate the training process of  update c: |/L ° °
JS-GAN in Fig. |Z Initially, y;, yo are far from z1, x5, thus l

the discriminator can easily separate true data and fake data.  update p: /Al ° °
After the generator update, y1, yo cross the decision boundary l

to fool the discriminator. Then, after the discriminator update,  Urdate & ,&o °

the decision boundary moves and can again separate true data
and fake data. As iterations progress, ¥1, y2 and the decision
boundary may stay close to x, causing mode-collapse.

Figure 2: Issue of separable-GAN (in-
cluding JS-GAN). After updating G, fake
data crosses boundary to fool D; after up-
The intuition above is the starting point of this work. We dating D, they are separated by D. Fake
notice that Unterthiner et al. [80]], Li and Malik [50] presented ~data may be stuck near ;.

somewhat similar intuition, and Kodali et al. [43]] suggested the connection between mode collapse
and a bad equilibrium. Nevertheless, Li and Malik [50], Kodali et al. [43] do not present a theoretical
result, and Unterthiner et al. [80] do not analyze the empirical loss. See Appendix [A for more.

We point out that a major reason for the above issue is a single decision boundary which judges the
generated samples. Therefore, this issue exists not only for the JS-GAN, but also for a large class of
GANs which we call separable-GANs:

m;ns?pzhl(f(fﬂi)) + ha(=f(v:)), 2
i=1



where h1, ho are fixed scalar functions, such as hi(t) = ha(t) = —log(1 + e~ t) and hy(t) =
ha(t) = —max{0,1 — t}, and f is chosen from a function space (e.g., a set of neural-net functions).

Pairing as Solution: Rp-GAN. A natural solution is to use a different “decision boundary” for every
generated point, e.g., pairing x; and y;, as illustrated in Fig.[3]

A suitable loss is the relativistic paring GAN (RpGAN

II%;II st;p ; h(f(xi) — f(vs))s 3) °

. . . N1 Y2 X1 X3
where h is a fixed scalar function and f is chosen from a func-

tion space. RS-GAN (relative standard GAN) is a special case  Figure 3: Idea of RpGAN: breaking
where h(t) = —log(l + e~*). More specifically, RS-GAN |ocality by “personalized” judgement.
addresses miny ¢rs(Y, X) where

1
1+exp(f(y:)— f(xi))

W-GAN [3]] can be viewed as a variant of RpGAN where h(t) = ¢, with extra Lipschitz constraint.

1 n
Ors (Y, X) & sup 0 3 log 4)
i=1

We wonder how the issue of seperable-GANS relates to “local minima” and how “pairing” helps. We
present results for JS-GAN and RS-GAN for the two-point case below.

Global Landscape of 2-Point Case: Depending on the positions of y1, 32, there are four states
50, S1a, S1b, S2. They represent the four cases |{x1,z2}N{y1,y2} = 0, y1 = y2 € {x1,22},
{z1,22} N {y1,y2}| =1, and {z1,22} = {y1,y2} respectively. Training often starts from the
“no-recovery” state sg, and ideally should end at the “perfect-recovery” state s;. There are two
intermediate states: s;, means all generated points fall into one mode (“mode collapse™); s1; means
one generated point is the true data point while the other is not a desired data point, which we call
“mode dropping’ The first three states can transit to each other (assuming continuous change of Y'),
but only s1}, can transit to so. We illustrate the landscape of ¢55(Y; X) and ¢rs(Y; X) in Fig. E], by
indicating the values in different states. The detailed computation is given next.

JS-GAN 2-Point Case: The range of ¢35(Y, X) is [— log 2, 0]. The value for the four states are:
Claim 3.1. The minimal value of ¢35(Y, X) is —log 2, achieved at {y1,y2} = {1, 22}

—log 2 ~ —0.6931 if {z1,22} ={y1, 92},
—log2/2 ~ —0.3467 if {1, 2} 0 {y1, o } =1,
1(2log2 — 3log3) ~ —0.4774 if y1 = y» € {1, 22},
0 if {z1, 2230 {y1, y2 } [=0.

p1s(Y, X) =

We illustrate the landscape of ¢;5(Y, X) in Fig. E(a). As a corollary of the above claim, the outer
optimization of the original GAN has a bad strict local minimum at state s1, (a mode-collapse).

Corollary 3.1. Y = (1, z1) is a sub-optimal strict local-min of the function g(Y) = ¢35(Y, X).

RS-GAN 2-Point Case: The range is still prs(Y, X) € [—log2,0]. The values are:
Claim 3.2. The minimal value of prs (Y, X) is — log 2, achieved at {y1,y2} = {x1, x2}. In addition,
—log2~ —0.6931  if{z1, 22} = {y1,92},
Prs(Y,X) = ¢ —1log2~ —0.3466 if |{i : 3j, s.t. z; = y;}|,
0 otherwise.

We illustrate ¢rs(Y, X) in Fig. Ekb). Importantly, note that the only basin is the global minimum. In
contrast, the landscape of JS-GAN contains a bad basin at a mode-collapsed pattern.

The proofs of Claim and Claim are given in Appendix [H. We briefly explain the main
insight provided by these proofs. For the mode-collapsed pattern si,, the loss value of JS-GAN is

20ur motivation of considering RpGAN because it breaks locality, thus possibly admitting a better landscape.
This motivation is somewhat different from Jolicoeur-Martineau [40, 41]].
3Both may be called mode collapse. Here we differentiate “mode collapse” and “mode dropping”.
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Figure 4: Landscape for GAN outer optimization miny ¢(Y, X). It is not a rigorous figure because: (i) there
are only four possible values, thus the function is piece-wise linear while we use smooth curves for accessibility.
(ii) the landscape should be two-dimensional, but we illustrate them in 1D space. Nevertheless, it is still useful
for understanding GAN training, as discussed later in Section[é]and Appendix@

— 2 min,[log(1+e~")+2log(1+e") +log(1+e~*)] = 1 (log + +2log 2) ~ —0.48 7é 5log?2
for any integer r. This creates an “irregular” value among other loss values of the form —% log 2. In
contrast for pattern sy,, the loss value of RS-GAN is — £ min, ¢[log(1 + e'~*) + log(1 + et %)) =

log 2, which is of the form —7 log 2. Therefore, for the 2-point case, RS-GAN has a better
landscape because it avoids the “1rregu1ar” value of JS-GAN due to its “pairing”. This insight is the
foundation of the general theory presented in the next section.

4 Main Theoretical Results

4.1 Landscape Results in Function Space

We present our main theoretical results, extending the landscape results from n = 2 to general n.

Denote £(m) £ sup,cg(hi(t) + mha(—t)).
Assumption 4.1. sup,cp hi(t) = sup,cp ha(t) = 0.
Assumption 4.2. {(m) > m&(1), Vm € [2,n].
Assumption 4.3. {(m) < &(m —1), Vm € [1,n].

It is easy to prove that under Assumption[d.1, £(m — 1) > £(m) > m&(1) always holds. Assumption
.2 and Assumption[4.3 require strict inequalities, thus do not always hold (e.g., for constant functions).
Nevertheless, most non-constant functions satisfy these assumptions.

The separable-GAN (SepGAN) problem (empirical loss, function space) is

min Y), where Y —
Y eRIXn gSP( ) gSP( ) 2n feCIﬂ)gd)

Zm )) + ha(—f(y:)]. 5)

1=1

Theorem 1. Suppose 1,3, ..., x, € R are distinct. Suppose hy, hy satisfy Assumpnons. .
and[.3] - Then for separable- GAN loss gsp(Y') defined in Eq. (), we have: (i) The global minimal
value is —% sup,cg (h1(t) + hao(—t)), which is achieved iff {y1,...,yn} = {z1,...,zn}. (i) If
yi € {z1,...,xn},1 € {1,2,...,n} and y; = y; for some i # j, then'Y is a sub-optimal strict
local minimum, Therefore, gsp(Y') has (n™ — n!) sub-optimal strict local minima.

Remark 1: hyi(t) = ho(t) = —log(1 + e™!) satisfy Assumptlonsm and- 4.3 thus Theorem
[1] applies to JS-GAN. It also applies to hinge-GAN with h1 = hg —max{0,1 — ¢} and
LS-GAN (least-square GAN) with hy(t) = —(1 — t)2, ha(t)

Next we consider RpGANs. The RpGAN problem (empirical loss, function space) is
1 n

ygﬁiﬁn gr(Y), where gg(Y) = - fesél(%d) ;[h(f(l‘i) — f(ya)]- (6)

Definition 4.1. (global-min-reachable) We say a point w is global-min-reachable for a function
F(w) if there exists a continuous path from w to one global minimum of F along which the value of
F(w) is non-increasing.

Assumption 4.4. sup,cp h(t) = 0 and h(0) < 0.

Assumption 4.5. h is a concave function in R.



Theorem 2. Suppose x1, o, ..., 2, € R? are distinct. Suppose the function h satisfies Assumptions
M.4)and[4.3] Then for RpGAN loss gr defined in Eq. (6), we have: (i) The global minimal value is
h(0), which is achieved iff {y1, ..., yn} = {x1,...,2n}. (ii) Any Y is global-min-reachable for the
Sunction gr(Y).

This result sanity checks the loss gr(Y): its global minimizer is indeed the desired empirical
distribution. In addition, it establishes a significantly different optimization landscape for RpGAN.

Remark 1: h(t) = —log(1 + e~*) satisfies Assumption and thus Theorem [2 applies to
RS-GAN. It also applies to Rp-hinge-GAN with h(t) = — max{0,a — ¢} and Rp-LS-GAN with
h(t) = —(a — t)?, for any positive constant a.

Remark 2: The W-GAN loss is +sup; >, h(f(x;) — f(yi)) where h(t) = ¢; however, since
sup, h(t) = oo it does not satisfy Assumption[4.4. The unboundedness of h(t) = ¢ necessitates extra
constraints, which make the landscape analysis of W-GAN challenging; see Appendix L. Analyzing

the landscape of W-GAN is an interesting future work.

To prove Theorem I} careful computation suffices; see Appendix [[} The proof of Theorem [2]is a bit
involved. We first build a graph with nodes representing x;’s and y;’s, then decompose the graph into
cycles and trees, and finally compute the loss value by grouping the terms according to cycles and
trees and calculate the contribution of each cycle and tree. The detailed proof is given in Appendix [J]

4.2 Landscape Results in Parameter Space

We now consider a deep net generator G, with w € R¥ and a deep net discriminator fp with § € R”.
Different from before, where we optimize over y; and f (function space), we now optimize over w
and 0 (parameter space).

We first present a technical assumption. For Z = (21,...,2,) € RE=X" Y = (y1,...,y,) € R*"
and W C R¥  defineaset G~ (Y;Z,W) 2 {w e W | Gu(zi) = i, Vi}.

Assumption 4.6. (path-keeping property of generator net): For any distinct 2y, ..., 2z, € R%,
any continuous path Y (t),t € [0, 1] in the space R™"™ and any wy € G=*(Y (0); Z, W), there is
continuous path w(t),t € [0,1] such that w(0) = wo and Y (t) = G)(Z),t € [0,1].

Intuitively, this assumption relates the paths in the function space to the paths in the parameter space,
thus the results in function space can be transferred to the results in parameter space. The formal
results involve two extra assumptions on representation power of fy and G, (see Appendix [K for
details). Informal results are as follows:

Proposition 1. (informal) Consider the separable-GAN problem min,,cpx psep (W), where
1 n
Poep(w) = sup o > [hi(folw:)) + ha(=falGu(z))))- @
i=1
Suppose hi, ho satisfy the assumptions of Theorem[I, Suppose G, satisfies Assumption (with

certain W). Suppose fy and G, have enough representation power (formalized in Appendix [K)).
Then there exist at least (n™ — n!) distinct w € W that are not global-min-reachable for psep(w).

Proposition 2. (informal) Consider the RoGAN problem min,,cgx pr(w), where

pulw) = sup o S [A(fo(as)) = folGuli). ®
i=1

Suppose h satisfies the assumptions of Theorem[2| Suppose G, and fy satisfy the same assumptions
as Proposition Then any w € W is global-min-reachable for pr (w).

Remark 1: The existence of a decreasing path does not necessarily mean an algorithm can follow
it. Nevertheless, our results already distinguish SepGAN and RpGAN. We will illustrate that these
results can improve our understanding of GAN training in Sec.[5} and present experiments supporting
our theory in Sec. [6]

Remark 2: The two results rely on a few assumptions of neural-nets including Assumption 4.6, These
assumptions can be satisfied by certain over-parameterized neural-nets, in which case W is a certain
dense subset of R”. For details see Appendix



JS- » [ ] ( ] x® - - - x @ KON
GAN:

RS- » - - X @ paneERx XK @ IO KK - SO
GAN:

Figure 5: Training process of JS-GAN and RS-GAN for two-cluster data. True data are red, fake data are blue.
RS-GAN escapes from mode collapse faster than JS-GAN.

4.3 Discussion of Implications

These results distinguish the SepGAN and RpGAN landscapes. Theoretically, there is evidence
regarding the benefit of losses without sub-optimal basins. Bovier et al. [17]] proved that it takes the
Langevin diffusion at least e“(") time to escape a depth-h basin. A recent work [86]] proved that the
hitting time of SGLD (stochastic gradient Langevin dynamics) is positively related to the height of
the barrier, and SGLD may escape basins with low barriers relatively fast. The theoretical insight
is that a landscape without a bad basin permits better quality solutions or a faster convergence to
good-quality solutions.

We now discuss the possible gap between our theory and practice. We proved that a mode collapse
Y* is a bad basin in the generator space, which indicates that (Y*, D*(Y ™)) is an attractor in the joint
space of (Y, D) and hard to escape by gradient descent ascent (GDA). In GAN training, the dynamics
are not the same as GDA dynamics due to various reasons (e.g., sampling, unequal D and G updates),
and basins could be escaped with enough training time (e.g., [86]). In addition, a randomly initialized
(Y, D) might be far away from the basins at (Y*, D*(Y™*)), and properly chosen hyper-parameters
(e.g., learning rate) may re-position the dynamics so as to avoid attraction to bad basins. Further, it is
known that adding neurons can smooth the landscape of deep nets (e.g., eliminating bad basins in
neural-nets [47]]), thus wide nets might help escape basins in the (Y, D)-space faster. In short, the
effect of bad basins may be mitigated via the following factors: (i) proper initial D and Y’; (ii) long
enough training time; (iii) wide neural-nets; (iv) enough hyper-parameter tuning. These factors make
it relatively hard to detect the existence of bad basins and their influences. We support our landscape
theory, by identifying differences of SepGAN and RpGAN in synthetic and real-data experiments.

5 Case Study of Two-Cluster Experiments

Although in Section 3| we argue that, intuitively, mode collapse can happen for training JS-GAN for
two-point generation, it does not necessarily mean mode collapse really appears in practical training.
We discuss a two-cluster experiment, an extension of two-point generation, in order to build a link
between theory and practice. We aim to understand the following question: does mode collapse really
appear as a “basin”, and how does it affect training?

Suppose the true data are two clusters around ¢; = 0 and c2 = 4. We sample 100 points from the
two clusters as x;’s, and sample z1, . . ., 2199 uniformly from an interval. We use 4-layer neural-nets
for the discriminator and generator. We use the non-saturating versions of JS-GAN and RS-GAN.

Mode collapse as bad basin can appear. We visualize the movement of fake data in Fig. |5, and
plot the loss value of D (indicating the discriminator) over iterations in Fig.[6{a,b). Interestingly, the
minimal D losses are around 0.48, which is the value of ¢;g at state sq,. It is easy to check that
the optimal D = D*(s1,) for a mode collapse state sy, satisfies {D(c1), D(c2)} = {1,1/3}, and
Fig. [6[c) shows that at iteration 2800 the D actually becomes D*. This provides a concrete example
that training gets stuck at a mode collapse due to the bad-basin-effect. We also notice that there are a
few more attempts to approach the bad attractor ($14, D*($14)) (e.g., from iteration 2000 to 2500).
In RS-GAN training, the minimal loss is around 0.35, which is also the value of ¢Rg at state s1,. The
attracting power of (s14, D*(s14)) is weaker than for JS-GAN. Thus it only attracts the iterates for
a very short time. RS-GAN needs 800 iterations to escape, which is about 3 times faster than the
escape for JS-GAN.

Effect of width: We see a clear effect of width on convergence speed. As the networks become
wider, both JS-GAN and RS-GAN converge faster. We find that the reason of faster convergence is
because wider nets make JS-GAN escape mode collapse faster. See details in Appendix

More experiment details and findings are presented in Appendix [B]
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Figure 6: (a) and (b): Evolution of D loss over iterations. RS-GAN is 3-4 x faster than JS-GAN. (c) For JS-GAN
training in (a), we plot (Y, D) together at iteration 2800. Y™ are represented in blue points, and they are near
c¢1 = 0. D is near the optimal D*(s1a) since D(0) ~ 1/3 and D(4) ~ 1. Interestingly, this bad attractor
(Y, D) is similar to the one discussed in Fig. 1} so the intuition of “local-min” is verified in (c).

CIFAR-10 STL-10

Inception Score T FID | Model size Inception Score T FID | Model size
Real Dataset 11.2440.19 5.18 24.45+0.41 5.34
Standard CNN
JS-GAN 6.27+0.10 49.13  100% 8.014+0.07 50.38  100%
WGAN-GP 6.68+0.06 39.66  100% 8.114+0.09 55.64  100%
RS-GAN 7.02+0.07 33.79  100% 7.62+0.08 52.54  100%
JS-GAN+ SN 7.42+0.08 28.07  100% 8.324+0.10 44.06  100%
RS-GAN+ SN 7.3240.08 27.16  100% 8.29+0.13 4388 100%
JS-GAN+SN; GD channel/2 6.85+0.08 33.90 29.0% 7.69+0.05 57.16  32.9%
RS-GAN+SN; GD channel/2 6.74+0.04 32.74  29.0% 7.954+0.10 5247  32.9%
JS-GAN + SN; GD channel/4 5.83£0.07 52.63 9.2% 6.90+0.06 7296 11.9%
RS-GAN + SN; GD channel/4 5.94+0.09 4537  92% 7.27+0.11 63.61 11.9%
ResNet
JS-GAN+ SN 8.12+0.14 20.13  100% 8.87+0.07 36.33 100%
RS-GAN + SN 7.92+0.13 19.31  100% 8.96+0.10 3477  100%
JS-GAN + SN; GD channel/2 7.67+£0.04 2329 27.5% 8.454+0.05 4439  29.0%
RS-GAN + SN; GD channel/2 7.63+0.07 21.78  27.5% 8.47+0.09 42.18 29.0%
JS-GAN + SN; GD channel/4 7.04£0.06 37.04 10.4% 821 £0.12 53,57 9.2%
RS-GAN+ SN; GD channel/4 7.08+0.05 31.26  10.4% 8.46+0.11 52.09 92%
JS-GAN + SN; BottleNeck 7.60+0.07 2698 16.8% 8.2940.05 50.38 19.2%
RS-GAN+ SN; BottleNeck 7.57+0.09 2544  16.8% 8.52+0.11 46.58 19.2%

Table 2: Inception score (IS) (higher is better) and Frechét Inception distance (FID) (lower is better) for JS-GAN,
WGAN-GP and RS-GAN on CIFAR-10 and STL-10. And relative model size of narrow nets vs. regular nets
(“regular”: CNN and ResNet of [64]).

6 Real Data Experiments

RpGANs have been tested by Jolicoeur-Martineau [40], and are shown to be better than their SepGAN
counterparts in a variety of setting In addition, RpGAN and its variants have been used in super-
resolution (ESRGAN) [81] and a few recent GANSs [83|13]]. Therefore, the effectiveness of RpGANs
has been justified to some extent. We do not attempt to re-run the experiments merely for the purpose
of justification. Instead, our goal is to use experiments to support our landscape theory.

Based on the discussions in Sec. [2} Sec.[d and Sec. [5, we conjecture that RpGANSs have a bigger
advantage over SepGAN (A) with narrow deep nets, (B) in high resolution image generation, (C) with
imbalanced data. Finally, (D) there exists some bad initial D that makes SepGANs much worse than
RpGANSs. In the main text, we present results on the cross-entropy-loss (i.e., JS-GAN and RS-GAN).
Results on other losses are given in the appendix.

Experimental setting for (A). For (A), we test on CIFAR-10 and STL-10 data. For the optimizer, we
use Adam with the discriminator’s learning rate of 0.0002. For CIFAR-10 on ResNet, we set 5; = 0
and By = 0.9 in Adam, for others, ; = 0.5 and 35 = 0.999. We tune the generator’s learning rate
and run 100k iterations in total. We report the Inception score (IS) and Frechét Inception distance
(FID). IS and FID are evaluated on 50k and 10k samples respectively. Generated images and more
details are shown in the Appendix. Results using the hinge loss are provided in Appendix

Regular architecture and effect of spectral norm (SN). We use the two neural architectures in [64]:
standard CNN and ResNet, and report results in Table @ First, without spectral normalization (SN),
RS-GAN achieves much higher accuracy than JS-GAN and WGAN-GP on CIFAR-10. Second, with
SN, RS-GAN achieves 1-2 points lower FID score than JS-GAN, i.e., it’s slightly better. We suspect

“That paper tested a number of variants, and some of them are not directly covered by our results.



that SN smoothens the landscape, thus greatly reducing the gap between JS-GAN and RS-GAN. Note
that the scores of JS-GAN and WGAN-GP (both without and with SN) are comparable to or better
than the scores in Table 2 of Miyato et al. [64]].

Narrow nets. For both CNN and ResNet, we reduce the number of channels for all convolutional
layers in the generator and discriminator to (1) half, (2) quarter and (3) bottleneck (for ResNet
structure). The relative sizes of these models and experimental results are provided in Table[2. We
consider the gap between RS-GAN and JS-GAN as a baseline (in four cases of applying CNN, ResNet
to CIFAR-10 and STL-10; all with SN). For narrow nets, the gap between RS-GAN and JS-GAN
is similar or larger in most cases. Sometimes there is a large gap of > 4 FID score (ResNet with
%—channel for CIFAR-10 and half-channel CNN for STL-10 and ResNet with Bottleneck for STL-10).
In the CIFAR-10 dataset, compared to SN-GAN with the conventional ResNet (FID=20.13), we can
achieve a relatively close result by using RS-GAN with 28% parameters (half channel, FID=21.78).

High resolution data experiments. Sec.[2|discusses that the non-convexity of JS-GAN will become
a more severe issue when the number of samples is limited compared to the data space (e.g., high
resolution space or limited data points). We conduct experiments with LSUN Church and Tower
images of size 256 x 256. RS-GAN can generate higher visual quality images than JS-GAN
(Appendix [F). Similarly, using another model architecture, [40] achieves a better FID score with
RSGAN on the CAT dataset, which contains a small number of images (e.g., 2k 256 x 256 images).

Imbalanced data experiments. For imbalanced data, we find more evidence for the existence of
JS-GAN’s bad basins. The reason: JS-GAN would have a deeper bad local minimum, and hence a
higher chance to get stuck. We conduct ablation experiments on 2-cluster data and MNIST. Both cases
show that JS-GAN ends up with mode collapse while RS-GAN can generate data with proportions
similar to the imbalanced true data. Check Appendix [C|for more.

Bad initial point experiments. A better landscape is more
robust to initialization. On MNIST data, we find a discriminator
(not random) which permits RS-GAN to converge to a much
better solution than JS-GAN when used as the starting point.
The FID scores are reported in the table to the right. The gap QL O e &
is at least 30 FID scores (a much higher gap than the gap for F N F T T

a random initialization). generator Ir = discriminator Ir

Combining with EMA. It is known that non-convergence can be alleviated via EMA [84]], and our
theory predicts that the global landscape issue can be alleviated by RS-GAN. Non-convergence and
global landscape are orthogonal: no matter whether iterates are near a sub-optimal local basin or a
globally-optimal basin, the algorithm may cycle. Therefore, we conjecture that the effect of EMA
and the effect of RS-GAN are “additive”. Our simulations show that EMA can improve both JS-GAN
and RS-GAN, and the gap is approximately preserved after adding EMA. Combining EMA and
RS-GAN, we achieve a similar result to the baseline (JS-GAN + SN, no EMA, FID = 20.13) using
16.8% parameters (Resnet with bottleneck plus EMA, FID=21.38). See Appendix [E.3|for more.

General RpGAN: We conduct additional experiments on other losses, including hinge loss and least
squares loss. See Appendix [E.4]and [E.5|for more.

7 Conclusion

Global optimization landscape, together with statistical analysis and convergence analysis, are
important theoretical angles. In this work, we study the global landscape of GANs. Our major
questions are: (1) Does the original GAN formulation have a good landscape? (2) If not, is there
a simple way to improve the landscape in theory? (3) Does the improved landscape lead to better
performance? First, studying the empirical versions of JS-GAN we prove that it has exponentially
many bad basins, which are mode-collapse patterns. Second, we prove that a simple coupling idea
(resulting in RS-GAN) can remove bad basins in theory. Finally, we verify a few predictions based
on the landscape theory, e.g., RS-GAN has a bigger advantage over JS-GAN for narrow nets.
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Broader Impact

Generative adversarial nets (GANs) are an important tool for modeling of high-dimensional distri-
butions. However, the theoretical understanding of GANS is still limited. While recent work has
investigated GANs form a statistical and an optimization viewpoint, little is known about their global
landscape.

This paper is a first step to add theory about the global landscape of GANs. We think this research
will have a societal impact as it enables practitioners to make a more informed decision about the
type of loss function that should be optimized.

For example, we show that RS-GAN has benefits: (1) fewer bad basins, permitting a more stable
optimization; (2) better results for narrow deep net generators, permitting its use on smaller devices,
and promoting the development of smart devices and smart home services; (3) better performance on
high-resolution image generation, which can be helpful in the fashion, animation, film and television
industries.

Since we are focusing on the optimization of GANs, we do not think that this research has any ethical
disadvantages beyond those of GANSs. Illegal fake images or videos may be the main concern related
to GAN.

We hope that the research community finds these results interesting and that people will join our
effort in uncovering more theory for GANSs.
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