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Abstract

We give the first polynomial-time algorithm for robust regression in the list-decodable
setting where an adversary can corrupt a greater than 1/2 fraction of examples.

Forany o < 1, our algorithm takes as input a sample {(x;, yi)}i<» of n linear equations where
an of the equations satisfy y; = (x;, £*) + C for some small noise C and (1 — a)n of the equations
are arbitrarily chosen. It outputs a list L of size O(1/«) - a fixed constant - that contains an ¢ that
is close to £*.

Our algorithm succeeds whenever the inliers are chosen from a certifiably anti-concentrated
distribution D. In particular, this gives a (d/ )0/ ) time algorithm to find a O(1/a) size list
when the inlier distribution is standard Gaussian. For discrete product distributions that are
anti-concentrated only in regular directions, we give an algorithm that achieves similar guarantee
under the promise that £* has all coordinates of the same magnitude. To complement our result,
we prove that the anti-concentration assumption on the inliers is information-theoretically
necessary.

Our algorithm is based on a new framework for list-decodable learning that strengthens the
“identifiability to algorithms” paradigm based on the sum-of-squares method.

In an independent and concurrent work, Raghavendra and Yau [RY19] also used the Sum-
of-Squares method to give a similar result for list-decodable regression.
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1 Introduction

In this work, we design algorithms for the problem of linear regression that are robust to training
sets with an overwhelming (> 1/2) fraction of adversarially chosen outliers.

Outlier-robust learning algorithms have been extensively studied (under the name robust statis-
tics) in mathematical statistics [Tuk?75, MMY06, Hub11, HRRS11]. However, the algorithms result-
ing from this line of work usually run in time exponential in the dimension of the data [Ber06].
An influential line of recent work [KL.S09, ABL13, DKK*16b, LRV16, CSV17, KS17a, KS17b, HL17,
DKK*17, DKS17, KKM18] has focused on designing efficient algorithms for outlier-robust learning.

Our work extends this line of research. Our algorithms work in the “list-decodable learning”
framework. In this model, a majority of the training data (a 1 — a fraction) can be adversarially
corrupted leaving only an @ < 1/2 fraction of “inliers”. Since uniquely recovering the underlying
parameters is information-theoretically impossible in such a setting, the goal is to output a list (with
an absolute constant size) of parameters, one of which matches the ground truth. This model was
introduced in [BBV08] to give a discriminative framework for clustering. More recently, beginning
with [CSV17], various works [DKS18, KS17a] have considered this as a model of “untrusted” data.

There has been phenomenal progress in developing techniques for outlier-robust learning with
a small (< 1/2)-fraction of outliers (e.g. outlier “filters” [DKK"16a, DKK*17, CDG19, DKK*18b],
separation oracles for inliers [DKK*16a] or the sum-of-squares method [KS17b, HL17, KS17a,
KKM18]). In contrast, progress on algorithms that tolerate the significantly harsher conditions
in the list-decodable setting has been slower. The only prior works [CSV17, DKS18, KS17a] in this
direction designed list-decodable algorithms for mean estimation via problem-specific methods.

In this paper, we develop a principled technique to give the first efficient list-decodable learning
algorithm for the fundamental problem of linear regression. Our algorithm takes a corrupted set
of linear equations with an @ < 1/2 fraction of inliers and outputs a O(1/a)-size list of linear
functions, one of which is guaranteed to be close to the ground truth (i.e., the linear function that
correctly labels the inliers). A key conceptual insight in this result is that list-decodable regression
information-theoretically requires the inlier-distribution to be “anti-concentrated”. Our algorithm
succeeds whenever the distribution satisfies a stronger “certifiable anti-concentration” condition
that is algorithmically “usable’. This class includes the standard gaussian distribution and more
generally, any spherically symmetric distribution with strictly sub-exponential tails.

Prior to our work!, the state-of-the-art outlier-robust algorithms for linear regression [KKM18,
DKS19, DKK*18a, PSBR18] could handle only a small (< 0.1)-fraction of outliers even under strong
assumptions on the underlying distributions.

List-decodable regression generalizes the well-studied [DV89, J]94, FS10, YCS13, BWY14,
CYC14, 7Z]D16, SJA16, LL18] and easier problem of mixed linear regression: given k “clusters” of
examples that are labeled by one out of k distinct unknown linear functions, find the unknown
set of linear functions. All known techniques for the problem rely on faithfully estimating certain
moment tensors from samples and thus, cannot tolerate the overwhelming fraction of outliers in

1There’s a long line of work on robust regression algorithms (see for e.g. [BJKK17, KP19]) that can tolerate corruptions
only in the labels. We are interested in algorithms robust against corruptions in both examples and labels.



the list-decodable setting. On the other hand, since we can take any cluster as inliers and treat
rest as outliers, our algorithm immediately yields new efficient algorithms for mixed linear regres-
sion. Unlike all prior works, our algorithms work without any pairwise separation or bounded
condition-number assumptions on the k linear functions.

List-Decodable Learning via the Sum-of-Squares Method Our algorithm relies on a strengthen-
ing of the robust-estimation framework based on the sum-of-squares (50S) method. This paradigm
has been recently used for clustering mixture models [HL17, KS17a] and obtaining algorithms for
moment estimation [KS17b] and linear regression [KKM18] that are resilient to a small (<« 1/2) frac-
tion of outliers under the mildest known assumptions on the underlying distributions. At the heart
of this technique is a reduction of outlier-robust algorithm design to just finding “simple” proofs
of unique “identifiability” of the unknown parameter of the original distribution from a corrupted
sample. However, this principled method works only in the setting with a small (<« 1/2) fraction
of outliers. Asa consequence, the work of [KS17a] for mean estimation in the list-decodable setting
relied on “supplementing” the SoS method with a somewhat problem-dependent technique.

As an important conceptual contribution, our work yields a framework for list-decodable
learning that recovers some of the simplicity of the general blueprint. Central to our framework is
a general method of rounding by votes for “pseudo-distributions” (see Section 2) in the setting with
> 1/2 fraction outliers. Our rounding builds on the work of [KS19] who developed such a method
to give a simpler proof of the list-decodable mean estimation result of [KS17a].

Prior results discussed above hold for any underlying distribution that has upper-bounded
low-degree moments and such bounds are “captured” within the SoS system. Such conditions
are called as “certified bounded moment” inequalities. An important contribution of this work
is to formalize anti-concentration inequalities within the SoS system and prove such inequalities
for natural distribution families. Unlike bounded moment inequalities, there is no canonical
encoding within SoS for such statements. We choose an encoding that allows proving certified anti-
concentration for a distribution by showing the existence of a certain approximating polynomial.
This allows showing certified anti-concetration via a modular approach relying on a beautiful line
of works that construct “weighted ” polynomial approximators [Lub07].

We believe that our framework for list-decodable estimation and our formulation of certified
anti-concentration condition will likely have further applications in outlier-robust learning.

1.1 Owur Results

We first define our model for generating samples for list-decodable regression.

Model 1.1 (Robust Linear Regression). For 0 < & < 1 and ¢* € R? with ||¢*|l> < 1, let Linp(a, £*)
denote the following probabilistic process to generate 1 noisy linear equations S = {{x;, a) = y; |
1 <i < n}invariable a € R? with an inliers I and (1 — a)n outliers O:

1. Construct I by choosing an ii.d. samples x; ~ D and set y; = (x;, {*) + C for additive noise
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2. Construct O by choosing the remaining (1 — a)n equations arbitrarily and potentially adver-
sarially w.r.t the inliers 7.

Note that a measures the “signal” (fraction of inliers) and can be < 1/2. The bound on the
norm of {* is without any loss of generality. For the sake of exposition, we will restrict to C = 0 for
most of this paper and discuss (see Remarks 1.6 and 4.4) how our algorithms can tolerate additive
noise.

An n-approximate algorithm for list-decodable regression takes input a sample from Linp («, £*)
and outputs a constant (depending only on «) size list L of linear functions such that there is some
¢ € L that is n-close to £*.

One of our key conceptual contributions is to identify the strong relationship between anti-
concentration inequalities and list-decodable regression. Anti-concentration inequalities are well-
studied [Erd45, TV12, RV08] in probability theory and combinatorics. The simplest of these
inequalities upper bound the probability that a high-dimensional random variable has zero pro-
jections in any direction.

Definition 1.2 (Anti-Concentration). A R?-valued zero-mean random variable Y has a -anti-
concentrated distribution if P[{Y, v) = 0] < 6.

In Proposition 2.4, we provide a simple but conceptually illuminating proof that anti-
concentration is sufficient for list-decodable regression. In Theorem 6.1, we prove a sharp con-
verse and show that anti-concentration is information-theoretically necessary for even noiseless
list-decodable regression. This lower bound surprisingly holds for a natural distribution: uniform
distribution on {0,1}¥ and more generally, uniform distribution on [¢]? for [q] = {0,1,2...,4}.
Our lower bound, in fact, shows the impossibility of even the “easier” problem of mixed linear
regression on this distribution.

Theorem 1.3 (See Proposition 2.4 and Theorem 6.1). There is a (inefficient) list-decodable regression
algorithm for Linp(a, €*) with list size O(%) whenever D is a-anti-concentrated. Further, there exists
a distribution D on R? that is (a + &)-anti-concentrated for every e > 0 but there is no algorithm for
S-approximate list-decodable regression for Linp(a, €*) that returns a list of size < d.

To handle additive noise of variance (%, we need a control of P[|(x, v)| < (] = E1(|(x, v)| < §).
For our efficient algorithms, in addition, we need that the anti-concentration property to have
a low-degree “sum-of-squares” certificate. SoS is a proof system that reasons about polynomial
inequalities. Since the “core indicator” 1(|(x, v)| < 0) is not a polynomial, we phrase certified
anti-concentration in terms of an approximating polynomial p for the core indicator.

For this section, we will use "low-degree sum-of-squares proof" informally and encourage the
reader to think of certified anti-concentration as a stronger version of anti-concentration that the
SoS method can reason about.

Definition 1.4 (Certifiable Anti-Concentration). A random variable Y has a k-certifiably (C, 0)-anti-
concentrated distribution if there is a univariate polynomial p satisfying p(0) = 1 such that there
is a degree k sum-of-squares proof of the following two inequalities:

3



1. Yo, (Y, 0)? < 62 E(Y, v)? implies (p((Y, v)) — 1)* < 6°.
2. Vo, ||v||§ < 1implies E p2((Y, v)) < Cé.
We are now ready to state our main result.

Theorem 1.5 (List-Decodable Regression). For every a, n > 0 and a k-certifiably (C, a*n?/10C)-anti-
concentrated distribution D on RY, there exists an algorithm that takes input a sample generated according
to Linp (a, €*) and outputs a list L of size O(1/a) such that there is an € € L satisfying ||€ — €* ||, < n with
probability at least 0.99 over the draw of the sample. The algorithm needs a sample of size n = (kd)°®) and
runs in time n°®) = (kd)o(kz).

Remark 1.6 (Tolerating Additive Noise). For additive noise (not necessarily independent across
samples) of variance (2 in the inlier labels, our algorithm, in the same running time and sample
complexity, outputs a list of size O(1/«) that contains an ¢ satisfying |[£ — £*||, < % + 1. Since we
normalize £* to have unit norm, this guarantee is meaningful only when ¢ < a.

Remark 1.7 (Exponential Dependence on 1/a). List-decodable regression algorithms immediately
yield algorithms for mixed linear regression (MLR) without any assumptions on the components.
The state-of-the-art algorithms for MLR with gaussian components [LL18, SJA16] has an exponen-
tial dependence on k = 1/« in the running time in the absence of strong separation/condition
number assumptions. Liang and Liu [LL18] (see Page 10 of their paper) use the relationship to
learning mixtures of k gaussians (with an exp(k) lower bound [MV10]) to hint at the impossibil-
ity of algorithms with polynomial dependence on 1/a for MLR and thus, also for list-decodable
regression.

Certifiably anti-concentrated distributions In Section 5, we show certifiable anti-concentration
of some well-studied families of distributions. This includes the standard gaussian distribution
and more generally any anti-concentrated spherically symmetric distribution with strictly sub-
exponential tails. We also show that simple operations such as scaling, applying well-conditioned
linear transformations and sampling preserve certifiable anti-concentration. This yields:

Corollary 1.8 (List-Decodable Regression for Gaussian Inliers). Forevery at, n > 0 there’s an algorithm
for list-decodable regression for the model Linp(a, €*) with D = N(0, L) with Amax(X)/Amin(X) = O(1)

7 = (a/an)° (7).

_ (d/anCF5) in time
that needs n = (d/an) ‘\**1*) samples and runs in time n

We note that certifiably anti-concentrated distributions are more restrictive compared to the
families of distributions for which the most general robust estimation algorithms work [KS17b,
KS17a, KKM18]. To a certain extent, this is inherent. The families of distributions considered
in these prior works do not satisfy anti-concentration in general. And as we discuss in more
detail in Section 2, anti-concentration is information-theoretically necessary (see Theorem 1.3) for
list-decodable regression. This surprisingly rules out families of distributions that might appear
natural and “easy”, for example, the uniform distribution on {0, 1}".

We rescue this to an extent for the special case when ¢* in the model Lin(a, £*) is a "Boolean
vector”, i.e., has all coordinates of equal magnitude. Intuitively, this helps because while the the
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uniform distribution on {0,1}" (and more generally, any discrete product distribution) is badly
anti-concentrated in sparse directions, they are well anti-concentrated [Erd45] in the directions
that are far from any sparse vectors.

As before, for obtaining efficient algorithms, we need to work with a certified version (see
Definition 4.5) of such a restricted anti-concentration condition. As a specific Corollary (see
Theorem 4.6 for a more general statement), this allows us to show:

Theorem 1.9 (List-Decodable Regression for Hypercube Inliers). For every o, n > O there’s an n-
approximate algorithm for list-decodable regression for the model Linp (e, £*) with D is uniform on {0,1}%
L 1 L

that needs n = (d/ar;)o(“4'l4) samples and runs in time nOER = (d/an)o(asﬂg).
In Section 4.1, we obtain similar results for general product distributions. Itis an important open
problem to prove certified anti-concentration inequalities for a broader family of distributions.

Concurrent Work In an independent and concurrent work, Raghavendra and Yau obtained
similar results for list-decodable linear regression based on the sum-of-squares method [RY19].

2 Overview of our Technique

In this section, we give a bird’s eye view of our approach and illustrate the important ideas in our
algorithm for list-decodable regression. Thus, given a sample S = {(x;, y;)}; from Linp(a, £*),
we must construct a constant-size list L of linear functions containing an ¢ close to £*.

Our algorithm is based on the sum-of-squares method. We build on the “identifiability to
algorithms” paradigm developed in several prior works [BM16, BKS15, MSS516, KS17b, HL17,
KS17a, KKM18] with some important conceptual differences.

An inefficient algorithm Let’s start by designing an inefficient algorithm for the problem. This
may seem simple at the outset. But as we’ll see, solving this relaxed problem will rely on some
important conceptual ideas that will serve as a starting point for our efficient algorithm.

Without computational constraints, it is natural to just return the list L of all linear functions ¢
that correctly labels all examples in some S C S of size an. We call such an S, a large, soluble set.
True inliers 1 satisfy our search criteria so £* € L. However, it’s not hard to show (Proposition B.1)
that one can choose outliers so that the list so generated has size exp(d) (far from a fixed constant!).

A potential fix is to search instead for a coarse soluble partition of S, if it exists, into disjoint
$1,S2,..., Sk and linear functions €1, €, ..., {x so that every |S;| > an and ¢; correctly computes
the labels in S;. In this setting, our list is small (k < 1/a). But it is easy to construct samples S for
which this fails because there are coarse soluble partitions of S where every ¢; is far from ¢*.

Anti-Concentration It turns out that any (even inefficient) algorithm for list-decodable regression
provably (see Theorem 6.1) requires that the distribution of inliers? be sufficiently anti-concentrated:

2As in the standard robust estimation setting, the outliers are arbitrary and potentially adversarially chosen.



Definition 2.1 (Anti-Concentration). A R%-valued random variable Y with mean 0 is §-anti-
concentrated? if for all non-zero v, P[(Y,v) = 0] < 6. A set T € R? is §-anti-concentrated if
the uniform distribution on T is 6-anti-concentrated.

As we discuss next, anti-concentration is also sufficient for list-decodable regression. Intuitively,
this is because anti-concentration of the inliers prevents the existence of a soluble set that intersects
significantly with 7 and yet can be labeled correctly by ¢ # ¢*. This is simple to prove in the special
case when S admits a coarse soluble partition.

Proposition 2.2. Suppose I is a-anti-concentrated. Suppose there exists a partition S1,S3,...,5¢r € S
such that each |S;| > an and there exist {1, (>, ..., {x such that y; = (€, x;) for every j € S;. Then, there
is an i such that €; = €*.

Proof. Since k < 1/a, there is a j such that |7 N S;| > a|Z|. Then, (x;,¢;) = (x;, ¢*) for every
i € INnSj. Thus, Pir[{x;,{; — ") = 0] > a. This contradicts anti-concentration of I unless
i -t =0. O
)

The above proposition allows us to use any soluble partition as a certificate of correctness for
the associated list L. Two aspects of this certificate were crucial in the above argument: 1) largeness:
each S; is of size an - so the generated list is small, and, 2) uniformity: every sample is used in
exactly one of the sets so 7 must intersect one of the S;s in at least a-fraction of the points.

Identifiability via anti-concentration For arbitrary S, a coarse soluble partition might not exist.
So we will generalize coarse soluble partitions to obtain certificates that exist for every sample S
and guarantee largeness and a relaxation of uniformity (formalized below). For this purpose, it
is convenient to view such certificates as distributions u on > an size soluble subsets of S so any
collection C C 25 of an size sets corresponds to the uniform distribution y on C.

To precisely define uniformity, let W;(u) = Es.,[1(i € S)] be the “frequency of i”, that is,
probability that the ith sample is chosen to be in a set drawn according to u. Then, the uniform
distribution y on any coarse soluble k-partition satisfies W; = 1 for every i. That is, all samples
i € S are uniformly used in such a p. To generalize this idea, we define }}; W;(u)? as the distance
to uniformity of u. Up to a shift, this is simply the variance in the frequencies of the points
in S used in draws from u. Our generalization of a coarse soluble partition of S is any u
that minimizes Y,; W;(u)?, the distance to uniformity, and is thus maximally uniform among all
distributions supported on large soluble sets. Such a y can be found by convex programming.

The following claim generalizes Proposition 2.2 to derive the same conclusion starting from
any maximally uniform distribution supported on large soluble sets.

Proposition 2.3. For a maximally uniform u on an size soluble subsets of S, }.icr Es~u[1(i € S)] > a|I|.

The proof proceeds by contradiction (see Lemma 4.3). We show thatif }};c; W;(u) < a|7|, then
we can strictly reduce the distance to uniformity by taking a mixture of y with the distribution
that places all its probability mass on 7. This allow us to obtain an (inefficient) algorithm for
list-decodable regression establishing identifiability.

3Definition 1.4 differs slightly to handle list-decodable regression with additive noise in the inliers.



Proposition 2.4 (Identifiability for List-Decodable Regression). Let S be sample from Lin(a, £*) such
that T is 5-anti-concentrated for & < a. Then, there’s an (inefficient) algorithm that finds a list L of size -2

a=o6
such that ¢* € L with probability at least 0.99.

Proof. Let u be any maximally uniform distribution over an size soluble subsets of S. For k = 2,
let S1,S,...,Sk be independent samples from p. Output the list L of k linear functions that
correctly compute the labels in each S;.

To see why ¢* € L, observe that E|S; N T| = },c.; E1(i € S;) > a|I|. By averaging, IP[|S; N
I| > “T“S|I|] “T_é Thus, there’s a j < k so that |[S; N | > “TJ“S|I| with probability at least

=
1-(1-42 )@ > 0.99. We can now repeat the argument in the proof of Proposition 2.2 to conclude

that any linear function that correctly labels S; must equal £*. m]

An efficient algorithm Our identifiability proof suggests the following simple algorithm: 1) find
any maximally uniform distribution p on soluble subsets of size an of S, 2) take O(1/a) samples
Si from u and 3) return the list of linear functions that correctly label the equations in S;s. This is
inefficient because searching over distributions is NP-hard in general.

To make this into an efficient algorithm, we start by observing that soluble subsets S C S of size
an can be described by the following set of quadratic equations where w stands for the indicator
of S and ¢, the linear function that correctly labels the examples in S.

i wi=an

Vi € [n]. w? = w;
ﬂw,t’ . (2.1)
Vie[n]. wi-(yi—(xi,{))=0
e <1

Our efficient algorithm searches for a maximally uniform pseudo-distribution on w satisfying
(2.1). Degree k pseudo-distributions (see Section 3 for precise definitions) are generalization of dis-
tributions that nevertheless “behave” just as distributions whenever we take (pseudo)-expectations
(denoted by E) of a class of degree k polynomials. And unlike distributions, degree k pseudo-
distributions satisfying* polynomial constraints (such as (2.1)) can be computed in time 7%,

For the sake of intuition, it might be helpful to (falsely) think of pseudo-distributions fi as
simply distributions where we only get access to moments of degree < k. Thus, we are allowed
to compute expectations of all degree < k polynomials with respect to fi. Since W;(@i) = E; w;
are just first moments of fi, our notion of maximally uniform distributions extends naturally to
pseudo-distributions. This allows us to prove an analog of Proposition 2.3 for pseudo-distributions

and gives us an efficient replacement for Step 1.
Proposition 2.5. For any maximally uniform i of degree > 2, }icr Ep[wi] > all| = aYiemn ]E[,[wi] .

For Step 2, however, we hit a wall: it’s not possible to obtain independent samples from fi given
only low-degree moments.

“See Fact 3.3 for a precise statement.



Rounding by Votes To circumvent this hurdle, our algorithm departs from rounding strategies
for pseudo-distributions used in prior works and instead “rounds” each sample to a candidate
linear function. While a priori, this method produces n different candidates instead of one, we
will be able to extract a list of O( %) size that contains the true vector from them. This step will

crucially rely on anti-concentration properties of 7.
]E i [w,-é’ ]
Eglw;]
the (scaled) average, according to fi, of all the linear functions ¢ that are used to label the sets S of
size an in the support of i whenever i € S. Further, v; depends only on the first two moments of

i

Consider the vector v; = whenever ]Ep[wi] # 0 (set v; to zero, otherwise). This is simply

We think of v;s as “votes”cast by the ith sample for the unknown linear function. Let us focus
our attention on the votes v; of i € I - the inliers. We will show that according to the distribution
proportional to E[w], the average ¢, distance of v; from ¢* is at max :

1 _ .
S o ;E[wi]nvi — <. (*)

Before diving into (x), let’s see how it gives us our efficient list-decodable regression algorithm:

1. Find a pseudo-distribution f[i satisfying (2.1) that minimizes distance to uniformity
Y Eglwi

2. For O(2) times, independently choose a random index i € [1] with probability proportional
to Ez[w;] and return the list of corresponding v;s.

Step 1 above is a convex program - it minimizes a norm subject on the convex set of pseudo-
distributions - and can be solved in polynomial time. Let’s analyze step 2 to see why the algorithm
works. Using (x) and Markov’s inequality, conditioned on i € 7, ||v; — £*|l < 21 with probability
> 1/2. By Proposition 2.5, % > a soi € 1 with probability at least a. Thus in each iteration
of step 2, with probability at least a /2, we choose an i such that v; is 2n-close to {*. Repeating
O(1/a) times gives us the 0.99 chance of success.

(*) via anti-concentration As in the information-theoretic argument, (%) relies on the anti-
concentration of 7. Let’s do a quick proof for the case when i is an actual distribution .

Proof of (k) for actual distributions p. Observe that u is a distribution over (w, ) satisfying (2.1).
Recall that w indicates a subset S € S of size an and w; = 1iff i € S. And ¢ € R? satisfies all the
equations in S.

By Cauchy-Schwarz, Y; [| Ey[wil] — E,[wi]€*|| < Eu[Xier will€ — €*||]]. Next, as in Proposi-
tion 2.2, since 7 is n-anti-concentrated, and for all S such that [ N'S| > n|T|, ¢ — ¢* = 0. Thus,
any such S in the support of u contributes 0 to the expectation above. We will now show that the
contribution from the remaining terms is upper bounded by 1. Observe that since ||£ — £*|| < 2,
EulZier will€ = €1 = By[1 (IS0 I| < nlZ ) will€ = €111 = Epl Ziesnr 1€ - N1 < 2911, o



SoSizing Anti-Concentration The key to proving (x) for pseudo-distributions is a sum-of-squares
(SoS) proof of anti-concentration inequality: P,z [(x, v) = 0] < 7 in variable v. SoS is a restricted
system for proving polynomial inequalities subject to polynomial inequality constraints. Thus, to
even ask for a SoS proof we must phrase anti-concentration as a polynomial inequality.

To do this, let p(z) be a low-degree polynomial approximator for the function 1(z = 0).

Then, we can hope to “replace” the use of the inequality P, .7 [(x,v) = 0] < n = E, 7 [1({x,v) =
0)] < 1 in the argument above by E,.r[p({x, v))] < 1. Since polynomials grow unboundedly for
large enough inputs, it is necessary for the uniform distribution on 7 to have sufficiently light-tails
to ensure that E,.; p({x, v)) is small. In Lemma A.1, we show that anti-concentration and strictly
sub-exponential tails are sufficient to construct such a polynomial.

We can finally ask for a SoS proof for E,.r p({x, v)) < 1 in variable v. We prove such certified
anti-concentration inequalities for broad families of inlier distributions in Section 5.

3 Preliminaries

In this section, we define pseudo-distributions and sum-of-squares proofs. See the lecture notes
[BS16] for more details and the appendix in [MSS16] for proofs of the propositions appearing here.

Let x = (x1,x2,...,x,) be a tuple of n indeterminates and let R[x] be the set of polynomials
with real coefficients and indeterminates xq,...,x,. We say that a polynomial p € R[x] is a
sum-of-squares (sos) if there are polynomials g1, ..., g, such that p = q% ++ g2

3.1 Pseudo-distributions

Pseudo-distributions are generalizations of probability distributions. We can represent a discrete
(i.e., finitely supported) probability distribution over R" by its probability mass function D: R" —
R such that D > 0 and X cqupp(p) D(x) = 1. Similarly, we can describe a pseudo-distribution by its
mass function by relaxing the constraint D > 0 to passing certain low-degree non-negativity tests.

Concretely, a level-{ pseudo-distribution is a finitely-supported function D : R* — R such that
YD) = 1and Y, D(x)f(x)*> > 0 for every polynomial f of degree at most £/2. (Here, the
summations are over the support of D.) A straightforward polynomial-interpolation argument
shows that every level-co-pseudo distribution satisfies D > 0 and is thus an actual probability
distribution. We define the pseudo-expectation of a function f on R? with respect to a pseudo-
distribution D, denoted Epy) f(x), as

Ep f(x) = ) DOf(x) . (3.1)

The degree-{ moment tensor of a pseudo-distribution D is the tensor ]ED(X)(l, X1,X2,..., xn)®€.
In particular, the moment tensor has an entry corresponding to the pseudo-expectation of all
monomials of degree at most ¢ in x. The set of all degree-f moment tensors of probability
distribution is a convex set. Similarly, the set of all degree-f moment tensors of degree d pseudo-
distributions is also convex. Unlike moments of distributions, there’s an efficient separation oracle
for moment tensors of pseudo-distributions.



Fact 3.1 ([Sho87, Par00, Nes00, Las01]). For any n,{ € N, the following set has a 1O time weak
separation oracle (in the sense of [GLS81]):

{]ED(X)(L X1, %2, .., %)% | degree-d pseudo-distribution D over ]R”} . (3.2)

This fact, together with the equivalence of weak separation and optimization [GLS81] allows
us to efficiently optimize over pseudo-distributions (approximately)—this algorithm is referred to
as the sum-of-squares algorithm. The level-¢ sum-of-squares algorithm optimizes over the space of
all level-¢ pseudo-distributions that satisfy a given set of polynomial constraints (defined below).

Definition 3.2 (Constrained pseudo-distributions). Let D be a level-{ pseudo-distribution over R".
Let A={f1>0,£2>0,..., fy > 0} be a system of m polynomial inequality constraints. We say
that D satisfies the system of constraints A at degree r, denoted D |7 A, if for every S C [m] and every
sum-of-squares polynomial & with degh + 3 ;cs max{deg fi, 7}, Ep h - [1;es fi = 0.

We write D |: A (without specifying the degree) if D % A holds. Furthermore, we say that
D )? A holds approximately if the above inequalities are satisfied up to an error of 21, 12l TTies |l £ill,
where ||-|| denotes the Euclidean norm?® of the cofficients of a polynomial in the monomial basis.

We remark that if D is an actual (discrete) probability distribution, then we have D |: A if and
only if D is supported on solutions to the constraints ‘A. We say that a system A of polynomial
constraints is explicitly bounded if it contains a constraint of the form {||x||> < M}. The following
fact is a consequence of Fact 3.1 and [GLS81],

Fact 3.3 (Efficient Optimization over Pseudo-distributions). There exists an (n + m)CO-time algorithm
that, given any explicitly bounded and satisfiable system® A of m polynomial constraints in n variables,
outputs a level-C pseudo-distribution that satisfies ‘A approximately.

3.2 Sum-of-squares proofs

Let f1, f2, ..., fr and g be multivariate polynomials in x. A sum-of-squares proof that the constraints
{fi=0,..., fiu =0} imply the constraint {g > 0} consists of polynomials (ps)sc[x] such that

9= Z ps - Ties fi - (3.3)
SC[m]

We say that this proof has degree ¢ if for every set S C [m], the polynomial psIT;cs f; has degree at
most £. If there is a degree ¢ SoS proof that {f; > 0 | i < r} implies {g > 0}, we write:

{(fiz0li<r}f{g>0}. (3.4)

For all polynomials f, g: R* — R and for all functions F: R* — R", G: R" — R, H: RP — R"
such that each of the coordinates of the outputs are polynomials of the inputs, we have the following
inference rules:

AlAf>0,9g200 Al {f>0},Al-{g>0)
Al {f+920  Algz{f-9>0}

4
5The choice of norm is not important here because the factor 27" swamps the effects of choosing another norm.
¢Here, we assume that the bitcomplexity of the constraints in A is (n + m)o(l).

(addition and multiplication)
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Al8,8f7cC
Al C
{F>0} (G >0}
{F(H) > 0} oy {G(H) > 0}

Low-degree sum-of-squares proofs are sound and complete if we take low-level pseudo-

(transitivity)

(substitution)

distributions as models. Concretely, sum-of-squares proofs allow us to deduce properties of
pseudo-distributions that satisfy some constraints.

Fact 3.4 (Soundness). If D )f A for a level-C pseudo-distribution D and there exists a sum-of-squares
proof A |7 8B, then D )ﬁ B

If the pseudo-distribution D satisfies A only approximately, soundness continues to hold if
we require an upper bound on the bit-complexity of the sum-of-squares A |7 B (number of bits
required to write down the proof). In our applications, the bit complexity of all sum of squares
proofs will be 79 (assuming that all numbers in the input have bit complexity n°M). This
bound suffices in order to argue about pseudo-distributions that satisfy polynomial constraints
approximately.

The following fact shows that every property of low-level pseudo-distributions can be derived
by low-degree sum-of-squares proofs.

Fact 3.5 (Completeness). Suppose d > r’ > r and A is a collection of polynomial constraints with degree
at most r, and A v {¥1_; x> < B} for some finite B.

Let {g > 0} be a polynomial constraint. If every degree-d pseudo-distribution that satisfies D )f A also
satisfies D )r: {g > 0}, then for every & > 0, there is a sum-of-squares proof A }7 {9 > -¢}.

We will use the following Cauchy-Schwarz inequality for pseudo-distributions:

Fact 3.6 (Cauchy-Schwarz for Pseudo-distributions). Let f, g be polynomials of degree at most d in
indeterminate x € R?. Then, for any degree d pseudo-distribution i, Eg[fg] < \/]E,; Lf 2]\/]E,1[g2].

The following fact is a simple corollary of the fundamental theorem of algebra:
Fact 3.7. For any univariate degree d polynomial p(x) > 0 for all x € R, I% {pr(x) > 0}.
This can be extended to univariate polynomial inequalities over intervals of R.

Fact 3.8 (Fekete and Markov-Lukacs, see [Lau09]). For any univariate degree d polynomial p(x) > 0
forx € [a,b], {x > a,x < b} I% {p(x) > O}.

4 Algorithm for List-Decodable Robust Regression

In this section, we describe and analyze our algorithm for list-decodable regression and prove our
tirst main result restated here.

11



Theorem 1.5 (List-Decodable Regression). For every a, n > 0 and a k-certifiably (C, a*n?/10C)-anti-
concentrated distribution D on RY, there exists an algorithm that takes input a sample generated according
to Linp (a, £*) and outputs a list L of size O(1/a) such that there is an € € L satisfying ||€ — £* ||, < n with
probability at least 0.99 over the draw of the sample. The algorithm needs a sample of size n = (kd)°®) and
runs in time n°® = (kd)o(kz).

We will analyze Algorithm 1 to prove Theorem 1.5.

LLwi=an
Vi € [n]. wl2 =w;
Aw,e: \Vie[n]. wi-(yi—{(x;,€))=0 (4.1)
> e<
i<d

Algorithm 1 (List-Decodable Regression).

Given: Sample S of size n drawn according to Lin(a, n, £*) with inliers 7, n > 0.

Output: A list L € R? of size O(1/a) such that there existsa £ € L satisfying ||€ — €*|| < 1.
Operation:

1. Find a degree O(1/a*n*) pseudo-distribution i satisfying A, that minimizes
Il E[w]]l-

2. Foreach i € h that Eg[w;] > 0, let o, = S

. Foreach i € [n] such that Eg[w;] > 0, let v; = Eolwr]

. Otherwise, set v; = 0.

3. Take ] be a random multiset formed by union of O(1/a) independent draws of
i € [n] with probability %.

4. Output L = {v; | i € [} where | C [n].

Our analysis follows the discussion in the overview. We start by formally proving ().

Lemma 4.1. Forany t > k and any S so that I C 8 is k-certifiably (C, a*n?/4C)-anti-concentrated,

we |1 < wn P
ﬂw,t’}T mzwlllg_£”2<T

iel

Proof. We start by observing: Ay, ¢ % e—e3 <2
Since 7 is (C, an/2C)-anti-concentrated, there exists a univariate polynomial p such that Vi:

{wilx, € - ) = 0} - {p(wixi, £ - £)) =1}, (4.2)

and

12



ﬂwknFLﬂmeffW i%. (43)

iel
Using (4.2), we have:

Aw ¢ I% {1 —p*(wi{x;, €= 7)) = 0} }% {1 —w;ip*({x;, € = 7)) = 0} .

Using (4.3) and Ay ¢ % {wl2 = wi}, we thus have:

A "
~me{ mefm S wille - ClRwip(x, €= ) = o= 3 willt - CIRpA(xi, €= £))
7] 171 & 171 &
|HZan%mm%m<jH.
iel

O

As a consequence of this lemma, we can show that a constant fraction of the v; for i € 1
constructed in the algorithm are close to ¢*.

Lemma 4.2. For any [i of degree k satisfying Ay ¢, III Yicr Elwi] - lvi = €*]]2 < 51.

Proof. By Lemma 4.1, we have: Ay, ¢ I% {ﬁ w6 - {;*”3 < #}
We also have: Ay ¢ % {wlz — w; = 0} for any i. This yields:

mﬂ—%ﬂZwamb“”}

iel
Since [i satisfies Ay ¢, taking pseudo-expectations yields: + ;c7 E [|wi€ — wi€*||3 < #.
By Cauchy-Schwarz for pseudo-distributions (Fact 3.6), we have:

ZWwf fm

1eI

a?n?
I;nsz’ w013 < <
1

Using v; = %{:{j? if E[w;] > 0 and 0 otherwise, we have: %ZieLE [;]50 E[w;] - |lvi = &> < g1.
O

Next, we formally prove that maximally uniform pseudo-distributions satisfy Proposition 2.5.

Lemma 4.3. For any i of degree > 4 satisfying Ay, ¢ that minimizes || E[w]|l, Yicr ]Eg[wi] > a’n.

13



Proof. Let u = = E[w]. Then, u is a non-negative vector satisfying Ziem Ui = 1.

Let wt(Z) = X;cr ui and wt(O) = Yo7 u;. Then, wt(Z) + wt(O) = 1.

We will show that if wt(Z') < a, then there’s a pseudo-distribution fi’ that satisfies Ay, ¢ and
has a lower value of || E[w]||,. This is enough to complete the proof.

To show this, we will “mix” ji with another pseudo-distribution satisfying A ¢. Let fi* be the
actual distribution supported on single (w, ¢) - the indicator 17 and ¢*. Thus, Eg-w; = 1iffi € T
and 0 otherwise. fi* clearly satisfies Ay ¢. Thus, any convex combination (mixture) of fi and fi*
also satisfies Ay, ¢.

Let fiy = (1 - A)fi + Afi*. We will show that thereisa A > 0 such that || ]Eﬂ/\[w]ﬂz < || E[w]]],.

We first lower bound ||u ||§ in terms of wt(Z') and wt(0). Observe that for any fixed values of
wt(Z) and wt(O), the minimum is attained by the vector u that ensures u; = %Wt(f ) foreachi e I

and u; = = a)nwt(())

2 2
This gives ||u|* > (W;fr{)) an + (%;()]2) (1-a)n = % : (Wt(f) + (1 - wt(D)y? (1 fa)) '

Next, we compute the the £, norm of u’ = al—n Ez, was

(L
112 = (1= AP )2+ 2 2o nm)

t
Thus, [[#/]12 = ]2 = (=24 + AD)Jul? + 2 LoD

< %}:Az : (wt(I)2 + (1= WP a) + 2—; +27(1 - )\)Wt(f )

24

- a)) _A-2(1- )\)wt(I))

WH(T)? + (1 — wt(I))Z% - wt(I))

A
. 2 m2 < v _ . 2 _ 2
Rearranging, |[u||“ — ||u’||* > o ((2 A) (Wt(I) + (1 —wt(J)) (1
L AR-A) (
an

Now, whenever wt(Z) < a, wt(Z)? + (1 — wt(Z))*1% — wt(Z) > 0. Thus, we can choose a small
enough A > 0 so that ||u|> — ||u’||? > 0.
O

Lemma 4.3 and Lemma 4.2 immediately imply the correctness of our algorithm.

Proof of Main Theorem 1.5. First, since D is k-certifiably (C, an/4C)-anti-concentrated, Lemma 5.5
implies taking > 1 = (kd)°® samples ensures that I is k-certifiably (C, @n/2C)-anti-concentrated
with probability at least 1 — 1/d. Let’s condition on this event in the following.

Let i be a pseudo-distribution of degree t satisfying A, , and minimizing || E[w]|],. Such a
pseudo-distribution exists as can be seen by just taking the distribution with a single-point support
wwherew; =1iffi € 1.
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From Lemma 4.2, we have: Ill'_l Sicr Elw;] - ||v; = €]l < 5n. Let Z = ﬁ Yicr E[w;]. By a
rescaling, we obtain:

1a
Zf 0i =2 < 5 50. (4.4)

N|

Using Lemma 4.3, Z > a. Thus,

Z Noi = €1k < n/2. (45)
iel

Let i € [n] be chosen with probab111ty '] . Then, i € I with probability Z > a. By Markov’s
inequality applied to (4.5), with 3 condltloned oni € I, |lv; = '] < n. Thus, in total, with
probability at least a/2, ||v; — £*|]2 < 1. Thus, the with probability at least 0.99 over the draw of the
random set J, the list constructed by the algorithm contains an ¢ such that ||[£ — £*|l, < n

Let us now account for the running time and sample complexity of the algorithm. The sample
size for the algorithm is dictated by Lemma 5.5 and is (kd)°%), which for our choice of p goes as
(kd)°®) . A pseudo-distribution satisfying A ¢ and minimizing || E[w]||; can be found in time
n0® = (kd)°*), The rounding procedure runs in time at most O(nd). O

Remark 4.4 (Tolerating Additive Noise). To tolerate independent additive noise, our algorithm and
analysis change minimally. For an additive noise of variance < a2172 in the inliers, we modify
Aw,¢ by replacing the constraint Vi, w; - (y; — {(x;, £)) = 0 by Vi, zw; - (y; — (x;,{)) < 4C. And
Y wi=anto X, w; = (a/2)n.

This means that instead of searching for a subsample of size an that has a exact solution £, we
search for a subsample of size a/2n where there’s a solution ¢ with an additive error of at most 2C.
With additive noise of variance (2, it is easy to check that there’s a subset of 1/2 fraction of inliers
that satisfies this property. Thus, Ay, ¢ is feasible.

Our analysis remains exactly the same except for one change in the proof of Lemma 4.1. We start
from a distribution that is (C, anC/100C)-certifiably anti-concentrated. And instead of inferring
that p(wi(y; — (x;, £))) = 1, we use that whenever +(y; — (x;, £)) < 4C, p*((yi — (xi, £))) > 1 —4C.

4.1 List-Decodable Regression for Boolean Vectors

In this section, we show algorithms for list-decodable regression when the distribution on the
inliers satisfies a weaker anti-concentration condition. This allows us to handle more general
inlier distributions including the product distributions on {+1}4, [0,1]? and more generally any
product domain. We however require that the unknown linear function be “Boolean”, that is, all
its coordinates be of equal magnitude.
We start by defining the weaker anti-concentration inequality. Observe that if v € R? satisfies
3_

U7 = vz for every i, then the coordinates of v are in {0, + \/_}
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Definition 4.5 (Certifiable Anti-Concentration for Boolean Vectors). A R valued random variable
Y is k-certifiably (C, 5)-anti-concentrated in Boolean directions if there is a univariate polynomial p sat-
isfying p(0) = 1 such that there is a degree k sum-of-squares proof of the following two inequalities:
for all x? < 62, (p(x) — 1)> < 6% and for all v such that 01.3 = %vi for all 7, ||v]|> Ey p({Y, v))* < Cb.

We can now state the main result of this section.

Theorem 4.6 (List-Decodable Regression in Boolean Directions). For every a, 1, there’s a algorithm
that takes input a sample generated according to Linp (a, n, €*) in R? for D that is k-certifiably (C, an/10C)-

d
anti-concentrated in Boolean directions and €* € {i%} and outputs a list L of size O(1/a) such that

there’s an € € L satisfying ||€ — €*|| < n with probability at least 0.99 over the draw of the sample. The
1
algorithm requires a sample of size n > (d/cm)o(“znz) and runs in time n®® = (d/an)O®"),
The only difference in our algorithm and rounding is that instead of the constraint set Ay, ¢, we

will work with 8B, ¢ that has an additional constraint 51.2 = 1 for every i. Our algorithm is exactly
the same as Algorithm 1 replacing Ay ¢ by By ¢.

Y wi=an
Vi € [n], wl2 = w;
Boti \Vielnl, wi-(yi-(xi,€)=0 (46)
1
. 2 _ 4
Vin € [d], ;= y

We will use the following fact in our proof of Theorem 4.6.
Lemma 4.7. If a, b satisfy a> = b% = %, then, (a — b)? = %(a -b)
Proof. (a —b)3 = a3 —b®—3a%b +3ab?> = 1(a - b -3b +3a) = 3(a - b). |

Proof of Theorem 4.6. The proof remains the same as in the previous section with one additional
step. First, we can obtain the analog of Lemma 4.1 with a few quick modifications to the proof.
Then, Lemma 4.2 follows from modified Lemma 4.1 as in the previous section. And the proof of
Lemma 4.3 remains exactly the same. We can then put the above lemmas together just as in the
proof of Theorem 1.5.

We now describe the modifications to obtain the analog of Lemma 4.1. The key additional step
in the proof of the analog of Lemma 4.1 which follows immediately from Lemma 4.7.

. 1] ¢ . 4 .
{v: 2= E} K {({’i -6 = (- fz.)}
This allows us to replace the usage of certifiable anti-concentration by certifiable anti-
concentration for Boolean vectors and derive:

2.2
{Vi {’12 = %} I% {% Zp((xi,[_ Y < %}

iel

The rest of the proof of Lemma 4.1 remains the same.
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5 Certifiably Anti-Concentrated Distributions

In this section, we prove certifiable anti-concentration inequalities for some basic families of distri-
butions. We first formally state the definition of certified-anti-concentration.

Definition 5.1 (Certifiable Anti-Concentration). A R?-valued zero-mean random variable Y has a
(C, 6)-anti-concentrated distribution if P[|{Y, v)| < 6E(Y, v)?] < C6.

Y has a k-certifiably (C, 6)-anti-concentrated distribution if there is a univariate polynomial p
satisfying p(0) = 1 such that

1 {(Y,0)% < P EY, o)} - {(p((Y, 0)) - 1)? < 6%}

2. {lloli? < 1} F- {012 Ep2((Y, v)) < Co}.

We will say that such a polynomial p “witnesses the certifiable anti-concentration of Y”. We
will use the phrases “Y has a certifiably anti-concentrated distribution” and “Y is a certifiably
anti-concentrated random variable” interchangeably.

As one would like, the definition above is scale invariant:

Lemma 5.2 (Scale invariance). Let Y be a k-certifiably (C, 0)-anti-concentrated random variable. Then,
sois cY forany c # 0.

Proof. Let p be the polynomial that witnesses the certifiable anti-concentration of Y. Then, observe
that g(z) = p(z/c) satisfies the requirements of the definition for cY. O

Lemma 5.3 (Certified anti-concentration of gaussians). For every 0.1 > 0 > 0, there is a

k=0 (Ingé(zl / 6)) such that N(0, 1) is k-certifiably (2,20)-anti-concentrated.

Proof. Lemma A.1yields that there exists an univariate even polynomial p of degree k as above such
that for all v, whenever [(x, v)| < 6, p((x, v)) < 26, and whenever ||v]|* < 1, Exn(,1) P({x, 0))* <
26. Since p is even, p(z) = %(p(z) +p(—2z)) and thus, any monomial in p(z) with non-zero coefficient
must be of even degree. Thus, p(z) = q(z2) for some polynomial g of degree k/2.

The first property above for p implies that whenever z € [0, 0], p(z) < 20. By Fact 3.8, we obtain
that: {(x, v)? < 62} }% {p((x, v))? < 6}. Next, observe that for any j, Eyn0,1){x, v)?% = (2j)!!-||v||§].
Thus, ||v||§ Ex w1 p%({x,v)) is a univariate polynomial F in ||v||§. The second property above
thus implies that F (||v||§) < C6 whenever ||v||§ < 1. By another application of Fact 3.8, we obtain:

{llol1? < 1} B {Eeono,n p(x, 0))? < 26} O

We say that Y is a spherically symmetric random variable over R? if for every orthogonal matrix
R, RY has the same distribution as Y. Examples include the standard gaussian random variable
and uniform (Haar) distribution on $9~1. Our argument above for the case of standard gaussian
extends to any distribution that is spherically symmetric and has sufficiently light tails.
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Lemma 5.4 (Certified anti-concentration of spherically symmetric, light-tail distributions). Suppose
Y is a R?-valued, spherically symmetric random variable such that for any k € (0, 2), for all t and for all v,

P[(v,Y) > tVE(Y, v)?] < Cet**/C and for all n > 0, Pr.p[|x| < no] < Cn, for some absolute constant
log(4+k)/(27k)(l/6)

C > 0. Then, ford = O (W), Y is d-certifiably (10C, 6)-anti-concentrated.

Lemma 5.5 (Certified anti-concentration under sampling). Let D be k-certifiably (C, 5)-anti-
concentrated, subexponential and unit covariance distribution. Let S be a collection of n independent
samples from D. Then, for n > Q ((kd log(d))°®)), with probability at least 1 — 1/d, the uniform distribu-
tion on S is (2C, 0)-anti-concentrated.

Proof. Let p be the degree k polynomial that witnesses the certifiable anti-concentration of D.
Let Y be the random variable with distribution D’, the uniform distribution on 7 ii.d. sam-
ples from D. We will show that p also witnesses that k-certifiable (4C, 6/2)-anti-concentration
of Y. To this end it is sufficient to take enough samples such that the following holds.
P (|Ep[p*((Y, v))] - Ep [p*((Y, 0))]| > Ep[p*((Y,v))]/2) < 1/d. Observe that p2((Y,v)) may be
written as (c(Y)c(Y)T, m(v)m(v)T) where c(Y) are the coefficients of p((Y, v)) and m(v) is the vector
containing monomials. The dot product above is the usual trace inner product between matrices.
Thus, it is sufficient to show that P (|| Ep: c(Y)c(Y)" = Ep c(Y)c(Y)'||Z > | Ep c(Y)e(Y)T[12/4) <
1/d. Since p was a univariate polynomial of degree k in 4 dimensional variables, there are at most
d?* entries in total, and each entry is at most a degree 2k polynomial of subexponential random
variables in d variables. Using standard concentration results for polynomials of subexponential
random variables (for instance Theorem 1.2 from [GSS19] and the references therein). We see

1/2k
that each entry satisfies IP (|]ED c(YV)ic(Y); - Ep c(Y)ic(Y)]-| > ¢) < exp (—Q (m) ) An
iclX)j

application of a union bound, squaring the term inside and replacing ¢2 by [E(c(Y);c(Y);)?/4 gives
2k 2 1/2k
us P (4 (Ep c(V)ic(Y); ~ Epr e(¥)ie(V);) > | Ec(e()I2/4) < d* exp (—Q (747) )
Hence, setting n = O((kd log(d))o(k)) ensures that with probability at least 1 — 1/d, the distri-
bution D’ is (2C, §)-anti-concentrated.
O

We say that a d X d matrix A is C’-well-conditioned if all singular values of A are within a factor
of C’ of each other.

Lemma 5.6 (Certified anti-concentration under linear transformations). Let Y be k-certifiably (C, 6)-
anti-concentrated random variable over R?. Let A be any C’-well-conditioned linear transformation. Then,
AY is k-certifiably (C, C’*6)-anti-concentrated.

Proof. Let ||A|| be the largest singular value of A. Let p be a polynomial that witnesses the
certifiable anti-concentration of Y. Let g(z) = p(z/||Al|). We will prove that g witnesses the
k-certifiable (C, C’20)-anti-concentration of AY.

Towards this, observe that:{(Y,0)? < 8> E(Y, v)?} }% {(AY, v)? < 82 E(AY, v)2}.

{(Y, (ATo)/|AI1)? < 2 (Y, (ATo)/|AI?} B {(p((Y, (ATo)/lIAIlY) = 1)? < 8%},
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This is the same as {(AY, v)? < 82 E(AY, v)z} }% {(q((AY, v))—1)? < 62}, where g = p(x/||A]]).
Now, for w = (ATv)/||A|| and any unit vector v,

{Ilwlf < 1} {IATol3/IAIB Ep*(AY, o) /IIAll) < Co}

Thus, {|lATol} <[AIP} [ {IIAT0IZEq2(AY, 0) < CllAI3s}.  Using {llol} <1} |5
{IlAT0[12 < | AI?}, and thus, {[lo]3 < 1} F- {llo3 E 42((AY, 0)) < CC?6}.

O

Lemma 5.7 (Certifiable Anti-Concentration in Boolean Directions). Fix C > 0. Let Y be a R? valued
product random variable satisfying:

1. Identical Coordinates: Y; are identically distributed for every 1 < i < d.

d
2. Anti-Concentration For every v € {0, i%} , P[IKY, v)| < OVE(Y, v)?] < Co.

3. Light tails For every v € $771, P[|(Y, v)| > t/E(Y, v)2] < exp(-t?/C).
2
Then, Y is k-certifiably (C, 6)-anti-concentrated for k = O ( lmg;#).

Proof. We use the p from Lemma A.1. Observe that every monomial of even degree 2k for any
keN,Ey.p(Y,v)%*isa symmetric polynomial in v with non-zero coefficients only on even-degree
monomials in v. This follows by noting that the coordinates of D are independent and identically
distributed and p is an even function. It is a fact that all symmetric polynomials in v can be
expressed as polynomials in the “power-sum” polynomials ||v||§f for i < 2t. However, since
01.2 € {0, %} fori >1, ||v||§l? = #Hv”%. Hence a polynomial in ||v||§l? is also a univariate polynomial
in ||v||3. Since these are polynomial inequalities, they are also sum-of-squares proofs of these
inequalities.

The observation above implies ||v ||§ Ey p((Y, 0))? = ||v ||§ -F(||v ||§) for some degree k univariate
polynomial F. Since Since F is a univariate polynomial and ||v ||§ < 1is an “interval constraint” by

lloll3
applying Fact 3.8, we get: I% {||v||§F(||v||§) < Cé}. Recalling the fact that ||v||§ Ey p({Y, v))* =
||v||§ . F(||v||§), this completes the proof. O

6 Information-Theoretic Lower Bounds for List-Decodable Regression

In this section, we show that list-decodable regression on Linp(a, £*) information-theoretically
requires that D satisfy a-anti-concentration: P,.p[{x, v) = 0] < a for any non-zero v.

Theorem 6.1 (Main Lower Bound). For every q, there is a distribution D on R4 satisfying Py p[{x, v) =
0] < % such that there’s no %—approximate list-decodable regression algorithm for Linp(%, £*) that can
output a list of size < d.

Remark 6.2 (Impossibility of Mixed Linear Regression on the Hypercube). Our construction for the
case of g = 2 actually shows the impossibility of the well-studied and potentially easier problem
of noiseless mixed linear regression on the uniform distribution on {0, 1}". This is because R; is, by
construction, obtained by using one of ¢; or 1—¢; to label each example point with equal probability.
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Theorem 6.1 is tight in a precise way. In Proposition 2.4, we proved that whenever D satisfies
P,.p[{x,v)=0] < %, there is an (inefficient) algorithm for exact list-decodable regression algorithm
for Linp(%, ¢*). Note that our lower bound holds even in the setting where there is no additive
noise in the inliers.

Somewhat surprisingly, our lower bound holds for extremely natural and well-studied
distributions - uniform distribution on {0,1}" and more generally, uniform distribution on
{0,1,...,9— 1} = [q]d for any q. We can easily determine a tight bound on the anti-concentration
of both these distributions.

Lemma 6.3. For any non-zero v € RY, P, q0,132(x,v) =0 < % and ]PXN[q]d[(x, v) =0] < %
Note that this is tight for any v = ¢;, the vector with 1 in the ith coordinates and 0s in all others.

Proof. Fix any v. Without loss of generality, assume that all coordinates of v are non-zero. If not,
we can simply work with the uniform distribution on the sub-hypercube corresponding to the
non-zero coordinates of v.

Let S € {0,1}" ([q]¢, respectively) be the set of all x € {0,1}" ([q], respectively) such that
(x,v) = 0. Then, observe that for any x € S, and any i, x'/) obtained by flipping the ith bit
(changing the ith coordinate to any other value) of x cannot be in S. Thus, S is an independent set
in the graph on {0, 1}" (in ik
distance 1.

It is a standard fact [Wik] that the maximum independent set in the d-hypercube is of size
exactly 277! and in the g-ary Hamming graph [¢]? is of size 4?~!. Thus, P, (01y[{x,v) = 0] < :
and P, _1a[{x, v) = 0] < %.

, respectively) with edges between pairs of points with hamming

O

To prove our lower bound, we give a family of d distributions on labeled linear equations, R;
for 1 < i < d that satisfy the following;:

1. The examples in each are chosen from uniform distribution on [g],
2. % fraction of the samples are labeled by e; in R;, and,
3. forany i, j, R; and R; are statistically indistinguishable.

Thus, given samples from R;, any ﬁ—approximate list-decoding algorithm must produce a list of
size at least d.

Our construction and analysis of R; is simple and exactly the same in both the cases. However
it is somewhat easier to understand for the case of the hypercube (g = 2). The following simple
observation is the key to our construction.

Lemma 6.4. For 1 < i < d, let R; be the distribution on linear equations induced by the following sampling
method: Sample x ~ {0,1}¢, choose a ~ {0, 1} uniformly at random and output: (x,{x,(1 —a)e;)). Then,
Ri=Rjforanyi,j<d.
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Proof. The proof follows by observing that R; when viewed as a distribution on R**! is same as
the uniform distribution on {0, 1}?*! and thus independent of i. O

The argument immediately generalizes to [¢]? and yields:

Lemma 6.5. For 1 < i < d, let R; be the distribution on linear equations induced by the following sampling
method: Sample x ~ [q]?, choose a ~ {0,1} uniformly at random and output: (x,({x,e;) +a) mod q).
Then, Ri = R; forany i, j < d.

In this case, we interpret the 1/q fraction of the samples where a = 0 as the inliers. Observe
that these are labeled by a single linear function ¢; in any R;. Thus, they form a valid model in
Linp(a, ¢*) fora =1/g.

Since the linear functions defined by e; on [q]d, when normalized to have unit norm, have a
pairwise Euclidean distance of at least 1/q, we immediately obtain a proof of Theorem 6.1.
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A Polynomial Approximation for Core-Indicator

The main result of this section is a low-degree polynomial approximator for the function 1(|x| < )
with respect to all distributions that have strictly sub-exponential tails.

Lemma A.1. Let D be a distribution on R with mean 0, variance 0* < 1 and satisfying:

1. Anti-Concentration: Forall n > 0, Pr.p[|x| < no] < Cn, and,
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2/k
2. Tail bound: P[|x| > to] < e~ T fork <2andall t,

5212h)
polynomial q(x) of degree d such that q(0) =1, g(x) = 1+ 6 forall |x| < 6 and 6% - Ex-p [qz(x)] < 10C6.

. _ log(4+k)/(27k)(l/6) = 1
for some C > 1. Then, for any 6 > 0, thereis a d = O =gz ——) = O |5z ) and an even

Before proceeding to the proof, we note that the bounds on the degree above are tight up to
poly logarithmic factors for the gaussian distribution.

Lemma A.2. For every polynomial p of degree d such that p(0) = 1, Eyx-n0,1)[p*(x)] = Q (%) Further,

there is a polynomial p. of degree d such that p.(0) = 1 and Eyxn(,1) p2(x) = © (i)

Vd

Our construction of the polynomial is based on standard techniques in approximation theory for
constructing polynomial approximators for continuous functions over an interval. Most relevant
for us are various works of Eremenko and Yuditskii [EY08, EY11, EY07] and Diakonikolas, Gopalan,
Jaiswal, Servedio and Viola [DG]09] on such constructions for the sign function on the interval
[-1,a] U [a,1] for a > 0. We point the reader to the excellent survey of this beautiful line of work
by Lubinsky [Lub07].

Fact A.3 (Theorem 3.5 in [DGJ"09]). Let 0 < 1 < 0.1, then there exist constants C, ¢ such that for

a:=n?/Clog(1/n) and K = 4clog(1/n)/a +2 < O(log*(1/n)/n?)

there is a polynomial p(t) of degree K satisfying

1. p(t) > sign(t) > —p(—t) forall t € R.

2. p(t) € [sign(t), sign(t) + n] for t € [-1/2,-2a] U [0, 1/2].

3. p(t) e [-1,1+n]fort € (—2a,0)

4. |p(t) <2- @)K forall t > %

We will also rely on the following elementary integral estimate.
Lemma A .4 (Tail Integral).

21k

2/k
/ exp (——) M dx < exp (—L—) (L)* + (16kd) ).
[L,co] C C

Proof. We first prove the claim fork = 1. Let y = x—L. The, [ e xM iy = N e WL (y + L)X dy.
We now use that y? + L2 < (y + L)? for all y > 0 and (y + L)*? < 224(y*® + L*?) to upper bound
the integral above by: e L2 L2 4 92 =12 fooo eV y?1. Using fooo eV’ y*! < (4d)? gives a bound of
e L* (L2 + (84)%).

For larger k, we substitute y = x/¥ and write the integral in question as f;;k e‘y2y2kd‘(k‘l)dy.

Applying the calculation from the above special case, this integral is upper bounded by: e LR (A
(16kd)kd), O
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Llog?(1/6)
Proof of Lemma A.1. Let p(x) be the degree d < O (T

construct a polynomial g(x) that will be close to 0 in the range [, L] and [-L, —0] and close to 1 in
the range [0, 6]. Our polynomial g is obtained by shifting and appropriately scaling two copies
of p.

) polynomial from Fact A.3. We then

platir)+p(-(a+qp)-1
pa)+p(-a)-1

q(x) =
Then, q(0) = 1. It further satisfies:
1. g(x) € [0,Cy/0/L] for x € [6, L] U [-L, 0].
2. q(x) € [1=C+6/L,1++/5/L] for x € [-5, 5].
3. q(x) €[0,1++/6/L] for x € [-36,-6] U [0, 30].
4. |g(x)] <4 - (4x)! for |x| > L

We now prove the bound the [E p2. We do this by providing upper bounds on the contributions
to 02 - Ex-p [q2(ax)] from the disjoint sets with different guarantees below. Since we are going to
evaluate g(ox) the intervals will be scaled by ¢. The contributions from the regions %[6, L] and
%[—6, 0] can be naively upper bounded by the maximum value that the polynomial can take here
times the probability of landing in these regions. The first of these contributes o - % “(L-9) <9,

2
and using anticoncentration, the second region contributes (1 + \/%) -2C6 < 4CH. The region

2
%[6, 30] can be bounded similarly to get an upper bound of 2 (1 + \/%) 025 < 46. To finish, we

use Lemma A .4 to upper bound the contribution to E p? from the tail:

x*/k dad
GZC’/ 7*(ox) exp (——) dx < o**4% exp
11,00 C

ol

2/k
-+ (4] ) (L /0" + (16ka))

y 1 (L)
< exp (Zd +4dlog (;) -c (5) + kdlog(16kd)) .

We choose L satisfying 10d log(d) + 4d log(%) - % . (%)2/" < 2log(1/9).

C10010g3(1/5) )k/ (2-k)

2
Sinced = O (LlogT(l/é)), k < 2,and 0 < 1 we can now choose L = ( 5

to satisfy

. . log?*3k/(2-h)(1/5) _ o N .
the inequality above and to get d < = Whenk =1 we getd = O(1/6%). Since 0 < 1in
all the above calculations, we get our result by re-scaling . m]

We now complete the proof of Lemma A.2.

Proof of Lemma A.2. Any polynomial p of degree d can be written as p(x) = Zle a;hi(x) where h;
denote the hermite polynomials of degree i, satistying IEy.n0,1) #i = 0 and IEXNN(Orl)[hiZ(x)] =1.
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Since p(0) = 1, using Cauchy-Schwartz inequality, we obtain:

d d d d 2
N Eorl)[pz(x)] : Z 12(0) = (Z af) : (Z hf(O)) > (;} aihi(O)) >1

1:] l:l l=1

Further, observe that for the polynomial p.(x) = % 2. hi(0)hi(x), the above inequality is tight.
Qi-1)!! ’

Neo and £h;(0) = 0if i is odd, (see, for e.g., [Wei]), we have:
1).

2 2 \ 2 N EE (2i =11 2\
x~1£17—%0,1)[p ()] > x~/i/F(o,1) p-(x) = (; i (0)) - Z W)

i=1
-1

=0

Using that h,;(0) =

-1

ar .. dj2 ;..
(21)! 2i\ 1
:(2221'1'!2) :(Z(z)ﬁ

/2 =1

1
2.7

i=1

:@)(\/E)_l.

i:l l=1

B Brute-force search can generate a exp(d) size list

In the following, we write ¢; to denote the vector with 1 in the ith coordinate and 0Os in all others.

Proposition B.1. There exists a distribution D on R? and a model Linp (e, £*) such that for every a < 1/2,
with probability at least 1 —1/d over the draw of a n-size sample S from Linp(a, €*), there exists a collection
Sol € {S € S| |S| = an} of size exp(d) and unit length vectors {s for every S € Sol such that {s satisfies
all equations in S and for every S # S’ € Sol, ||€s — {s|l2 > 0.1.

Proof. Let D be the uniform distributiononej, ez, ..., es € RY. Let£* := 1 / Vd be the all-ones vector
in R? scaled by 1/ Vd and let d samples be drawn from the uncorrupted distribution. These give
us our inliers, I = {(x;, y;)}{;. For the outliers, choose the following multiset O := 1/a — 1 copies
of {(e;,j) |1 €[d],je {£1/Vd}}. Thisis a sample set of size 2d/a. Any a € {£1/Vd}¥ is a valid
candidate for a solution for this data. This is because for any such a, 7, := {(e;,a;) | i € [d]} C S
satisfies the following

1. 7, S, |1l =d = %|S|and
2. forany (x,y) € I, y = (x,a).

The Gilbert-Varshamov bound from coding theory now tells us that there are at least Q(exp(€(d)))
{0, 1} vectors in d dimensions that pairwise have a hamming distance of 0.1 - d. This transfers to
the set {+1/Vd} to give us that there are Q(exp(€(d))) vectors in {+1/ Vd} that are pairwise 0.1
apart in 2-norm.

O
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