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Abstract—Human-Swarm interaction has attracted a lot of
attention for their applications in areas such as exploration,
rescue, surveillance, and interplanetary exploration. When hu-
mans assume a supervisory or tactician role in managing the
robot swarm, the humans’ (physiological) state significantly
affects the mission performance. In this work, we explore the
physiological correlates with the user’s tactical decisions in a
simulated search and rescue mission. The mission consists of
supervising three groups of unmanned aerial vehicles and three
groups of unmanned ground vehicles to search for a target
building. The mission complexity is increased by introducing
static adversarial teams. Due to the adversarial team’s presence,
the user should employ different tactics to search for a target.
While the user interacts with the swarm, brain activity in
forms of electroencephalogram (EEG) and eye movements are
recorded. 20 participants, with prior experience in playing real-
time strategy games, took part in the study. A linear mixed
effect model is used to study the correlated physiological features
and tactical decisions. Six features are extracted from the
physiological data: engagement level, mental workload, Fz-Pz
coherence, Fz-O1 coherence, pupil size, and the number of gaze
fixations. The results show that mental engagement and Fz-O1
coherence are the important factors in predicting the tactical
decisions. Specifically, Fz-O1 coherence in Beta (22.5-30 Hz) and
Gamma (38-42 Hz) band is found to be significant.

I. INTRODUCTION

Swarm systems or agents that can learn while interacting
with the world are quickly becoming widespread due to
advances in the machine learning domain [1]. One of the
main challenges in such an autonomous system is to learn
a diverse set of tactics in different scenarios. Simulating and
learning such scenarios requires massive training data, and
incurs high training costs [2, 3]. Even humans demonstrations,
as a mean to speed up the training process, still need to be
labeled by experts. For example, a human operator moves
a swarm of robots away from a target building in search
and rescue situations, the tactical decision might be to avoid
the adversarial teams rather than to exclude that building
from search. Instinctively such tactical decisions have temporal
context over long horizon [4], making it hard to pinpoint an
instance that led to a decision. Consequently, experts should
label the tactical decisions, but the large quantity of data makes
it infeasible and demands a framework to learn labeled tactics
from a small subset of expert.
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Such a framework can utilize various features from the state
space in predicting the label of the unseen data. However,
the state space is generally of high dimension and requires a
lot of data to learn the abstract model to predict the labels.
Instead, in this work, we explore the use of physiological data
of the human playing the game to analyze the tactic labels. In
our previous human-multi robot interaction research [5], we
have shown the feasibility of using the physiological data to
estimate the hidden performance measures such as ”reaction
time” and ”target detection” We hypothesize that physiolog-
ical information may be correlated with tactical decisions on
similar lines. Although, our study is focused on identifying
psycho-physiological features to predict the tactical decisions,
the identified features can also be used to label human’s action
and even augment human demonstration (action space) in
imitation learning to facilitate an effective learning of new
tactical decisions for AI. Physiological features, specifically
eye-gaze has previously been applied to automated labeling in
image annotation [6], video segmentation [7] and enhancing
the imitation learning in Atari-games [8].

We constructed a simulation platform that can simulate the
swarm behavior through which we can collect different tactical
decisions in a target search mission. The simulation platform
has a graphical user interface for human subjects to interact
with the swarm. It integrates the recording and synchronization
of physiological signals such asEEG and eye-tracking with the
game. The swarm behavior is highly autonomous to facilitate
the human supervisor in providing tactical instructions or
tactic input rather than controlling each swarm member. A
preliminary analysis of using EEG and eye features correlates
with a tactical decision is provided.

II. METHOD AND MATERIALS

A gaming environment with a graphical user interface (GUI)
was created to facilitate the human demonstration study. The
GUI allowed the subject to play a real-time strategy game by
controlling UAV/UGV platoons. The mission was to perform
a search and secure mission in the presence of adversarial
teams that allowed users to control and supervise robot swarms
to complete the mission. During the gameplay, the subject’s
brain activity and eye movement were recorded using a non-
invasive wireless EEG headset and an eye-tracking system.
The international review board approved the human subject
study (IRB # STUDY00003659) before experimentation. The
details of the human subject study, data collection, and data
processing methods are provided in the following sections.



A. Human Subject Study Framework

The human subject study framework consists of 3 modules.
The first module is the gaming framework, which includes
both the game and the user interaction interface. The second
module records the physiological data, and the third module is
the lab streaming layer for time synchronization. The overall
human subject study framework can be seen in (Fig. 1). All
three modules run in parallel using open-source library Ray.
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Fig. 1: Overall framework of the human swarm interaction.
The three modules are the gaming framework, physiological
data, and the lab streaming layer.

The graphical user interface represents the data in the
simulation environment in a user-friendly way. The param-
eter server is the communication between the simulation
environment and the GUI, where both components can read
and write the information. All of the information in the
parameter server is fed directly into the lab streaming layer
for time synchronization. The module used for collecting the
physiological data consists of two separate components. These
components correspond to the two types of physiological data
being recorded, eye, and brain activity. The last module of
this framework is the lab streaming layer, the ending location
for all information. All of the information at every instance is
fed into the lab streaming layer for time synchronization. In
this module, all the information is stored with a specific time-
stamp. These time stamps allow for post-processing alignment
of eye data, EEG data, environment data, game data, and user
information.

B. Simulation Environment

The simulation environment is where the gaming environ-
ment is hosted. This module was created using python’s open-
source library pybullet. The environment used for the game
(the map) can be seen in 2. All robotic swarms are simulated in
pybullet with a high level of autonomy using a set of primary
primitives, which include formation control, path planning,
and task allocation (from the user). There are 3 UAV platoons
and 3 UGV platoons, which can be controlled independently.

C. Graphical User Interface

A graphical user interface was created to reflect the sim-
ulation environment using the open-source pygame library.
All necessary information to complete the search and secure

Fig. 2: GUI allows subjects to can control the UxV platoons
through the main window. The remaining time, encounter with
the adversarial team, and target information is shown in the
user feedback panel.

mission from the simulation environment is represented in a
user-friendly way. There are five main separated sections in the
GUI for the user’s convenience. These sections include a 2-
dimensional projection of the environment that the users may
scroll on to locate the platoons, a zoomed-in real-time image
of all the user’s platoons. A user feedback panel provides
information about enemy attacks, time, and target building.
The GUI also shows controls and a mini-map with potential
buildings marked (Fig. 2). A new tactical command can be
provided through the GUI by pausing the game, choosing
the platoon of interest, and selecting a target position. The
users may send the platoons anywhere in the environment by
clicking on the action nodes Fig. 2. The trajectory generation,
obstacle avoidance, and formation control of the platoon will
then be handled by the corresponding primitives embedded in
the simulation environment.

D. Physiological Measures

To monitor the brain activity, we used the non-invasive B-
Alert X24 electroencephalogram headset from Advanced Brain
Monitoring c©. Signals are recorded from 20 channels with a
sampling rate of 256.0 Hz. The sensor locations are O1, O2,
P4, POz, P3, Pz, Cz, C3, C4, Fz, F3, F4, T6, T4, F8, Fp1,
Fp2, F7, T5, and T3 based on the 10-20 standard location
system. A screen-mounted Tobii Pro Nano c© eye tracker was
used to record the eye gaze location and pupil dimension with
a sampling rate of 120 Hz. The eye tracker was calibrated for
each subject/session to ensure the eye data’s best accuracy.

E. Individual Differences

Individual differences in cognitive abilities and visual search
have a significant effect on tactical decision making. Specifi-
cally, individual differences in visual search (VS) and multi-
object tracking (MOT) have shown to significantly affect the
performance and situation awareness of the operators interact-
ing with multi-robot systems [5] and therefore are selected to
categorize our participants.
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Fig. 3: (a) Multi-object tracking experiment. Participants are
required to track the black circles during their random move-
ment and identify them when the movement stops. (b) Visual
search experiment. Participants are required to identify the
orientation of the ‘T’ by pressing the arrow key corresponding
to the direction of ‘T’.

VS and MOT baseline tasks were performed at the be-
ginning of each human subject study. MOT corresponds to
a human’s ability to maintain spatial awareness of multiple
objects as they move. A skilled operator with a high MOT
score will be able to track the majority of the target objects as
the environment dynamically evolves. MOT was measured by
presenting a scene with multiple circles and identifying four
specific circles that the user should track. These circles then
moved around a space, and the user must select the predefined
circle after the environment changes (Fig. 3(a)). VS corre-
sponds to a subject’s ability to locate a predefined object in a
cluttered environment. It was measured by showing a user an
image with one T target letter and multiple distractors (shifted
Ls in different orientations). The subjects had four seconds
to find the target and select the arrow key corresponding to
the stimulus direction “T” as shown in Fig. 3(b). They saw
multiple images with different configurations and performed
this test multiple times.

F. Participants

20 gamers were recruited from the University at Buffalo
student population. All subjects were required to have expe-
rience with strategic computer gaming. Participants authen-
ticated their above-average gaming status by participating in
a preliminary screening. To familiarize the subjects with the
new gaming environment, they were asked to play the human-
swarm interaction game on a server in advance, and achieve at
least two wins. All subjects had a normal or corrected vision.

G. Experiment

The subjects played two short practice games to refresh their
memory, and to get comfortable with the gaming controls.
After gaining adequate experience in the testing environment,
the individual difference (VS and MOT) assessments were
conducted. The subject then played randomized two games
consecutively with different environment complexities. The
eye tracker is attached to the bottom of the computer monitor
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Fig. 4: Experimental setup for physiological monitoring of a
user interacting with a swarm of UAVs and UGVs.

using a magnet (Fig. 4) and calibrated before each game. The
monitor was mounted to the wall to ensure the keyboard and
mouse movements on the table do not affect the eye data.

Each subject played a search and rescue mission in the
presence of adversarial teams. The subject had access to three
UAV platoons and three UGV platoons. The UAVs fly in a
linear path over the buildings, engage in battle, and notify if
the target building is found. The UGVs can perform a path
planning algorithm around the buildings, engage in battle, and
secure the target. If the user has reached the target with a
UGV platoon, the game is won. On the other hand, the user
would lose if all the UGVs are lost or if there is a timeout
(game-length time was 6 minutes).

The main complexity is an adversarial team that is blocking
roads and target buildings. The adversarial team’s location will
be visualized on the GUI when it is in the field of view
of at least one platoon. If the user’s platoons encounter an
adversarial team, the adversarial team will attack the user’s
platoon, and both platoons lose drones in a stochastic manner.
The battle is complete when there only remains one drone in
either platoon. If a platoon is defeated, it will disappear from
the map. One trial consisted of two levels of games. The first
level is the baseline mission with no adversarial teams, and
the second level is with adversarial teams. The levels were
randomized throughout the experiment, so the subject does
not know which complexities they will be getting each level.
All the subjects played only one trial of the game.

III. DATA ANALYSIS

A. Feature Extraction

The mission is predominantly searching for information
(target search) and efficiently extracting red team position
information to avoid blue team casualties. For this reason, we
choose two eye features: pupil size and the number of fixations
which best represent underlying cognitive activities of the
tele-exploration [5]. Pupil size provides a reliable measure of
the subject’s visual workload and affect, and the number of
fixations provides the efficiency of information retrieval [9].
Pupil size is directly obtained as a continuous measurement
from the eye tracker. The Z-score of the pupil diameter is
calculated for each subject to account for his/her differences.
The number of fixations is extracted by counting the number



of times the subject’s eye gaze remains stationary on an object
for at least 50 milliseconds.

EEG signals were band-pass filtered (0.1-70 Hz) and notch
filtered at 50 Hz to remove electrical artifacts. Artifacts
caused by eye blinks and muscle contractions were removed
using independent component analysis with the Picard algo-
rithm in MNE-python [10]. We visually examined 2-D scalp
component maps to remove signal sources corresponding to
eye movements and non-cognitive activities. After removal,
the components were projected back to get an artifact-free
EEG signal. Two sets of features are extracted from artifact-
free EEG data. The features are extracted from a 2-second
window prior to the subject pausing the game and sending
a new tactical command. The first set is neuroergonomical
features evaluated by B-Alert c© software and includes mental
engagement and mental workload. To extract this informa-
tion, we conduct a baseline neuro-cognitive assessment study
(Auditory Psycho-Vigilance) and working memory benchmark
tasks (mental arithmetic, grid location, and digit-span-task)
to individualize the EEG workload and mental engagement
classifiers. Additional details on classification methods can be
found in [11, 12].

The second set of features are coherence values extracted
by comparing the similarity of two electrodes using different
frequency bands [13]. In this paper, we calculate the Fz-Pz
coherence in the high alpha frequency band and the Fz-O1
coherence in the Beta and Gamma frequency band given by
Eq. 1. The high alpha frequency band is from 10-12 Hz,
the Beta band is 12-30 Hz, and the gamma frequency band
is from 30-80 Hz. We choose these features as they reflect
motor planning and visual perception [14, 15]. The game
is predominantly visually-oriented, where the subject should
search for a target while monitoring the static adversarial team
and planning the route towards the target.

coh =
|E[Sxy]|√

E[Sxx] ∗ E[Syy]
(1)

Where Sxx, Syy are power spectral densities, and Sxy is
cross power spectral density of the channels being used.

B. Tactic Labeling

From the recreated game replay, an expert can label different
tactics employed by the subjects. The first observed tactic
was cautious tactic. Although cautious is a broad term, it
incorporates two main behaviors. The first behavior is a basic
environmental exploration. This behavior is found when the
user sends a platoon to explore a certain area to expose an
adversarial team or move them closer to a target building.
The second main behavior is a defensive tactic. The defensive
tactic happens when an adversarial platoon becomes visible to
the user and is in the user’s platoon’s path. To be a defensive
decision, the human must avoid the adversarial by changing
the platoon’s path to go around the adversarial platoon. The
second tactic was an offensive tactic. If the human pauses
the game, and sends one of there platoons, to directly attack
an adversarial team, it is considered an offensive tactic. This

is often done to clear the different target building paths or
increase enemy casualties. The third observed tactic was the
target search tactic. This behavior is evident when the human
selects a platoon and sends them to a target building to search
or secure one of the target buildings. A combination of these
three tactics contributes to the human subject’s gameplay. All
the tactical decisions were labeled by the human expert who
watched the recreated games.

C. Statistical Analysis

To study the physiological correlation with tactical deci-
sions, we have used linear mixed models (LMM). It is an
extension of the general linear model and considers both fixed
and random effects. LMM formulation is given by equation
2 where the B are the fixed effect coefficients, and u are
random effect coefficients and X , Z are model matrices for
fixed and random effects respectively.

y = XB +Zu+ ε (2)

LMM allows the response variable, y, to have different
distribution rather than Gaussian. In our study, we can consider
individual differences (mot and vs) score as random effects.
This consideration allows us to study the effect of individual
performance level (reflected in VS and MOT score). Moreover,
VS and MOT random-effects group different subjects with the
same score (VS & MOT) as a single group, which compensates
for varying number of tactical decisions under different sub-
jects. We constructed two LMMs with physiological feature
as observations and expert labeled actions as outcomes. These
models provide the relative importance of different features in
predicting user tactics: cautious, offensive, and target search
tactics. The first model uses cautious tactics and target search
tactics as output, and the second model used cautious tactics
and offensive tactics. For both the models, the cautious tactic
is used as a reference. In both the models, the random effect
can be varied between the VS score and MOT score.

IV. RESULTS
To categorize the subjects based on their VS and MOT

scores, we study the effect of these individual differences
on normalized completion time (performance measure) in the
baseline mission. Note that the target locations are randomized
between the subjects, so different subjects can get different
target buildings (Fig. 2) placed at different locations of the
map. Consequently, considering only the completion time
might bias the statistical analysis. Hence, we normalize the
completion time by the distance to the target building.

Fig.5 illustrates a negative trend between normalized com-
pletion time with respect to the MOT score and a positive
trend with respect to the VS score. Thus individual difference
influences the gameplay, and hence they are further used along
the physiological features to analyze the user tactics.

In terms of physiological features, we considered four fea-
tures from brain activity: engagement level, mental workload,
Fz-O1 (beta and gamma), and Fz-Pz (higher alpha) coherence
and two features from eye-tracking: pupil size (PS), number
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Fig. 5: (a) The trends in the normalized completion time with
respect to (a) MOT and (b) VS scores.

of fixations, all extracted from a 2-sec window before sending
a new tactical command marked by pausing the game.

Table I shows the LMM results for the target search tactic
with VS and MOT score as a random effect. Two factors,
namely: mental engagement and Fz-O1 coherence, have a
significant effect (p < 0.05) in estimating the target search
tactic. However, other factors did not have significant results.
Thus, using individual difference scores (VS/MOT), engage-
ment level, and Fz-O1 coherence target searching tactic can
be estimated.

Table II shows the LMM results for the offensive tactic.
In this model, when MOT is used as a random effect, Fz-
O1 coherence has a significant effect (p < 0.05). On the flip
side, with VS random effect, Fz-Pz and Fz-O1 coherence have
a significant effect (p < 0.05). All the other factors were
not significant in predicting the offensive tactic. In both the
models, the common features selected are Fz-O1 coherence
in Gamma (38-40 Hz) frequency range. The site Fz and
O1 are predominantly associated with motor planning and
visual perception [14]. Fig. 6 shows the distribution of Fz-
O1 coherence under different tactics. Clearly, in Target Search
and Offensive tactics, the coherence is less when compared

TABLE I: LMM results for prediction of target search tactics.

Random
Effect

Type Observations Estimate CI p

VS

EEG
Engagement -0.37 [-0.60 -0.15] <0.05
Mental Workload -0.23 [-0.73 0.27] 0.374

Eye
Pupil Size -0.08 [-0.25 0.09] 0.352
Fixations 0.01 [-0.01 0.03] 0.477

Coherence
Fz-Pz High Alpha -0.08 [-0.50 0.35] 0.719
Fz-O1 Gamma -0.44 [-0.81 -0.06] <0.05
Fz-O1 Beta -0.54 [-0.97 -0.11] <0.05

MOT

EEG
Engagement -0.31 [-0.55 -0.06] <0.05
Mental Workload -0.23 [-0.79 0.34] 0.434

Eye
Pupil Size -0.06 [-0.27 0.14] 0.55
Fixations 0 [-0.02 0.03] 0.698

Coherence
Fz-Pz High Alpha -0.14 [-0.59 0.30] 0.53
Fz-O1 Gamma -0.43 [-0.86 0] <0.05
Fz-O1 Beta -0.53 [-1.04 -0.02] <0.05

TABLE II: LMM results for prediction of offensive tactics.

Random
Effect

Type Observations Estimate CI p

VS

EEG
Engagement -0.11 [-0.35 0.13] 0.356
Mental Workload -0.24 [-0.75 0.27] 0.351

Eye
Pupil Size -0.04 [-0.21 0.13] 0.62
Fixations 0.01 [-0.01 0.04] 0.216

Coherence
Fz-Pz High Alpha 0.44 [0.02 0.86] <0.05
Fz-O1 Gamma -0.44 [-0.81 -0.06] <0.05
Fz-O1 Beta -0.62 [-1.04 -0.20] <0.05

MOT

EEG
Engagement -0.03 [-0.28 0.22] 0.834
Mental Workload -0.01 [-0.57 0.56] 0.985

Eye
Pupil Size -0.04 [-0.23 0.16] 0.715
Fixations 0.01 [-0.01 0.03] 0.325

Coherence
Fz-Pz High Alpha 0.38 [-0.05 0.81] 0.081
Fz-O1 Gamma -0.61 [-1.01 -0.21] <0.05
Fz-O1 Beta -0.69 [-1.17 -0.22] <0.05

to cautious tactics. This is also reflected in the negative
correlation coefficient in the Table I and II.
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Fig. 6: Distribution of Fz-O1 gamma coherence with VS and
MOT as random effect.

The power spectral-topo maps (Fig. 7) of a subject between
different tactics and the coherence values show predomi-
nant activity near the occipital region of the brain, which
is associated with visual perception. Concretely, the above
model shows that the features extracted from physiological
measurements (EEG) can be used to analyze the tactical
decisions taken by a subject. Also, these models are particu-
larly important during imitation learning, where the instances
of information gathering and decision-making need to be
identified to properly guide the learning framework towards
better actions.

V. CONCLUSION

This paper presented the design and preliminary results
of a human swarm interaction framework to analyze the
tactical decision using physiological data in a target search
mission. Brain activity and eye movements were recorded
while participants supervised multiple robot swarms as they
completed the mission. The complexity of the mission is
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Fig. 7: Coherence values and power spectral density over the
scalp in the Gamma (38-42 Hz) frequency range.

increased by introducing static adversarial teams which users
can attack.

Qualitative analysis of human games revealed distinctive
tactics across different subjects. There were three sets of
tactics: offensive, cautious, and target finding. Since individual
cognitive difference among subjects is inevitable, we used two
tasks: multi-object tracking (MOT) and visual search (VS) to
capture the individual difference. Analysis of individual dif-
ferences revealed that the time taken to complete the mission
is inversely proportional to the MOT skill level (measured as
MOT score). Thus MOT and VS scores are considered for
further analysis. From physiological data, six features were
extracted for further analysis. The six features are engagement
level, mental workload, Fz-Pz, Fz-O1 coherence, pupil size,
and the number of fixations. These features are analyzed at
instances when the user executed different tactics. A linear
mixed-effect model was used to study whether the tactical
decisions are correlated with physiological features. In this
model VS and MOT were used as a random effect. Two
features: engagement level and Fz-O1 coherence had a sig-
nificant effect (p<0.05) in target search and offensive tactic.
Other features were not significantly different under different
tactics. In our future research, we intend to use this framework
to investigate human physiological data augmentation with
swarm interaction to facilitate an interactive imitation learning
for discovering new tactics.

It should be noted that even though the linear mixed models
have enough power to signify the importance of different
physiological features, increasing the number of subjects can
further bolster the study outcomes. In terms of tactics, the
offensive tactic was less used by the subjects. Consequently,
the number of data labeled with offensive tactics was less
compared to cautious and target search tactics; hence, the
presented model might be biased. However, the bias can be
decreased by collecting more trials and new subject data.
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