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Abstract— Increasing traffic volume with respect to physical
space motivates explicit consideration of space constraint in
traffic system analysis. We study dynamics of a system of
homogeneous vehicles executing safe vehicle following on a
closed single lane ring road. Dynamics of each vehicle is
governed by a standard second order model and a two mode
vehicle following controller. One mode is cruise control and the
other is a constant time headway control for safety; switching
between modes is determined by a linear combination of relative
distance and speed. We show that there exists a threshold value
for the number of vehicles at which the equilibria for inter-
vehicle configurations transition from being infinite to being
unique. We explicitly characterize the unique equilibrium in
the latter case as well as the threshold value for transition
in terms of system parameters (road length, constant time
headway and free flow speed). We also show that, starting from
any initial condition, the inter-vehicle configuration converges to
an equilibrium. The threshold value for the number of vehicles
is also shown to define the boundary of when the transfer
function from external disturbance to error in relative spacing
changes.

I. INTRODUCTION

The proposed technologies for connected and autonomous
vehicles (CAV) in urban traffic systems have been projected
to potentially reduce congestion related societal costs, e.g.,
see [1]. The CAV paradigms enrich the possibilities for con-
trolling traffic at the microscopic level, e.g., through vehicle
following. The emergent manifestation of these innovations
at the microscopic scale naturally also have implications on
control modalities at the macroscopic level. It is therefore of
interest to develop frameworks for performance evaluation
of CAV, and to develop their macroscopic abstractions.
Such frameworks, independent of the CAV paradigm, have
to include relevant constraints. Explicit consideration of
space constraint has received relatively little attention in
microscopic analysis, especially in combination with hard
safety constraints. This paper addresses this through a simple
abstraction of homogeneous vehicles executing safe vehicle
following on a closed single lane ring road.

Microscopic study of vehicle following has traditionally
been performed using the platooning framework, where a
lead vehicle follows a desired speed trajectory on an un-
bounded line and the remaining vehicles execute prescribed
vehicle following controllers. Commonly studied control
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paradigms are the ones to achieve desired spacing, e.g., by
adopting constant spacing or constant headway policy, and
under different communication architecture among vehicles,
e.g., leader following, leader and predecessor, and nearest
neighbor [2]–[10]. The objectives of these studies is to
analyze the impact of controller on the dynamics of inter-
vehicle spacing. Such analysis yields guarantees on collision
avoidance, ride comfort, and safe entrance/exit of traffic.
However, the unbounded line setting precludes all of these
studies to explicitly include space constraint.

Inspired in part by the well-known experiment in [11],
there has recently been interest in vehicle following on a ring
road for mixed-autonomy settings [12]–[15]. However, the
focus of the analytical aspects of these works is on formation
and dissipation of traffic jams using autonomous vehicles,
without explicit consideration of collision avoidance. The
impact of external disturbances, e.g., unmodeled dynamics,
sensing, or actuation noise, is not considered either. The
objective of this paper is to address these shortcomings. It is
important to note that the ring road setup, with entry and exit
points, has also been used as an abstraction for macroscopic
study of highway network, e.g., see [16].

The ring road setup in this paper has no entry or exit. No
inter-vehicle communication is considered, and the throttle
and brake commands for a vehicle are determined by its
own on-board control system which uses information from
its on board sensors about relative distance and speed. This
framework is consistent with that of an autonomous vehicle.
In this paper, we adopt a vehicle dynamics model consisting
of a validated second order model under a two-mode vehicle
following controller. One mode is cruise control and the other
is a constant time headway control for safety; switching
between modes is determined by a linear combination of
relative distance and speed. The resulting system level dy-
namics for inter-vehicle configurations is a switched system.
We provide analysis for existence, uniqueness and stability of
equilibria, as well as for attenuation of external disturbance.

We show that there exists a threshold value ncritical for the
number of vehicles n at which the equilibria for inter-vehicle
configurations transition from being infinite to being unique.
We explicitly characterize the unique equilibrium in the latter
case as well as ncritical in terms of system parameters
(road length, constant time headway and free flow speed).
In particular, if n ≥ ncritical, then the equilibrium vehicle
speed is shown to be inversely proportional to n, thereby
quantifying the effect of space constraint. We also show
that, starting from any initial condition, the inter-vehicle
configuration converges to an equilibrium. We also observe a



phase transition in the impact of external disturbance on error
in relative spacing. If n < ncritical, then this effect mimics
that of the classical platoon setup without space constraint,
i.e., disturbance in a vehicle affects its predecessor only. On
the other hand, if n ≥ ncritical, then disturbance in one
vehicle changes the reference speed of all vehicles.

The main contributions can be summarized as follows.
First, we present a simple abstraction for analysis of vehicle
following controller under explicit consideration of limited
space and safety constraint. This setup has the potential
to serve as a canonical abstraction for various scenarios
involving mixed autonomy, V2X communication, and traffic
network control. Second, for a validated vehicle dynamics
and a well-known safe vehicle following controller, we
provide comprehensive stability analysis for homogeneous
vehicles. Our analysis suggests an intuitive phase transition
in the set of equilibria with increase in vehicle density. Such
a phase transition also plays a role in our third contribution
where we analyze the impact of external disturbance. In
particular, our results show that the effect of disturbance is
more pronounced in a circular platoon, i.e., without a leader,
than a linear platoon.

The rest of the paper is structured as follows. Section
II formulates the problem and reviews the relevant results
when space constraint is not considered. Section III presents
results on existence and stability of equilibria. Section IV
presents results on propagation of vehicle-to-vehicle spacing
error under external disturbance. Simulations are presented
in Section V, and concluding remarks and suggestions for
future research are provided in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Problem Formulation

In this section we formulate the dynamics of n vehicles
travelling on a ring road with perimeter P . We assign
coordinates in [0, P ] to the road in the clock-wise direction.
Vehicle i is the ith vehicle from point 0 at t = 0, i =
1, 2, · · · , n. The configuration for three vehicles is depicted
in Figure 1.

Fig. 1: Configuration of three vehicles moving on a
closed ring road

We use the validated vehicle dynamics model from [17]:

d

dt
xi(t) = ẋi(t) = vi, (1a)

d

dt
ẋi(t) = ẍi(t) = −a(vi − vides) + būi + di (1b)

where a > 0, b > 0 are vehicle parameters, xi(t) is the
distance travelled by the ith vehicle at time t, t ≥ 0, relative
to point 0, vi and vides are its actual speed and desired speed
respectively, ūi(t) is the deviation of its throttle angle from
the desired value, and di accounts for external disturbances.
We use the following switched controller:

ūi =

{
1
b ( 1
h − a)ẏi(t)− α

bh (hẋi(t)− yi(t)) if yi(t) ≤ −1α ẏi(t) + hVf

− 1
b (α− a)(ẋi(t)− Vf ) otherwise

(2)
where yi(t) = xi+1(t) − xi(t), is the relative spacing, and
ẏi(t) = ẋi+1(t)−ẋi(t) is the relative speed for the ith vehicle
(xn+1 := x1 + P ). The space constraint is captured by the
implicit constraint that

∑n
i=1 yi(t) = P for all t ≥ 0.

The first mode of the controller (2) is the constant time
headway control and the second is the cruise control mode. In
these two modes, vides is equal to ẋi+1 and Vf , respectively,
where Vf is a pre-specified free-flow speed. α is a design
parameter and so is the time headway constant h. The
time headway constant is chosen such that two consecutive
vehicles do not collide under a worst-case stopping condition
[18]. An instance of such a scenario is when vehicle i+ 1 is
decelerating at maximum deceleration while its predecessor,
i.e., vehicle i, is accelerating with the maximum acceleration,
while the two vehicles are travelling with the same speed.
Accordingly, the constant time headway control in (2) en-
sures no collision if yi(0) ≥ hẋi(0).

The switching criterion in (2) is inspired by [19]. The
relative distance at which a vehicle switches between the
modes is not constant; it also depends on its relative speed
with respect to the vehicle in front. For instance, if vehicle i
is moving slower than vehicle i+1, then it switches from the
cruise control to the constant time headway control mode at
a distance less than the threshold value hVf . If α and h are
chosen such that h > 1

α , then this switching is safe because
the cruise control speed is no more than Vf . Finally, note that
while the control input ūi is not continuous at the switching
surface, substituting (2) into (1) ensures that the right hand
side is Lipschitz continuous and hence (1) is well-posed.

The primary objective of this paper is to analyze the
existence, uniqueness and stability of equilibria for (1)-(2),
as well as the impact of external disturbance.

B. Results for No Space Constraint

We provide a brief summary of relevant results [18],
when space constraint is not considered explicitly. Consider
a platoon of n vehicles on an unbounded line where the
lead vehicle, numbered n, is in the cruise control mode, i.e.,
the second mode in (2), and the rest of the vehicles, i =
1, 2, · · · , n−1, are using constant time headway control, i.e.,
the first mode in (2). Let δi = yi−hẋi be the error in relative



spacing for the ith vehicle. Let G(s) be the frequency-
domain transfer function between δi and δi+1, and g(t) be
the impulse response. For desired steady-state performance,
i.e., desired speed and relative spacing, the necessary and
sufficient condition is that the poles of G(s) lie in the open
left half of the s-plane. For desired transient behavior, e.g.,
attenuation of δi through the platoon, a sufficient condition
is |G(jω)| < 1, ∀ω > 0, and g(t) > 0, ∀t > 0 [18]. For the
constant time headway controller in (2), these conditions are
equivalent to h > 0 and α > 0. To the best of our knowledge,
no such results are known under explicit consideration of
space constraint.

III. DYNAMICAL ANALYSIS UNDER NO DISTURBANCE

Let di ≡ 0, i = 1, 2, · · · , n. Substituting (2) into (1) and
subtracting equations for consecutive vehicles, the dynamics
of relative spacing is:

ÿi =



1
h (ẏi+1 − ẏi)− α

h (hẏi − yi+1 + yi) if

{
yi+1 ≤ −1α ẏi+1 + hVf

yi ≤ −1α ẏi + hVf

1
h ẏi+1 − α

h (hẏi − yi+1 + hVf ) if

{
yi+1 ≤ −1α ẏi+1 + hVf

yi >
−1
α ẏi + hVf

−1
h ẏi −

α
h (hẏi + yi − hVf ) if

{
yi+1 >

−1
α ẏi+1 + hVf

yi ≤ −1α ẏi + hVf

−αẏi if

{
yi+1 >

−1
α ẏi+1 + hVf

yi >
−1
α ẏi + hVf

.

(3)
subject to

∑n
i=1 yi(t) = P . Let e2i−1 = yi−hVf and e2i =

ẏi, i = 1, 2, · · · , n. The equations in (3) transform to
ė2i−1 =e2i

ė2i =



1
h (e2i+2 − e2i)− α

h (he2i − e2i+1 + e2i−1) if

{
e2i+1 ≤ −1α e2i+2

e2i−1 ≤ −1α e2i

1
he2i+2 − α

h (he2i − e2i+1) if

{
e2i+1 ≤ −1α e2i+2

e2i−1 >
−1
α e2i

−1
h e2i −

α
h (he2i + e2i−1) if

{
e2i+1 >

−1
α e2i+2

e2i−1 ≤ −1α e2i

−αe2i if

{
e2i+1 >

−1
α e2i+2

e2i−1 >
−1
α e2i

.

(4)
subject to

∑n
i=1 e2i−1(t) = P − nhVf . Note that ė2is are

continuous at the switching surfaces. An equilibrium satisfies

e∗2i = 0

e∗2i−1 =



e∗2i+1 = ci, for some ci ≤ 0 if

{
e∗2i−1 ≤ 0

e∗2i+1 ≤ 0

ci, for some ci > 0, e∗2i+1 = 0 if

{
e∗2i−1 > 0

e∗2i+1 ≤ 0

0 if

{
e∗2i−1 ≤ 0

e∗2i+1 > 0

ci, for some ci > 0 if

{
e∗2i−1 > 0

e∗2i+1 > 0

(5)
In general, there are infinite equilibria for relative spacing;

however, the relative speed at all these equilibria is zero.
Later in this section we show that for sufficiently large n,
the relative spacing equilibria transition from being infinite
to being unique.

Let us first consider the case when e∗2i−1 ≤ 0 for all i =
1, 2, · · · , n, i.e., when all vehicles are using the constant time
headway control at the steady state.

Proposition 1. If e∗2i−1 ≤ 0 for all i = 1, 2, · · · , n, then
e∗2i−1 =

P−nhVf

n for all i = 1, 2, · · · , n.

Proof: From (5), e∗2i−1 ≤ 0 for all i = 1, 2, · · · , n is
equivalent to e∗2i−1 = e∗2i+1 for all i = 1, 2, · · · , n. From∑n
i=1 e

∗
2i−1 = P − nhVf , it follows that e∗2i−1 =

P−nhVf

n
for all i = 1, 2, · · · , n.

Remark 1. In the special case e∗2i−1 = e∗2i+1 ≤ 0 for all
i = 1, 2, · · · , n, we must have P ≤ nhVf , which gives the
critical number of vehicles on the ring road,

ncritical = b P
hVf
c (6)

We next characterize the dynamics of the quantity
Ai(t) := αe2i−1(t) + e2i(t) associated with the switching
surface.

Proposition 2. If Ak(0) = αe2k−1(0) + e2k(0) ≤ 0 for
some k ∈ {1, 2, · · · , n} then: (i) Ak(t) ≤ 0, ∀t > 0; (ii)
additionally, if P > nhVf then limt→∞Ak(t) = 0.

Proof:

Ȧk(t) =



1
h (Ak+1(t)−Ak(t)) if

{
Ak(t) ≤ 0

Ak+1(t) ≤ 0

1
hAk+1(t) if

{
Ak(t) > 0

Ak+1(t) ≤ 0

− 1
hAk(t) if

{
Ak(t) ≤ 0

Ak+1(t) > 0

0 if

{
Ak(t) > 0

Ak+1(t) > 0
(7)

subject to
∑n
i=1Ai(t) = α(P − nhVf ). Let Ak(0) ≤ 0. In

order for Ak(t) to become positive, it must pass through zero
through either the first or third mode of (7). Let Ak(t0) = 0
for some t0 ≥ 0. It can be seen from the first and third mode
of (7) that Ȧk(t0) ≤ 0, which means that Ak(t) stays non-
positive for t ≥ t0. Therefore, if Ak(0) ≤ 0 then Ak(t) ≤ 0,
∀t > 0. In other words, if a vehicle switches to the constant
time headway control mode, it remains in that mode.

Now assume that P > nhVf . Since
∑n
i=1Ai(t) = α(P −

nhVf ) > 0, there is at least one vehicle j ∈ {1, 2, · · · , n},
j 6= k for which Aj(t) > 0, ∀t ≥ 0, i.e., vehicle j starts
in the cruise control mode and remains in this mode for all
future times. Since Aj(t) > 0, ∀t ≥ 0, vehicle j − 1 starts
and stays in either mode three or four of (7). The mode four
can be analyzed using the following steps for vehicle j − 1
and its preceding vehicle. Hence, we assume that vehicle
j − 1 operates in the mode three. This mode implies the
exponential convergence of Aj−1(t) to zero. Now consider
vehicle j − 2. Since Aj−1(t) ≤ 0, ∀t ≥ 0, vehicle j − 2 can
only operate in the mode one or two of (7). Since Aj−1(t)



converges to zero exponentially fast, Aj−2(t) also converges
exponentially fast to some non-negative value. It converges
to zero if vehicle j − 2 ever operates in the mode one. We
can repeat the above steps to show exponential convergence
of all Ais, i = 1, 2, · · · , n to some non-negative values.
Specifically, we can show that for any k ∈ {1, 2, · · · , n}
such that Ak(0) ≤ 0, Ak(t) converges to zero exponentially
fast.

Remark 2. According to Proposition 2 and its proof, each
vehicle will switch at most once from the cruise control to
the constant time headway control mode. Furthermore, the
time of the last switch, say t0, is finite. This can be proved
by using a similar argument to the proof of Proposition 2.

Therefore, if n < ncritical, i.e., P > nhVf , vehicles will
eventually form one or multiple separated platoons. On the
other hand, if n > ncritical, vehicles form a single doubly-
connected platoon, i.e., there is no lead vehicle, after a finite
time t0.

We are now ready to prove that the states in system (4)
converge to an equilibrium point in the set (5). This point is
determined by the initial condition.

Proposition 3. Let α > 1
4 . For every initial condition, the

solution to (4) converges to an equilibrium.

Proof: From Remark 2, we know that there exists a
finite t0 ≥ 0 after which there are no more switches.

Consider the function V (e) =
∑n
i=1

1
2e

2
2i + 1

h (αe2i−1 +
e2i)

2. It is easy to see that V (e) is positive definite and
radially unbounded. Let Ii = 1 only when Ai ≤ 0 and be
zero otherwise, i = 1, 2, · · · , n.

d

dt
V (e) =− α

n∑
i=1

e22i −
1

h

n∑
i=1

e2i(AiIi −Ai+1Ii+1)

− 2

h2

n∑
i=1

A2
i Ii +

2

h2

n∑
i=1

AiAi+1Ii+1

which simplifies to

d

dt
V (e) =− (α− 1

4
)

n∑
i=1

e22i

−
n∑
i=1

(
1

2
e2i +

1

h
AiIi −

1

h
Ai+1Ii+1)2

+
2

h2

n∑
i=1

(AiAi+1Ii+1 −AiAi+1IiIi+1)

The sign of 2
h2

∑n
i=1(AiAi+1Ii+1 − AiAi+1IiIi+1) can

be shown to be non-positive by considering the following
two cases. Let F (Ai, Ai+1) = AiAi+1Ii+1−AiAi+1IiIi+1.
If Ii = 0, then Ai > 0 and hence F (Ai, Ai+1) =
AiAi+1Ii+1 ≤ 0 since Ai+1Ii+1 ≤ 0. On the other hand
if Ii = 1, then F (Ai, Ai+1) = 0 which proves our previous
statement. Therefore, d

dtV (e) ≤ 0. Moreover,

d
dtV (e) = 0 =⇒

{
e2i−1Ii = e2i+1Ii+1,

e2i = 0

which reduces to (5). LaSalle’s invariance principle [20] then
implies convergence to the set of equilibria. Note that since
V (e) is radially unbounded and d

dtV (e) ≤ 0, the trajectory of
(4) remains bounded for all t ≥ 0. Moreover, since there is no
switch after t0, the system, for t ≥ t0, is linear time invariant
with initial condition (e2i−1(t0), e2i(t0)), i = 1, 2, · · · , n.
As a result, the system trajectory converges exponentially
fast to an equilibrium characterized by (5).

Remark 3. Let P < nhVf . From Remark 2 it follows that all
vehicles switch to the constant time headway control mode
after a finite time. This mode contains a unique equilibrium
characterized by Proposition 1. Hence, from Proposition 3
it follows that, for all i = 1, 2, · · · , n, (e2i−1, e2i) converges
to (

P−nhVf

n , 0) exponentially fast.

Proposition 4. For all i = 1, 2, · · · , n, limt→∞ ẋi(t) =
min (Vf ,

P
hn ).

Proof: We know from Proposition 3 and the equilibrium
set (5) that limt→∞ ẏi(t) = 0 and limt→∞ yi(t) = y∗i for
all i = 1, 2, · · · , n. Note from Proposition 2 that if P >
nhVf then at least one vehicle j ∈ {1, 2, · · · , n} is always
on the cruise control mode, i.e., limt→∞ ẋj(t) = Vf . This
combined with limt→∞ ẏi(t) = 0 for all i = 1, 2, · · · , n,
concludes limt→∞ ẋi(t) = Vf for all i = 1, 2, · · · , n.

On the other hand, if P < nhVf , then according to Re-
mark 3, e2i−1 for all i = 1, 2, · · · , n, converges to P−nhVf

n
exponentially fast. Therefore, yi for all i = 1, 2, · · · , n,
converges to P

n exponentially fast. It then follows from the
first mode of (2) that limt→∞ ẋi(t) = P

hn for all i =
1, 2, · · · , n. The case P = nhVf is also trivial since it falls
under one of the previous cases.

Remark 4. Proposition 4 and its proof imply that
limt→∞ ẍi(t) = 0 for all i = 1, 2, · · · , n.

IV. TRANSIENT BEHAVIOR AND ERROR PROPAGATION

A significant feature of the constant time headway con-
troller is its ability to eliminate the error propagation and
disturbance, e.g., sensing or actuation noise, amplification,
in a platoon of vehicles moving on a line, without V2V
communication [18]. We now analyze the transient behavior
and the effect of external disturbance on the error in relative
spacing in the ring road setup. As discussed in the previous
section, if n < ncritical, vehicles will eventually form one
or multiple separated platoons. As a result, the transient
behavior and propagation of external disturbance, for each
platoon on the ring road, is the same as on an unbounded
line. Therefore, we now focus on n ≥ ncritical, when there
is only one circular platoon, i.e., without a leader.

For simplicity of notations, assume in (1) that di 6= 0 for
some i and dj = 0, j 6= i. Let Di(s) and ∆i(s) denote
the Laplace transforms of di(t) and δi(t), respectively, i =
1, 2, · · · , n. From (3) and noting the homogeneous platoon
assumption, the following relationship relates the relative
spacing errors of the ith and i+ 1th vehicles,

∆i(s) = G(s)∆i+1(s)− h(1 + hs)

s+ α
G(s)Di(s) (8)



where,
G(s) =

s+ α

hs2 + (αh+ 1)s+ α

Note from (8) and the discussion in Section II-B that for
attenuation of errors in relative spacing, the design constants
must be chosen such that |G(jω)| < 1, ∀ω > 0, and g(t) >
0, ∀t > 0. The stability criteria for the system (4), i.e., h > 0,
α > 1

4 , satisfies both conditions. Therefore, the propagation
of δi in the heavy traffic regime, i.e., n ≥ ncritical, is the
same as in the light traffic regime, i.e., n < ncritical.

Since it is assumed that all vehicles are using the constant
time headway control,

∆j(s) = G(s)∆j+1(s), j 6= i− 1, i (9)

and,

∆i−1(s) = G(s)∆i(s) +
h

s+ α
G(s)Di(s) (10)

Combining (8), (9), and (10),

∆i(s) =
h(Gn(s)− (1 + hs)G(s))

(s+ α)(1−Gn(s))
Di(s)

Therefore,

|h(Gn(jω)− (1 + hjω)G(jω))

(jω + α)(1−Gn(jω))
| < 1 ∀ω > 0

is a necessary condition in order to eliminate the external
disturbance amplification. Note that since G(0) = 1,

lim
s→0

h(Gn(s)− (1 + hs)G(s))

(s+ α)(1−Gn(s))
=
−h
α

Hence, constant disturbance such as unmodelled vehicle
dynamics is not rejected with this controller. Additionally,
disturbance in one vehicle propagates to all vehicles through
equations (9), (10). As will be seen in the next section,
constant disturbance can force all vehicles on the ring road to
travel in an unsafe spacing at the steady state, i.e., y∗i < hẋ∗i
for all i = 1, 2, · · · , n.

V. SIMULATIONS

Let P = 240 m, h = 0.4 s, α = 4 s−1, Vf = 65 mph '
29m/s, and assume that the initial condition for the vehicles
is at rest. According to (6), ncritical = b 240

0.4×29c = 20. Note
that h > 1

α satisfies the safety constraint.
1) Zero disturbance: Let di = 0, i = 1, 2, · · · , n. Figures

2 - 7 show the evolution of relative spacing and speed for
some vehicles for different values of n: 15, 21, and 25.
It can be seen that for light traffic, i.e., Figures 2 and 3,
and close-to-capacity traffic, i.e., Figures 4 and 5, vehicles
reach the free-flow speed. However, the way they share the
space differs in these two cases. As seen in Figure 2, some
vehicles remain in the cruise control mode throughout the
entire simulation, e.g., vehicle 10. On the other hand, all
vehicles switch to the constant time headway controller in
the close-to-capacity case and share the space equally, i.e.,
y∗i = P

n , i = 1, 2, · · · , n.
In the case of heavy traffic, i.e., Figures 6 and 7, vehicles

share the space equally, but do not reach the free-flow speed
because of the bounded space. Instead, they travel with v∗i =

240
0.4×25 = 24m/s, i = 1, 2, · · · , 25, at steady state.

Fig. 2: Relative spacing profiles for sample vehicles
when n = 15

Fig. 3: Speed profiles for sample vehicles when n = 15

2) Constant non-zero disturbance: Let di = 1m/s2, i =
1, 2, · · · , 25. When n = 25 (heavy traffic), it is found that
the steady-state spacing is y∗i = P

n = 9.6m while the steady-
state speed is v∗i = 24.25 m/s, i = 1, 2, · · · , 25. Note that
9.6 < 0.4× 24.25, i.e., y∗i < hv∗i , i = 1, 2, · · · , 25. In other
words, the steady-state spacing does not follow the safety
distance rule.

VI. CONCLUSION AND FUTURE WORK

We studied dynamics of a system of homogeneous ve-
hicles following a safe car following protocol, under ex-
plicit space constraint abstracted by a closed ring road.
For standard second order vehicle dynamics under constant
time headway control, we showed that the space constraint
induces a phase transition, with increase in vehicle density,
in the equilibrium of inter-vehicle configuration and in the
propagation of external disturbance. The explicit and intuitive
characterization of the threshold for this transition in terms
of system parameters is useful for macroscopic traffic flow
control.

It is naturally of interest to extend the analysis to in-
clude practical features such as acceleration limit and sen-
sor/communication delay. Optimizing over the infinite equi-
libria, e.g., to minimize energy consumption, and realizing
such optimal solutions under various coordination mecha-
nisms between the vehicles is also relevant. Finally, the
analysis presented in this paper and its various extensions
need to be performed for other practical instances of vehicle



Fig. 4: Relative spacing profiles for sample vehicles
when n = 21

Fig. 5: Speed profiles for sample vehicles when n = 21

dynamics and control schemes, including mixture of human
driven and autonomous vehicles, to develop comprehensive
tools for performance evaluation of anticipated scenarios in
urban traffic systems, as well as to inform their macroscopic
control.
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