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Abstract: The hot dense environment of the early universe is known to have produced large numbers
of baryons, photons, and neutrinos. These extreme conditions may have also produced other long-
lived species, including new light particles (such as axions or sterile neutrinos) or gravitational
waves. The gravitational effects of any such light relics can be observed through their unique imprint
in the cosmic microwave background (CMB), the large-scale structure, and the primordial light
element abundances, and are important in determining the initial conditions of the universe. We
argue that future cosmological observations, in particular improved maps of the CMB on small
angular scales, can be orders of magnitude more sensitive for probing the thermal history of the
early universe than current experiments. These observations offer a unique and broad discovery
space for new physics in the dark sector and beyond, even when its effects would not be visible
in terrestrial experiments or in astrophysical environments. A detection of an excess light relic
abundance would be a clear indication of new physics and would provide the first direct information
about the universe between the times of reheating and neutrino decoupling one second later.
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1 Introduction

Cosmology unites the study of the fundamental laws of particle physics, the history of the universe,
the origin of its structure, and its subsequent dynamics. The abundances of baryons, photons,
neutrinos, and (possibly) dark matter were determined during the hot thermal phase that dominated
the early universe. It is the abundances of these particles and the forces between them that determine
the conditions of the cosmos that we see today.

There is strong motivation to determine if other forms of radiation (i.e. relativistic species),
including gravitational waves, were produced during the hot big bang. Changes to the radiation den-
sity make a measurable impact on cosmological observables, including the amplitude of clustering,
the scale of the baryon acoustic oscillations (BAOs), and primordial light element abundances. An
accurate measurement of the total radiation density is therefore also crucial in order to calibrate
late-time observables, such as the BAO scale or the lensing amplitude.

New sources of (dark) radiation are well motivated by both particle physics and cosmology
(cf. e.g. [1–3]). New light particles are predicted in many extensions of the Standard Model (SM),
including axions and sterile neutrinos, or can arise as a consequence of solving the hierarchy
problem (see e.g. [1–22]). For large regions of unexplored parameter space, these light particles are
thermalized in the early universe and lead to additional radiation at later times. Light species are
ubiquitous in models of the late universe as well: they may form the dark matter (e.g. axions), be an
essential ingredient of a more complicated dark sector as the force carrier between dark matter and
the Standard Model (or itself), or provide a source of dark radiation for a dark thermal history. Fur-
thermore, these new particles could also play a role in explaining discrepancies in the measurements
of the Hubble constant H0 [23–27], the amplitude of large-scale matter fluctuations σ8 [28–31], and
the properties of clustering on small scales [32, 33]. Measuring the total radiation density is a broad
window into all these possibilities as well as additional scenarios that we have yet to consider.

Remarkably, cosmological observations provide an increasingly sharp view of the radiation
content of the universe. The cosmic neutrino background itself is a compelling example: while
it has not been possible to see cosmic neutrinos in the lab, their presence has been observed at
high significance in the cosmic microwave background (CMB) and through observations of light
element abundances [33, 34]. These indirect measurements of the cosmic neutrino background
therefore provide a window back to a few seconds after the big bang, the era of neutrino decoupling.
A new thermalized light particle adds at least a percent-level correction to the radiation density that
is determined by its decoupling temperature (time). Measurements in the coming decade will be
sensitive to decoupling temperatures that are orders of magnitude higher than current experiments,
and able to reveal new physics that will be inaccessible in any other setting.

2 Light Relics of the Big Bang

Cosmic Neutrino Background

The cosmic neutrino background is one of the remarkable predictions of the hot big bang. In the
very early universe, neutrinos were kept in thermal equilibrium with the Standard Model plasma.
As the universe cooled, neutrinos decoupled from the plasma. A short time later, the relative
number density and temperature in photons increased, due primarily to the transfer of entropy
from electron-positron pairs to photons. The background of cosmic neutrinos persists today, with
a temperature and number density similar to that of the CMB. Their energy density ρν is most
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commonly expressed in terms of the effective number of neutrino species,

Neff =
8
7

(
11
4

)4/3
ρν

ργ

, (1)

where ργ is the energy density in photons. This definition is chosen so that Neff = 3 in the SM
if neutrinos had decoupled instantaneously prior to electron-positron annihilation. The neutrino
density ρν receives a number of corrections from this simple picture of decoupling, and the best
available calculations give NSM

eff = 3.045 in the SM [35–37].
Cosmology is sensitive to the gravitational effects of neutrinos, both through their mean energy

density [38–41] and their fluctuations, which propagate at the speed of light in the early universe due
to the free-streaming nature of neutrinos [41–43]. A radiation fluid whose fluctuations do not exceed
the sound speed of the plasma [44, 45] could arise from large neutrino self-interactions [46, 47],
neutrino-dark sector interactions, or dark radiation self-coupling. Such a radiation fluid can be
observationally distinguished from free-streaming radiation, and can serve as both a foil for the
cosmic neutrino background and a test of new physics in the neutrino and dark sectors [42, 48, 49].

Neutrinos are messengers from a few seconds after the big bang and provide a new window into
our cosmological history. While these relics have been detected in cosmological data, higher
precision measurements would advance the use of neutrinos as a cosmological probe. Furthermore,
the robust measurement of the neutrino abundance from the CMB is crucial for inferring cosmic
parameters, including the expansion history using BAOs [50], the neutrino masses [51], and H0 [27].

Beyond the Standard Model
A measurement of the value of Neff provides vastly more information than just the energy density in
cosmic neutrinos. The parameter Neff is a probe of any particles that have the same gravitational
influence as relativistic neutrinos, which is true of any (free-streaming) radiation. Furthermore,
this radiation could have been created at much earlier times when the energy densities were even
higher than in the cores of stars or supernovae, shedding light on the physics at new extremes of
temperatures as well as densities, and our early cosmic history.

New light particles that were thermally produced in the early universe contribute to the neutrino
density ρν and increase Neff above the amount from neutrinos alone. The presence of any additional
species can therefore be characterized by ∆Neff ≡ Neff−NSM

eff . Since all such thermalized particles
behave in the same way from a cosmological point of view, this parametrization captures a vast
range of new physics: axions, sterile neutrinos, dark sectors, and beyond [13, 18, 52, 53].

Constraints on Neff are broadly useful and, most importantly, allow the exploration of new
and interesting territory in a variety of well-motivated models. This can be seen with a simple
example: dark matter-baryon scattering. For low-mass (sub-GeV) dark matter, current data allows
for relatively large scattering cross sections [54]. If they scatter through a Yukawa potential, which
is a force mediated by a scalar particle, this force is consistent with fifth-force experiments and
stellar cooling if the mediator has a mass around 200 keV. However, the particle which mediates
the force necessarily† contributes ∆Neff ≥ 0.09 when it comes into thermal equilibrium with the
Standard Model [55]. Excluding this value would require that the strength of the interactions is
small enough to prevent the particle from reaching equilibrium at any point in the history of the
universe, which, consequently, limits the scattering cross section, as shown in the left panel of Fig. 1.

†The mediator with a mass of 200 keV is too heavy to contribute to Neff, but it must decay to sub-eV mass particles,
which will increase Neff, in order to avoid more stringent constraints.
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Figure 1: Left: Limits on the dark matter-baryon cross section σbDM for a Yukawa potential. Future cosmolog-
ical constraints will restrict ∆Neff < 0.09 and, therefore, exclude cross sections large enough to thermalize the
(200 keV-mass) particle mediating the force [55]. This limit is compared to the direct bound on baryon-dark
matter scattering from the CMB [57] and to the constraints on dark forces from the Bullet Cluster [58]. The
strongest current constraint is from the absence of meson decays to the mediator [59]. Right: Contributions of
a single massless particle, which decoupled at the temperature TF from the Standard Model, to the effective
number of relativistic species, Neff = NSM

eff +∆Neff, with the Standard Model expectation NSM
eff = 3.045 from

neutrinos. The limit at 95% c.l. from a combination of current CMB, BAO and BBN observations [33], and
the anticipated sensitivity of next-generation CMB experiments (cf. e.g. [53, 60, 61]) illustrate the current and
future power of cosmological surveys to constrain light thermal relics. The displayed values on the right are
the observational thresholds for particles with different spins and arbitrarily large decoupling temperature.

This measurement is sensitive to 10–15 orders of magnitude in cross section that are not probed
by direct constraints from cosmology and astrophysics, and five orders of magnitude stronger than
meson decay searches. We see that cosmological measurements of ∆Neff are an extremely sensitive
probe of dark sector physics that are complementary to more direct tests, both in the laboratory and
with astrophysical observations [55, 56].

More generally, the contribution to Neff from any thermalized new particle is easy to predict
because its energy density in equilibrium is fixed by the temperature and the number of internal
states (e.g. spin configurations). Under mild assumptions (see e.g. [62] for a detailed discussion),
the contribution to ∆Neff is determined by two numbers, the last temperature at which it was in
equilibrium, TF , and the effective number of spin degrees of freedom, gs, according to

∆Neff = gs

(
43/4

g?(TF)

)4/3

. (2)

The function g?(TF) is the number of effective degrees of freedom (defined as the number of
independent states with an additional factor of 7/8 for fermions) of the SM particle content at
the temperature TF . This function appears in the formula for ∆Neff because it determines how
much the photons are heated relative to a new light particle due to the annihilation of the heavy
SM particles as the universe cooled (see the right panel of Fig. 1). The next generation of (proposed)
CMB observations are expected to reach a precision of σ(Neff) = 0.03, which would extend our
reach in TF by several orders of magnitude for a particle with spin s > 0 and be the first measurement
sensitive to a real scalar (s = 0) that decouples prior to the QCD phase transition.

To understand the impact of such a measurement, recall that equilibrium at temperature T arises
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when the production rate Γ is much larger than the expansion rate H(T ). At high temperatures,
production is usually fixed by dimensional analysis, Γ ∝ λ 2T 2n+1, where λ is the coupling to
the Standard Model with units of [Energy]−n. The particle is therefore in equilibrium if λ 2 �
M−1

P T−2n+1. There are two important features of this formula: (i) the appearance of the Planck
scale MP implies we are sensitive to very weak couplings (M−2

P = 8πGN), and (ii) for n≥ 1 it scales
like an inverse power of T . As a result, sensitivity to increasingly large TF implies that we are
probing increasingly weak couplings (lower production rates) in proportion to the improvement
in TF (not ∆Neff). These two features explain why future measurements of ∆Neff can be orders of
magnitude more sensitive than terrestrial and astrophysical probes of the same physics [18, 53].

The impact of the coming generation of observations is illustrated in Fig. 1. Anticipated improve-
ment in measurements of Neff translate into orders of magnitude in sensitivity to the temperature TF .
This temperature sets the reach in probing fundamental physics. Even in the absence of a detec-
tion, future cosmological probes would place constraints that can be orders of magnitude stronger
than current probes of the same physics, including for axion-like particles [18] and dark sec-
tors [21, 22, 55, 63]. It is also worth noting that these contributions to Neff asymptote to specific
values of ∆Neff = 0.027,0.047,0.054 for a massless (real) spin-0 scalar, spin-1/2 (Weyl) fermion
and spin-1 vector boson, respectively (see Fig. 1). A cosmological probe with sensitivity to ∆Neff at
these levels would probe physics back to the time of reheating for even a single additional species.

Even without new light particles, Neff is a probe of new physics that changes our thermal
history, including processes that result in a stochastic background of gravitational waves [64–
66]. Violent phase transitions and other nonlinear dynamics in the primordial universe could
produce such a background, peaked at frequencies much larger than those accessible to B-mode
polarization measurements of the CMB or, in many cases, direct detection experiments such as LIGO
and LISA [67–71]. For particularly violent sources, the energy density in gravitational waves can
be large enough to make a measurable contribution to Neff [71–73].

In addition to precise constraints on Neff, cosmological probes will provide an independent
high-precision measurement of the primordial helium abundance Yp due to the impact of helium
on the free electron density prior to recombination. This is particularly useful since Yp is sensitive
to Neff a few minutes after the big bang, while the CMB and matter power spectra are affected
by Neff prior to recombination, about 370000 years later. Measuring the radiation content at these
well-separated times provides a window onto any nontrivial evolution in the energy density of
radiation in the early universe [74–77]. Furthermore, Neff and Yp are sensitive to neutrinos and
physics beyond the Standard Model in related, but different ways, which allows for even finer
probes of new physics, especially in the neutrino and dark sectors.

3 Cosmological and Astrophysical Observables

Cosmic Microwave Background The effect of the radiation density on the damping tail of the
anisotropy power spectrum drives the constraint on Neff from the CMB. The largest effect comes
from the change to the expansion rate, which impacts the amount of photon diffusion, which in turn
causes an exponential suppression of short wavelength modes [78]. This effect on the damping
tail is dominant when holding fixed the scale of matter-radiation equality and the location of the
first acoustic peak [40], both of which are precisely measured. At the noise level and resolution of
upcoming observations [53, 61,79–81], this effect is predominately measured through the TE power
spectrum on small scales. Planck has provided a strong constraint of Neff = 2.92+0.18

−0.19 using
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temperature and polarization data [33]. Future high-resolution maps of the CMB could realistically
achieve σ(Neff) = 0.03 in the coming decade [53, 61].

In addition to the effect on the expansion rate, perturbations in neutrinos (and other free-
streaming light relics) affect the photon-baryon fluid through their gravitational influence. The
contributions from neutrino fluctuations are well described by a correction to the amplitude and the
phase of the acoustic peaks in both temperature and polarization [41]. The phase shift is a particularly
compelling signature since it is not degenerate with other cosmological parameters (unlike the
damping tail) [41,42] and has a direct connection to the underlying particle properties [42]. Recently,
the phase shift from neutrinos has also been established directly in the Planck temperature data [82],
which provides the most direct evidence for free-streaming radiation consistent with the cosmic
neutrino background. If ∆Neff 6= 0 is detected, this phase could provide a powerful confirmation.

Big Bang Nucleosynthesis (BBN) The production of light elements in the early universe is
affected by the density of light relics through their impact on the expansion rate during the first few
minutes after reheating. Cosmic neutrinos play a special role during BBN since they also participate
in the weak interactions that interconvert protons and neutrons. Measurements of the primordial
abundances of light elements can therefore be used to infer the relic density of neutrinos and other
light species, with deuterium [83] and helium-4 [84, 85] currently providing the tightest constraints.
Future improvements will be driven by 30 m-class telescopes, but are limited by the analysis of
the most pristine astrophysical systems rather than statistics. When abundance measurements are
combined with Planck CMB data, the density of light relics is found to be Neff = 3.04±0.11 [33].

Large-Scale Structure (LSS) Maps of the large-scale structure of the universe from galaxy and
weak lensing surveys can provide complementary measurements of the radiation content. The main
observable is the shape of the matter power spectrum, which can be decomposed into a smooth
(broadband) component and the spectrum of baryon acoustic oscillations. Additional radiation
alters the sound horizon, which is routinely captured in current BAO analyses. While this is highly
degenerate with other parameters, combining BAO and CMB observations slightly improves the
sensitivity to Neff over the CMB alone, Neff = 2.99±0.17 [33]. The BAO spectrum also exhibits the
same phase shift observed in the CMB spectra. A nonzero phase shift was recently extracted from the
distribution of galaxies observed by the Baryon Oscillation Spectroscopic Survey (BOSS) [60, 86]
and upcoming galaxy surveys will significantly improve on this measurement.

The two main consequences of a different radiation density on the broadband shape of the
power spectrum are a change of the power on small scales and in the location of the turn-over of
the spectrum. Although these effects are clearly visible in the linear matter power spectrum, they
are limited by uncertainties related to gravitational nonlinearities and biasing. The combination of
planned spectroscopic LSS surveys with Planck data could reach σ(Neff) = 0.08 [60]. However,
these surveys would not contribute a meaningful improvement when combined with a CMB ex-
periment achieving σ(Neff)≈ 0.03. If nonlinear effects can be controlled, very large-volume and
high-resolution LSS maps can reach comparable sensitivity to the CMB [60, 87] and would sig-
nificantly add to the scientific impact of the CMB alone. Furthermore, LSS observations are also
sensitive to effects induced by neutrinos and other light relics beyond Neff, for example in the
Lyman-α forest and the biasing of galaxies (see e.g. [88–92]).

Summary Sub-percent-level measurements of the radiation density would transform our under-
standing of the early universe, the neutrino and dark sectors, and more. To reach clear observational
targets, future CMB observations offer the most promising and concrete path in the next decade.
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