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An accurate theoretical template for the galaxy power spectrum is a key for the success of ongoing
and future spectroscopic surveys. We examine to what extent the Effective Field Theory of Large
Scale Structure is able to provide such a template and correctly estimate cosmological parameters.
To that end, we initiate a blinded challenge to infer cosmological parameters from the redshift-space
power spectrum of high-resolution mock catalogs mimicking the BOSS galaxy sample but covering
a hundred times larger cumulative volume. This gigantic simulation volume allows us to separate
systematic bias due to theoretical modeling from the statistical error due to sample variance. The
challenge task was to measure three unknown input parameters used in the simulation: the Hubble
constant, the matter density fraction, and the clustering amplitude. We present analyses done by two
independent teams, who have fitted the mock simulation data generated by yet another independent
group. This allows us to avoid any confirmation bias by analyzers and pin down possible tuning of
the specific EFT implementations. Both independent teams have recovered the true values of the
input parameters within sub-percent statistical errors corresponding to the total simulation volume.

I. INTRODUCTION

Modern cosmology is getting more and more mature
as accumulating observational data are available for us.
We have however a fundamental lack of understanding of
the physical nature of the dark components introduced to
explain the dominant source of gravity that gathers mate-
rial to form rich structures in the late universe (dark mat-
ter) as well as the accelerating cosmic expansion (dark
energy), together filling the majority of the cosmologi-
cal energy budget. Aiming at having further insights on
those substances, growing number of large-scale observa-
tional programs are ongoing and planned [e.g. 1-3].

Of crucial importance from the theoretical point of
view is our ability to prepare an accurate model tem-
plate with which one can confront such observational
data for their interpretation. Since a larger survey means

a smaller statistical error, the relative contribution from
the systematic error arising from the inaccuracy of the
template should be more important. Given the gigantic
area coverage and depth of ambitious future programs,
there is the necessity to come up with a really accurate
theoretical framework to predict the observed large scale
structure to attain their full potential to infer the under-
lying theory governing the universe.

One of the most difficult aspect of the large-scale struc-
ture prediction is the complicated relation between the
matter density fluctuations dominated by invisible dark
matter and visible structures such as galaxies [4]. The
so-called galaxy bias cannot be predicted from first prin-
ciples, unless one can model all the baryonic effects rele-
vant for the formation and evolution of galaxies. While
hydrodynamical simulations might be one way to pro-
ceed, the vastly large dynamical range, kpc to Gpc in



length scale, is a big obstacle. Typically, one comes up
with empirical subgrid models and calibrate them against
observed statistics of galaxies [see e.g., 5-12, for recent
attempts].

Alternatively, one can formulate the statistical proper-
ties of galaxies on large scales via a perturbative expan-
sion in which poorly known galaxy physics is parameter-
ized by a set of effective bias operators. The strength of
these operators is controlled by free coefficients, which
should be treated as nuisance parameters. The recently
developed Effective Field Theory of Large Scale Structure
(EFTofLSS) provides a systematic way to derive all possi-
ble operators and corresponding bias coefficients that are
allowed by symmetry [13-21] [also see 22, for a review].
Since this approach, in principle, does not assume any
specific model of galaxy formation, it provides us with
a conservative theoretical model for the galaxy density
and velocity fields on large scales. The generality of the
effective field theory approach comes at the price of hav-
ing to marginalize over many free coefficients, which can
compromise cosmological constraints. These constraints
can become weaker compared to other theoretical tem-
plates in which a specific bias prescription is employed,
such as halo model approaches. The detailed balance
between the robustness and the tightness of the cosmo-
logical constraints has been addressed in recent studies
[e.g., 23-25].

There are several non-trivial choices behind the appli-
cation of the EFT to the data. First, one should deter-
mine the wavenumber up to which the EFT calculation
up to a chosen perturbative order is reliable. This data
cut should be carefully tested to avoid biased parameter
estimates. Then, one has to decide how many nuisance
parameters to keep in the fit (there are about 10 at the
one-loop order) and what priors to use. Indeed, at the
power spectrum level many EFT operators are degen-
erate among each other. Thus, one has to accurately
determine their principal components to make the cos-
mological analysis efficient. All these subtleties should
be examined and validated in a transparent manner to
convince the community of the robustness of the EFT
approach.

To that end, in this paper, we conduct a first blind test
of EFTOfLSS for clustering of galaxies in redshift space.
Two independent groups (which will be referred to as
“West Coast” and “East Coast”) have analyzed the mock
data generated by yet another group (Kyoto and Tokyo,
simply “Japan Team” hereafter). In this process, the true
cosmological parameters used to generate the simulation
mock data were known only to the Japan Team. The two
analyzing teams have participated in the challenge on the
condition that the results would be published regardless
of the outcome, and the pipelines could not be modified
after unblinding. We present these results in our paper
in the original form. To complement the result of the
blinded analysis and to get more insight on the origin
of the cosmological information, we briefly discuss post-
unblinding analyses.

The layout of this paper is as follows. We first describe
the design of our mock challenge program in Sec. II. We
then specify the mock simulations in Sec. III. The the-
oretical template and the method to conduct parameter
inference are explained in Sec. IV. Then the results of the
blinded analysis are summarized in Sec. V. We conclude
this study in Sec. VL.

II. DESIGN OF BLINDED COSMOLOGY
CHALLENGE

Throughout this paper, we consider a flat ACDM cos-
mology. This is motivated by the recently claimed ten-
sion in the values of the Hubble parameter, one from local
measurements such as the distance ladder, and the other
from the Cosmic Microwave Background (CMB) assum-
ing a flat ACDM model [see 26, and references therein].
In such a situation, a robust measurement from other in-
dependent observable channels would be important, and
indeed, the galaxy clustering, when the full shape in-
formation of its spectra is analysed, has been shown to
serve as such a probe [27-30]. Also important might be a
similar, but a weaker tension in the amplitude of the den-
sity fluctuations in the current universe [31-33]. This is
known to be degenerate with the matter density param-
eter from the late-time observables. We wish to demon-
strate through the challenge the current status of the use
of galaxy clustering in particular with an EFT approach
to describe the nonlinear nature of the cosmological large
scale structure.

A. Cosmological parameters

To assess the reliability of the galaxy-clustering analy-
ses within the flat ACDM model, three cosmological pa-
rameters, In(1019Ay), Q,, and Hy, are randomly drawn
from independent normal distributions. These parame-
ters are the logarithm of the amplitude of the primordial
power spectrum at ko = 0.05 Mpc ™', the matter density
parameter at present and the current Hubble expansion
rate in km/s/Mpc, respectively. While the mean values
of the normal distributions are set to be the best-fit val-
ues determined by Planck satellite [34], we consider the
standard deviation four times larger than the same ex-
periment to test the validity of the model in a broader
parameter space. While all of the information above is
shared among all the collaborators, the three random
numbers drawn were kept only within the Japan Team
until we finally unblinded them.

On the other hand, we fix the baryon fraction, f, =
0.1571 and the spectral index ng = 0.9649. These values
are shared with the two US teams. For simplicity and
to avoid the complication to deal with massive neutrinos
both in theory and in simulations, we set the neutrino
masses to be exactly zero. Under the above settings, the
linear matter-density transfer function is computed using



the public Boltzmann solver CAMB [35]. The parameter
file passed to this code by the Japan Team is provided
to the US teams after the three blinded cosmological pa-
rameter values are erased.

The main goal of the challenge is to infer the three
cosmological parameters Ag, O, and Hy. It was agreed
among all the teams that, once these cosmological pa-
rameters are unblinded, the analysis pipeline used in the
challenge may not be changed.

B. Target observables

We focus on the galaxy clustering in redshift space in
the initial challenge presented in this paper. More specifi-
cally, we work in Fourier space and analyse the multipole
moments of the galaxy power spectrum. This includes
physical and observational effects such as the Baryon
Acoustic Oscillation (BAOs; [36-40]), redshift-space dis-
tortions (RSD; [41, 42]) and the Alcock-Paczynski (AP;
[43]) effect, where the AP is induced artificially by dis-
torting the simulation boxes (see the next section for fur-
ther detail). On top of these distinctive features, the
mock data should contain the cosmological information
through the overall shape of the power spectra, which
might be hindered by the presence of various nonlinear
effects. The aim of this challenge is to assess how robustly
one may extract the fundamental cosmological parame-
ters within the flat ACDM framework.

The Japan Team constructs mock galaxy catalogs and
measures the multipole moments of the power spectra.
To discriminate the systematic error from the statistical
error, this experiment is done in huge simulation volumes
much larger than the current surveys. The galaxy cata-
logs are constructed to roughly mimic the CMASS and
the LOWZ catalog from the 12th Data Release of Sloan
Digital Sky Survey [Ref. 44, hereafter SDSS DR12]. The
details of these simulations will follow in the next section.
Since the galaxy bias is formulated to be as general as
possible in the EFT, based only on symmetry consider-
ations without assuming any specific model with which
galaxies are defined, the detail of the mock galaxies would
not give a significant impact to the blinded analysis as
long as one sticks to an EFT approach. However, other
approaches such as the halo model would be directly im-
pacted by the piece of information on the exact procedure
with which the mock galaxies are distributed within the
simulation volume. Therefore, any further information
on the mock galaxies detailed in the next section was not
provided to the US teams before unblinding.

For completeness, the set of mock data as well
as the information on the simulations provided
to the US teams are summarised at a dedi-
cated website (http://www2.yukawa.kyoto-u.ac.jp/
~takahiro.nishimichi/data/PTchallenge/). All the
data and the information were shared through this web-
site. Interested readers may download the same set
of data and participate in the blinded challenge by

analysing the data using their own theoretical template,
as the exact cosmological parameter values are not ex-
actly shown in this paper nor on the website.

IIT. GENERATING MOCK REDSHIFT-SPACE
POWER SPECTRA OF BOSS-LIKE GALAXIES

The Japan Team works on the construction of mock
galaxy catalogs and measurement of the power spectra.
The settings of the numerical simulations, the prescrip-
tion for the mock galaxies and the analysis methods to
determine their statistics are described in this section.

A. Specification of simulations

We follow the gravitational dynamics of ten random re-
alizations of the matter density field expressed by 3, 0723
mass elements sampled in comoving periodic cubes with
the side length L = 3,840 h~'Mpc. The total volume,
566 (h~1Gpc)?, is about a hundred times that of the
CMASS and LOWZ sample from SDSS BOSS DR12,
which together have a volume coverage of 5.7 (h~1Gpc)?3
[45]. The large volume of our simulations allows us to de-
termine the statistics of the mock galaxies very precisely
with little sample-variance error. Therefore, we can con-
duct a fairly stringent test of the systematic error due to
an imperfect modeling of the target statistics.

The initial conditions are generated with a code devel-
oped in [46] and then parallelized in [47] based on the
second-order Lagrangian Perturbation Theory (2LPT;
[48, 49]). Following the result presented in [50], the start-
ing redshift of the simulations are set at z = 29 to roughly
optimize the total systematic error arising from the arti-
ficial growing mode due to the grid pre-initial condition
[51-53] and the truncation of the LPT at the second or-
der given the mean inter-particle distance of the simula-
tions. We prepare ten independent random realizations,
each of which is then evolved by a public Tree-Particle
Mesh code GADGET2 [54] with 6, 1443 grid points for fast
Fourier transform (FFT) and the tree softening length of
62.5 h~'kpc. The other simulation parameters to control
the force accuracy as well as the time-stepping criteria
are the same as in [50]. We store the particle snapshots
at z =3, 2, 1, 0.61, 0.51 and 0.38. We populate galaxies
to the lowest three redshifts, and conventionally call the
catalogs as CMASS2 (z = 0.61), CMASS1 (z = 0.51)
and LOWZ (z = 0.38) in what follows.

B. Mock galaxy identification

After obtaining the particle snapshots, we run the
ROCKSTAR halo finder [55], which is based on the six di-
mensional phase space friends-of-friends algorithm. This
code identifies not only isolated “central” halos but also
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FIG. 1. The abundance of halos per unit logarithmic mass
interval (upper) and the mean number of mock galaxies per
halo (lower) as a function of the virial mass of halos. The
mean of the ten random realizations are shown at three output
redshifts of the simulations as indicated by the figure legend.

“satellite” halos existing as substructures of more mas-
sive halos without any distinction at first in the primary
output files. For simplicity, we treat each of them irre-
spectively of whether it is a central or a satellite halo
and populate a galaxy only according to the virial mass
assigned by ROCKSTAR. We impose a soft cutoff to the
virial mass to select massive halos to populate galaxies
randomly with the probability

1 1 Mvir -1 Mmin
P(My,) = = |1 +erf 810 810 (1)
2 Tlogyg M

where erf(z) is the error function. We have two pa-
rameters, log,o Muyin and olog,, a, Which determine the
typical minimum mass and the profile of the soft mass
cutoff, respectively. We set log;y Mmin = 13.08, 12.97
and 12.95 for LOWZ, CMASS1 and CMASS2 (M, is
given in unit of h=1My), respectively, while the value
of o10g,, 1 1s fixed to 0.35 for all of the samples. These
choices are made such that the resultant clustering sig-
nal of the mock galaxies, especially the amplitude of the
power spectra at small k becomes roughly consistent with
the observation (see the next subsection for more detail).
We assume that the populated mock galaxies are located
at the center-of-mass position of the core particles deter-
mined by ROCKSTAR. Similarly, we assign the the center-
of-mass velocities of the same core particles to the mock
galaxies, which are used when we displace the positions
of mock galaxies to redshift space [24].

We show the abundance of (central) halos as well as
the mean number of galaxies per central halo as a func-

tion of the virial mass in Fig. 1. Here, we define “central”
halos from the ROCKSTAR catalog as those satisfying the
condition that any other halo is not more massive than
the halo of interest to within a sphere of radius R,
where RSS! is the virial radius of the central halo. Note
that an isolated halo is also identified as a central halo
according to this definition. On the other hand, the halos
which reside around a more massive neighbor to within
the neighbor’s viral radius are identified as “satellite”
(sub)halos. The particular definition does not really af-
fect our mock galaxy catalog due to our recipe (Eq. 1)
to populate galaxies. The lower panel of Fig. 1 shows
the average number of mock galaxies in central halos, i.e.
the halo occupation distribution (HOD), as a function of
central halo mass. Note that unlike the standard HOD
prescription, the HOD of our mock catalog is not given
a priori, and rather is measured from the mocks with the
central /satellite split. Nevertheless, the shape of HOD in
our mock catalogs looks similar to what can be found in
the literature, e.g., [56, 57]. There appear two regimes;
halos around the soft cutoff near M., = 103 h=1M,
host only one galaxy (i.e., a central galaxy), while mas-
sive halos above 10 h=' M, receive a significant contri-
bution from satellite galaxies, displaying a power-law like
form in the HOD.

C. Measurement of the mock signal and error

We here describe the method to measure the power
spectra and estimate the data covariance from the mock
galaxy catalogs.

The measurement is done based on FFT of the density
field. We first assign the mock galaxies in redshift space
to ng = 2048? grid points using the Cloud in Cell (CIC)
interpolation scheme. We employ the distant observer
approximation in the mapping to the redshift space. We
follow Ref. [58] to correct for the aliasing effect [59], by
the so-called interlacing method. To do this, we prepare
another density grid but with mass assignment done after
shifting the galaxy positions by half the grid size along
all of the three Cartesian axes and then corrected for the
phase shift by multiplying an appropriate factor to the
field in Fourier space. By taking the average of the two
density grids, the original and the interlaced, we can get
rid of the aliasing effect due to the odd images, which
would give the dominant aliasing source to standard cos-
mological power spectra with decaying amplitude toward
higher wavenumbers. The effect of the CIC window func-
tion will eventually be removed later in Eq. (3).

We then reinterpret the wavenumbers by taking ac-
count of the AP effect. Namely, we rescale the funda-
mental modes along the each of the three axes as

_ ~ D(truc) (Z)

kf,x = kf,y = Akaa
DY)

- H (fid)

e = (2)

—k 2
H(true)(z) I ( )



where k¢ = 27/L is the original fundamental mode in
the absence of AP effect. In the above, we take the z
direction in the simulation box as the line-of-sight di-
rection, and the upper scripts, (true) and (fid), indicate
that the comoving angular diameter distance, Dy (z), or
the Hubble expansion rate, H(z), are calculated assum-
ing the correct, blinded cosmological parameters, and a
fiducial cosmological parameters, respectively. Here, we
adopt a flat ACDM cosmology with Qﬁﬁd) = 0.3 as the
fiducial cosmology, and this information is shared with
the two US analysis teams. Ql(fd) that was used to cre-
ate the mock catalogs should not be confused with the
true cosmological parameter €2,, which was used in the
simulations and which was kept in secret to the analyzing
teams.

The Japan Team then estimates the first three non-
zero multipole moments, monopole (£ = 0), quadrupole
(¢ = 2) and hexadecapole (¢ = 4) by taking weighted
averages of the squared Fourier modes:

Pk = 20 S P PR, @)
" kebini
with
P ]; B ‘7‘5,;:‘2_[}%%(’;) 4
P e ()

where the distorted volume V is given by

. 2
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analogously to Eq. (2) to account for the AP ef-
fect, the summation runs over wavevectors k =
(ki ziz, ki yly, ke oi.) specified by an integer vector
(iz,%y,12), P¢ denotes the ¢-th order Legendre polyno-
mial, A is the cosine between the wavevector k and
the z-direction, and N; stands for the number of Fourier
modes contained in the i-th wavenumber bin. In the
above, we have subtracted the shot noise, Py, from the
measured power spectrum. We evaluate the shot noise
taking into account the interlacing technique for the alias-
ing correction and the CIC window function. Denoting

. ke,

Rg = —= 5
2kNy.q

(6)

with l;Ny’a = léfyang/Q being the direction-dependent
Nyquist frequency (a = z, y or z), the resultant expres-
sion for the wavevector-dependent shot noise contribu-
tion is given as

B o (i . 7
Fanot (k) = Z Wéio(k + 2kxy - 1) o
N, Ny, N i EVED ga
- 1%
= H Ca(ka) N R (7)
a=z,y,z gal

with Wgic being the CIC window function

WCIC(]}): H sinc ™ 2fq, (8)

a=w,y,z

and the final shot-noise correction factor, C,, given as the
infinite summation over even integers can be computed
analytically as

Colky) = % (14 cosiia)” (24 cosig) . (9)
See Ref. [59] for a similar expression but without the
interlacing correction that erases the odd images.

The estimator, Eq. (3), is computed at 100 wavenum-
ber bins between the first bin edge taken at zero to the fi-
nal bin edge at 1 h Mpc ™! evenly spaced by 0.01 h Mpc ™.
The representative wavenumber of each bin, k; in Eq. (3),
is computed as the average of the norm of the wavevec-

tors that actually enter the bin:

k:NLZ ‘12:‘ (10)

kebini

The pairs of numbers, (ki,pg(ki)), are provided to the
analysis teams as the mock measurements, and the above
way to compute the representative number of each &k bin
is informed to the analysis team. The data files also
contain estimates of the covariance matrix. It is obtained
assuming Gaussianity [24]:

Covly = ((Pelks) = (Pulki))) (Perlhy) = (Pe(hy)) )
_x2HD0+T)
I

< S Pulng)Poling) [PR) + Pae] . (11)
iﬂebini

where P(k) is the expectation value of P(k). The ex-
pression reduces to the real-space formula by Ref. [60]
when ¢ = ¢/ = 0. In reality, however, we have to make
use of a noisy estimate of the power spectrum P(k) for
each wavevector k instead of P(k), and this can im-
pact the estimation of the covariance matrix significantly.
Therefore, instead of computing Eq. (11), we first bin the
Fourier modes in 10 evenly-spaced |ug,| bins and take the

average of ]5(];:) within each bin to suppress the noise.
The binned estimates are then used in Eq. (11), but
the summation now runs over bins instead of individ-
ual wavevectors, to obtain our estimate of the covariance
matrix.

The Japan Team considers two settings for the covari-
ance matrix. The first is to use the volume and the shot
noise consistent with the mock simulations. In addition,
they provide another estimate scaled to the BOSS DR12
catalogs, by substituting the number density from the ob-
servation and then scaling the number of Fourier modes
according to the ratio of the surveyed and the simulated

volume. The set of estimates, P(k;) and Covffl, with the
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FIG. 2. First three multipole moments (monopole,

quadrupole and hexadecapole) of the power spectrum in red-
shift space measured from our mock galaxy catalogs at three
redshifts (the solid lines). The 1-o uncertainty intervals as-
suming the survey parameter of the SDSS Data Release 12
are shown by the shaded regions. Also shown by the error
bars are taken from Ref. [61] based on SDSS DR12. For these
data points, the measurements from the sample in the North
Galactic Cap (NGC) and the South Galactic Cap (SGC) are
shown separately by different symbols as indicated by the
figure legend. Note that the Alcock-Paczynski effect is arti-
ficially induced assuming 2, = 0.3 in the redshift-distance
conversion. The analysis teams can only access exactly the
data vector shown in this figure. The analyses presented in
this paper is based on the monopole and the quadrupole mo-
ments from the catalog at z = 0.61.

latter now has only diagonal entries with respect to the
subscripts, ¢ and j, due to the Gaussian approximation,
are tabulated for each of the ten random realizations and
provided through the website. The Japan Team leaves
the decision to the US Teams on how to exactly use these
estimates: which survey specification for the estimation
of the covariance matrix to adopt, to combine the ten
realization and analyse the averaged spectra just once
or to analyse each realization one by one, or to further
estimate the non-Gaussian error from the realization-to-
realization scatter.

We show in Fig. 2 the average multipole moments of

the power spectra at the three redshifts corresponding
to LOWZ, CMASS1 and CMASS2. The solid lines show
the mock measurements, where the shaded region around
each line denotes the 1-0 error scaled to the SDSS BOSS
DR12 survey parameters. The three lines in each panel
depict the monopole, quadrupole and hexadecapole from
top to bottom. Also shown by the symbols with error
bars are the actual measurements from the BOSS data
by [61]. The measurements from the North and South
Galactic Cap are respectively plotted by the upward and
the downward triangles.

Overall, the mock data follows the observed spec-
tra. The monopole moment especially exhibits an ex-
cellent agreement, because the model parameters used
to distribute the mock galaxies are chosen to match
this moment. There is, however, small mismatch in the
quadrupole moment: the observed data shows a stronger
damping behaviour to the higher wavenumbers. It is out
of the scope of the current investigation to see if or not
this can be alleviated by further tuning the model param-
eters without spoiling the success in the monopole. This
is nontrivial since the cosmological parameters adopted
in the mock simulations could be off from the true un-
known parameters governing our Universe, or the recipe
to populate mock galaxies might not be flexible enough
to meet the reality.

IV. THEORETICAL TEMPLATE

In this section we describe the implementation of the
theoretical model by the two teams participating in the
cosmological analysis challenge. The employed method-
ologies are almost identical to the ones used in the anal-
ysis of the actual BOSS data by the same teams [27-29].

Both teams participating in the PT challenge use, es-
sentially, the same theoretical template. However, there
are differences in the implementation of IR resummation,
the choice of nuisance parameters and their priors. Be-
sides, the two teams use absolutely independent pipelines
based on different software. This section describes in de-
tail the pipelines used by the two teams and focuses on
methodological differences.

A. Common basis for the EFT formulation

On general grounds, it is believed that any physical
system has a unique and correct description at long wave-
lengths where the microscopical details of the physical
system under consideration can be encoded in just a few
coefficients of the terms in the equations of motion. In
the context of the long-distance universe, this description
is believed to be the Effective Field Theory of Large-
Scale Structure (EFTofLSS) [62, 63]. The originality of
the EFTofLLSS with respect to other pre-existing pertur-
bative methods that were applied in the context of LSS
is two-fold. First is the presence of suitable terms in



the equations of motion that encode the effect of short-
distance non-linearities and galaxies at long distances,
and that cannot be predicted without detailed knowl-
edge of galaxy physics, and therefore are generically fit
to observations. Second, the equations of motion in the
EFTofLLSS have non-linear terms that are proportional
to some parameters. Due to the many phenomena that
control the evolution of our universe, there are several of
these parameters, such as the size of the density pertur-
bation or the ratio of a given wavelength with respect to
the size of the displacements induced by short distance
modes [17]. For all of these parameters but one, an iter-
ative solution is performed. Instead for one parameter,
the one encoding the effect of long wavelength displace-
ments, a non-linear solution is performed, which goes
under the name of IR-Resummation [17, 64—67]. Differ-
ent incarnations of the EFTofLL.SS make this expansion
more or less manifest. For example, the Lagrangian-
space EFTofLLSS [68] automatically solves non-linearly in
the effect of long-displacements, and so, it is identical to
the Eulerian EFTofLSS that we use here after this has
been IR-Resummed [17].

In the EFTofLLSS, the description of the clustering of
galaxies in redshift space is performed in the following
way. First, the dark matter and baryonic fields are de-
scribed in terms of fluids with a non-trivial stress tensor.
Galaxies are biased tracers, in the sense that, if d, is the
galaxy overdensity, we have that [18]

Sg(x,t) = / dt' K, (t,t") Oy (x4, t) (12)
= Z bn,m (t) On,m(xa t)

where O,, are all possible fields, such as, for example,
the dark matter density, that, by general relativity, can
affect the formation of galaxies. K, (t,t') are some ker-
nels that relate how a field at a certain time affects the
galaxies at later times, and xg is the location at time ¢
of the fluid element that is at x at time ¢. The last step
of the above equation can be performed using the per-
turbative expression for the matter and baryonic fields.
In fact, in perturbation theory the time- and space-
dependence parts factorize in a form, schematically, given
by 0(k,t) ~ Yon Fu(®)8™ (), where 6 is order n in the
expansion parameters. This allows us to define the bi-
ases b as by, (t) ~ [dt'K, (t,t')fn(t'). This provides
the first complete parametrization of the bias expansion,
though many earlier attempts were made and substantial
but partial successes were obtained.

Next, we need to describe the observed density
field in redshift space.  This is a combination of
the density field in configuration space and density
times powers of the velocity field of galaxies, such
as p(Z,t)v(Z,t)%, p(Z, t)v (T, t)v;(T,t),.... Again, these
short-distance-dependent terms are described as above
as biased tracers of the density and baryonic fields [19].

Because of what we just discussed, the range over

which different implementations of the EFTofLLSS can
differ is extremely limited: they may choose a different
basis for the EFT-parameters, they may add an incom-
plete, and therefore different, set of higher-order contert-
erms to partially include the effect of some higher order
calculation that was not performed, or they may have
different implementations or approximations for the IR-
Resummation. We are going to list them in detail next.

B. Group dependent implementation

Although both teams use the same theoretical model,
there are several important methodological differences.
Moreover, the two groups have made very different
choices in the model implementation and numerical al-
gorithms. This section describes in detail the pipelines
used by the two teams.

1. FEast Coast Team

The East Coast Team used only the monopole and the
quadrupole in the analysis. The East Coast Team ana-
lyzed the challenge data with and without the hexade-
capole moment and found identical constraints.! Given
these reasons, the East Coast Team refrained from using
the hexadecapole moment in the baseline analysis.

The theoretical model used by the East Coast Team
for these two multipoles can be written schematically as

Py(k) = P{™°(k) + PP (k) + P& (k) + Py * (k) . (13)

The tree-level contribution is given by the Kaiser for-
mula [42]. The loop corrections are calculated using the
standard one-loop power spectra for dark matter and bi-
ased tracers (see e.g., [22, 69, 70] and references therein).
The bias model consists of the following bias operators
[16, 18, 71]

Sy (k) = bid(k) + 25°(K) +b,Galk) . (14)

where the momentum-space representation of Gy opera-
tor is given by

_ [ &@p [(p-(k-—p)* B
gQ(k>_/(27r)3[ 2k —p|? t|otp)alk p)(1'5)

1 On the scales of interest the hexadecapole signal is dominated by
leakage contributions from the monopole and quadrupole. These
contributions appear due to discreteness effects, i.e. because the
monopole and quadrupole are not exactly orthogonal to the hex-
adecapole on a finite grid. Even with the gigantic volume of the
challenge simulation and the wide binning the hexadecapole mo-
ment happened to be dominated by the systematic leakage from
lower multipole moments.



The one-loop power spectrum has one extra bias operator
multiplied by an additional parameter br,. However, this
contribution is almost fully degenerate with the countert-
erms and G, operator on the scales of interest. Given this
strong degeneracy, the East Coast Team has set br, =0
in the baseline analysis. Running the MCMC chains with
and without br,, it was checked that this choice does not
affect constraints on cosmological parameters.

The standard one-loop counterterms for the monopole
and the quadrupole are [19]

P§U (k) = =262k Py (k) ,  P§™(k) = ——=c2k* Py (k) ,

(16)
where f = dIn D, /dIna is the logarithmic growth rate,
D, denotes the linear growth factor and Pi;(k) is the
linear power spectrum. The purpose of these countert-
erms is to fix the UV-dependence of the loops and to
partly take into account the effects of the fingers-of-God
[41]. The East Coast Team also added an extra k* term
shared between the multipoles,

Af
3

PV (k, ) = —c(uk /) (b + fu)*Pia(k) . (17)

This new counterterm takes into account next-to-leading
order of the fingers-of-God. Note that on general grounds
one also expects the presence of the stochastic contribu-
tion of the form [19, 72],

PRSD, stoch = _CekQ,U'Q . (18)

This contribution happens to be very degenerate with the
counterterm (17) on the scales of interest for the analysis
and it was not included in the model by the East Coast
Team.

The East Coast Team has implemented IR-
Resummation and the Alcock-Paczynski effect as
explained in detail in Refs. [73, 74]. Importantly, the
East Coast team has used the IR resummation algorithm
based on the wiggly-smooth decomposition directly in
Fourier space [64, 67, 75], which allowed for a significant
boost of computational speed. This scheme is efficient
and numerically stable. Moreover, it is based on solid
systematic parametric expansion that guarantees that
the error is under control at every order of IR resum-
mation. It was explicitly checked that the residuals
introduced by our procedure are much smaller than
the 2-loop contributions which are not included in the
model, in full agreement with theoretical expectations
[67, 75]. The labels that indicate IR-Resummation
and the AP effect were omitted in all equations in this
section to avoid clutter. However, the reader should
keep in mind that they are always included in the model.

The total number of nuisance parameters used in the
blinded analysis of the East Coast Team is 6: three coun-
terterms (cZ, ¢3, ¢) and three bias parameters (b, ba,
bg,). Since the shot noise contribution has been sub-
tracted from the measured spectra, the corresponding
parameter was not fitted, in contrast to Ref. [74]. As far

as the cosmological parameters are concerned, the basis
that was used consists of the dimensionless Hubble con-
stant h (Hp = h - 100 km/s/Mpc), the physical matter
density wy, and the normalization A'/? defined with re-
spect to the best-fit Planck value for the base ACDM
cosmology,

1/2
42— ( Ag > /
As7 Planck ’ (19)

where  Ag plana = 2.0989 - 1077
All varied cosmological and nuisance parameters were as-
signed flat priors without boundaries, i.e. (—o0, 00).

The evaluation of perturbation theory integrals was
performed using the FFTLog method of [76] implemented
as a module in the CLASS Boltzmann solver [77]. Using
the IR-Resummation based on wiggly-smooth decompo-
sition, a single evaluation of a theory model is of the
order O(1) sec for high precision settings. This allows
a new evaluation of the non-linear power spectra at ev-
ery step of the MCMC chain, which is what is done in
the East Coast Team analysis. The MCMC analysis was
performed using the MONTEPYTHON V3.0 [78, 79] sam-
pler interfaced with the modified version of the CLASS
code. The nuisance parameters were sampled in the “fast
mode” [80] at a negligible computational cost.

Since the k-binning of the challenge spectra is very
wide (Ak = 0.01 hMpc ') compared to the fundamen-
tal mode of the box, the theoretical predictions had to be
properly averaged over each bin. The boundaries of the
bins were estimated using the simulation volume, known
to both teams. The East Coast Team checked that the
estimated boundaries allow one to accurately reproduce
the provided weighted means of the k-bins and found
that averaging the theory over the bin versus evaluat-
ing it in the mean can induce roughly O(0.5)c shifts in
cosmological parameters.

2. West Coast Team

The implementation of the West Coast Team is the
result of a long journey where each of ingredients of the
EFTofLLSS that is necessary to apply it to data was one-
by-one subsequently developed, tested on simulations,
shown to be successful. Though not all those results are
directly used in the analysis, the West Coast Team, and
probably nobody, would simply have never applied the
model to the data without those intermediate s