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Abstract

Classical GR governs the evolution of black holes for a long time, but at some
exponentially large time it must break down. The breakdown, and what comes after
it, is not well understood. In this paper I’ll discuss the problem using concepts drawn
from complexity geometry. In particular the geometric concept of cut locus plays a
key role.
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1 Exp-time

The meaning of the spacetime behind the horizon of a black hole has

often been a subject of controversy. One extreme view is that the

world simply ends at the horizon; everything else is an unphysical

1



figment. This view leaves unanswered the question of why classical

general relativity predicts a smooth global continuation past the

horizon. Moreover, during the last few years we have gathered

evidence that quantum mechanics allows some access to a black

hole’s interior. Ignoring the spacetime behind the horizon is not an

option and we have to understand how it emerges holographically.

The question addressed in this paper is about the limits of appli-

cability of classical general relativity. There are very good reasons

to think that the classical description of a black hole interior must

break down at some exponentially large time (by exponential I

mean in the entropy of the black hole1). If the considerations of

this paper are correct the breakdown is marked by a fairly sudden

transition.

From now on I will refer to the time scale texp ∼ eS as Exp-

time. The subject of this paper is: What is it that happens at

Exp-time; is it sudden or gradual; and what exactly replaces the

classical description beyond that? To be concrete I’ll focus on the

global volume of the interior of a two-sided black hole in anti-de

Sitter space. We’ll entertain three possibilities for how the volume

evolves. The three agree for early times but a transition occurs no

later than Exp-time; beyond that the three give different answers.

There is no contradiction because the different answers refer to

different questions, but only one of the three provides a geometric

picture consistent with the measurable properties of the wormhole.

I will use a particular geometric definition of the volume of the

black hole interior; for a one-sided black hole it is the volume of

1A black hole in flat space will long since have evaporated by Exp-time. Throughout this paper the
context is black holes in anti de Sitter space, dual to a thermal state of a boundary CFT.
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the maximal spatial slice anchored at a given boundary time. Clas-

sically it grows linearly with time for all time after the black hole

has formed. For a two-sided black hole the definition is the same

except that the maximal slice is anchored at both boundaries, one

at time tL and the other at time tR. Classically the volume grows

proportional to (tL + tR), with nothing special happening at Exp-

time2. The emphasis will mainly be on the two-sided case in which

the system is initially in the thermofield-double (TFD) state. The

arguments can easily be adapted to the one-sided case.

The identification of volume with complexity is called CV duality.

I will assume that it is correct.

1.1 Clocks

There are two kinds of clocks we can appeal to in studying the

growth of wormholes. The first are clocks external to the CFT;

in other words clocks which are not themselves part of the CFT.

They can have unlimited accuracy for arbitrary lengths of time.

One interpretation of the volume is that it is equal to the age of

the black hole (as recorded by the boundary clock), multiplied by

the area of the horizon.

A more interesting thing to do is to use the black hole itself as an

“internal” clock. We assume that the (pure) quantum state of the

black hole is characterized by an uncertainty in energy ∆E equal

to the variance of the energy in the thermal state. For a 4-D black

hole of radius lads the uncertainty in the energy is the Planck mass.

2Perhaps a more accurate statement is that classically the entropy of the black hole is infinite, and
therefore it never gets to Exp-time.
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More generally it satisfies,

∆E = T
√
S (1.1)

with S being the entropy of the black hole.

As time unfolds the quantum system evolves and passes through

a series of mutually orthogonal states which can be identified with

the states of the growing wormhole. The series of orthogonal states

can be used to define a classical internal clock variable. The time

that it takes to pass from one state to a new orthogonal state

is the Aharonov-Anandan time 1/∆E. Let us label the mutually

orthogonal states |V 〉.
The two kinds of clocks, boundary and internal, are expected to

agree to high accuracy for a long period of time but not forever.

The number of mutually orthogonal states of the internal clock is

bounded by the dimension of the black hole Hilbert space, i.e., the

exponential of the entropy. Thus by Exp-time, the internal clock

will have cycled through all the available states and the subsequent

states of the clock must be superpositions of the earlier states.

What happens after texp depends on the details of the energy

spectrum. The average separation of energy levels is

δE = ∆E e−S. (1.2)

If the energy levels were exactly equally spaced the clock would be

periodic in time with period

eS

∆E
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but that is not what is expected for black holes. Black holes are

chaotic systems with random-matrix energy spectrum. For chaotic

systems the state after Exp-time will become a superposition of the

linearly independent earlier clock states with exponentially small

amplitudes,

|clock〉t>texp =

eS∑
i=1

f (Vi , t)|Vi〉 |f (V , t)|2 ∼ e−S (1.3)

The framework for what follows is the two-sided black hole, dual

to two entangled copies of a holographic CFT. The clock variable

V will be the volume of the Einstein-Rosen bridge (or wormhole)

connecting the two black holes. Different values of V correspond

to different classical wormhole geometries of different volume.

The fact that the clock state for t > texp becomes a superposi-

tion of states with different volume indicates a massive breakdown

of classical GR after Exp-time. It suggests that there will be no

concept of a single classical geometry, but only a quantum super-

position of many macroscopically different geometries 3.

From a boundary point of view the superposition of geometries

is a technically correct way to describe the quantum state of an

exponentially old wormhole, but for reasons that I’ll explain, this

does not preclude there being a single classical geometry of the

interior.

3The phenomenon of “running out of states” occurs in many contexts including the theory of giant
gravitons [1] as well as the theory of Euclidean wormholes [2]. I thank Steve Shenker for pointing this
out. The fact that wormhole growth is ultimately bounded by the dimensionality of the Hilbert space,
and that very old wormholes must be linear superpositions of shorter wormholes has been recognized and
discussed by P. Saad, S. Shenker, and D. Stanford (unpublished).
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1.2 Complexity

The complexity-volume correspondence4 is a duality between the

growth of Einstein-Rosen bridges (a.k.a. wormholes) and the time

evolution of quantum computational complexity5. We have little or

no knowledge about how wormholes evolve over very long periods

of time, but we do know something about how complexity evolves.

One can hope to leverage this knowledge into a theory of wormhole

evolution.

We will consider two-sided black holes and model them as max-

imally entangled states of 2N qubits. Such a state may be written

in the form,

|Ψ〉 =
∑

Uij|i, j̄〉 (1.4)

where the index i labels a basis for the right system and j labels

the time-reversed basis for the left system. The state-complexity of

|Ψ〉 is equivalent to the unitary operator complexity of
∑
Uij|i〉〈j|.

Thus from a mathematical standpoint the evolution of the state

complexity of the 2N -qubit state |Ψ〉 may be replaced by the evo-

lution of the complexity of N -qubit unitary operators.

The conjectured curve for the evolution of complexity of a chaotic

system is well known [3] (See figure 1).

4One could equally well use the complexity-action correspondence.

5From now on just complexity.
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Figure 1: Time-dependence of unitary operator complexity for a chaotic system.

The curve represents unitary operator complexity C(t) as it evolves

according to some k-local Hamiltonian. It also represents the growth

of complexity for a maximally entangled 2-sided black hole. The

complexity (according to the conjecture) increases linearly for an

exponential time. In analogy with the behavior of the spectral

form factor [4][5][6] I’ll call this linear growth region the complex-

ity ramp6.

The assumed linear complexity growth parallels the classical

wormhole growth illustrated in the upper half of the Penrose di-

agram in figure 2.

6The similarity of the complexity curve and the spectral form factor curve is probably coincidental
and does not reflect any similarity of the physics. The growth of complexity has to do with the growing
separation of the initial and evolving states in the complexity metric. The ramp in the spectral form
factor is connected with a decrease of the distance between the two states in the inner product metric.
The arguments of section 3 suggest a very sharp transition between complexity ramp and plateau. By
contrast the spectral form factor transition is probably much broader.
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Figure 2: Penrose diagram for two-sided eternal black hole. The diagram has been foliated
by maximum volume slices.

But unitary operator complexity is bounded, so the complexity

curve must eventually stop growing. How large the complexity

becomes before saturating is subtle. The maximum complexity

of any unitary operator is ∼ 4N which also happens to be the

dimension of the space SU(2N). One might expect that in a time

of order 4N the system will reach maximum complexity.

The volume of SU(2N) (measured in ε-balls [3]) is doubly expo-

nential ,

VolSU (2N ) ∼ e4N
(1.5)

implying that the time to reach the neighborhood of every point

is e4N . Indeed both of these things would be correct if the system

evolved by random circuit, or Brownian circuit, dynamics.

However, evolving by a time-independent Hamiltonian puts extra
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restrictions on what operators can be reached. U(t) has the form,

U(t) =
∑
n

eiθn|En〉〈En| (1.6)

where the phases eiθn are given by

eiθn = e−iEnt (1.7)

It follows that the point U(t) is restricted to lie on a 2N -dimensional

torus embedded in the 4N -dimensional SU(2N). If the En are in-

commensurable, i.e., their ratios are irrational, then the motion of

U(t) will ergodically fill the torus in a time e2N . This suggests that

the largest complexity that can be reached by time-independent

Hamiltonian evolution is 2N . It’s for this reason that I defined

texp ∼ 2N .

At this point the complexity ramp gives way to the complex-

ity plateau. On the complexity plateau the system is in complex-

ity equilibrium with complexity C = 2N . It stays that way for a

doubly exponential recurrence time that I’ll denote “Expexp-time”

texpexp ∼ e2N . In section 3 we will see evidence that the crossover

from complexity-ramp to complexity-plateau is sharp.

From the bulk point of view, what if anything happens at Exp-

time? The complexity-volume correspondence (CV), if one be-

lieves it for such long times, implies that the wormhole volume

also reaches a plateau and stops growing. This raises the question:

What is the bulk mechanism that accounts for this breakdown of

classical GR?

At best I will only give a partial answer in this paper.
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2 Quantum Recurrences and the Full Penrose Dia-

gram

If one waits Expexp-time ∼ e2N one will eventually see a quantum

recurrence whose duration is

∆t = 2texp, (2.8)

the factor 2 representing the times for the complexity to decrease

and then increase. This is illustrated by the V-shaped portion of

the curve in figure 1 which is centered at a time t ∼ e2N . The quan-

tum recurrence is of course an extraordinarily rare event: partial

recurrences are vastly more likely than a full recurrence in which

the complexity returns all the way to its initial value. But condi-

tioning on the assumption that the complexity does return to the

initial value, the most likely way for it to do so is by the V-shaped

portion of the curve. The quantum recurrence is a version of an ex-

treme Boltzmann fluctuation, but involving complexity rather than

entropy [9].

Quantum recurrences provide a new perspective on the full Pen-

rose diagram in figure 2. The white hole portion of the diagram is

often considered to be unphysical, to be replaced by some process

that creates the TFD state at t = 0. However, it is clear from figure

2 that the volume of the wormhole tracks the same history as the

quantum recurrence. Past and future infinity represent complexity

equilibrium and the rest of the diagram represents the complexity

version of the extreme Boltzmann fluctuation. To my knowledge

this interpretation of the full diagram in terms of a complexity re-

currence has not previously been given.
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Note that the duration of the fluctuation is a mere Exp-time em-

bedded in a much longer Expexp-time. It is during these extremely

sparse periods that classical GR describes the geometry behind the

horizon.

3 The Geometry of Complexity

We now come to the main subject of this paper: the implications

of complexity geometry for the evolution of chaotic systems over

exponential and doubly exponential times. In particular we will

be interested in what it can teach us about the transition from

complexity ramp to complexity plateau, the fluctuations on the

plateau, and quantum recurrences. Granting CV duality we will

also be learning lessons for the evolution of wormhole geometry. I

will assume the reader has some familiarity with complexity geom-

etry both in the original form [7], and as applied to black holes in

[8][9].

A geometric ingredient that will play a key role in understanding

the complexity ramp-plateau transition is the concept of cut locus

which I will now review.

3.1 Cut Points and Cut Locus

Consider a compact Riemannian geometry7. Define a distance func-

tion for pairs of points p, a,

distance = L(p, a) (3.9)

7The ideas of cut points and cut loci are also applicable to many other metric geometries such as Finsler
and sub-Riemannian geometries.
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The distance function is the length of the shortest geodesic con-

necting the two points. The distance function has a maximum

value which is called the diameter of the space. We let t be a path

parameter along a geodesic which measures length.

To define cut points and the cut locus of a point p, we consider

all the geodesics emanating from that point. Let’s pick one and call

it a(t). This is illustrated in figure 3

Figure 3: A geodesic a(t) originating at p parameterized by t.

For small enough but finite t it is certain that a(t) is the shortest

geodesic connecting p to the point a(t). But at some point—the

cut-point labeled tc in figure 4—a second geodesic, γ(tc), of the

same length as a(tc), may intersect a(t). Past tc the family of red

geodesics, γ(t), replaces a(t) as the minimal geodesics defining the
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distance function L(t) ≡ L
(
p, a(t)

)
.

Figure 4: For t < tc the shortest geodesic connecting p with a(t) is shown in black. After
the geodesic passes the cut locus at tc the shortest geodesic at any given t is the red curve
γ(t).

It is important to understand that a(t) is a single geodesic, but

γ(t) represents a family of geodesics connecting p to the “moving”

point a(t). After the cut point no single geodesic gives the length

function L(t).

Note that at the cut point the length function L
(
p, a(t)

)
is a

continuous function of t but the first derivative is not.

The cut locus of the point p is the set of cut-points that are

obtained by replacing a(t) by the set of all geodesics through p.

For homogeneous geometries the structure of the cut locus is in-

13



dependent of p. That is the case for complexity geometries which

inherit the homogeneity from the group structure of SU(2N). It is

therefore sufficient to understand the cut locus of the identity.

Things get more complicated if we continue a(t) further as in

figure 5. At some new point a second cut may occur in which

another geodesic, shown in green, becomes shorter than the corre-

sponding member of the red family. Again there is no discontinuity

in the length, but there is a discontinuity in the derivative of the

length. From that point forward the green family defines the short-

est geodesic, until the next cut is reached.

Figure 5: As the black geodesic continues on its way, the shortest geodesic connecting p
with a(t) may pass through a number of cut points at which new families of geodesics
come into play.

If we define the parameter t along the original geodesic—black in

figures 4 and 5—then the shortest distance from p to the moving

point a(t) is L
(
p, a(t)

)
. In general it has a rather complicated
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behavior. Before the cut point it is linear because the original

geodesic is the shortest. When the cut locus is reached the distance

function will be continuous but the first derivative will not be. The

length function may not even be monotonic. As we move forward

on a(t) there may be a series of cuts in which the derivative dL/dt

jumps.

3.2 Complexity Geometry

Complexity geometry was introduced by Nielsen and collaborators

[7] and applied to black holes in [8][9]. A complexity geometry

is a right-invariant Riemannian geometry on the group manifold

SU(2N)—the manifold representing the space of unitary operators

acting on a system of N qubits. The metric of any right-invariant

Riemannian geometry has the form [9],

dl2 = dΩI IIJ dΩJ , (3.10)

where

dΩI = iTrdU †σI U . (3.11)

where the notations are those of [9]. I list them here:

• Tr indicates normalized trace defined so that the Tr of the

identity element is 1.

• The subscripts I, J label the generators of SU(2N) in the Pauli

basis.

• σI denotes an element of the (4N − 1)-dimensional Pauli al-

gebra. Each σI is a monomial composed out of the 3N Pauli
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operators describing the N qubits. No qubit appears more

than once in the monomial. The weight8 of the Pauli operator

σI is called wI .

• The matrix IIJ is symmetric. It is assumed to be diagonal and

a function only of the weight.

IIJ = δIJI(wI) (3.12)

The usual inner product metric9 on SU(2N) is a special case

of 3.10 in which,

IIJ = δIJ . (3.13)

The function I(wI) is called the penalty factor or cost factor.

It represents the complexity cost of moving in the direction I.

It is assumed to grow rapidly with the weight wI .

• In the original version of complexity geometry [7] The function

I(wI) was taken to be unity for k-local (easy) directions for

some fixed k, and either infinite or exponentially large (order

4N) in all other (hard) directions. There are many reasons to

think that this penalty schedule is too severe, some of which

were described in [9]. Among them three facts stand out:

– The geometry based on the original penalty schedule is ex-

tremely singular with either infinite or exponentially large

sectional curvatures.

8The weight of a monomial is the number of qubits that appear in the monomial. It ranges from 1 for
single qubit operators to N for a product involving all the qubits.

9The inner product metric on SU(2N ) is defined by a distance function given by d(U, V ) =
arccos |TrU †V | where Tr means normalized trace.
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– The geometry is fractal-like with anomalous Hausdorff di-

mension.

– In some directions the cut locus of a point p comes very

close to that point, but this reflects the rough texture of

geometry on small scales, and not any interesting physical

phenomena [10].

The singular features of the original geometry are not inevitable

for a good description of complexity. In [9] arguments were

given for a smoother dependence of I(wI), namely, an expo-

nential growth,

I(w) = eαw (3.14)

with α a fixed N -independent constant of order 1.

The important features of this geometry—some proved, one conjectured—

include the following [9][10][11].

1. The geometry is homogeneous (everywhere the same). This

is insured by the group properties of SU(2N). (Proved—

trivially)

2. The diameter of the geometry (the maximum distance between

points) is exponential in the number of qubits. (Proved not so

trivially in [11])

3. The volume of the geometry is exponential in the diameter. In

other words it is doubly exponential in the number of qubits.

(Proved—easily [3])
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4. Generically, sectional curvatures are negative for sections de-

termined by pairs of low-weight directions. The curvature is

of order 1/N which is what is need to describe the switchback

effect [8]. (Proved by calculation [9])

5. The previous four items are all rigorously established for the

geometry with exponentially growing penalty factors. The next

is a conjecture which is at the heart of the arguments that follow

but is unproved.

Conjecture

The cut locus in generic directions10 for the geometry defined

by the penalty factors 3.14 is at the maximum possible distance,

i.e, the diameter ∼ 2N .

The status of this conjecture is unclear at the moment. It is

largely based on the arguments of [3] where I explained the relation

between quantum circuits and expander graphs. Proving the con-

jecture is probably a very difficult mathematical problem but one

can hope that in time more evidence for it will accumulate. But

even if it proves to be false, the connection between cut loci and the

evolution of complexity remain intact. What is at stake is not that

connection but rather the detailed structure of the curve in figure 1.

A series of cuts at smaller distance from the identity might spread

out the conjectured sharp transition between the complexity ramp

and the plateau.

10There are non-generic directions in which the cut locus is much closer to the identity. For example
directions defined by monomials of the Pauli operators are periodic and the cut locus is small for low
weight directions. In most directions the geodesics are not closed curves and are infinite.
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3.3 Analogy with Expander Graphs

The properties that I just described are in close analogy with the

properties of regular expander graphs [12][3]. Let me spell out the

analogy by listing the properties of homogeneous expander graphs.

The list parallels the list of properties 1-5 in the previous subsection.

1. Homogeneous expander graphs are everywhere the same. In

other words they look the same when viewed from any vertex.

In particular the degree is the same at every vertex.

2. The diameter (maximum graph distance between any two points)

is finite.

3. The concept of volume is played by the total number of vertices

in the graph. The volume is exponential in the diameter.

4. As viewed from any vertex the graph is locally tree-like. As one

moves outward from a vertex the number of vertices at a given

distance grows exponentially. This is the analog of negative

sectional curvatures for the complexity geometry case.

5. Closed loops parametrically smaller than the diameter of the

graph are absent or very rare.

On the last point, let’s consider starting at a vertex and working

outward along two different branches of the tree. Eventually we

may encounter a collision at which the branches reach the same

vertex. This will form a loop. The principle of no small closed

loops translates to the statement that no collisions take place until

distances of order the diameter are reached. This is very similar to
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the idea that the cut locus of a geometry in most directions is at

distance of order the diameter.

Coming back to complexity geometry, items 1—5 may be sum-

marized as:

Complexity geometry is a right-invariant expander geometry on

the group SU(2N).

Constructing strictly homogeneous expander graphs is difficult

but there is a weaker condition that is not so hard to implement:

Statistically homogeneous expander graphs are on-the-average ho-

mogeneous and look statistically the same from any vertex. For

example the degree (number of edges) at each vertex, or some other

local quantity may fluctuate about a mean with a small variance.

Statistically homogeneous expander graphs can be built by start-

ing at a point and constructing a tree of a given large depth. If one

then randomly identifies the leaves as in figure 6 the result will be

a statistically homogeneous expander graph. Of course this really

applies to very large graphs with many vertices and edges.
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Figure 6: Construction of an expander graph. The leaves of a tree of depth 3 are identified
as in the left panel. In the right panel a vertex in green is shown along with its three
nearest neighbors in blue. The edges connecting them are shown in darker color.

3.4 Geodesics in Complexity Geometry

Given a sum of generators H =
∑

I hIσI a curve can be swept out

by exponentiation,

U(t) = e−iHt.

If the geometry is defined by the usual inner product metric then

the curve will be a geodesic for any H. This is not the case for

more general metrics of the form described in equations 3.10, 3.11,

and 3.12. The necessary and sufficient conditions for e−iHt to be

a geodesic of the complexity metric is that hI be an eigenvector of

the matrix IIJ . This means that all the σI in the sum must have

the same weight. I will assume the real Hamiltonian describing a

black hole is of that form. Thus the history traced out by the actual
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Hamiltonian evolution of a black hole will be a geodesic. But we

will need to keep in mind that most Hamiltonians are of mixed

weight and do not generate geodesics—and that most geodesics are

not made by exponentiating time-independent Hamiltonians.

Any curve can of course be generated from a time-dependent

Hamiltonian by time-ordered exponentiation,

U(t) = Te−i
∫ t

0 dt
′H(t′). (3.15)

Geodesics generated in this way are not homogeneous along their

length.

Returning to figure 5, let’s assume that the original geodesic

a(t) was generated by a time-independent Hamiltonian of fixed

weight. Once we have passed the cut locus the shortest geodesic

is no longer a(t), but rather a member of the set of red geodesics

γ(t). In general these geodesics will lie along directions of mixed

weight, and as a result they will be generated by time-dependent

Hamiltonians. They will not be homogeneous along their length.

4 Simple Model of Complexity geometry

The expander property of complexity geometry can be illustrated in

a toy model described in [8]. Although highly simplified the model

has all the features 1—5 explained in section 3.3. Most of what

follows applies to any version of complexity geometry that has the

expander property.

The construction of the model is entirely analogous to the con-

struction of statistically homogeneous expander graphs. Instead of

a tree with leaves we begin with a region of the hyperbolic disc
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bounded by a regular polygon of e2N sides. The sides play the role

of the leaves of the tree. This is shown in figure 7.

Figure 7: Hyperbolic disc with an inscribed regular polygon. The blue line is a geodesic
beginning at the identity operator.

The next step is to randomly identify the sides (there is a weak

constraint that is necessary to avoid a conical singularity). The

resulting space is a Riemann surface having the following properties:

1. The total area of the geometry is is e2N which is of the same

order as the volume of SU(2N). The area is the analog of the

number of vertices in the graph analogy.

2. The genus of the Riemann surface is e2N .

3. The diameter (maximum distance between points) is 2N , the

same as the maximum complexity generated by a time-independent

Hamiltonian for N qubits.

The points of the geometry, labeled a, schematically represent

unitary operators, the center of the disc representing the identity
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operator. The geodesic distance from the center defines the com-

plexity of a point .

In figure 7 the blue directed line represents a geodesic generated

by a k-local Hamiltionian H of definite weight, i.e., a(t) = e−iHt .

(In the real complexity geometry different Hamiltonians determine

different directions away from the origin.) The trajectory begins at

the identity operator, a(0 ) = I , and moves outward toward greater

complexity.

The geodesic a(t) does not hit a cut locus before reaching the

polygon. When it does reach the polygon it exits and reappears,

moving inward at another location. This is shown in figure 8.

Figure 8: The geodesic e−iHt represented in dark blue passes through the polygon and
reappears at a point determined by the identification rule. The light blue curve is just to
guide the eye.
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The precise angle at which the ingoing line re-enters the geometry

depends on exactly where the outgoing line hit the side of the poly-

gon. Unless it is finely tuned to one part in e2N the trajectory will

quickly turn around and again hit the polygon after a short inter-

val. The interpretation is that once the system reaches maximal

complexity it will bounce around among the exponentially complex

states for a very long (doubly exponential in N) time. This will

repeat itself until by accident a recurrence occurs as in figure 9

Figure 9: After many “jumps” the geodesic will eventually execute a quantum recurrence.
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This model reproduces all of the features of the complexity curve

shown in figure 1: along the initial radial line the complexity in-

creases linearly; once a(t) reaches the polygon it exits and reenters

the geometry at a new point, and with overwhelming probability it

quickly turns around and exists a second time. This entering and

exiting produces the jagged plateau in figure 1; and very rarely, on

an Expexp-time time scale a recurrence occurs.

Let’s come back to figure 8 and follow the shortest geodesic

as the point e−iHt moves. During the initial period the shortest

geodesic is the portion of the straight blue line from the origin to

the moving point. But something happens when the trajectory

reaches the polygon and the jump occurs—namely the cut locus is

crossed. This is depicted in figure 10.
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Figure 10: The cut locus occurs at the polygon. Once the blue geodesic passes the cut
locus the shortest geodesic discontinuously jumps to the green line.

At the cut locus the blue geodesic is suddenly replaced by the

green geodesic which, as soon as one moves a bit more, becomes

the shorter of the two. There is not a discontinuous jump in the

length of the geodesic, but there is a jump in the first derivative.

The parameter t in a(t) parameterizes the blue curve in figure

10 throughout its eternal history. Let’s also parameterize the green

curve, i.e., the minimal geodesic, with a similar parameter t′. One

may ask whether in the full high dimensional complexity geometry
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the green curve can be generated as a simple flow of the form e−iH
′t′,

with a time-independent Hamiltonian H ′. Generically there is no

reason to expect that to be the case. In section 3.4 I explained the

fact that most geodesics are generated by time-dependent Hamil-

tonians. At the initial starting point U = I , the direction of the

green geodesic will correspond to some linear combination of the

generators σI—call it H ′(0). If H ′(0) is a mixed weight operator

the trajectory that it generates by exponentiation will not be a

geodesic of the full right-invariant complexity metric. However it

will always be possible to represent it in terms of a unique time-

dependent Hamiltonian H ′(t′),

U ′(t′) = Te−i
∫
H ′(t′)dt′. (4.16)

where T means time-ordered.

In what follows we assume that H ′(t′) is approximately k-local,

possibly with decreasingly small contributions from increasingly

higher weight operators. We will also assume that H ′(t′) varies

on a time scale which is not too short, so that the trajectory it

generates is smooth, but with inhomogeneities along its length.

Let us imagine for a moment that the black hole actually evolved

by the evolution indicated in 4.16. As long as H ′ is k-local we can

expect that the wormhole that would be produces would have a

classical geometry, but it would not be homogeneous. A reason-

able guess is that it would correspond to a wormhole with matter

distributed inhomogeneously along its length.

The fact that the blue and green geodesics wind up at the same
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place at the cut point can be expressed by the equation,

e−iHtc = Te−i
∫ tc

0 dt′H ′(t′). (4.17)

Suppose we continue the blue geodesic a bit further as in figure 11.

Figure 11: Shortest geodesics beyond the cut locus.

We see that as we move along the small arc the (time-dependent)
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Hamiltonian that generates the shortest geodesic keeps changing

continuously. Let’s blow up the detail of the picture and then

discuss it.

Figure 12: Blowup of figure 11
.

The green geodesic connects the identity element with the point a

in figure 12. It has the form

Te−i
∫ a dt′Ha(t′) (4.18)

A little later the blue geodesic arrives at b. The new green

geodesic has the form,

Te−i
∫ b dt′Hb(t

′) (4.19)
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Let us suppose for a moment that a black hole actually evolved

by means of the time-dependent Hamiltonian Hb(t
′). Assuming it

is approximately k-local, there is no reason why the wormhole it

generates would not be smooth and geometrical. It would be the

wormhole we would expect for an evolving black hole in a smoothly

time dependent background but one that was fine-tuned to reach

the point b. In the present case all instantaneous expectation values

at time tb would be consistent with that wormhole. Whether or not

it is the best way to describe the wormhole it would be a way to

describe it.

Let’s go further and consider the green geodesics that arrive at

c and d. They have forms,

Te−i
∫ c dt′Hc(t

′)

Te−i
∫ d dt′Hd(t′) (4.20)

while the blue geodesic always has the form,

a(t) = e−iHt .

The mimimal distance (complexity) from the origin to a(t) is

continuous, as is the length of the wormhole, but the structure

of the wormhole suddenly changes at the cut point. In terms of

tensor networks the TN switches from a circuit generated by the

true Hamiltonian H, to one generated by Ha(t
′).

Note that between a and b the complexity decreases a bit. Ac-

cording to CV so does length of the wormhole. At some later point

between b and c the trajectory starts to move outward so that the
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complexity begins to increase. The continuous evolution proceeds

until the point d where it again exits at the polygon. At that point

another discontinuous jump takes place.

These jumps between the small arcs, and the increase and de-

crease of complexity between them, account for the small but jagged

fluctuations on the plateau in figure 1. In terms of wormhole length

the jumps imply a fluctuating, but overall constant wormhole length

once texp has been reached.

Every once in a (doubly exponential) while the trajectory comes

out at just the right angle to find its way back to the origin. An ex-

plicit calculation shows that the probability for that is e−2N . Then

we get a full quantum recurrence. In order for the trajectory to get

all the way to the origin it must come in along the same line as

it went out (as in figure 9). During the full recurrence the Hamil-

tonian would be the original time-independent H . The wormhole

would be homogeneous with no matter, but would shrink in length

as one would expect from figure 2, and then expand. Partial re-

currences in which the wormhole shrinks to some length L which is

large but much smaller than 2N are not only possible, but also are

far more frequent than full recurrences.

5 Firewalls at Exp-time?

It is an interesting question whether the inhomogeneities of the

wormhole would be detectable by someone crossing the horizon. In

[13] I raised the question of the possible existence of firewalls after

Exp-time. I still don’t know the answer in general, but there are

two special cases where the answer is clear: the late time behavior
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of the exact TFD state, and certain doubly exponential times for a

slightly perturbed TFD.

5.1 The Exact TFD

Let’s suppose that Alice controls the left black hole and Bob jumps

into the right black hole. The state at t = 0 is the exact TFD. In

the first case Alice does nothing and Bob waits an exponential time

before jumping in. There is an exact boost symmetry generated by

(HR−HL) which can be used to relate the problem to another case,

one in which Bob jumps in at time t = 0. Since we don’t expect a

firewall at t = 0 we should not expect one at any jump-time. More

precisely, the probability for Bob to detect a firewall, or any other

matter behind the horizon, is independent of when he jumps in. If

we assume that that probability is extremely small at tR = 0, it

will be equally small at any time.

5.2 The Perturbed TFD

In the second case Alice perturbs the TFD state by applying a

low energy perturbation at tL = 0. The energy of the perturbation

could be thermal or even lower as long as it is not exponentially

lower. Bob jumps in at tR. The effect of Alice’s perturbation is

to break the boost symmetry so that Bob’s subsequent experiences

may not be tR-independent. Nevertheless, naive inspection of figure

13 would suggest that the later Bob jumps in, the less effect Alice’s

action will have on him.
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Figure 13: Penrose diagram for Bob jumping into the right-side black hole when Alice has
disturbed the left side. In the left panel the process is shown in a frame in which Alice
disturbs her black hole at tL = 0, and Bob jumps in much later at tR. The right panel
shows the same process in a frame in which Bob jumps in at t+R = 0, and Alice perturbs
her black hole at a late time.

This reasoning is correct for sub-exponential tR but it is not nec-

essarily correct for longer times. To see this we can first boost the

diagram so that Bob always jumps in at tR = 0, and Alice perturbs

her black hole at a late time tL. Now, by an argument similar to

the one about clocks in section 1.1, the states generated by perturb-

ing at different tL are approximately orthogonal to one another for

tL < texp. Once tL > texp the quantum state becomes equivalent to

a superposition of all those states for which the perturbation acted

earlier. That includes states in which the perturbation acted in

the past, and potentially may have created a shock wave that Bob

would experience.

While this argument suggests that the naive argument is in-

correct, it is not a definitive argument implying firewalls, or even

observable effects for time tL > texp.
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However, there is one situation which is clear. Suppose Bob waits

Expexp-time, until a short time T before a full quantum recurrence.

Then Bob will experience whatever he would have experienced, had

Alice made her perturbation at a small negative tL = −T. If T is

less than the scrambling time t∗, then Bob will see a low energy

quantum behind the horizon just before he and the quantum hit

the singularity. If T is of order a few scrambling times then Bob

will be met by a very high energy shock wave [14], i.e., a firewall.

If T >> t∗ the shock wave will be super Planckian and one might

think this means that it will be even more destructive, but I don’t

know any calculation that would confirm this. For the moment,

the question of what happens to Bob if he falls into the perturbed

TFD at Exp-times is unanswered; there is no evidence that he

experiences a firewall, but there is also no evidence that he doesn’t.

6 Three Descriptions: Which is Right?

We can summarize the previous sections by three alternative hy-

potheses about what happens to wormholes at Exp-time and be-

yond. Let me list them and then comment.

1. The “You just keep going” theory:

The wormhole just keeps growing indefinitely. This is essen-

tially the pseudo-complexity idea of [17]: the wormhole volume

reflects the length of the geodesic a(t) generated by the Hamil-

tonian H, not the shortest geodesic11. Nothing happens at the

11Pseudo-complexity as defined in [17] allows a certain degree of shortening of a circuit by applying
local cancellations. However, as noted by the authors, these cancellations do not prevent the pseudo-
complexity from growing forever. The authors themselves reject pseudo-complexity as a viable dual for
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cut locus; the bound on complexity does not limit the growth

of wormholes.

According to this hypothesis the length a wormhole is propor-

tional to the time measured by an ideal clock external to the

CFT from when the black hole was created.

2. Long wormholes are quantum superpositions of shorter worm-

holes: As I discussed earlier the states of an evolving chaotic

system, in time-steps of the Aharonov-Anandan time, are ap-

proximately orthonormal. After a time of order 2N the system

runs out of new states and enters into a quantum superposi-

tion of the earlier states, with approximately equal probability.

From the boundary point of view this is correct, but the ques-

tion is: what does it imply about the geometry of the interior

of a black hole? In particular does it mean that the state of the

wormhole becomes a quantum superposition of vastly different

classical geometries, and that there is no way to describe it by

a single geometry?

The tensor network model is illuminating here. At any given

time the state of an evolving entangled system can be rep-

resented by a two-sided tensor network as in figure 14. The

network is a rough model of the geometry of the wormhole

[15][16].

wormhole volume.
The term pseudo-complexity has also been used in very different context in arXiv:2005.13801.
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Figure 14: A tensor network evolving by the addition of depth one layers on both sides.

In each time-step the network is updated by adding a layer of

gates to each side. As long as the tensor network is not too

long one can expect that it will be the shortest network of its

type that can prepare the two-sided state.

But eventually when the length of the network exceeds 2N , then

just as with the Hamiltonian evolution of a clock, the new states

cannot be linearly independent of all the previous states. The

super-exponential tensor networks will describe states that are

linear superpositions of sub-exponential tensor network states.

But that is not the only description of these states. By a count-

ing argument similar to the argument for quantum circuits, any

state can be reached (to within a specified tolerance) by a sin-

gle tensor network of no greater length than 2N . The local

structure of the network will differ from the original, but it will

nevertheless define a single geometry—not a superposition of

geometries. This is the tensor network analog of what happens

when the geodesic a(t) reaches the cut locus.

This leads to the third alternative.

3. Minimal geodesics in complexity geometry determine wormhole

properties, and these minimal geodesics are never longer than

the diameter of the geometry. As time evolves beyond Exp-
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time the wormhole geometries make a series of closely spaced

jumps, smoothly evolving between jumps, but the volume is

continuous in time. These jumps are just the cut points de-

scribed in section 4. They correspond to the fluctuations of

complexity on the complexity plateau.

I have listed three possibilities so let me now comment on them

in turn.

1. The “You just keep going” theory:

This theory fails to give a reasonably compact description of

the quantum state after Exp-time. We can see the problem

most clearly by going to an extreme situation, in which a full

quantum recurrence happens at some definite Expexp-time.

The quantum state at that point, to within arbitrarily small

error, will have returned to the original TFD state—a state

with vanishing wormhole length. Left-right field correlations

(of fields just outside the left and right horizons), which we

expect to decrease with increasing wormhole length, will be

large at the recurrence time, indicating a short wormhole. If

Alice and Bob were to jump into their respective black holes

shortly before the recurrence, they will meet in the wormhole.

Similarly, traversable wormhole experiments, which can only

succeed if the wormhole is short, can succeed. In all ways the

two-sided system will behave as if the wormhole length is very

small or vanishing.

By contrast the “You just keep going” theory would imply

that the worm hole is of doubly exponential length, although
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all observations on the holographic boundary theory, including

those intended to probe the interior, will be consistent with a

short wormhole.

2. Long wormholes are quantum superpositions of shorter worm-

holes:

From the viewpoint of the holographic description of the black

hole, this superposition option is mathematically correct. Any

exterior correlations including ones which attempt to probe the

interior will be correctly given by the quantum superposition

of shorter wormholes. The problem is that we don’t know

how to interpret the superposition in terms of the properties of

the interior. The presumed boundary-bulk dictionary for the

region behind horizons has two features which make the trans-

lation of the boundary state extraordinarily difficult. The first

is that the dictionary is extremely complex [17][18]; in fact it

is exponentially complex, even for states of modest polynomial

complexity12. The dictionary for states of high complexity such

as those at Exp-time is doubly exponentially complex.

The other feature is that the dictionary is non-linear [19]. Su-

perpositions of states of the boundary theory generally do not

map to superpositions of bulk states.

3. The minimal geodesic (or minimal circuit, or minimal tensor

network) theory determines the properties of wormholes:

At any instant the full Hamiltonian evolution U(t) = e−iHt and

12If that sounds contradictory it’s not. The complexity of the dictionary for a given state is not the
same as the complexity of the state. For example, to distinguish a state of modest complexity from a
maximally complex state is typically exponentially complex. In [18] I referred to this as the “complexity
of complexity.”
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the minimal geodesic arrive at the same unitary operator, or

the same two-sided entangled state. It follows that they both

give the same results for all measurements on the boundary

dual. However, the minimal geodesic theory gives the most

compressed version of a history that leads to that state. It says

that all measurements at time t are consistent with a wormhole

history generated by the time-dependent Hamiltonian H ′(t′)

evolving for a time less than or equal to texp. While there is

no jump in the volume or action of the wormhole, there are

jumps in the derivatives and in the detailed micro-structure of

the wormhole.

These jumps are global in that the entire structure of the worm-

hole changes although the volume is continuous. At the first cut

point a uniform homogeneous wormhole will make a transition

to an inhomogeneous state, and at later cut points inhomo-

geneous wormholes transition to other inhomogeneous worm-

holes.

The three possibilities are all correct but they answer different

questions. The first answers the question: How many effective

gates were used by the natural evolution of the black hole in order

to arrive at the state at a given time? But as we’ve seen in the case

of a quantum recurrence, this can be a grossly misleading estimate

of the length.

The third answers the question of what is the most efficient way

to get to that state, i.e., what is the smallest number of gates needed

to arrive at the state? We could express it slightly differently: What

is the least number of gates that it would take to shrink the worm-

40



hole back to zero length? In all cases this gives sensible results con-

sistent with expectations about correlation functions, traversable

wormhole experiments, and similar probes of the wormhole.

The second possibility is about the quantum state of the system

as described by the holographic dual boundary system and, because

of the enormous complexity of the boundary-bulk dictionary, does

not directly address the nature of the interior geometry.

The interesting fact is not that there are three different answers

to three different questions for t > texp. What is remarkable is

that for t < texp all three give the same answer; namely, there is

a unique classical wormhole geometry whose length, volume, and

action grow linearly with time in agreement with the classical Ein-

stein equations. At exponential time the agreement breaks down

and the three questions have different answers.

7 Conclusions

Classical GR governs the interior of an eternal AdS black hole for

a tiny fraction of the time13. The rare “classical” episodes last

for a time ∼ eS and in between them the black hole exists in a

vast doubly exponential sea of time, stuck in a state of complexity

equilibrium. Very little is known about the geometry of the interior,

if indeed it has a geometry, during these periods of equilibrium. In

this paper I’ve laid out what I know, which I will summarize here:

• The classical growth of the black hole interior shown in fig-

ure 2 cannot go on forever: the black hole eventually runs

13A fraction of order exp (− expS)
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out of linearly independent classical geometries, and a tran-

sition must occur from the complexity ramp to a complexity

plateau. This plateau or equilibrium state is intermittently

punctuated by Boltzmann-like complexity fluctuations, and if

CV duality holds, fluctuations in the volume of the wormhole.

A giant fluctuation—a.k.a. full quantum recurrence—appears

as a bounce. It is only during such fluctuations that the system

follows the classical history described by the Penrose diagram

in figure 2. To put it concisely:

The full Kruskal history represented by figure 2 is a single

Boltzmann-like complexity bounce.

• Superpositions of very different classical wormhole geometries

can be described as single geometries. One can understand this

in terms of tensor networks. The state of the black hole can be

represented by tensor networks in a number of ways.

1. The “obvious” TN which consists of a number of elements

which grows proportional to the age of the black hole.

There is no limit to its size. For black holes older than

Exp-time it will be longer than eS.

2. A linear superposition of tensor network states, each shorter

than eS. This is analogous to a linear superposition of clas-

sically distinct geometries.

3. A unique “most efficient” TN. For old black holes the most

efficient TN typically has length ∼ eS.
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This suggests an equivalence between wormholes longer than

eS; quantum superpositions of sub-exponential wormholes; and

wormholes of length eS which represent maximally efficient cir-

cuits.

For times shorter than eS these three descriptions give the same

classical geometry. The obvious tensor network and the most

efficient tensor network are one and the same, and the super-

position of geometries is trivial: it contains only one term. But

beyond the TN analog of the cut locus the three descriptions

diverge.

• Complexity geometry provides a way to understand the entire

history, and in principle determines a unique geometry. That

geometry shrinks and grows during the Boltzmann bounce; it

has constant exponential length with small fluctuations dur-

ing complexity equilibrium; and exhibits quantum recurrences

on doubly exponential time scales. The key geometrical con-

cept for understanding the transition from complexity ramp to

complexity plateau is the cut locus. Beyond the cut locus the

evolution of the interior geometry evolves in a non-classical way,

featuring a series of cut points that give rise to a fluctuating

complexity at the top of the complexity plateau

• Once the age of the black hole exceeds texp the shortest geodesic

connecting the identity with U(t) = e−iHt is not the curve

swept out by e−iHt. There is a shorter geodesic of the form

U ′(t) = Te−i
∫ a

0 H(t′)dt′ whereH ′(t′) is an explicitly time-dependent

Hamiltonian, not the actual Hamiltonian governing the evolu-

43



tion of the black hole. However, the wormhole is indistinguish-

able from one that would have resulted from an evolution with

a time-dependent H ′(t′) for a time no larger than texp. Such a

wormhole will be inhomogeneous and of length no longer than

eS. Two-sided experiments on the black hole, even of high

complexity, will be consistent with such a wormhole. While

the jump from H to H ′(t) and from one H ′ to another, is in-

principle predictable, it is probably in practice random. These

jumps in the structure of the wormhole are sudden, although

the length is continuous.

• I have been unable to answer the question of whether, for the

slightly perturbed TFD, there are firewalls during complexity

equilibrium. The problem is closely related to another problem.

If Alice perturbs her black hole at an early time, one or two

scrambling times in the past, Bob if he jumps in at t = 0

will encounter a Planck energy shock wave. But what happens

if she perturbs her side in the very remote past? Nominally

Bob will encounter an even more energetic shock wave. But

if we go far enough back to just the right doubly exponential

time, Bob will experience something very mild or nothing at all.

While nominally the shockwave that he encounters has energy

∼ ee
S

the effect on Bob can be negligible. The naive idea that

the higher the energy of a collision between Bob, and Alice’s

perturbation, the more damaging it will be, must breakdown.

One might hope to understand super-high-energy collisions by

studying them in flat space. We know what happens in flat

space—a collision at super-high-energy creates a super-large
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black hole which would be far too big to fit into Alice’s or

Bob’s black hole. How to think about exponentially high en-

ergy collisions behind the horizon of a modest size black hole

is not at all obvious.
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