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1 Introduction

A foundational problem in cosmology is to characterize de Sitter solutions of string

theory. Tremendous efforts have been expended in the study of flux compactifications

of weakly-coupled type II string theories on orientifolds (see e.g. the reviews [2–10]).

Non-supersymmetric vacua necessarily remain more difficult to analyze than super-

symmetric ones, if only because fewer theoretical tools can be applied there. However,

we can take heart by recalling that the entirety of real-world physics is strictly non-

supersymmetric, and progress has nonetheless been possible in a few areas, beginning

with the work of the non-supersymmetric theorists of antiquity.

A paradigm for exhibiting realistic compactifications of string theory is to derive

directly the properties of a four-dimensional effective theory in parametrically con-

trolled limits, such as weak coupling, large volume, and small supersymmetry breaking,

and then carefully argue for the form of corrections to the effective theory away from

such limits. When the corrections are parametrically small, one expects the vacuum

structure computed in the effective theory to be robust.

The couplings in such an effective theory can sometimes be computed in more than

one way, e.g. on the string worldsheet and in ten-dimensional supergravity. When dual

perspectives are available, they provide a cross-check that lends a degree of further

support to the computation of the effective theory. However, it is rarely the case

that everything that can be computed in one duality frame can also be computed in

the other frame: instead, certain effects are manifest in one frame, and other effects

are manifest in the other frame, as is familiar from famous strong-weak dualities in

quantum field theory and holography.

The study of de Sitter vacua of type IIB string theory compactified on orientifolds

of Calabi-Yau threefolds, as in [1], has relied heavily on computations of vacuum struc-

ture in the four-dimensional effective theory. However, certain questions about these

theories are intrinsically ten-dimensional, and answering them requires a quantita-

tive description of the de Sitter vacua in terms of configurations of ten-dimensional

fields. For example, integrating the ten-dimensional equations of motion over the com-

pact space reveals constraints on possible solutions (see e.g. [11–14]), and it would be

instructive to expose all such constraints. Similarly, the couplings between distinct

sectors of the effective theory are often most readily computed by finding solutions for

the massless fields in ten dimensions.

At the same time, it is not generally possible even in principle to derive all four-

dimensional couplings through a purely ten-dimensional computation. Consider, for

example, the infrared dynamics of a pure N = 1 super-Yang-Mills theory arising on

a collection of D7-branes that wrap a four-cycle Σ in the compact space. The eight-

dimensional gauge theory is not even asymptotically free, but at energies far below

the Kaluza-Klein scale, the four-dimensional theory confines and generates a gaugino
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condensate. Attempting to compute the gaugino condensate from the ten-dimensional

equations of motion, and rejecting the simplifications of the four-dimensional descrip-

tion, would be quixotically self-limiting.

A practical approach, then, is to compute the configuration of ten-dimensional

fields that corresponds to a four-dimensional de Sitter vacuum, while taking specific

expectation values — such as those of gaugino bilinears — to be those determined by

the four-dimensional equations of motion. We refer to the result of this analysis as a

ten-dimensional description of a de Sitter vacuum.

In this work we provide a ten-dimensional description of the de Sitter scenario of

[1]. This problem has been examined in [14–20] (see also the earlier works [21–23]). As

we will explain below, our analysis aligns with some aspects of these works, but also

resolves certain puzzles that were implicit in the literature.

Our approach is a computation from an elementary starting point. Beginning with

the ten-dimensional action of type I string theory, we derive the two-gaugino and four-

gaugino couplings on D7-branes, and then compute the ten-dimensional stress-energy

sourced by a gaugino bilinear expectation value 〈λλ〉. Taking 〈λλ〉 to have the value

predicted by the four-dimensional super-Yang-Mills theory — and we stress that this

step is the only point at which information from four dimensions is injected — we com-

pute the four-dimensional scalar curvature determined by the ten-dimensional equa-

tions of motion. Comparing to the scalar curvature determined by the four-dimensional

Einstein equations equipped with the scalar potential of [1], we find an exact match.

This match holds whether or not anti-D3-branes are present, and applies at the level of

the scalar potential for the Kähler modulus, not just in on-shell vacuum configurations.

The organization of this paper is as follows. In §2 we assemble the equations

of motion of type IIB supergravity. In §3 we consider the effects of an expectation

value for the gaugino bilinear on a stack of D7-branes. We show that couplings of the

D7-brane gauginos, including the couplings to flux derived by Dymarsky and Martucci

in [23] following [24], source a contribution T
〈λλ〉
µν to the stress-energy tensor. Including

this stress-energy in the ten-dimensional equations of motion, we compute the four-

dimensional scalar curvature, and find perfect agreement with that determined by the

F-term potential in the four-dimensional N = 1 supersymmetric effective theory of [1].

In §4 we consider the combined effects of an anti-D3-brane and a D7-brane gaugino

bilinear. We examine the ten-dimensional supergravity solution with these sources and

show that T
〈λλ〉
µν continues to match the four-dimensional potential derived in [1]. Our

conclusions appear in §5. In Appendix A we dimensionally reduce and T-dualize the

type I action to obtain the couplings of D7-brane gauginos. Appendix B shows, based

on the spectroscopy of T 1,1, that the interactions of an anti-D3-brane and a gaugino

condensate mediated by Kaluza-Klein excitations of a Klebanov-Strassler throat can be

neglected compared to the interaction mediated by the Kähler modulus. In Appendix C

we compute the potential for a D3-brane probe in the gaugino condensate background.
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2 Ten-dimensional Equations of Motion

In this section, we set our notation and collect useful forms of the ten-dimensional

Einstein equations and five-form Bianchi identity. We then express the stress-energy

tensor of the four-dimensional effective theory in terms of the ten-dimensional field

configuration.

We consider type IIB string theory on X × M, where X is a four-dimensional

spacetime and M is a six-dimensional compact manifold that in the leading approxi-

mation is an O3/O7 orientifold of a Calabi-Yau threefold. We take the metric ansatz

ds2 = GABdX
AdXB = e−6u(x)+2A(y)gµνdx

µdxν + e2u(x)−2A(y)gabdy
adyb , (2.1)

with x denoting coordinates in X and y denoting coordinates in M. Greek indices

take values in {0, . . . , 3}, and Latin indices take values in {1, . . . , 6}. We use the

abbreviations g6 = det gab and g4 = det gµν , and note that
√
−G =

√−ge−6u−2A =√−g4g6e
−6u−2A.

The ten-dimensional type IIB supergravity action is

S =
1

2κ2
10

∫

d10X
√
−G

(

R10−
∂Aτ∂

Aτ

2 (Im τ)2
−G3 ·G3

2 Im τ
− F̃ 2

5

4

)

+
1

8iκ2
10

∫

C4 ∧G3 ∧G3

Im τ
+Slocal ,

(2.2)

where R10 is the Ricci scalar computed from G, τ = C0 + i e−φ is the axiodilaton,

G3 := F3 − τH3 ≡ dC2 − τdB2, and F̃5 = F5 − 1
2
C2 ∧H3 +

1
2
B2 ∧ F3, with F5 = dC4.

The local term Slocal encodes the contributions of D-branes and orientifold planes. We

work in units where (2π)2α′ = 1.

For the five-form F̃5 we take the ansatz

F̃5 = (1 + ⋆10)e
−12u√−g4 dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (2.3)

with ⋆10 the ten-dimensional Hodge star, and define the scalars

Φ± := e4A ± α . (2.4)

We also define the imaginary self-dual and imaginary anti-self-dual fluxes

G± :=
(⋆6 ± i)

2
G3 , (2.5)

with ⋆6 the six-dimensional Hodge star. We abbreviate (2.2) as

S =
1

2κ2
10

∫

d10X
√
−GR10 +

∫

d10XL ≡ SEH +

∫

d10XL , (2.6)
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with L encoding everything except for the Einstein-Hilbert term.

From (2.1) one computes the Ricci tensors

R4,µν = R4,µν [g]− e−8u+4Agµν∇2A+ 3gµν �u− 24∂µu∂νu, (2.7)

R6,ab = R6,ab[g] +∇2Agab − e8u−4A gab �u− 8∂aA∂bA , (2.8)

whereR4,µν [g] andR6,ab[g] are the Ricci tensors of gµν and gab, respectively. Expanding

the Einstein-Hilbert part of (2.2) using (2.7) and (2.8), we find

SEH =
1

2κ2
10

∫

d4x d6y
√−g4g6

(

e−4AR4[g]+e−8uR6[g]−24e−4A∂µu∂
µu−8e−8u∂aA∂

aA
)

,

where indices are raised using gµν or gab as appropriate. The Planck mass is given by

M2
pl =

V
κ2
10

, (2.9)

where V is the warped volume of M , defined as

V =

∫

M

d6y
√
g6e

−4A . (2.10)

The equation of motion for the breathing mode u obtained from (2.6) is

24�u = 4e4A−8u
(

R6[g]− 8∂aA∂
aA

)

− κ2
10e

4A δL
δu

. (2.11)

We next turn to the Einstein equations, in conventions where the stress-energy tensor

is defined as

TAB = − 2√
−G

δL
δGAB

. (2.12)

The four-dimensional components of the ten-dimensional Einstein equations are

R4,µν = κ2
10

(

Tµν −
1

8
GµνT

)

. (2.13)

Reversing the trace using the ten-dimensional metric Gµν , we have

R4,µνG
µν = −κ2

10TµνG
µν − κ2

10

2

(

TabG
ab − 3TµνG

µν
)

. (2.14)

Integrating (2.14) over M and using (2.7) leads to

M2
pl

(

R4[g]+12�u−24∂µu∂
µu

)

=

∫

M

√
g6e

−6u−2A
[

−TµνG
µν− 1

2

(

TabG
ab − 3TµνG

µν
)

]

.

(2.15)
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Similarly, the six-dimensional components of the ten-dimensional Einstein equations

are

R6,ab = κ2
10

(

Tab −
1

8
GabT

)

, (2.16)

with trace-reversed form

R6,abG
ab =

κ2
10

4

(

TabG
ab − 3TµνG

µν
)

. (2.17)

Integrating (2.17) over M and using (2.8) gives

−6M2
pl �u+

1

κ2
10

∫

M

√
g6e

−8u
(

R6[g]−8∂aA∂
aA

)

=
1

4

∫

M

√
g6e

−6u−2A
[

TabG
ab − 3TµνG

µν
]

.

(2.18)

Finally, we examine the Bianchi identity

dF̃5 = 2µ3κ
2
10ρD3 dVolM = H ∧ F + 2µ3κ

2
10ρ

loc
D3 dVolM . (2.19)

Here dVolM =
√
g6dy

1 ∧ · · · ∧ dy6, ρD3 is the D3-brane charge density, and ρlocD3 is the

D3-brane charge density of localized objects such as D3-branes. From (2.19) we derive

the useful integrated form

0 =

∫

M

√
g6

(

e−8u−8A∂ae
4A∂aα+ 2µ3κ

2
10e

−12ue4AρD3

)

. (2.20)

Combining (2.15), (2.18), and (2.20) we obtain

M2
plR4[g] = 24M2

pl∂µu∂
µu−

∫

M

√
g6

(

e−4AT̂µνg
µν + 4µ3e

−12u+4AρD3

)

− 2e−8u

κ2
10

∫

M

√
g6R6[g] +

e−8u

κ2
10

∫

M

√
g6e

−8A∂aΦ−∂
aΦ− ,

(2.21)

where T̂µν denotes the stress-energy tensor excluding the contribution from F̃5.

Substituting the type IIB supergravity action (2.2) into (2.21), and taking Slocal

in (2.2) to include D3-branes and D7-branes, we find

M2
plR4[g] = 24M2

pl∂µu∂
µu+

∂µτ∂
µτ

( Im τ)2
+ 8µ3

∫

M

√
g6e

−12u+4AρD3 −
∫

M

√
g6e

−4ATD7
µν gµν

− 2e−8u

κ2
10

∫

M

√
g6R6[g] +

e−8u

κ2
10

∫

M

√
g6e

−8A∂aΦ−∂
aΦ− .

(2.22)

To interpret (2.22), we consider a general four-dimensional action

S4 =
M2

pl

2

∫

X

√−g4R4[g] +

∫

X

√−g4 L4 . (2.23)
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The four-dimensional Einstein equations imply

M2
plR4[g] = −T , (2.24)

where Tµν is the four-dimensional stress-energy tensor, i.e. the stress-energy tensor

computed from L4. The four-dimensional stress-energy tensor Tµν and the four-

dimensional components Tµν of the ten-dimensional stress-energy tensor TAB are re-

lated by

Tµν =

∫

M

√
g6

[

e−4AT̂µν + µ3e
4A−12ugµνρD3 +

e−8u

2κ2
10

gµνR6[g]−
e−8A−8u

4κ2
10

gµν∂aΦ−∂
aΦ−

]

+M2
pl

(

24∂µu∂νu− 12gµν∂ρu∂
ρu
)

. (2.25)

Comparing (2.22) and (2.24), the right-hand side of (2.22) can be identified with −T ,

i.e. with minus the trace of the stress-energy tensor of the effective theory.

The master equation (2.22) thus encodes the relationship between the curvature

R4[g] of the four-dimensional Einstein frame metric gµν on the one hand, and the con-

tributions of the ten-dimensional field configuration to the effective four-dimensional

stress-energy tensor Tµν on the other hand. This relation will be crucial in our analysis.

We note that (2.22) matches the effective potential derived from the ten-dimensional

Einstein equations in [25], see e.g. equation (5.30) of [25].

An equivalent route to deriving (2.22) is to first follow the steps leading to the

Einstein-minus-Bianchi equation (2.30) of [12], which in our conventions reads

∇2Φ− = e−4A∂aΦ−∂
aΦ−+

1

2
κ2
10e

2A+2u
(

T̂abG
ab−T̂µνG

µν
)

−2κ2
10µ3e

8A−4uρD3+e8uRRef.[12]
4 .

(2.26)

Because we have made explicit the breathing mode u, which was instead implicit in

the metric ansatz of [12], the scalar curvatures there and here are related by

RRef.[12]
4 = R4[g] + 12�u− 24∂µu∂

µu . (2.27)

Substituting (2.27) in (2.26) and using the Einstein equations and Bianchi identity,

one arrives at (2.22). The point we would like to stress is that equation (2.30) of [12]

— which has been the basis of a number of constraints on compact solutions — and

the master equation (2.22) contain equivalent information, provided that one correctly

accounts for the breathing mode as in (2.27).

3 Stress-energy of Gaugino Condensate

Our goal is to examine the de Sitter scenario of [1] using the ten-dimensional equa-

tions of motion. In the four-dimensional effective theory, the scalar potential has two
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components: an F-term potential for the moduli of an N = 1 supersymmetric com-

pactification, and a supersymmetry-breaking contribution from one or more anti-D3-

branes. We will examine these in turn: in this section we consider the ten-dimensional

configuration without anti-D3-branes, and then in §4 we incorporate the effects of

anti-D3-branes.

The relevant moduli at low energies are the Kähler moduli of the Calabi-Yau

orientifold M , because the complex structure moduli and axiodilaton acquire mass

from G3 flux at a higher scale.1 For simplicity of presentation we will consider a single

Kähler modulus, which we denote by T , but our method applies more generally.

The four-dimensional analysis of [1] established that in the presence of a suitably

small2 classical flux superpotential, combined with a nonperturbative superpotential

from Euclidean D3-branes or from gaugino condensation on D7-branes, the Kähler

modulus T is stabilized in an N = 1 supersymmetric AdS4 vacuum. To recover this

result from ten dimensions, we need to understand how these two superpotential terms

correspond to ten-dimensional field configurations.

First of all, the Gukov-Vafa-Witten flux superpotential [29]

Wflux = π

∫

G ∧ Ω (3.1)

encodes in the four-dimensional effective theory the interaction corresponding to the

term

Sflux = − 1

2κ2
10

∫

d10X
√
−G

G3 ·G3

2 Im τ
(3.2)

in the ten-dimensional action (2.2). In particular, the ten-dimensional stress-energy

associated to Wflux is that computed from (3.2).

In the remainder of this section, we will describe the gaugino condensate super-

potential in similarly ten-dimensional terms, and compute the contribution T
〈λλ〉
µν of

gaugino condensation on D7-branes to the ten-dimensional stress-energy tensor. We

will see that the stress energy T
〈λλ〉
µν arises from gaugino-flux couplings generalizing

those derived by Cámara, Ibáñez, and Uranga in [24], and also from associated non-

singular four-gaugino terms. We will then show that this stress-energy3 leads to a

potential for the Kähler modulus that exactly matches the F-term potential of [1].

Because the gaugino condensate relies on the dynamics of the D7-brane gauge

1If D3-branes are present, their position moduli have masses parametrically comparable to those
of the Kähler moduli, and the corresponding potential can be computed in ten dimensions [22]: see
Appendix C.

2The statistical approach of Denef and Douglas [26] gives strong evidence that (in the spirit of
[27]) one can fine-tune the classical flux superpotential W0 = 〈Wflux〉 to be small. This conclusion is
supported by [28], which explicitly demonstrates that values of W0 small enough for control of the
instanton expansion are achievable even with few complex structure moduli.

3As in [22, 30], the contributions of R6[g] and ∂aΦ−
∂aΦ

−
in (2.25) can be neglected.
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theory below the Kaluza-Klein scale, it is not entirely obvious that a ten-dimensional

description of gaugino condensation should exist at all. However, as explained in [22],

one can consider D7-branes wrapping a divisor that is very small compared to the entire

compact space. A localized ‘observer’ far from the D7-branes, such as a distant D3-

brane, should then be able to treat them as a fuzzy source. This approach turns out to

be fruitful: we will exhibit below a precise correspondence between the ten-dimensional

and four-dimensional computations of the potential for the Kähler modulus, just as

the four-dimensional result for the potential of a D3-brane probe was obtained from

ten dimensions in [22].4

3.1 Four-dimensional effective theory

We begin by recalling results from the four-dimensional effective theory that we aim

to recover from ten dimensions. Dimensional reduction of the theory on a stack of

D7-branes wrapping a divisor D leads at low energies, and in the limit that gravity

decouples, to the N = 1 supersymmetric Yang-Mills Lagrangian density

1

16πi

∫

d2θf(T )WαW
α + c.c. , (3.3)

where we have adopted the conventions of [31], but suppress Lie algebra indices. We

will denote the dual Coxeter number of the gauge group by Nc.

The N = 1 supergravity theory associated to (3.3) has the Lagrangian density

(see e.g. [32])

L =− 1

4
Ref(T )FµνF

µν − iλ̄σ̄µ∂µλRef(T )−
1

4
λλ eκ

2
4K(T,T )/2KTT∂Tf(T )DTW + c.c.

+
3κ2

4

64

(

λ̄σ̄µλRef(T )
)2

− 1

16
λλλ̄λ̄KTT∂Tf(T )∂T f̄(T ) , (3.4)

which reduces to (3.3) in the limit κ4 → 0. The D7-brane gauge coupling is5

f(T ) =
T

4π
with T :=

∫

D

√
g6e

−4A+4u + i

∫

D

C4 . (3.5)

If the divisor D is rigid, then the Yang-Mills theory has no charged matter, and at low

energies it develops the gaugino bilinear expectation value [33]

〈λλ〉 = 16πeκ
2
4K/2∂TWnp , (3.6)

4See Appendix C for a computation of the D3-brane potential that extends the result of [22].
5The normalization f(T ) = T/(2π) was used in the study of gaugino-flux couplings in [14, 23], but

we take instead f(T ) = T/(4π) for ease of comparison to the supergravity literature.
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which given the form of the nonperturbative superpotential,

Wnp = A e−
2πT

Nc , (3.7)

leads to the relation

Wnp = − Nc

32π2
e−κ2

4K/2〈λλ〉 . (3.8)

The Pfaffian prefactor A in (3.7) depends on the complex structure moduli and the

positions of any D3-branes: see [34, 35].

The full Lagrangian (3.4) upon the assignment of the vev (3.6) for the gaugino

bilinear then evaluates to

L = −eκ
2
4KKTT

(

∂TW∂TW + κ2
4∂TWKTW + c.c.

)

, (3.9)

with the superpotential

W = Wflux +Wnp (3.10)

and the Kähler potential6

K = −3 log
(

T + T
)

− log
(

−i(τ − τ)
)

− log

(

i

∫

M

e−4AΩ ∧ Ω

)

+ log
(

27V3
)

. (3.11)

Using the no-scale relation

κ2
4K

TTKTKT = 3 , (3.12)

we can rewrite (3.9) as

L = −eκ
2
4K

(

KTTDTWDTW − 3κ2
4WW

)

. (3.13)

Our goal is now to show that the F-term potential (3.13), which we have just recalled as

a result in four-dimensional supergravity, can also be derived from the ten-dimensional

equations of motion, upon assigning the vev (3.6) and examining the ten-dimensional

stress-energy.

3.2 D7-brane gaugino couplings

Now we turn to ten dimensions. To describe the backreaction of the gaugino condensate

on the bulk fields, we must relax the Calabi-Yau condition and employ generalized

complex geometry, as in [21, 38–40]. In particular, as reviewed in Appendix A, the

single covariantly constant spinor is replaced by two internal Killing spinors η1 and η2.

6Although the complex structure moduli and dilaton receive supersymmetric masses from the flux
background, we retain the associated terms in (3.11) because their expectation values matter for
the overall normalization. The Kähler potential (3.11) is consistent with that of [21, 36, 37] — see
Appendix A for details of our conventions.
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We can combine these to form a bispinor Φ1, defined as

Φ1 := − 8i

|η|2η1 ⊗ η†2 , (3.14)

and we also define

t := Re
(

e−φ+(φ/4−A)p̂Φ1

)

, (3.15)

where the operator p̂ is defined by

p̂ Cp := pCp (3.16)

for a p-form Cp [41]. In type IIB string theory compactified on an orientifold of a Calabi-

Yau threefold, and in the absence of nonperturbative effects, one has t = 0. However,

upon including the effects of gaugino condensation, t develops a nonvanishing two-form

component [23], cf. (A.27), that will be important for our analysis.

We now study the action of D7-branes on such a generalized complex geometry.

The eight-dimensional action describing a stack of D7-branes is derived in Appendix A

via dimensional reduction and T-dualization of the type I action. We will highlight the

important changes that occur when, instead of dimensionally reducing these D7-branes

on a divisor in a Calabi-Yau orientifold, one wraps a divisor in a generalized complex

geometry. Our findings reproduce results of [21].

3.2.1 Gaugino-flux couplings

The gaugino-flux couplings on D7-branes are determined by the supersymmetric Born-

Infeld action. In the conventions of [23, 42], with the metric ansatz (2.1), and recalling

that we have set (2π)2α′ = 1, these couplings – on a divisor in a Calabi-Yau orientifold,

not a generalized complex geometry – are

SGλλ =
i

32π

∫ √−g4 g6e
φ/2e−2u G3 · Ω λ̄λ̄ δ(0) + c.c. (3.17)

We re-derive this interaction via dimensional reduction of the eight-dimensional D7-

brane action in Appendix A.

In similar fashion, we find the action that one obtains from wrapping a divisor in

a generalized complex geometry. The details are relegated to Appendix A; the result,

in agreement with [21, 39], is that one should promote7

G3 → G3 + idt ≡ G3 . (3.18)

7Discussions of (3.18) in this context include [43] and the recent work [20].
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Thus, (3.17) becomes (cf. [23])

SGλλ =
i

32π

∫ √−g4 g6e
φ/2e−2u

G · Ω λ̄λ̄ δ(0) + c.c. (3.19)

One can likewise generalize the familiar flux superpotential (3.1). To derive the

correct superpotential in a generalized complex geometry, we exploit the relationship

between the gravitino mass in four dimensions and the superpotential. By computing

the gravitino mass starting from ten dimensions, one can show8

W = π

∫

M

G ∧ Ω , (3.20)

where W denotes the full superpotential, also given by (3.10). The generalized com-

plex geometry thus elegantly communicates the nonperturbative superpotential to the

gravitinos via (3.18). Evaluating the gaugino-flux coupling (3.19) using (3.20) to relate

G to W , one finds (see Appendix A)

SGλλ = −κ2
4

∫

X

√−g4e
κ2
4KKTT∂TWKTW + c.c. (3.21)

We remark that the promotion (3.18) removes a spurious singularity related to

the self-energy of the condensing D7-brane stack. As shown in [23], D7-brane gaugino

condensation sources G+ flux that is localized on the D7-branes:

G = −e−4A

16π2

√
Im τ λλΩ δ(0). (3.22)

When the bare gaugino-flux coupling (3.17) and the flux kinetic terms are evaluated

using (3.22), one finds infinite energy due to the self-interaction. However, the shift

(3.18) automatically eliminates this divergence, as the localized flux (3.22) is cancelled

by idt. At the same time, the shift (3.18) breaks the well-known perfect square form

of the gaugino-flux couplings reviewed in Appendix A, cf. [15, 32], and so makes an

exact match to the four-dimensional supergravity of [1] possible.

3.2.2 Four-gaugino coupling

We similarly demonstrate in Appendix A, by dimensional reduction and T-dualization

of the ten-dimensional type I action, that there is a four-gaugino coupling9 on D7-

branes given by

Sλλλλ = − 1

6144π3

∫ √−g4 g6e
−4A+8uν Ω · Ω |λλ|2 δ(0), (3.23)

8The corresponding result in type IIA string theory was obtained in [39].
9The importance of four-gaugino couplings in this context was stressed in [15].
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where ν ≡ V−1
⊥ = V−1

∫

D

√
g6e

−4A is the inverse of the volume V⊥ transverse to the

D7-branes. Upon assigning the gaugino bilinear vev (3.6), the four-gaugino term (3.23)

dimensionally reduces to

Sλλλλ = −
∫

X

√−g4e
κ2
4KKTT∂TW∂TW. (3.24)

See Appendix A for details of the computation.

3.3 Ten-dimensional stress-energy

We can now obtain the F-term potential for the Kähler modulus T from the ten-

dimensional field configuration. Upon assigning the gaugino bilinear vev (3.6) and

using (3.21), the properly-holomorphic gaugino-flux coupling (3.19) evaluates to

LGλλ = −κ2
4e

κ2
4KKTT

(

∂TWKTW + c.c.
)

. (3.25)

The associated ten-dimensional stress-energy is

T λλ
µν := − 2√

G

δLGλλ

δGµν
=

i

32π
e4A+φ/2−2u

G · Ω λ̄λ̄ δ(0)gµν + c.c. , (3.26)

which integrates to

−
∫

M

√
g6e

−4AT λλ
µν g

µν = 4κ2
4e

κ2
4KKTT∂TWKTW + c.c. (3.27)

From (3.27) we see that the gaugino-flux coupling contributes a term in the F-term

potential for the Kähler modulus T ,

Vλλ = κ2
4e

κ2
4KKTT∂TWKTW + c.c. (3.28)

We now follow the same steps for the four-gaugino coupling. From (3.23), T λλλλ
µν is

T λλλλ
µν := − 2√

G

δLλλλλ

δGµν
= −e8u

ν Ω · Ω
6144π3

|λλ|2 δ(0)gµν , (3.29)

which integrates to

−
∫

M

√
g6e

−4AT λλλλ
µν gµν = 4eκ

2
4KKTT∂TW∂TW. (3.30)

The four-gaugino coupling (3.23) therefore contributes the term

Vλλλλ = eκ
2
4KKTT∂TW∂TW . (3.31)
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The total ten-dimensional stress-energy is then

T 〈λλ〉
µν := T λλ

µν + T λλλλ
µν , (3.32)

with T λλ
µν given by (3.26) and with T λλλλ

µν given by (3.29). Combining (3.28) and (3.31)

to evaluate the integral of T
〈λλ〉
µν over the internal space, we conclude that the ten-

dimensional field configuration sourced by gaugino condensation on D7-branes gives

rise to the four-dimensional scalar potential

V = eκ
2
4K

(

KTTDTWDTW − 3κ2
4WW

)

, (3.33)

and so precisely recovers the potential (3.13) computed in four-dimensional supergrav-

ity. In summary, we have shown that the ten-dimensional equation of motion (2.22),

incorporating the stress-energy T
〈λλ〉
µν in (3.32), requires that the Einstein-frame scalar

curvature R4[g] takes exactly the value demanded by the four-dimensional Einstein

equation (2.24) with the scalar potential (3.13), i.e. the value computed in the four-

dimensional effective theory in [1]. This is one of our main results.

3.3.1 Effect of holomorphic gaugino-flux coupling

It may be useful to indicate how the calculation leading to (3.33) would have gone

if we had used only the näıve gaugino-flux coupling (3.17) rather than the properly

holomorphic gaugino-flux coupling (3.19). Upon substituting the vev (3.6) in (3.17)

and in the four-gaugino coupling (3.23), one finds in total

L ⊃ −eκ
2
4KKTT

(

∂TW∂TW + κ2
4∂TWKTW 0 + c.c.

)

. (3.34)

The result (3.34) is not exactly the F-term potential (3.33) for the Kähler modulus T ,

which instead reads

L = −eκ
2
4KKTT

(

∂TW∂TW + κ2
4∂TWKTW + c.c.

)

. (3.35)

The mismatch between (3.35) and (3.34) is due to the fact that the gaugino-flux cou-

pling (3.17) was obtained in the absence of gaugino condensation. In the presence of

gaugino condensation, the solution is a generalized complex geometry, and one must

take this into account by promoting G to G + idt = G as in (3.18). The result of

the promotion (3.18) is that the gaugino-flux coupling (3.19) contributes the potential

term (3.28), and so leads to (3.33).
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4 Anti-D3-branes and Gaugino Condensation

Thus far we have shown that the F-term potential in and around the N = 1 supersym-

metric AdS4 vacuum of [1] can be obtained in two ways. The first is four-dimensional

supergravity, as originally argued in [1]. The second derivation, as shown above, is

from ten-dimensional supergravity, supplemented with the gaugino bilinear vev (3.6)

substituted into the two-gaugino and four-gaugino terms in the D7-brane action.

We now turn to the effects of anti-D3-branes, and to the study of four-dimensional

de Sitter vacua from ten dimensions.

4.1 Decompactification from anti-D3-branes

We first consider the effects of an anti-D3-brane in a no-scale flux compactification,

without a nonperturbative superpotential for the Kähler moduli.

The Dirac-Born-Infeld action of a spacetime-filling anti-D3-brane at position yD3

in the internal space leads to the stress-energy tensor

TD3
µν = −µ3e

8A−12ugµνδ(y − yD3) . (4.1)

Inserting (4.1) in (2.21), we learn that including a single anti-D3-brane in a no-scale

background leads to a shift in the effective potential,10

1

4
M2

plδR4[g] = 2µ3e
−12ue4A(yD3) . (4.2)

The potential energy captured by (4.2) is minimized in the infinite volume limit u → ∞,

so in the absence of any other effects an anti-D3-brane will cause runaway decompact-

ification. The expression (4.2) agrees with the four-dimensional analysis of [1].

4.2 Interactions of anti-D3-branes and gaugino condensation

To examine the ten-dimensional stress-energy, we write the ten-dimensional field con-

figuration in the schematic form

φ = φbg + δφ , (4.3)

with

δφ = δφ|〈λλ〉 + δφ|D3 . (4.4)

Here φ is any of the ten-dimensional fields, φbg is the field configuration when neither

gaugino condensation nor anti-D3-branes are included as sources, δφ|〈λλ〉 is the change
in the field configuration when gaugino condensation is included as a source, and δφ|D3

is the change in the field configuration when p anti-D3-branes are included as a source.

10As explained in [44], if the anti-D3-brane is in a strongly warped region, the dependence on the
breathing mode becomes e−8u rather than e−12u.
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The changes δφ|〈λλ〉 and δφ|D3 are each parametrically small away from their

corresponding sources: 〈λλ〉 is exponentially small by dimensional transmutation, and

the anti-D3-brane is in a warped region. Because the anti-D3-branes and the D7-brane

stack are widely-separated, we can safely neglect the nonlinear corrections to the field

configuration resulting from simultaneously including both gaugino condensation and

anti-D3-branes as sources.11

Separating the ten-dimensional Lagrange density as

L = LSUSY + pLD3
loc , (4.5)

with LSUSY = Lbulk + LD7
loc , the total ten-dimensional stress-energy can be written

Tµν = − 2√
−G

δLSUSY

δGµν
− 2√

−G

δLD3
loc

δGµν
≡ T 〈λλ〉

µν

∣

∣

∣

φ
+ TD3

µν

∣

∣

∣

φ
, (4.6)

which we write as

Tµν = T 〈λλ〉
µν

∣

∣

∣

φbg+δφ|〈λλ〉
+ p TD3

µν

∣

∣

∣

φbg

+ T int
µν . (4.7)

The first term on the right in (4.7) is the stress-energy (3.32) of gaugino condensation

on D7-branes, computed in the field configuration φ = φbg + δφ|〈λλ〉, i.e. without

including the backreaction of any anti-D3-branes, as in §3. The second term is the

stress-energy (4.1) due to the Dirac-Born-Infeld action of p anti-D3-branes, computed

as probes of the background φ = φbg, as in §4.1.
The interaction term T int

µν is defined by (4.7), and captures the stress-energy due to

the interactions of the anti-D3-branes and the condensate: specifically, the correction

to T
〈λλ〉
µν from the shift δφ|D3, and the correction to TD3

µν from the shift δφ|〈λλ〉.12 We

will now explain why T int
µν can be neglected, so that Tµν is well-approximated by the

first two terms on the right in (4.7). Since we have already shown in §3 and §4.1 that

these two terms together precisely reproduce the four-dimensional effective potential

of [1], establishing that T int
µν is negligible will complete our demonstration that the

ten-dimensional equations of motion recover the result of [1].

To show that the interaction T int
µν is negligible, one can consider the leading effects

of p anti-D3-branes on the ten-dimensional fields at the location of the the D7-branes,

and evaluate the resulting correction to the ten-dimensional stress-energy T
〈λλ〉
µν .

As a cross-check, one can reverse the roles of source and probe, estimate the

leading effects of the D7-brane gaugino condensate on the ten-dimensional fields at

the location of the anti-D3-branes, and evaluate the resulting correction to the stress-

energy p TD3
µν computed from the probe action of p anti-D3-branes.

The methodology for the computation is parallel in the two cases, and builds

11See [30] and Appendix B for further details and references on nonlinear interactions.
12Corrections to TD3

µν from the shift δφ|D3
are subleading.
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on investigations of supergravity solutions sourced by antibranes [45–55], and of D3-

brane potentials in warped throats [22, 30, 35, 44, 56, 57]. One can approximate the

Klebanov-Strassler throat as a region in AdS5 × T 1,1, and use the Green’s functions

for the conifold (see e.g. [58]) to compute the influence of a localized source — i.e., the

anti-D3-branes or the D7-brane gaugino condensate — on distant fields. Far away from

the source, the dominant effects appear as certain leading multipoles, corresponding

to the lowest-dimension operators to which the source couples. Schematically (see

Appendix B for details),

δφ =
∑

∆

α∆

( r

rUV

)−∆

+ β∆

( r

rUV

)∆−4

, (4.8)

where ∆ is the dimension of an operator O∆ in the dual field theory, r is the radial

coordinate of the throat, and rUV is the location of the ultraviolet end of the throat.

The coefficients α∆ and β∆ correspond to expectation values and sources, respectively,

for the dual operator.

The spectrum of operators of the Klebanov-Witten theory [59] dual to AdS5×T 1,1

is well-understood, due to the pioneering work of Gubser [60] and of Ceresole et al. [61,

62] (see also [22, 30, 63, 64]), and moreover there are many quantitative cross-checks of

the long-distance solutions created by anti-D3-branes [22, 46, 48, 49, 51, 52, 57, 65, 66]

and by gaugino condensates [14, 22, 23, 41, 57]. In Appendix B we assemble key

results from this literature, and then apply them to compute the leading interactions

of anti-D3-branes with a gaugino condensate. A brief summary is as follows.

In the linearized supergravity solution sourced by anti-D3-brane backreaction,

as in [48–51], the leading effects of anti-D3-branes in the infrared on the D7-brane

gaugino condensate are mediated by expectation values for operators of dimension

∆ ≥ 8, cf. (B.4),(B.5), and so can be neglected when the hierarchy of scales in the

throat is large. Nonlinear effects are likewise negligible [30, 67].

Similarly, in the supergravity solution sourced by gaugino condensate backreac-

tion, the leading effects of the D7-brane gaugino condensate on the anti-D3-branes

are negligible compared to the probe anti-D3-brane action in the Klebanov-Strassler

background, cf. (B.30),(B.31) [30, 64], both at the linear and the nonlinear level.

In sum, the dominant influence of the anti-D3-branes on the gaugino condensate

is via the breathing mode eu. All other interactions are suppressed by further powers

of the warp factor. We have therefore established that

Tµν ≈ T 〈λλ〉
µν + p TD3

µν + . . . , (4.9)

where T
〈λλ〉
µν is given by (3.32), TD3

µν is given by (4.1), and the ellipses denote terms

suppressed by powers of eA.

It follows that the ten-dimensional equation of motion (2.22), incorporating the
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total stress-energy T
〈λλ〉
µν + p TD3

µν in (4.9), requires the Einstein-frame scalar curva-

ture R4[g] to take exactly the value computed in the de Sitter vacuum of the four-

dimensional theory in [1]. In other words, the precise quantitative match between

ten-dimensional and four-dimensional computations that we established for the N = 1

supersymmetric theory in §3 continues to hold in the presence of anti-D3-branes.

5 Conclusions

We have derived the four-dimensional scalar potential in the de Sitter and anti-de

Sitter constructions of [1] directly from type IIB string theory in ten dimensions, sup-

plemented with the expectation value 〈λλ〉 of the D7-brane gaugino bilinear.

We first computed the two-gaugino and four-gaugino couplings on D7-branes,

by dimensionally reducing and T-dualizing the ten-dimensional type I supergravity

action. From these terms we computed the ten-dimensional stress-energy sourced

by gaugino condensation on a stack of D7-branes, carefully accounting for the fact

that the ten-dimensional solution in the presence of the condensate is a generalized

complex geometry. Upon dimensional reduction, this stress-energy gives rise to the

scalar potential of the N = 1 supersymmetric theory of [1]. The match is exact, even

away from the supersymmetric minimum of the potential for the Kähler modulus, at

the level of the approximations made in [1].

To combine the stress-energy of the gaugino condensate with that of anti-D3-

branes at the tip of a Klebanov-Strassler throat, we examined the Kaluza-Klein spec-

trum of T 1,1, and found the operators of the dual field theory that mediate the leading

interactions between a condensate in the ultraviolet and anti-D3-branes in the in-

frared. We found that all such couplings via Kaluza-Klein excitations are suppressed

by powers of the warp factor compared to the probe anti-D3-brane action. This left

the interaction via the breathing mode, as in [1], as the only important one. We thus

concluded that the ten-dimensional stress-energy of the gaugino condensate and the

anti-D3-branes together lead to the scalar potential of the non-supersymmetric theory

of [1]. The match is again exact, even away from the de Sitter minimum, in the same

sense as above.

This work has not altered the evidence, which we judge to be robust [4], for the

existence in string theory of the separate components of the scenario [1], namely a

small classical flux superpotential, a gaugino condensate on a stack of D7-branes, and

a metastable configuration of anti-D3-branes in a Klebanov-Strassler throat. Instead,

we showed that provided these components exist in an explicit string compactifica-

tion, their effects can be computed either in ten dimensions or in the four-dimensional

effective theory, with perfect agreement.

Progress in understanding the physics of de Sitter space in string theory continues.

Our findings may aid in pursuing de Sitter solutions in ten dimensions.
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A Dimensional Reduction

In this appendix we obtain the couplings of D7-brane gauginos that are required for

our analysis. Our conventions are as in [68], augmented by (2π)2α′ = 1.

A.1 D7-brane gaugino action

We first compactify type I superstring theory on T 2 and T-dualize to find the action

on type IIB D7-branes. As the ten-dimensional N = 1 supergravity action with a

vector multiplet, including the four-gaugino action, is well known, we can determine

with precision the D7-brane gaugino action including four-gaugino terms.

One minor complication is that some fields, such as the NS-NS two-form B, are

projected out in type I superstring theory. We will therefore first arrive at a D7-brane

action containing all terms that do not involve such fields, but this will not yet be

the full D7-brane action. To obtain the proper gaugino-flux coupling, one can then

SL(2,Z) covariantize the gaugino-flux coupling, following [23, 69].

The type I supergravity action in ten-dimensional Einstein frame is [32, 70, 71]

S =
1

2κ2
10

∫ √
−G

[

R10 −
1

2
∂Aφ∂

Aφ− eφ

12

(

FABC − 1

4
e−φ/2 tr χ̄ΓABCχ

)2

− eφ/2

16
√
2π2

trFABF
AB − tr χ̄ΓADAχ

]

, (A.1)

where χ is a 32-component Majorana-Weyl spinor. Traces here are taken in the vector

representation of SO(32). In order to simplify T-duality, we first rescale to string
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frame, using G 7→ e−φ/2G. Compactifying on a T 2 with volume 1/2t, we find

S =
1/2t

2κ2
10

∫

√

−G8

[

e−2φR8 + . . .
]

. (A.2)

Next, we T-dualize; since we are in type I string theory, this replaces the T 2 by a T 2/Z2

with volume t, and re-defines e−2φ 7→ 2t2e−2φ, yielding the eight-dimensional action

S =
t

2κ2
10

∫

√

−G8

[

e−2φR8 + . . .
]

. (A.3)

Finally, we rescale back to ten-dimensional Einstein frame, using G 7→ eφ/2G.

This procedure yields the new Yang-Mills term

1

2κ2
10

· 1

8π2

∫

√

−G8

[

−1

4
trFabF

ab

]

. (A.4)

Here a, b ∈ {0, . . . , 7}, and we will later use i, j ∈ {8, 9}. The action (A.4) is consistent

with the Einstein-frame D7-brane Dirac-Born-Infeld action

− µ7

2

∫

tr

{

eφ
√

− det(G+ e−φ/2F/2π)

}

. (A.5)

The factor of 1/2 is due to the fact that the gauge group is SO(2n); Higgsing to U(n)

by moving away from an O7-plane eliminates this factor (cf. [68]).

It is now convenient to take the T 2 in the type I frame to have the coordinate

range [0, 1]2, and to use the same coordinates for the double cover of the type IIB

T 2/Z2. For simplicity, we also take the type I torus to be a square torus with string

frame metric gij = 1
2t
δij . This means that the string frame metric transforms via

G2 7→ G2/(2t)
2.

We can now study the fermionic action of the D7-brane in Einstein frame. Since

we are interested in studying D7-branes on a holomorphic divisor, we will eventually

take tr χ̄ΓABCχ to be a linear combination of the (pullback of the) holomorphic three-

form and its complex conjugate, and we can therefore retain only functions of tr χ̄Γabiχ.

Other contractions do not contribute to the terms of interest.

With that restriction, after T-dualizing we find the string-frame D7-brane gaugino

action

Sferm = µ7

∫

√

−G8

[

−e−φ tr χ̄ΓaDaχ +
1

8
Fabi tr χ̄Γ

abiχ− 1

64t

(

tr χ̄Γabiχ
)2
]

, (A.6)
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and the corresponding Einstein-frame D7-brane gaugino action

Sferm = µ7

∫

√

−G8

[

− tr χ̄ΓaDaχ +
1

8
eφ/2Fabi tr χ̄Γ

abiχ− 1

64tE

(

tr χ̄Γabiχ
)2
]

, (A.7)

where we have introduced the Einstein frame volume tE := te−φ/2. Leaving implicit

henceforth that ABC is a permutation of abi, the D7-brane gaugino action can be

written in the more symmetric form

Sferm = −µ7

∫

√

−G8

[

tr χ̄ΓADAχ− eφ/2

24
FABC tr χ̄ΓABCχ +

1

192tE

(

tr χ̄ΓABCχ
)2
]

.

(A.8)

In (A.8) we have obtained the part of the action that survived the type I projections.

The full D7-brane action is then given by SL(2,Z)-covariantizing. As doing so would

involve studying the transformation properties of the D7-brane fields under SL(2,Z),

which would take us too far from our main aims, and the full set of two-gaugino terms in

the κ-symmetric D7-brane action was found in [23, 69], we simply SL(2,Z)-covariantize

the action by including the missing terms found by [23, 69], leading to

Sferm = µ7

∫

√

−G8

[

− tr χ̄ΓADAχ− eφ/2

24
tr χ̄ΓABC

(

F̃ABCσ1 + e−φHABCσ3

)

χ

− 1

192tE

(

tr χ̄ΓABCσ1χ
)2
]

, (A.9)

where the σ matrix notation will be explained below.

A.2 Reduction of the D7-brane action on a divisor

Equipped with the gaugino action (A.9), we now consider wrapping D7-branes on a

divisor D in an orientifold M of a Calabi-Yau threefold. We assume that there is a

single Kähler modulus T , with the Kähler form written as

J = tω , (A.10)

and the volume

Ve6u =
1

3!
t3 , (A.11)

where we have normalized ω ∈ H2
+(M,Z) such that

∫

M
ω ∧ ω ∧ ω = 1. We take the

volume of D to be
∫

D

√
ge−4A+4u = Re(T ) = t2/2, while the volume of the curve dual

to D is t, and corresponds to tE in (A.9). The divisor D is assumed to be rigid, and

so the D7-branes will not explore the transverse space, and therefore the geometry of

the latter is unimportant.
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We note that wrapping onD topologically twists the D-brane worldvolume theory,

so that scalars become sections of the normal bundle N of D and fermions become

spinors on the total space of this normal bundle [72]. For notational convenience, we

implement the topological twist via a background U(1) R-symmetry gauge field, rather

than by re-defining the local Lorentz group. Since, locally, the Calabi-Yau manifold

looks like the total space of the normal bundle, there is no topological obstruction to

relating these fermions to the covariantly constant spinor on the Calabi-Yau.

A.2.1 Internal spinors

As our ansatz for the geometry of the internal space M , we take M to have an SU(2)

structure. This can be encoded in terms of two globally-defined orthonormal spinors,

η+ and χ+, and an invariant one-form vady
a, that are related by

χ+ =
1

2
vaγaη

∗
+ , (A.12)

where |v|2 = 2. Using χ+ and η+ one can construct invariant forms with the compo-

nents

va = ηT+γ
aχ+ , Jmn

2 = iη†+γ
mnη+ − iχ†

+γ
mnχ+ , Ωmn

2 = χ†
+γ

mnη+ , (A.13)

Jmn = iη†+γ
mnη+ , Ωmnp = ηT+γ

mnpη+ . (A.14)

The invariant forms satisfy

J2 ∧ Ω2 = Ω2 ∧ Ω2 = 0 , vaΩ
ab
2 = vaJ

ab
2 = 0 , J2 ∧ J2 =

1

2
Ω ∧ Ω2 , (A.15)

J = J2 +
i

2
v ∧ v , Ω = Ω2 ∧ v . (A.16)

We now construct the linear combinations

η1 := ieA/2+iϑ/2
(

cos
ϕ

2
η+ + sin

ϕ

2
χ+

)

, (A.17)

η2 := eA/2−iϑ/2
(

cos
ϕ

2
η+ − sin

ϕ

2
χ+

)

, (A.18)

which are normalized as

η†1η1 = η†2η2 = eA. (A.19)

The parameters ϕ and ϑ represent the angles between η1 and η2: from (A.17) and

(A.18) one has

η†2η1 = ieiϑ+A cosϕ . (A.20)
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The spinors η1 and η2 can be repackaged into a pair of bispinors:

Φ1 := −8ie−Aη1 ⊗ η†2 , (A.21)

Φ2 := −8ie−Aη1 ⊗ ηT2 . (A.22)

Using the Clifford map, Φ1 and Φ2 are polyforms: specifically, they can be written in

terms of invariant forms as

Φ1 = eiϑe−
1
2
v∧v

[

cosϕ

(

1− 1

2
J2 ∧ J2

)

+ iJ2 − sinϕReΩ2

]

, (A.23)

Φ2 = v ∧
[

ReΩ2 + i cosϕ ImΩ2 + sinϕ

(

1− 1

2
J2 ∧ J2

)]

. (A.24)

The ansatz we have just described corresponds to a generic SU(2) structure. If

M is a Calabi-Yau orientifold then in fact eiϑ = 1 and ϕ = 0. However, once gaugino

condensation is incorporated and M becomes a generalized complex geometry, ϕ will

vary non-trivially along M ; the SU(2) structure is then said to be dynamic.

We now expand to first order in the small quantity 〈λλ〉, using the fact that

ϕ = O(〈λλ〉). We find

Φ1 = eiJ
(

1− ϕReΩ2

)

+O
(

〈λλ〉2
)

, (A.25)

Φ2 = Ω + ϕ v ∧
(

1− 1

2
J2 ∧ J2

)

+O
(

〈λλ〉2
)

, (A.26)

while the two-form component of t is

t = −e−φ/2−2AϕReΩ2 +O
(

〈λλ〉2
)

. (A.27)

On neglecting the terms of order 〈λλ〉2, Φ1 and Φ2 reduce to the β-deformed pure

spinors found in [23].

A.2.2 Ten-dimensional spinor ansatz

Equipped with the six-dimensional spinors η1 and η2, we can now give our ansatz for

the ten-dimensional spinors. The SL(2,Z)-covariant κ-symmetric D7-brane action is

usefully written in a redundant notation, involving two copies of the ten-dimensional

fermion [41, 42], which we now adopt. We consider a doublet χ = (χ1, χ2) of 32-

component ten-dimensional Majorana-Weyl spinors, and decompose these spinors un-

der Spin(10) → Spin(4) × Spin(6). The ten-dimensional gamma matrices decompose

as

Γµ = e−A+3uγµ ⊗ 1 , Γi = eA−uγ5 ⊗ γi . (A.28)
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For gamma matrices and spinor manipulations, we use the conventions of [73],

γ0 =

(

0 i

i 0

)

, γi =

(

0 −iσi

iσi 0

)

, γ5 =

(

1 0

0 −1

)

, C =

(

ǫ 0

0 −ǫ

)

, ǫ =

(

0 1

−1 0

)

.

(A.29)

Under this decomposition, a ten-dimensional Weyl spinor decomposes as 16+ 7→
(2+ ⊗ 4+) ⊕ (2− ⊗ 4−), where subscripts denote chirality. We can thus write the

ten-dimensional Majorana-Weyl spinors as

χ1 =
1

4π
e−2A+9u/2 λD ⊗ η1 + c.c. (A.30)

and

χ2 = − 1

4π
e−2A+9u/2 λD ⊗ η2 + c.c. (A.31)

where c.c. refers to charge conjugation, and λD is the embedding of a four-dimensional

Weyl spinor λ into a Dirac spinor via

λD =

(

0

λ̄α̇

)

. (A.32)

A.2.3 Decomposition of D7-brane action

We can now expand the D7-brane action (A.9) in terms of the spinors in (A.30) and

(A.31). We will henceforth leave traces implicit, writing

trχχ =
1

2
χaχa =

1

2
χχ, (A.33)

with the normalization

tr T aT b =
1

2
δab (A.34)

for Lie algebra generators. We likewise leave implicit pullbacks to the divisor D.

The gaugino kinetic term can be decomposed as

Skin = −µ7

∫

X×D

√
−G tr χ̄ΓADAχ =

∫

X×D

√
−G

(

Lkin,X + Lkin,D

)

, (A.35)

with
∫

X×D

√
−GLkin,X =− 2π

∫

X×D

√
−G tr χ̄ΓµDµχ (A.36)

=− i

4π

∫

X×D

√−ge−4A+4uλ̄σ̄µDµλ (A.37)

=− i

4π

∫

X

√−gRe(T )λ̄σ̄µDµλ , (A.38)
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and

Lkin,D =− 2π tr χ̄ΓaDaχ (A.39)

=
1

16π
e−3Aλ̄c

DλD

(

ηT1 γ
iDiη1 + ηT2 γ

iDiη2
)

+ c.c. (A.40)

=− 1

16π
e−3Aλ̄λ̄

(

ηT1 γ
iDiη1 + ηT2 γ

iDiη2
)

+ c.c. (A.41)

=− 1

128π
e−4Aλ̄λ̄

(

η†2γ
123γiDiη1η

T
1 γ123η2 + (η1 ↔ η2)

)

+ c.c. (A.42)

=
i

32π
e−2u+φ/2λ̄λ̄i dt · Ω + c.c. (A.43)

In (A.43) we have omitted terms that are higher order in 〈λλ〉, in particular the terms

of order 〈λλ〉2 in (A.25), (A.26), and (A.27). We make the same approximation in the

computations below.

For the gaugino-flux couplings, we find

LFλλ =
eφ/2−2u−A

384π

(

λ̄D ⊗ η†1 + λ̄c
D ⊗ ηT1

)

F̃ABCγ
ABCγ5 (λD ⊗ η2 + λc

D ⊗ η∗2) + (η1 ↔ η2)

(A.44)

=− eφ/2−2u−A

384π
(λ̄c

DλDη
T
1 γ

ABCη2 + c.c.)F̃ABC + (η1 ↔ η2) (A.45)

=
ieφ/2−2u

32π
λ̄λ̄ F̃ · Ω + c.c. (A.46)

LHλλ =− e−φ/2−2u−A

384π

(

λ̄D ⊗ η†1 + λ̄c
D ⊗ ηT1

)

HABCγ
ABCγ5 (λD ⊗ η1 + λc

D ⊗ η∗1) + (η1 ↔ η2),

(A.47)

=
e−φ/2−2u−A

384π

(

λ̄c
DλDη

T
1 γ

ABCη1 + c.c.
)

HABC + (η1 ↔ η2) (A.48)

=
e−φ/2−2u

32π
λ̄λ̄H · Ω + c.c. (A.49)

Combining (A.46) and (A.49), we obtain the coupling

SGλλ =
i

32π

∫

X×D

√−ge−φ/2−2uλ̄λ̄ G · Ω+ c.c. (A.50)

Thus, combining (A.50) and (A.43), the total gaugino-flux coupling is

SGλλ =
i

32π

∫

X×D

√−ge−2u+φ/2λ̄λ̄G · Ω + c.c. (A.51)
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The result (A.51) precisely agrees with that of [23] once one accounts for the difference

in normalization of the gaugino kinetic term there and here.

Similarly, we find the four-gaugino couplings

Lλλλλ =− e10u−6A

3 · 215π3 t

[

(λ̄D ⊗ η†1 + c.c.)γabc(λD ⊗ η2 + c.c.) + (η1 ↔ η2)
]2

(A.52)

=− e10u−6A

3 · 215π3 t

[

λ̄c
DλDη

T
1 γ

abcη2 + c.c. + (η1 ↔ η2)
]2

(A.53)

=− e10u−4A

3 · 215π3 t

[

2iλ̄λ̄Ωabc − 2iλλΩ
abc

]2

(A.54)

=− νe8u−4A

6144π3
Ω · Ωλλλ̄λ̄ , (A.55)

where ν was defined below (3.23).

We have thus obtained the Lagrangian density for D7-brane gauginos, up to and

including |λλ|2 terms:

Lgaugino = − i

4π
e−4A+4uλ̄σ̄µ∂µλ+

i

32π
e−2u+φ/2

G · Ω λ̄λ̄+ c.c.− ν

6144π3
e8u−4AΩ · Ω |λλ|2

(A.56)

Assigning the gaugino bilinear vev (3.6) and using (3.20), the gaugino-flux cou-

pling (A.51) dimensionally reduces to

SGλλ =−
∫

X×M

√−geφ/2−6u ie−4A+4uΩ · Ω
π
∫

M
e−4AΩ ∧ Ω

〈λ̄λ̄〉
32π

Wδ(0) + c.c. (A.57)

=

∫

X

√−g4e
φ/2−6u+κ2

4K/2Re(T )

2πV ∂TWW + c.c (A.58)

=− κ2
4

∫

X

√−g4e
κ2
4KKTT∂TWKTW + c.c. (A.59)

We used the identity κ2
4K

TTKT = −Re(T )/(2πV), which follows from (3.11) and

(A.11).

Similarly, assigning the gaugino bilinear vev (3.6), the integral of the four-gaugino

term (A.55) dimensionally reduces to

Sλλλλ =−
∫

X

∫

M

√−geκ
2
4K+4ue

−4A+4uΩ · Ω
24πV⊥

∂TWnp∂T̄W npδ
(0) (A.60)

=−
∫

X

√−g4e
κ2
4K

Re(T )2

3πV ∂TW∂T̄W (A.61)

=−
∫

X

√−g4e
κ2
4KKT T̄∂TW∂T̄W. (A.62)
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We used the identity KTT = Re(T )2/(3πV).

A.3 Normalization of the Kähler potential

We temporarily normalize the flux superpotential as

Wflux = a

∫

M

G ∧ Ω, (A.63)

and the Kähler potential as

κ2
4K = −3 log

(

T + T
)

− log

(

i

∫

M

e−4AΩ ∧ Ω

)

− log
(

−i(τ − τ)
)

− log b. (A.64)

Given a complex structure, we normalize

i

∫

M

e−4AΩ ∧ Ω = c. (A.65)

We now fix a, b, and c by dimensional reduction of the ten-dimensional supergravity

action.

The first constraint is given by matching the F-term potential for the complex

structure moduli and axiodilaton. Matching the gravitino mass does not provide an

additional constraint. The potential

Vτ =
1

2κ2
10

∫

M

√
g6e

4A−12u+φ|G3,0|2 (A.66)

=
1

2κ2
10

∫

M

e4A−12u+φ

(

∫

M
G ∧ Ω

∫

M
e−4AΩ ∧ Ω

e−4AΩ

)

∧ ⋆6

(

−
∫

M
G ∧ Ω

∫

M
e−4AΩ ∧ Ω

e−4AΩ

)

(A.67)

=
1

2κ2
10

e−12u+φ

∫

M
G ∧ Ω

∫

M
G ∧ Ω

i
∫

M
e−4AΩ ∧ Ω

(A.68)

must match

Vτ = eκ
2
4KKττDτWDτW = κ2

4e
κ2
4Ka2

∫

M

G ∧ Ω

∫

M

G ∧ Ω , (A.69)

which requires
a2

b
= 27π2V3. (A.70)

Another constraint is given by matching the F-term potential for D3-brane mod-

uli. Matching the F-term potential for the Kähler modulus does not provide an addi-
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tional constraint. From (C.18) with the undetermined coefficient c we have

Φ− = c
eκ

2
4K

8µ3V
Kab̄DaWDb̄W. (A.71)

Hence we fix

i

∫

M

e−4AΩ ∧ Ω = 8V. (A.72)

There remains the freedom to choose a and b, corresponding to Kähler invariance.

All such choices are physically equivalent; for the sake of simplicity we normalize the

superpotential as

π

∫

M

G ∧ Ω, (A.73)

and the Kähler potential as

κ2
4K = −3 log

(

T + T
)

− log

(

i

∫

M

e−4AΩ ∧ Ω

)

− log
(

−i(τ − τ )
)

+ log
(

27V3
)

. (A.74)

B Spectroscopy of Interactions

In this appendix we show that the interactions of anti-D3-branes with a gaugino con-

densate that are mediated by Kaluza-Klein excitations of a Klebanov-Strassler throat

can be safely neglected, in the sense defined in §4.

B.1 Kaluza-Klein modes on T 1,1

We will use the conventions of [22] for denoting fields on the conifold and operators in

the Klebanov-Witten theory. We use labels L ≡ (j1, j2, R) and M ≡ (m1, m2) for the

quantum numbers under the SU(2) × SU(2) × U(1)R isometries of T 1,1, and write a

solution to the Laplace equation on the conifold, ∇2f = 0, as

f(r,Ψ) =
∑

L,M

fLM

( r

rUV

)∆s(L)

YLM(Ψ) , (B.1)

with the eigenvalues13

∆s(L) = −2 +
√

6
[

j1(j1 + 1) + j2(j2 + 1)− R2/8
]

+ 4 . (B.2)

The singlet j1 = j2 = R = 0 has ∆s = 0, and the next-lowest eigenvalue, for j1 = j2 =

1/2, R = 1, is ∆s = 3/2.

13The eigenvalues ∆s(L) were denoted by ∆(L) in [57], by ∆f (L) in [22], and by ∆(Is)− 4 in [30].
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B.1.1 Perturbations sourced by D3-branes and anti-D3-branes

We now consider in turn the perturbations sourced by D3-branes or anti-D3-branes

in the infrared or ultraviolet regions of a Klebanov-Strassler throat. Recall that the

Dirac-Born-Infeld + Chern-Simons action of a probe D3-brane is SD3 = µ3Φ−, and

a D3-brane is a localized source for the scalar Φ+, whereas the Dirac-Born-Infeld +

Chern-Simons action of a probe anti-D3-brane is SD3 = µ3Φ+, and an anti-D3-brane

is a localized source for the scalar Φ−. As explained in [57], see also [30], it is useful

to define the fields ϕ+ := r4Φ−1
+ and ϕ− := r−4Φ−, which have canonical kinetic terms

and so have solutions of the usual form

ϕ± = α r−∆± + β r∆±−4 . (B.3)

with α, β independent of r.

• Anti-D3-brane in the infrared:

The leading perturbation of Φ− is a normalizable profile,

δ
(

r−4Φ−

)

∼ r−8−∆s(L) . (B.4)

The leading (singlet) mode scales as r−8, and corresponds in the dual field theory

to an expectation value for the dimension-eight operator [51, 57, 65]

O8 =

∫

d2θd2θ̄Tr
[

W 2
+W

2

+

]

. (B.5)

Higher multipoles in the linear solution result from operators such as (but not

limited to, cf. [22, 57])

O8+3k/2 =

∫

d2θd2θ̄Tr
[

W 2
+W

2

+

(

AB)k] , (B.6)

for k ∈ Z+. The first non-singlet mode is O19/2, and scales as r−19/2. See

[22, 30, 57] for extensive analysis of this system.

• D3-brane in the infrared:

The leading perturbation of Φ+ is a normalizable profile,

δ
(

r4Φ−1
+

)

∼ r−∆s(L) . (B.7)

The singlet is a constant, while higher multipoles correspond to expectation

values for operators such as (but not limited to, cf. [57])

O3k/2 = Tr
[

(AB)k
]
∣

∣

b
, (B.8)
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for k ∈ Z+, with |b denoting the bottom (θ = θ̄ = 0) component of a supermulti-

plet, as in [22]. The leading non-singlet mode scales as r−3/2 [22, 30, 35, 57], and

is dual to an expectation value for

O3/2 = Tr
[

AB
]
∣

∣

b
. (B.9)

Higher multipoles can be found in [22, 30, 57].

• D3-brane in the ultraviolet:

The leading perturbation of Φ+ is a non-normalizable profile [57]

δ
(

r4Φ−1
+

)

∼ r∆s(L)+4 . (B.10)

The singlet mode scales as r4, and is dual to a source for the operator O8 in

(B.5) whose expectation value arose in the anti-D3-brane solution (B.4). Higher

multipoles are dual to sources for operators such as O8+3k/2 in (B.6). The leading

non-singlet mode scales as r11/2, and is dual to O19/2 [22, 30, 57].

B.2 Effect of anti-D3-branes on gaugino condensate

We would like to examine the long-distance solution sourced by p anti-D3-branes

smeared14 around the tip of a Klebanov-Strassler throat. To start out, we will lin-

earize in the strength of the anti-D3-brane backreaction, and then discuss nonlinear

effects.

B.2.1 Coulomb interaction with a D3-brane

The SU(2)×SU(2) invariant part of the linearized long-distance solution sourced by p

anti-D3-branes at the tip of a noncompact Klebanov-Strassler throat has been studied

in [46, 48–52]. The leading perturbation of Φ− corresponds to the normalizable profile

(B.4), up to logarithmic corrections.

A strong consistency check of this solution comes from considering a D3-brane in

the ultraviolet region of the throat. The potential for motion of such a D3-brane can be

computed either by treating the D3-brane as a probe in the solution (B.4) sourced by

the anti-D3-branes, or by treating the anti-D3-branes as probes in the solution sourced

by the backreaction of a D3-brane in a Klebanov-Strassler throat. The former approach

amounts to evaluating the action of a probe D3-brane in the solution of [48–52].

14At different stages of the evolution of a collection of anti-D3-branes interacting with flux, as
described in [45], the anti-D3-branes may be localized at a point on the S3 at the tip, or puffed up
into a nontrivial configuration, and in such a case the supergravity equations of motion become difficult
partial differential equations. Fortunately (cf. [51]), in any of these cases the leading long-distance
solution linearized around AdS5 ×T 1,1 can be obtained from the SU(2)×SU(2) invariant part of the
linearized solution, i.e. from the linearized solution obtained from considering anti-D3-branes smeared
around the S3. This latter problem requires solving only ordinary differential equations.
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The latter approach, which was used to compute the D3-brane Coulomb potential

in [44], is even simpler, because the D3-brane and the Klebanov-Strassler background

preserve the same supersymmetry, and so the perturbation due to the D3-brane enjoys

harmonic superposition. One finds [57] that the leading perturbation of Φ+ sourced

by D3-brane in the ultraviolet is the non-normalizable profile (B.10).

The Coulomb potential between an anti-D3-brane in the infrared and a D3-brane

in the ultraviolet can be computed either from (B.4) [49, 57] or from (B.10) [44], with

exact agreement.

We can understand this match in the language of the dual field theory (see §3.3 of

[57]). A D3-brane in the ultraviolet creates a potential by sourcing a non-normalizable15

profile δΦ+, corresponding to a source (in the field theory Lagrangian) for operators

such as O8. An anti-D3-brane in the infrared creates a potential by sourcing a nor-

malizable profile δΦ−, corresponding to an expectation value for operators such as O8.

Either way, the mediation occurs by a high-dimension operator, and leads to a very

feeble interaction at long distances.

The above arguments give several conceptually different — but precisely com-

patible — perspectives on a single fact, which is that the Coulomb interaction of a

D3-brane with an anti-D3-brane in a warped region is suppressed by eight powers of

the warp factor, and so is extremely weak [44].

B.2.2 D3-brane perturbation to gauge coupling

Thus far, as a first step, we have used a D3-brane in the ultraviolet as a probe of

the solution generated by anti-D3-branes in the infrared. Our actual interest is in the

effect of anti-D3-branes in the infrared on D7-branes in the ultraviolet.

Now, as a further warm-up, we recall the effect of D3-branes (not yet anti-D3-

branes) in the infrared on gaugino condensation on D7-branes in the ultraviolet.16 The

effect of the perturbation (B.7) on a gaugino condensate was computed in [35]. Upon

summing over all the chiral and non-chiral operators of the Klebanov-Witten theory

[59], and applying highly nontrivial identities to collapse the sum, the result for δT

took the form of a logarithm of the embedding function of the D7-branes, expressed

in local coordinates [35]. The perturbation (B.7) is thus the effect responsible for the

dependence of the gaugino condensate on the D3-brane position [34, 35], which is of

central importance in D3-brane inflation [44].

This result was exactly reproduced by an entirely different computation in [22],

as reviewed in Appendix C below: the G− flux sourced by the gaugino-flux couplings

on the D7-branes leads to a solution for Φ−, and a D3-brane probing this solution

experiences the potential implied by the perturbation δT computed in [35].

15In the sense of footnote 8 of [57].
16Corrections to gaugino condensation on D7-branes due to interactions with distant branes have

been extensively studied in the context of D3-brane inflation, both from the open string worldsheet
[34, 74] and in supergravity [35]: see [9] for a review.
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For completeness, we now explain an asymmetry between the effects of D3-branes

and of anti-D3-branes. As will be explained in §B.2.3 below, one finds from (B.4) that

an anti-D3-brane in the infrared has only extremely small effects on D3-branes or D7-

branes in the ultraviolet (except through couplings via the zero-mode eu). In contrast,

a D3-brane in the infrared does have a detectable effect at long distances. Adding a

D3-brane increases the total D3-brane charge of the throat by one unit, N → N + 1,

and this change is reflected in the solution by a non-normalizable correction relative

to the throat with N units of flux and no D3-brane.

Simply adding an anti-D3-brane would likewise change the net tadpole and the

flux, and so have a detectable effect at long distances. However, this is not the relevant

comparison for our purposes. The anti-D3-brane configuration of [45] is a metastable

state in a throat with less flux and some wandering D3-branes, but the same total

tadpole. The anti-D3-branes thus source small normalizable corrections to the solution

that is dual to the supersymmetric ground state.

B.2.3 Anti-D3-brane perturbation to gauge coupling

To compute the effect on the gaugino condensate of the perturbation (B.4) due to

anti-D3-branes in the infrared, we follow the same logic used in [35] and reviewed in

§B.2.2. We evaluate the D7-brane gauge coupling function (3.5),

T = e4u
∫

D

√
g6e

−4A + i

∫

D

C4 , (B.11)

in the perturbed solution, and use (3.7). Examining (B.11), we see that it suffices to

know the breathing mode eu, as well as the leading perturbations to Φ± and to the

metric gab at the location of the D7-brane. Because eu is a six-dimensional zero-mode,

we will treat it separately: at this stage we seek to check that any influences of the

anti-D3-branes on the condensate, except via the breathing mode, can be neglected.

Because Φ− = 0 in the Klebanov-Strassler background, we write (see Appendix

D of [67])

δReT ≈ e4u
∫

D

√
g(0)

(

−2
(

Φ
(0)
+

)−2(
δΦ+ + δΦ−

)

+
(

Φ
(0)
+

)−1
gab(0)δgab

)

, (B.12)

where for a field φ, the background profile in the Klebanov-Strassler solution is denoted

φ(0).

Our consideration above of a D3-brane probe in the ultraviolet showed that δΦ− is

mediated by O8 (with subleading corrections from operators of even higher dimension)

and is negligible at the D7-brane location. Perturbations δΦ+ (or more usefully, δϕ+)

are mediated by operators such as O3/2, and can be sizable if strongly sourced, e.g. by

the presence of a D3-brane. However, in [30] it was shown that the leading profile δϕ+
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that arises in the full nonlinear solution due to an anti-D3-brane scales as δϕ+ ∼ r−8,

just like the profile δϕ− in (B.4) that is directly sourced by the anti-D3-brane: see

§5 of [30]. Likewise, in Appendix D of [67] it was shown that the leading non-singlet

metric perturbation scales as r−19/2 (see [30, 67] for definitions of the associated tensor

harmonics on T 1,1).

In summary, in the linearized background (B.4) sourced by anti-D3-branes in the

infrared, the leading corrections to ReT are mediated by operators of dimension ∆ ≥ 8,

resulting in extremely small corrections to the D7-brane gaugino condensate when the

hierarchy of scales in the Klebanov-Strassler throat is large. Thus, the only influence of

the anti-D3-branes on the gaugino condensate that is non-negligible for our purposes

occurs via the breathing mode eu, and was already included in the four-dimensional

analysis of [1]. We have therefore established (4.9).

B.3 Effect of gaugino condensate on anti-D3-branes

For the avoidance of doubt, we now reverse the roles of source and probe relative to

§B.2, and examine the influence of gaugino condensation in the ultraviolet on anti-D3-

branes in the infrared. As in §B.2, we treat the breathing mode separately.

B.3.1 Leading effect of flux

The anti-D3-brane probe action is SD3 = µ3Φ+, so we seek the leading perturbations

of Φ+ in the infrared. Gaugino condensation on D7-branes directly sources flux per-

turbations δG− and δG+ via the gaugino-flux coupling (3.17), as shown in [22] and

reviewed in §3. Expanding in Kaluza-Klein modes on T 1,1, the lowest mode of δG+ is

dual to the operator

O5/2 =

∫

d2θTr
[

AB
]

, (B.13)

of dimension ∆ = 5/2 [22]. The coefficient c5/2 of this mode in the ultraviolet is

at most of order 〈λλ〉, because it is incompatible with the no-scale symmetry of the

Klebanov-Strassler background, and so is present only once it is sourced by the gaugino

condensate [22, 30]. We stress, however, that c5/2 might well be parametrically smaller

than 〈λλ〉: the operator O5/2 is easily forbidden by (approximate) symmetries, corre-

sponding in the bulk to symmetries of the D7-brane configuration.17 Our estimates of

the anti-D3-brane potential will therefore be upper bounds.

The equation of motion for the scalar Φ+ is

∇2Φ+ =
e8A

Im τ
|G+|2 + . . . (B.14)

where the omitted terms (cf. §2) can be neglected for the present purpose. In the

Klebanov-Strassler background, the three-form flux has a nonvanishing profile G
(0)
+

17See e.g. [75] for related work.
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[76]. With one insertion of the background flux and one insertion of the perturbation

δG+, we have

∇2Φ+ =
e8A

Im τ

(

G
(0)
+ · δG+ + c.c.

)

, (B.15)

from which one finds

δΦ+ ∼ e
5
2
Atip × 〈λλ〉 , (B.16)

with eAtip the warp factor at the tip. Since

〈λλ〉 ∼ O(e2Atip) , (B.17)

we conclude that

δVD3 . µ3e
9
2
Atip , (B.18)

which is smaller, by a power e
1
2
Atip, than the anti-D3-brane potential (4.1) in the

Klebanov-Strassler background. Thus, the influence of the gaugino condensate on the

anti-D3-brane, via the linearized perturbation δG+, is a parametrically small correc-

tion.

B.3.2 Spurion analysis

Thus far we have considered only the linearized perturbation δG+ dual to O5/2, lead-

ing to the small correction (B.18) to the anti-D3-brane potential. If the D7-brane

configuration enjoys no additional symmetries that enforce c5/2 ≪ 〈λλ〉, then (B.18)

is indeed the parametrically dominant correction to the anti-D3-brane potential from

gaugino condensation [64]. However, establishing this requires extending the treat-

ment of §B.3.1 to incorporate more general perturbations, such as perturbations of

the metric, and also requires working at nonlinear order in these perturbations. A

complete analysis of this system is carried out in [64]; here we review the strategy and

summarize the main findings.

To find the general form of the infrared solution created by a partially-known

ultraviolet source, one can perform a spurion analysis, in which the parametric size of

the ultraviolet coefficient c∆ of a given mode δφ∆ dual to a source for an operator O∆

is determined by the symmetries preserved by O∆.

Specifically, perturbations allowed in a no-scale compactification of the Klebanov-

Strassler throat, as in [12], have c∆ ∼ O(1). Perturbations that are allowed only after (a

single) insertion of the gaugino condensate expectation value 〈λλ〉 have c∆ ∼ O(〈λλ〉),
while perturbations that are allowed only after inserting |〈λλ〉|2 have c∆ ∼ O(〈λλ〉2).

To determine the spurion assignment for a given operator, we examine couplings of

the field theory dual to the throat to the D7-brane field theory. Consider, for example,

∫

d2θTr
[

AB
]

Tr
[

WαW
α
]

D7
, (B.19)
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where18
〈

Tr
[

WαW
α
]

D7

〉
∣

∣

∣

b
=

1

2
〈λλ〉 . (B.20)

From (B.19) we find the coupling

δW =
1

2
〈λλ〉

∫

d2θTr
[

AB
]

, (B.21)

which can be interpreted as a perturbation to the superpotential of the Klebanov-

Witten theory, with the exponentially small spurion coefficient 〈λλ〉.
Evidently, to carry out such a spurion analysis one needs to know which perturba-

tions of the supergravity fields are allowed in the background, versus requiring either

one or two factors of 〈λλ〉 as spurion coefficients. This information can be read off

from an assignment of the operators of the dual field theory to supermultiplets, as in

[61, 62]. A systematic treatment along these lines appears in [22, 30, 64].

Examining (B.14), one sees that the leading linearized perturbations to the anti-

D3-brane potential are modes of the flux G+, the axiodilaton τ , and the metric g. At

this stage we need to know, from Kaluza-Klein spectroscopy and from spurion analysis,

the dimensions ∆min of the lowest-dimension non-singlet modes of G+, τ , and g, as

well as their spurion coefficients c∆. For the flux, one finds [64]

∆min(G+) = 5/2 with c5/2 ∼ 〈λλ〉 , (B.22)

corresponding to O5/2 in (B.13), as explained above. Another mode of flux gives a

slightly smaller contribution:

∆(G+) = 3 with c3 ∼ 〈λλ〉 , (B.23)

corresponding to the operator O3,+ = Tr
[

W 2
+

]
∣

∣

b
. For the dilaton, one finds [64]

∆min(τ) = 11/2 with c11/2 ∼ O(1) , (B.24)

corresponding to

O11/2 =

∫

d2θTr
[

W 2
+ (AB)

]

, (B.25)

which is allowed in the background of [12]. (There is also a ∆ = 4 mode of τ , but we

can absorb this into the background value of the dilaton.) For the metric, one finds

the leading contribution [14, 64]

∆min(g) = 3 with c3 ∼ 〈λλ〉 , (B.26)

18The D7-brane gauge field strength superfield Wα|D7 should not be confused with W+ appearing
in (B.5), which is the gauge field strength superfield of the D3-brane fields of the Klebanov-Witten
theory.
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corresponding to

O3,− = Tr
[

W 2
−
]
∣

∣

b
. (B.27)

The first subleading correction from a metric mode has

∆(g) =
√
28 ≈ 5.29 with c√28 ∼ O(1) , (B.28)

corresponding to

O√
28 =

∫

d2θ d2θ̄Tr
[

f(A,B, Ā, B̄)
]

, (B.29)

where f is a harmonic, but not holomorphic, function of the chiral superfields A and

B. The perturbation dual to O√
28 is allowed in the background of [12].

Using (B.17), we find from the linearized perturbations (B.22),(B.23),(B.24),(B.26),(B.28)

that the anti-D3-brane potential receives corrections of the parametric form

δVD3 . µ3e
4Atip

(

e
1
2
Atip + eAtip + e(

√
28−4)Atip + e

3
2
Atip + . . .

)

. (B.30)

For completeness, we remark that upon applying the methods of [30] to study the

nonlinear solution, one finds [64] that a specific nonlinear perturbation, corresponding

to two insertions of (B.22), gives a correction to the potential of the form

δVD3 . µ3e
4Atip × eAtip , (B.31)

which can be more important than some of the modes in (B.30), but less important

than the linearized flux perturbation (B.22).

Let us summarize. To compute the influence of a gaugino condensate in the

ultraviolet on anti-D3-branes in the infrared, one can allow perturbations of all of

the supergravity fields, grading these modes via a spurion analysis, and examine the

resulting solution for Φ+ in the infrared. We have collected here, in (B.30), the leading

contributions of the fields that appear in (B.14), at linear order in perturbations.

Results for all fields, to all orders, appear in [30, 64], and the only nonlinear correction

competitive with any of the terms in (B.30) is the quadratic flux perturbation (B.31).

The final result is that the largest correction to the anti-D3-brane potential medi-

ated by excitations of the throat solution is suppressed by at least a factor e
1
2
Atip ≪ 1

compared to the anti-D3-brane potential in the background solution, and so can be ne-

glected. This finding is compatible with that of §B.2, and constitutes strong evidence

for (4.9).

36



C D3-brane Potential from Flux

The potential for motion of a spacetime-filling D3-brane in a nonperturbatively-stabilized

flux compactification, such as [1], is well understood from the perspective of the four-

dimensional effective supergravity theory [35, 44, 77, 78], with the Kähler potential

obtained in [36] (see also [79–81]) and with the nonperturbative superpotential com-

puted in [34, 35]. Showing that this potential is reproduced by the Dirac-Born-Infeld

+ Chern-Simons action of a probe D3-brane in a candidate ten-dimensional solution

sourced by gaugino condensation serves as a quantitative check of the ten-dimensional

configuration [21–23]. An exact match was demonstrated in [22] in the limit that

four-dimensional gravity decouples.

In this appendix we compute the potential of such a D3-brane probe. Through

a consistent treatment of the Green’s functions on the compact space, we extend the

match found in [22] to include terms proportional to κ2
4.

Within this appendix we take the Kähler potential (3.11) to include D3-brane

moduli,

κ2
4K = −3 log

(

T+T−γk
)

−log
(

−i(τ−τ )
)

−log

(

i

∫

M

e−4AΩ ∧ Ω

)

+log
(

27V3
)

, (C.1)

with (cf. [36, 78, 80])19

γ =
2

3
µ3κ

2
4 Re(T )e

−4u =
1

3V⊥
. (C.2)

Here k is the Kähler potential of M , obeying kab̄ = gab̄, where a and b̄ are holomorphic

and anti-holomorphic indices for D3-brane moduli. We use the convention ds2 =

2gab̄dz
adz̄b̄ for the line element. As shown in [22], the G− flux sourced by gaugino

condensation is

(G−)ac̄d̄ = −e−4A−φ/2+8u λλ

32π2
∂a∂bG(2)(z; zD7)g

bb̄Ωb̄c̄d̄ . (C.3)

Here G(2) is the Green’s function on the internal space transverse to the D7-branes. If

this space is taken to be noncompact, we have

G(2)(z; 0) =
1

2π
log |z| , (C.4)

in terms of a local coordinate z.

The flux (C.3) is a source for the scalar Φ−, leading to a potential for D3-brane

19As explained in [78], the relation (C.2) should be understood to hold exactly at a reference location
in field space. Deviations from (C.2) at other locations lead to corrections of order γk

T+T
in (C.16)

and (C.17) below, which we will neglect.
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motion. The equation of motion for Φ− is

∇2Φ− =
e8A

Im τ
|G−|2 + . . . (C.5)

where the omitted terms are not important for the present computation. Solving

(C.5) and taking the D7-brane location to be given by an equation h(z) = 0 in local

coordinates, one finds20

Φ− =

∫

M

d6y G(6)(z; z
′)

e8A

Im τ
|G−|2 (C.6)

=
eκ

2
4Ke16u

4π2N2
c

gab̄
∂ah∂b̄h̄

hh̄
|Wnp|2 , (C.7)

so that

µ3Φ− = e12ueκ
2
4KKab̄∂aW∂b̄W . (C.8)

Thus, the flux (C.3) sourced by gaugino condensation gives rise to a profile for Φ− that

matches the rigid part of the F-term potential.

At this point, the Kähler connection terms in the F-term potential are not evident

in the ten-dimensional computation. The result of this appendix, which we will now

establish, is that the Kähler connection terms arise once one consistently incorporates

finite volume effects in the Green’s function.

Taking the internal space transverse to the D7-branes to be compact, with volume

V⊥, Green’s equation takes the form

2gab̄∂a∂b̄G(2)(z; 0) = δ(2)(z)−
1

V⊥
, (C.9)

and the Green’s function reads

G(2)(z; 0) =
1

2π
log |z| − k

6V⊥
. (C.10)

Using (C.10) to solve (C.5), one finds

Φ− =

∫

M

G(6)(z; z
′)∂a∂bG(2)(z

′; zD7)∂ā∂b̄G(2)(z
′; zD7)g

aāgbb̄e16u
∣

∣

∣

∣

λλ

32π2

∣

∣

∣

∣

2

Ω · Ω (C.11)

=
1

2

∫

M

δ(6)(z; z
′)∂aG(2)(z

′; zD7)∂b̄G(2)(z
′; zD7)g

ab̄e16u
∣

∣

∣

∣

λλ

32π2

∣

∣

∣

∣

2

Ω · Ω (C.12)

=
1

4N2
c π

2

(

∂ah(z)

h(z)
− 2πka

3V⊥

)(

∂b̄h̄(z̄)

h̄(z̄)
− 2πkb̄

3V⊥

)

gab̄eκ
2
4Ke16u|Wnp|2 . (C.13)

20Throughout this appendix, we write only the contribution to Φ
−

sourced by G
−

flux via (C.5).
Further contributions are present in general [22].
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The F-term potential that we wish to compare to (C.13) is given by

VF = eκ
2
4K

(

K∆ΓD∆WDΓW − 3κ2
4WW

)

, (C.14)

where K∆Γ is the inverse Kähler metric derived from the DeWolfe-Giddings Kähler

potential [36, 82],

K∆Γ =
κ2
4(T + T − γk)

3γ

(

γ(T + T − γk) + γ2kak
ab̄kb̄ γkak

ab̄

γkab̄kb̄ kab̄

)

, (C.15)

and the index ∆ runs over T and the D3-brane moduli ya. Using (C.2), we can rewrite

(C.13) as

Φ− =
eκ

2
4Ke16u

4π2
gab̄ (DaW + γkaDTW )

(

Db̄W + γkb̄DTW
)

+ . . . (C.16)

=eκ
2
4Ke12u

κ2
4Re(T )

3πγ

(

DTW DaW
)

(

γ2kak
ab̄kb̄ γkak

ab̄

γkab̄kb̄ kab̄

)

(

DTW

Db̄W

)

+ . . . , (C.17)

where the omitted terms are of higher order in γk

T+T
.

Combining (3.33) and (C.17), we conclude that in a compact space, the flux (C.3)

sourced by gaugino condensation leads to a Φ− profile that agrees with the F-term

potential (C.14):

µ3e
−12uΦ−(z) + Vλλ + Vλλλλ = eκ

2
4K

(

K∆ΓD∆WDΓW − 3κ2
4WW

)

+ . . . , (C.18)

where again the omitted terms are subleading in γk

T+T
.

Finally, we note that from (2.22), the contribution of |G−|2 to R4[g] is

M2
plR4[g] ⊃

2

κ2
10

∫

M

e4A

Im τ
|G−|2 , (C.19)

which is finite, and indeed corresponds — comparing (C.19) to (C.6) — to the F-term

potential for a D3-brane.
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