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We analyze the de Sitter construction of [1] using ten-dimensional supergravity,
finding exact agreement with the four-dimensional effective theory. Starting from the
fermionic couplings in the D7-brane action, we derive the ten-dimensional stress-energy
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motion require the four-dimensional curvature to take precisely the value determined
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1 Introduction

A foundational problem in cosmology is to characterize de Sitter solutions of string
theory. Tremendous efforts have been expended in the study of flux compactifications
of weakly-coupled type II string theories on orientifolds (see e.g. the reviews [2-10]).
Non-supersymmetric vacua necessarily remain more difficult to analyze than super-
symmetric ones, if only because fewer theoretical tools can be applied there. However,
we can take heart by recalling that the entirety of real-world physics is strictly non-
supersymmetric, and progress has nonetheless been possible in a few areas, beginning
with the work of the non-supersymmetric theorists of antiquity.

A paradigm for exhibiting realistic compactifications of string theory is to derive
directly the properties of a four-dimensional effective theory in parametrically con-
trolled limits, such as weak coupling, large volume, and small supersymmetry breaking,
and then carefully argue for the form of corrections to the effective theory away from
such limits. When the corrections are parametrically small, one expects the vacuum
structure computed in the effective theory to be robust.

The couplings in such an effective theory can sometimes be computed in more than
one way, e.g. on the string worldsheet and in ten-dimensional supergravity. When dual
perspectives are available, they provide a cross-check that lends a degree of further
support to the computation of the effective theory. However, it is rarely the case
that everything that can be computed in one duality frame can also be computed in
the other frame: instead, certain effects are manifest in one frame, and other effects
are manifest in the other frame, as is familiar from famous strong-weak dualities in
quantum field theory and holography.

The study of de Sitter vacua of type IIB string theory compactified on orientifolds
of Calabi-Yau threefolds, as in [1], has relied heavily on computations of vacuum struc-
ture in the four-dimensional effective theory. However, certain questions about these
theories are intrinsically ten-dimensional, and answering them requires a quantita-
tive description of the de Sitter vacua in terms of configurations of ten-dimensional
fields. For example, integrating the ten-dimensional equations of motion over the com-
pact space reveals constraints on possible solutions (see e.g. [11-14]), and it would be
instructive to expose all such constraints. Similarly, the couplings between distinct
sectors of the effective theory are often most readily computed by finding solutions for
the massless fields in ten dimensions.

At the same time, it is not generally possible even in principle to derive all four-
dimensional couplings through a purely ten-dimensional computation. Consider, for
example, the infrared dynamics of a pure N/ = 1 super-Yang-Mills theory arising on
a collection of D7-branes that wrap a four-cycle ¥ in the compact space. The eight-
dimensional gauge theory is not even asymptotically free, but at energies far below
the Kaluza-Klein scale, the four-dimensional theory confines and generates a gaugino



condensate. Attempting to compute the gaugino condensate from the ten-dimensional
equations of motion, and rejecting the simplifications of the four-dimensional descrip-
tion, would be quixotically self-limiting.

A practical approach, then, is to compute the configuration of ten-dimensional
fields that corresponds to a four-dimensional de Sitter vacuum, while taking specific
expectation values — such as those of gaugino bilinears — to be those determined by
the four-dimensional equations of motion. We refer to the result of this analysis as a
ten-dimensional description of a de Sitter vacuum.

In this work we provide a ten-dimensional description of the de Sitter scenario of
[1]. This problem has been examined in [14-20] (see also the earlier works [21-23]). As
we will explain below, our analysis aligns with some aspects of these works, but also
resolves certain puzzles that were implicit in the literature.

Our approach is a computation from an elementary starting point. Beginning with
the ten-dimensional action of type I string theory, we derive the two-gaugino and four-
gaugino couplings on D7-branes, and then compute the ten-dimensional stress-energy
sourced by a gaugino bilinear expectation value (A\). Taking (A\) to have the value
predicted by the four-dimensional super-Yang-Mills theory — and we stress that this
step is the only point at which information from four dimensions is injected — we com-
pute the four-dimensional scalar curvature determined by the ten-dimensional equa-
tions of motion. Comparing to the scalar curvature determined by the four-dimensional
Einstein equations equipped with the scalar potential of [1], we find an exact match.
This match holds whether or not anti-D3-branes are present, and applies at the level of
the scalar potential for the Kéhler modulus, not just in on-shell vacuum configurations.

The organization of this paper is as follows. In §2 we assemble the equations
of motion of type IIB supergravity. In §3 we consider the effects of an expectation
value for the gaugino bilinear on a stack of D7-branes. We show that couplings of the
D7-brane gauginos, including the couplings to flux derived by Dymarsky and Martucci
in [23] following [24], source a contribution T,ﬁ,’w to the stress-energy tensor. Including
this stress-energy in the ten-dimensional equations of motion, we compute the four-
dimensional scalar curvature, and find perfect agreement with that determined by the
F-term potential in the four-dimensional N' = 1 supersymmetric effective theory of [1].
In §4 we consider the combined effects of an anti-D3-brane and a D7-brane gaugino
bilinear. We examine the ten-dimensional supergravity solution with these sources and
show that T, ;ﬁ,’w continues to match the four-dimensional potential derived in [1]. Our
conclusions appear in §5. In Appendix A we dimensionally reduce and T-dualize the
type I action to obtain the couplings of D7-brane gauginos. Appendix B shows, based
on the spectroscopy of 7%, that the interactions of an anti-D3-brane and a gaugino
condensate mediated by Kaluza-Klein excitations of a Klebanov-Strassler throat can be
neglected compared to the interaction mediated by the Kahler modulus. In Appendix C
we compute the potential for a D3-brane probe in the gaugino condensate background.



2 Ten-dimensional Equations of Motion

In this section, we set our notation and collect useful forms of the ten-dimensional
Einstein equations and five-form Bianchi identity. We then express the stress-energy
tensor of the four-dimensional effective theory in terms of the ten-dimensional field
configuration.

We consider type IIB string theory on X x M, where X is a four-dimensional
spacetime and M is a six-dimensional compact manifold that in the leading approxi-
mation is an O3/07 orientifold of a Calabi-Yau threefold. We take the metric ansatz

ds?* = GupdXAdXP = ¢ 0u@H24W) g datdz? + 2@=240) g, dydy® (2.1)

with = denoting coordinates in X and y denoting coordinates in M. Greek indices
take values in {0,...,3}, and Latin indices take values in {1,...,6}. We use the
abbreviations gs = det g,y and g4 = det g,,, and note that /=G = /—ge 6724 =
%6_6“_2‘4.

The ten-dimensional type IIB supergravity action is

s— L d°Xv-G (Rlo—

~ 5.2
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(2.2)
where Ry is the Ricci scalar computed from G, 7 = Cy + ie~? is the axiodilaton,
G = I3y — 7Hy = dCy — 7dBy, and Fy = F5 — $Cy A H3 + 3B, A F, with Fy = dC.
The local term Sjoea1 encodes the contributions of D-branes and orientifold planes. We
work in units where (27)%a/ = 1.

For the five-form F5 we take the ansatz
Fy = (14 %10)e 1 2%/—gsda(y) Ada® A dz' A da? Ada? (2.3)
with %10 the ten-dimensional Hodge star, and define the scalars
b=t a. (2.4)

We also define the imaginary self-dual and imaginary anti-self-dual fluxes

(%6 £ 1)
2

Gi = Gg 5 (25)

with xg the six-dimensional Hodge star. We abbreviate (2.2) as

=L / dOX V=GR + / dXL = Sy + / doxc, (2.6)

=~ 5.2
2K70



with £ encoding everything except for the Einstein-Hilbert term.
From (2.1) one computes the Ricci tensors

Raw = Rauwlgl — 6_8“+4AgWV2A + 39, Ou — 240,ud, u, (2.7)

7—\),67@1) = RG,ab[ ] + \V& Agap — eSu—a Gap u — 80, A0, A , (28)

where Ry . [g] and R qp[g] are the Ricci tensors of g, and g, respectively. Expanding
the Einstein-Hilbert part of (2.2) using (2.7) and (2.8), we find

1
Sgn = o d*x dSy\/=ga gﬁ< Rulg ]+e_8“726[g]—246_4A8Hu8“u—86_8“8[1148%4) ,

where indices are raised using g,, or ge as appropriate. The Planck mass is given by
MY =—, (2.9)
where V is the warped volume of M, defined as

V:/ dSy\/gee 4. (2.10)
M

The equation of motion for the breathing mode u obtained from (2.6) is

44 0L

- (2.11)

24 Ou = 44480 <R6 9] — 88aA6“A) ~ K2e
We next turn to the Einstein equations, in conventions where the stress-energy tensor

is defined as
2 oL

TAB = _—TGW

The four-dimensional components of the ten-dimensional Einstein equations are

(2.12)

Raw = Iilo( — GWT) (2.13)

Reversing the trace using the ten-dimensional metric G, we have

2
R G = k2T, G — % (TabGab - 3TWGW) . (2.14)

Integrating (2.14) over M and using (2.7) leads to

M (Ralg]+12 Du—249,u0"u ) = / Jgee b4 [—TWG’“’—% (Ta G = 3T,,G™) |
M
(2.15)



Similarly, the six-dimensional components of the ten-dimensional Einstein equations

are ]
7—\)f6,ab - "{%0 (Tab - gGabT> s (216)
with trace-reversed form
(2
R G = 10 (TabG“b - 3TWG‘“’) . (2.17)

Integrating (2.17) over M and using (2.8) gives

1
—6M, Out—- / Vise~ 8“ Rﬁ[ |-80,A0°A) = 7 / Vase A [ TWG™ — 3T,G"] .
M
(2.18)
Finally, we examine the Bianchi identity

dFy = 2usk3,pps dVoly = H A F + 2usk2,p'5S dVoly, . (2.19)

Here dVolys = \/gedy' A -+ A dy®, pps is the D3-brane charge density, and pl3§ is the
D3-brane charge density of localized objects such as D3-branes. From (2.19) we derive
the useful integrated form

0= [ VB (0 i e ). (2.20)
M

Combining (2.15), (2.18), and (2.20) we obtain

p

M2R4g] = 24M218 ud"u —/ \/7 4ATWg”" + 4,u36_12“+4ApD3)
(2.21)

849, 0_0°D_ |

Sy

where TAW denotes the stress-energy tensor excluding the contribution from Fx.
Substituting the type IIB supergravity action (2.2) into (2.21), and taking Siycal
n (2.2) to include D3-branes and D7-branes, we find

8“7'8 T

(I + 8,&3 / \/76 12u+4A / \/76 4ATD7 712

—849,0_0°P_ .

M2 R4[g] = 24M30,ud"u +

—8u

T YR
(2.22)
To interpret (2.22), we consider a general four-dimensional action

/ V=i Ralg] / VgL, (2.23)



The four-dimensional Einstein equations imply
MER,lg) = -7, (2.24)

where .7, is the four-dimensional stress-energy tensor, i.e. the stress-energy tensor
computed from £4. The four-dimensional stress-energy tensor .7, and the four-
dimensional components T}, of the ten-dimensional stress-energy tensor T4p are re-
lated by

B R 1% 6—8u 6—8A—8u .
fzw :/ \/% € 4AT,uV + /~L3€4A 12 9uvPD3 + —gguuRfi[g] - 729#1/8(1(1)—8 O_
M 2K%y 4K7y
+ M§1(248uuﬁyu — 12g,w0pu0pu). (2.25)

Comparing (2.22) and (2.24), the right-hand side of (2.22) can be identified with —.7,
i.e. with minus the trace of the stress-energy tensor of the effective theory.

The master equation (2.22) thus encodes the relationship between the curvature
R4g] of the four-dimensional Einstein frame metric g,, on the one hand, and the con-
tributions of the ten-dimensional field configuration to the effective four-dimensional
stress-energy tensor .7, on the other hand. This relation will be crucial in our analysis.
We note that (2.22) matches the effective potential derived from the ten-dimensional
Einstein equations in [25], see e.g. equation (5.30) of [25].

An equivalent route to deriving (2.22) is to first follow the steps leading to the
Einstein-minus-Bianchi equation (2.30) of [12], which in our conventions reads

Vip_ = 6_4‘40@(1)_8“(1)_%—%/-@%062‘4”“ (TabG“b—TwG‘”) —2/@%()#368’4_4“,0[)3—I—eguRffef'[12} .

(2.26)
Because we have made explicit the breathing mode u, which was instead implicit in
the metric ansatz of [12], the scalar curvatures there and here are related by

RE — R, 1g] + 12 Ou — 240,u0"u . 2.27
4 M

Substituting (2.27) in (2.26) and using the Einstein equations and Bianchi identity,
one arrives at (2.22). The point we would like to stress is that equation (2.30) of [12]
— which has been the basis of a number of constraints on compact solutions — and
the master equation (2.22) contain equivalent information, provided that one correctly
accounts for the breathing mode as in (2.27).

3 Stress-energy of Gaugino Condensate

Our goal is to examine the de Sitter scenario of [1] using the ten-dimensional equa-
tions of motion. In the four-dimensional effective theory, the scalar potential has two



components: an F-term potential for the moduli of an A/ = 1 supersymmetric com-
pactification, and a supersymmetry-breaking contribution from one or more anti-D3-
branes. We will examine these in turn: in this section we consider the ten-dimensional
configuration without anti-D3-branes, and then in §4 we incorporate the effects of
anti-D3-branes.

The relevant moduli at low energies are the Kahler moduli of the Calabi-Yau
orientifold M, because the complex structure moduli and axiodilaton acquire mass
from G5 flux at a higher scale.! For simplicity of presentation we will consider a single
Kahler modulus, which we denote by 7', but our method applies more generally.

The four-dimensional analysis of [1] established that in the presence of a suitably
small” classical flux superpotential, combined with a nonperturbative superpotential
from Euclidean D3-branes or from gaugino condensation on D7-branes, the Kahler
modulus 7T is stabilized in an N' = 1 supersymmetric AdS,; vacuum. To recover this
result from ten dimensions, we need to understand how these two superpotential terms
correspond to ten-dimensional field configurations.

First of all, the Gukov-Vafa-Witten flux superpotential [29]

Wﬂux :W/G/\Q (31)
encodes in the four-dimensional effective theory the interaction corresponding to the
term _

1 Gs - G
St = —=—5 [ dVXV-G 3.2
i 2K3, 2ImT (32)

in the ten-dimensional action (2.2). In particular, the ten-dimensional stress-energy
associated to Wiy is that computed from (3.2).

In the remainder of this section, we will describe the gaugino condensate super-
potential in similarly ten-dimensional terms, and compute the contribution Té,},‘A> of
gaugino condensation on D7-branes to the ten-dimensional stress-energy tensor. We
will see that the stress energy T,ﬁi"v arises from gaugino-flux couplings generalizing
those derived by Cémara, Ibanez, and Uranga in [24], and also from associated non-
singular four-gaugino terms. We will then show that this stress-energy® leads to a
potential for the Kéhler modulus that exactly matches the F-term potential of [1].

Because the gaugino condensate relies on the dynamics of the D7-brane gauge

'If D3-branes are present, their position moduli have masses parametrically comparable to those
of the Kahler moduli, and the corresponding potential can be computed in ten dimensions [22]: see
Appendix C.

2The statistical approach of Denef and Douglas [26] gives strong evidence that (in the spirit of
[27]) one can fine-tune the classical flux superpotential Wy = (Wgyux) to be small. This conclusion is
supported by [28], which explicitly demonstrates that values of W small enough for control of the
instanton expansion are achievable even with few complex structure moduli.

3As in [22, 30], the contributions of Rg[g] and 9,®_0%®_ in (2.25) can be neglected.



theory below the Kaluza-Klein scale, it is not entirely obvious that a ten-dimensional
description of gaugino condensation should exist at all. However, as explained in [22],
one can consider D7-branes wrapping a divisor that is very small compared to the entire
compact space. A localized ‘observer’ far from the D7-branes, such as a distant D3-
brane, should then be able to treat them as a fuzzy source. This approach turns out to
be fruitful: we will exhibit below a precise correspondence between the ten-dimensional
and four-dimensional computations of the potential for the Kahler modulus, just as
the four-dimensional result for the potential of a D3-brane probe was obtained from
ten dimensions in [22].

3.1 Four-dimensional effective theory

We begin by recalling results from the four-dimensional effective theory that we aim
to recover from ten dimensions. Dimensional reduction of the theory on a stack of
D7-branes wrapping a divisor D leads at low energies, and in the limit that gravity
decouples, to the N’ = 1 supersymmetric Yang-Mills Lagrangian density
L[ eorrywwe + e (3.3)
16mi ’
where we have adopted the conventions of [31], but suppress Lie algebra indices. We
will denote the dual Coxeter number of the gauge group by V..
The N = 1 supergravity theory associated to (3.3) has the Lagrangian density
(see e.g. [32])

1 - 1 2 R R PR
L == Ref(T)FuF" —iA" O, ARef(T) = 72\ KD TT o #(T)DZW + c.c.

2
3K]

o (3t Re 1) - 11—6)\>\>\)\KTT8T F(T)OF(T), (3.4)

+

which reduces to (3.3) in the limit x4 — 0. The D7-brane gauge coupling is”

T
f(T) = i with T = / \/966_4A+4u +i/ Cy. (3.5)
D D

If the divisor D is rigid, then the Yang-Mills theory has no charged matter, and at low
energies it develops the gaugino bilinear expectation value [33]

(AN) = 167" 1520, W,, | (3.6)

4See Appendix C for a computation of the D3-brane potential that extends the result of [22].
®The normalization f(T') = T'//(2n) was used in the study of gaugino-flux couplings in [14, 23], but
we take instead f(T') = T/(4n) for ease of comparison to the supergravity literature.



which given the form of the nonperturbative superpotential,

27T

Whp = Ae” v, (3.7)
leads to the relation N
_ c —k2K/2
Wip = —355¢ " 2N (3.8)

The Pfaffian prefactor A in (3.7) depends on the complex structure moduli and the
positions of any D3-branes: see [34, 35].

The full Lagrangian (3.4) upon the assignment of the vev (3.6) for the gaugino
bilinear then evaluates to

L=—eKKTT (8TW87W + K30PW KzW + c.c.) : (3.9)
with the superpotential

W = Waax + Wap (3.10)

and the Kéhler potential®

K = —3log(T +T) —log(—i(r — 7)) — log (z’/Me_‘lAQ A ﬁ) + log<27V3) . (3.11)

Using the no-scale relation -
KiK' Kr Kz =3, (3.12)

we can rewrite (3.9) as
L= ek (KTTDTWDTW - ?min) . (3.13)

Our goal is now to show that the F-term potential (3.13), which we have just recalled as
a result in four-dimensional supergravity, can also be derived from the ten-dimensional
equations of motion, upon assigning the vev (3.6) and examining the ten-dimensional
stress-energy.

3.2 D7-brane gaugino couplings

Now we turn to ten dimensions. To describe the backreaction of the gaugino condensate
on the bulk fields, we must relax the Calabi-Yau condition and employ generalized
complex geometry, as in [21, 38-40]. In particular, as reviewed in Appendix A, the
single covariantly constant spinor is replaced by two internal Killing spinors n; and 7.

6 Although the complex structure moduli and dilaton receive supersymmetric masses from the flux
background, we retain the associated terms in (3.11) because their expectation values matter for
the overall normalization. The K&hler potential (3.11) is consistent with that of [21, 36, 37] — see
Appendix A for details of our conventions.

10



We can combine these to form a bispinor 4, defined as

81

@1 = —W’rll & 7’]; 5 (314)
and we also define
t:=Re (e—¢+<¢/4—A>ﬁ<I>1> , (3.15)
where the operator p is defined by
pCy:=pC, (3.16)

for a p-form C), [41]. In type IIB string theory compactified on an orientifold of a Calabi-
Yau threefold, and in the absence of nonperturbative effects, one has t = 0. However,
upon including the effects of gaugino condensation, t develops a nonvanishing two-form
component [23], cf. (A.27), that will be important for our analysis.

We now study the action of D7-branes on such a generalized complex geometry.
The eight-dimensional action describing a stack of D7-branes is derived in Appendix A
via dimensional reduction and T-dualization of the type I action. We will highlight the
important changes that occur when, instead of dimensionally reducing these D7-branes
on a divisor in a Calabi-Yau orientifold, one wraps a divisor in a generalized complex
geometry. Our findings reproduce results of [21].

3.2.1 Gaugino-flux couplings

The gaugino-flux couplings on D7-branes are determined by the supersymmetric Born-
Infeld action. In the conventions of [23, 42], with the metric ansatz (2.1), and recalling
that we have set (27)2a/ = 1, these couplings — on a divisor in a Calabi- Yau orientifold,
not a generalized complex geometry — are

Scn = 32L7T V=01 g6e”?e 2 G5 - QIO + cc (3.17)
We re-derive this interaction via dimensional reduction of the eight-dimensional D7-
brane action in Appendix A.
In similar fashion, we find the action that one obtains from wrapping a divisor in
a generalized complex geometry. The details are relegated to Appendix A; the result,
in agreement with [21, 39], is that one should promote’

"Discussions of (3.18) in this context include [43] and the recent work [20].

11



Thus, (3.17) becomes (cf. [23])

Sexy = é / V=91 96?27 & - QAN + cc. (3.19)

One can likewise generalize the familiar flux superpotential (3.1). To derive the
correct superpotential in a generalized complex geometry, we exploit the relationship
between the gravitino mass in four dimensions and the superpotential. By computing
the gravitino mass starting from ten dimensions, one can show®

W:w/@/\@, (3.20)
M

where W denotes the full superpotential, also given by (3.10). The generalized com-
plex geometry thus elegantly communicates the nonperturbative superpotential to the
gravitinos via (3.18). Evaluating the gaugino-flux coupling (3.19) using (3.20) to relate
® to W, one finds (see Appendix A)

Sexr = —HZ/ \/—g4e“ZKKTT8TWKTW + c.c. (3.21)
X
We remark that the promotion (3.18) removes a spurious singularity related to

the self-energy of the condensing D7-brane stack. As shown in [23], D7-brane gaugino
condensation sources G, flux that is localized on the D7-branes:

—4A
G=-SVImr Q6. (3.22)
1672

When the bare gaugino-flux coupling (3.17) and the flux kinetic terms are evaluated
using (3.22), one finds infinite energy due to the self-interaction. However, the shift
(3.18) automatically eliminates this divergence, as the localized flux (3.22) is cancelled
by idt. At the same time, the shift (3.18) breaks the well-known perfect square form
of the gaugino-flux couplings reviewed in Appendix A, cf. [15, 32], and so makes an
exact match to the four-dimensional supergravity of [1] possible.

3.2.2 Four-gaugino coupling

We similarly demonstrate in Appendix A, by dimensional reduction and T-dualization
of the ten-dimensional type I action, that there is a four-gaugino coupling” on D7-
branes given by

1
614473

/ V=91 gee B Q- QAN 6O, (3.23)

S =

8The corresponding result in type ITA string theory was obtained in [39].
9The importance of four-gaugino couplings in this context was stressed in [15].

12



where v = V' = V! | I gee*4 is the inverse of the volume V| transverse to the
D7-branes. Upon assigning the gaugino bilinear vev (3.6), the four-gaugino term (3.23)
dimensionally reduces to

S = —/ V=02 K KTT oW oW . (3.24)
X

See Appendix A for details of the computation.

3.3 Ten-dimensional stress-energy

We can now obtain the F-term potential for the Kéhler modulus 7' from the ten-
dimensional field configuration. Upon assigning the gaugino bilinear vev (3.6) and
using (3.21), the properly-holomorphic gaugino-flux coupling (3.19) evaluates to

E@)\)\ = —HieﬁiKKTT <8TWKTW + C.C.) . (325)

The associated ten-dimensional stress-energy is

2 ' -
T = — Ve 5;(}3;*3 - 3; 2205 . QAN 6V, + cc., (3.26)

which integrates to

- / Vs AT g = 4k K KTTor W KW + c.c. (3.27)
M

v

From (3.27) we see that the gaugino-flux coupling contributes a term in the F-term
potential for the Kéhler modulus 7',

Vi = 12K KT W KW + c.c. (3.28)
We now follow the same steps for the four-gaugino coupling. From (3.23), T/;\VAM is

2 5[:)\)\)\)\ ul/Qﬁ
T =~ =~ G M0 (3:29

which integrates to
- / Vase AT g = 4" KT 9. W 0, . (3.30)
M

The four-gaugino coupling (3.23) therefore contributes the term

Vi = e KTTo W oW . (3.31)

13



The total ten-dimensional stress-energy is then

(N . AN AAA
T =T, + T, (3.32)
with T given by (3.26) and with T))* given by (3.29). Combining (3.28) and (3.31)
to evaluate the integral of T, é,’w over the internal space, we conclude that the ten-
dimensional field configuration sourced by gaugino condensation on D7-branes gives

rise to the four-dimensional scalar potential

V = eriK <KTTDTWDTW - 3/<;§WW) , (3.33)

and so precisely recovers the potential (3.13) computed in four-dimensional supergrav-
ity. In summary, we have shown that the ten-dimensional equation of motion (2.22),
incorporating the stress-energy T,i,’w in (3.32), requires that the Einstein-frame scalar
curvature Ry4[g] takes exactly the value demanded by the four-dimensional Einstein
equation (2.24) with the scalar potential (3.13), i.e. the value computed in the four-
dimensional effective theory in [1]. This is one of our main results.

3.3.1 Effect of holomorphic gaugino-flux coupling

It may be useful to indicate how the calculation leading to (3.33) would have gone
if we had used only the naive gaugino-flux coupling (3.17) rather than the properly
holomorphic gaugino-flux coupling (3.19). Upon substituting the vev (3.6) in (3.17)
and in the four-gaugino coupling (3.23), one finds in total

LD —ef KT <8TW8TW + k30rW K=W o + c.c.) : (3.34)

The result (3.34) is not exactly the F-term potential (3.33) for the Kéhler modulus T,
which instead reads

L= —eERKTT (9 WorW + K20 WKW + c.c.) . (3.35)

The mismatch between (3.35) and (3.34) is due to the fact that the gaugino-flux cou-
pling (3.17) was obtained in the absence of gaugino condensation. In the presence of
gaugino condensation, the solution is a generalized complex geometry, and one must
take this into account by promoting G to G + idt = & as in (3.18). The result of
the promotion (3.18) is that the gaugino-flux coupling (3.19) contributes the potential
term (3.28), and so leads to (3.33).
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4 Anti-D3-branes and Gaugino Condensation

Thus far we have shown that the F-term potential in and around the A' = 1 supersym-
metric AdSy vacuum of [1] can be obtained in two ways. The first is four-dimensional
supergravity, as originally argued in [1]. The second derivation, as shown above, is
from ten-dimensional supergravity, supplemented with the gaugino bilinear vev (3.6)
substituted into the two-gaugino and four-gaugino terms in the D7-brane action.

We now turn to the effects of anti-D3-branes, and to the study of four-dimensional
de Sitter vacua from ten dimensions.

4.1 Decompactification from anti-D3-branes

We first consider the effects of an anti-D3-brane in a no-scale flux compactification,
without a nonperturbative superpotential for the Kéahler moduli.

The Dirac-Born-Infeld action of a spacetime-filling anti-D3-brane at position y53
in the internal space leads to the stress-energy tensor

T2 = —pae® ™" g,,0(y — yps) - (4.1)

Inserting (4.1) in (2.21), we learn that including a single anti-D3-brane in a no-scale
background leads to a shift in the effective potential,'’

Lo —12u 4A

1 M0Ralg] = 2pse™ e (yp3) - (4.2)
The potential energy captured by (4.2) is minimized in the infinite volume limit u — oo,
so in the absence of any other effects an anti-D3-brane will cause runaway decompact-
ification. The expression (4.2) agrees with the four-dimensional analysis of [1].

4.2 Interactions of anti-D3-branes and gaugino condensation

To examine the ten-dimensional stress-energy, we write the ten-dimensional field con-
figuration in the schematic form

¢ = Prg + 00, (4.3)

with
8¢ = 8¢l + 00| p3 - (4.4)

Here ¢ is any of the ten-dimensional fields, ¢, is the field configuration when neither
gaugino condensation nor anti-D3-branes are included as sources, 0¢|\y is the change
in the field configuration when gaugino condensation is included as a source, and d¢| 53
is the change in the field configuration when p anti-D3-branes are included as a source.

10As explained in [44], if the anti-D3-brane is in a strongly warped region, the dependence on the
breathing mode becomes e~3“ rather than e=12%,
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The changes d¢|(nx and d¢|pz are each parametrically small away from their
corresponding sources: (A\) is exponentially small by dimensional transmutation, and
the anti-D3-brane is in a warped region. Because the anti-D3-branes and the D7-brane
stack are widely-separated, we can safely neglect the nonlinear corrections to the field
configuration resulting from simultaneously including both gaugino condensation and
anti-D3-branes as sources.'!

Separating the ten-dimensional Lagrange density as

L = Lsusy +pLP?, (4.5)

with Lsusy = Lhuk + 51135 , the total ten-dimensional stress-energy can be written

2 6L 2 §LD3 -
T = =g 5o~ ygaae =T |, * T, (46)
— — ¢ ¢
which we write as
T,, = TM +pTD3| 4 it 4.7
: e Pogt+P](xn) P bog H ( )

The first term on the right in (4.7) is the stress-energy (3.32) of gaugino condensation
on D7-branes, computed in the field configuration ¢ = ¢ng + 04|y, i.e. without
including the backreaction of any anti-D3-branes, as in §3. The second term is the
stress-energy (4.1) due to the Dirac-Born-Infeld action of p anti-D3-branes, computed
as probes of the background ¢ = ¢, as in §4.1.

The interaction term 7T’ ;,nf is defined by (4.7), and captures the stress-energy due to
the interactions of the anti-D3-branes and the condensate: specifically, the correction
to i from the shift d¢|5s, and the correction to TE from the shift d¢|ny."> We
will now explain why T, ;L‘;t can be neglected, so that 7}, is well-approximated by the
first two terms on the right in (4.7). Since we have already shown in §3 and §4.1 that
these two terms together precisely reproduce the four-dimensional effective potential
of [1], establishing that T/if;t is negligible will complete our demonstration that the
ten-dimensional equations of motion recover the result of [1].

To show that the interaction Tfjf,t is negligible, one can consider the leading effects
of p anti-D3-branes on the ten-dimensional fields at the location of the the D7-branes,
and evaluate the resulting correction to the ten-dimensional stress-energy 7 ,ﬁ,’w.

As a cross-check, one can reverse the roles of source and probe, estimate the
leading effects of the D7-brane gaugino condensate on the ten-dimensional fields at
the location of the anti-D3-branes, and evaluate the resulting correction to the stress-
energy pT) MD?’ computed from the probe action of p anti-D3-branes.

The methodology for the computation is parallel in the two cases, and builds

"See [30] and Appendix B for further details and references on nonlinear interactions.
12Corrections to Tﬁ? from the shift §¢|55 are subleading.
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on investigations of supergravity solutions sourced by antibranes [45-55], and of D3-
brane potentials in warped throats [22, 30, 35, 44, 56, 57]. One can approximate the
Klebanov-Strassler throat as a region in AdSs x T!, and use the Green’s functions
for the conifold (see e.g. [58]) to compute the influence of a localized source — i.e., the
anti-D3-branes or the D7-brane gaugino condensate — on distant fields. Far away from
the source, the dominant effects appear as certain leading multipoles, corresponding
to the lowest-dimension operators to which the source couples. Schematically (see
Appendix B for details),

0p = ;o&<$>

where A is the dimension of an operator Ox in the dual field theory, r is the radial
coordinate of the throat, and ryy is the location of the ultraviolet end of the throat.

Sy ﬁA(i)H, (4.8)

ruv

The coefficients aa and Sa correspond to expectation values and sources, respectively,
for the dual operator.

The spectrum of operators of the Klebanov-Witten theory [59] dual to AdSs x T**
is well-understood, due to the pioneering work of Gubser [60] and of Ceresole et al. [61,
62] (see also [22, 30, 63, 64]), and moreover there are many quantitative cross-checks of
the long-distance solutions created by anti-D3-branes [22, 46, 48, 49, 51, 52, 57, 65, 66]
and by gaugino condensates [14, 22, 23, 41, 57]. In Appendix B we assemble key
results from this literature, and then apply them to compute the leading interactions
of anti-D3-branes with a gaugino condensate. A brief summary is as follows.

In the linearized supergravity solution sourced by anti-D3-brane backreaction,
as in [48-51], the leading effects of anti-D3-branes in the infrared on the D7-brane
gaugino condensate are mediated by expectation values for operators of dimension
A > 8, cf. (B.4),(B.5), and so can be neglected when the hierarchy of scales in the
throat is large. Nonlinear effects are likewise negligible [30, 67].

Similarly, in the supergravity solution sourced by gaugino condensate backreac-
tion, the leading effects of the D7-brane gaugino condensate on the anti-D3-branes
are negligible compared to the probe anti-D3-brane action in the Klebanov-Strassler
background, cf. (B.30),(B.31) [30, 64], both at the linear and the nonlinear level.

In sum, the dominant influence of the anti-D3-branes on the gaugino condensate
is via the breathing mode e*. All other interactions are suppressed by further powers
of the warp factor. We have therefore established that

T = TON +pT? + ... (4.9)

where T, ;ﬁ,’w is given by (3.32), T/f?’ is given by (4.1), and the ellipses denote terms
suppressed by powers of e4.

It follows that the ten-dimensional equation of motion (2.22), incorporating the
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total stress-energy T,ﬁ,’w + pT}f)?’ in (4.9), requires the Einstein-frame scalar curva-

ture Ry4[g] to take exactly the value computed in the de Sitter vacuum of the four-
dimensional theory in [1]. In other words, the precise quantitative match between
ten-dimensional and four-dimensional computations that we established for the N' = 1
supersymmetric theory in §3 continues to hold in the presence of anti-D3-branes.

5 Conclusions

We have derived the four-dimensional scalar potential in the de Sitter and anti-de
Sitter constructions of [1] directly from type IIB string theory in ten dimensions, sup-
plemented with the expectation value (A\) of the D7-brane gaugino bilinear.

We first computed the two-gaugino and four-gaugino couplings on D7-branes,
by dimensionally reducing and T-dualizing the ten-dimensional type I supergravity
action. From these terms we computed the ten-dimensional stress-energy sourced
by gaugino condensation on a stack of D7-branes, carefully accounting for the fact
that the ten-dimensional solution in the presence of the condensate is a generalized
complex geometry. Upon dimensional reduction, this stress-energy gives rise to the
scalar potential of the N' = 1 supersymmetric theory of [1]. The match is exact, even
away from the supersymmetric minimum of the potential for the Kahler modulus, at
the level of the approximations made in [1].

To combine the stress-energy of the gaugino condensate with that of anti-D3-
branes at the tip of a Klebanov-Strassler throat, we examined the Kaluza-Klein spec-
trum of 71!, and found the operators of the dual field theory that mediate the leading
interactions between a condensate in the ultraviolet and anti-D3-branes in the in-
frared. We found that all such couplings via Kaluza-Klein excitations are suppressed
by powers of the warp factor compared to the probe anti-D3-brane action. This left
the interaction via the breathing mode, as in [1], as the only important one. We thus
concluded that the ten-dimensional stress-energy of the gaugino condensate and the
anti-D3-branes together lead to the scalar potential of the non-supersymmetric theory
of [1]. The match is again exact, even away from the de Sitter minimum, in the same
sense as above.

This work has not altered the evidence, which we judge to be robust [4], for the
existence in string theory of the separate components of the scenario [1], namely a
small classical flux superpotential, a gaugino condensate on a stack of D7-branes, and
a metastable configuration of anti-D3-branes in a Klebanov-Strassler throat. Instead,
we showed that provided these components exist in an explicit string compactifica-
tion, their effects can be computed either in ten dimensions or in the four-dimensional
effective theory, with perfect agreement.

Progress in understanding the physics of de Sitter space in string theory continues.
Our findings may aid in pursuing de Sitter solutions in ten dimensions.
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A Dimensional Reduction

In this appendix we obtain the couplings of D7-brane gauginos that are required for
our analysis. Our conventions are as in [68], augmented by (27)%a’ = 1.

A.1 D7-brane gaugino action

We first compactify type I superstring theory on 72 and T-dualize to find the action
on type IIB D7-branes. As the ten-dimensional N = 1 supergravity action with a
vector multiplet, including the four-gaugino action, is well known, we can determine
with precision the D7-brane gaugino action including four-gaugino terms.

One minor complication is that some fields, such as the NS-NS two-form B, are
projected out in type I superstring theory. We will therefore first arrive at a D7-brane
action containing all terms that do not involve such fields, but this will not yet be
the full D7-brane action. To obtain the proper gaugino-flux coupling, one can then
SL(2,7Z) covariantize the gaugino-flux coupling, following [23, 69].

The type I supergravity action in ten-dimensional Einstein frame is [32, 70, 71]

1 1 [ 1 2
S 5.2 / -G RIO - _aA(b&A(b - 6_ FABC - —6_¢/2 tr )_(FAch
22, ] 2 12 4

%

164212

where y is a 32-component Majorana-Weyl spinor. Traces here are taken in the vector

tr FapF48 — tr XFADAX} , (A1)

representation of SO(32). In order to simplify T-duality, we first rescale to string
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frame, using G+ e~%/2G. Compactifying on a 72 with volume 1/2t, we find

_ L2 / VG R+ ] (A2)

2&10

Next, we T-dualize; since we are in type I string theory, this replaces the T2 by a T2/ Z,
with volume ¢, and re-defines e=2? — 2t2¢72%, yielding the eight-dimensional action

V—Gs [e—%Rg 4. } . (A.3)

Finally, we rescale back to ten-dimensional Einstein frame, using G — e?/2G.
This procedure yields the new Yang-Mills term

1 vV —Gs {__ tr Fp Fab} (A4)

22, 87T2

Here a,b € {0,...,7}, and we will later use 4, j € {8,9}. The action (A.4) is consistent
with the Einstein-frame D7-brane Dirac-Born-Infeld action

'L;? tr{ ¢\/ det(G + e~ ¢/2F/27r)} (A.5)
The factor of 1/2 is due to the fact that the gauge group is SO(2n); Higgsing to U(n)
by moving away from an O7-plane eliminates this factor (cf. [68]).

It is now convenient to take the 72 in the type I frame to have the coordinate
range [0,1]?, and to use the same coordinates for the double cover of the type IIB
T?/Z,. For simplicity, we also take the type I torus to be a square torus with string
frame metric g;; = %5”-. This means that the string frame metric transforms via
G2 — GQ/(Qt)2

We can now study the fermionic action of the D7-brane in Einstein frame. Since
we are interested in studying D7-branes on a holomorphic divisor, we will eventually
take tr YI'apcx to be a linear combination of the (pullback of the) holomorphic three-
form and its complex conjugate, and we can therefore retain only functions of tr YI' . x.
Other contractions do not contribute to the terms of interest.

With that restriction, after T-dualizing we find the string-frame D7-brane gaugino
action

1
—(tr xTanx)*| ,  (A.6)

1 .
Sterm = M?/ v —Gjs {—6_45 tr xI'* Dy x + éFabi tr Iy — 611
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and the corresponding Einstein-frame D7-brane gaugino action

1 1
Sferm = ,U/?/ V _GS |:_ tr XFaDaX + §€¢/2Fabi tr XFGMX - @(tr XFCLbZX) :| ’ (A7)

where we have introduced the Einstein frame volume tg := te=%/2. Leaving implicit
henceforth that ABC is a permutation of abi, the D7-brane gaugino action can be
written in the more symmetric form

e®/2 1
Sterm = —Hi7 / V=G5 | tr XT*Dax — S Fupe tr xT4EC +— tr xFABC
24 192t g
A

8)

In (A.8) we have obtained the part of the action that survived the type I projections.
The full D7-brane action is then given by SL(2,Z)-covariantizing. As doing so would
involve studying the transformation properties of the D7-brane fields under SL(2,7Z),
which would take us too far from our main aims, and the full set of two-gaugino terms in
the k-symmetric D7-brane action was found in [23, 69], we simply SL(2, Z)-covariantize
the action by including the missing terms found by [23, 69], leading to

o0/2
Sterm = M?/ v —Gg [— tr xT*Dax — ET8 tr YT 45 (FABCUl +e d)HABCUB)X

2
_ tr xT ) , A9
192tE( XL aBcO1X } ( )

where the o matrix notation will be explained below.

A.2 Reduction of the D7-brane action on a divisor

Equipped with the gaugino action (A.9), we now consider wrapping D7-branes on a
divisor D in an orientifold M of a Calabi-Yau threefold. We assume that there is a
single Kahler modulus 7', with the Kahler form written as

J=tw, (A.10)
and the volume 1
Vebt = §t3 (A.11)

where we have normalized w € H (M, Z) such that [, w AwAw = 1. We take the
volume of D to be [, \/ge **T** = Re(T) = t*/2, while the volume of the curve dual
to D is t, and corresponds to tg in (A.9). The divisor D is assumed to be rigid, and
so the D7-branes will not explore the transverse space, and therefore the geometry of
the latter is unimportant.
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We note that wrapping on D topologically twists the D-brane worldvolume theory,
so that scalars become sections of the normal bundle N of D and fermions become
spinors on the total space of this normal bundle [72]. For notational convenience, we
implement the topological twist via a background U(1) R-symmetry gauge field, rather
than by re-defining the local Lorentz group. Since, locally, the Calabi-Yau manifold
looks like the total space of the normal bundle, there is no topological obstruction to
relating these fermions to the covariantly constant spinor on the Calabi-Yau.

A.2.1 Internal spinors

As our ansatz for the geometry of the internal space M, we take M to have an SU(2)
structure. This can be encoded in terms of two globally-defined orthonormal spinors,
1y and x., and an invariant one-form v,dy®, that are related by

1 a *

X+ = 5V Yalls (A.12)
where |[v]? = 2. Using x4 and 7, one can construct invariant forms with the compo-
nents

v =iy s I3 = k™ e — iy e, 5 = Xy (A.13)

T = inly "y, QP = plymry, (A.14)

The invariant forms satisfy

1 _
Jg/\Qg :QQ/\QQ :O, ’Uanb:Uanb :0, JQ/\JQ = 59/\92, (A15)
J:J2+%UAE,Q:§22/\U. (A.16)
We now construct the linear combinations
= ieM2H/2 (cos gm + sin §X+> , (A.17)
1y 1= /27102 (cos §77+ — sin §X+> : (A.18)

which are normalized as
mm = nine = e, (A.19)

The parameters ¢ and ¥ represent the angles between 7; and ny: from (A.17) and

(A.18) one has

T

nim = 2'6219+A

cos . (A.20)
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The spinors 7; and 75 can be repackaged into a pair of bispinors:
®y = —8ie Ay @0l (A.21)

dy 1= —8ie @1t . (A.22)

Using the Clifford map, ®; and ®, are polyforms: specifically, they can be written in
terms of invariant forms as

. 1o 1
P, = Ve {cosap (1 — §J2 A Jg) +iJy —singp Re Q2:| , (A.23)

Dy = v A [Rng +icospImQy +sinp (1 — %Jg A Jg):| ) (A.24)

The ansatz we have just described corresponds to a generic SU(2) structure. If
M is a Calabi-Yau orientifold then in fact ¢®’ = 1 and ¢ = 0. However, once gaugino
condensation is incorporated and M becomes a generalized complex geometry, ¢ will
vary non-trivially along M; the SU(2) structure is then said to be dynamic.

We now expand to first order in the small quantity (A)), using the fact that
v = O((A\)). We find

o, = 6“(1 — ¢Re 92) +O((AN?) (A.25)

1
Py=Q+pvA (1—§J2AJ2) +O((AN)?), (A.26)
while the two-form component of t is
t=—e 2o ReQ + O((AN)?). (A.27)

On neglecting the terms of order (A\)?, ®; and ®, reduce to the S-deformed pure
spinors found in [23].

A.2.2 Ten-dimensional spinor ansatz

Equipped with the six-dimensional spinors 7; and 7., we can now give our ansatz for
the ten-dimensional spinors. The SL(2,Z)-covariant x-symmetric D7-brane action is
usefully written in a redundant notation, involving two copies of the ten-dimensional
fermion [41, 42], which we now adopt. We consider a doublet x = (x1,x2) of 32-
component ten-dimensional Majorana-Weyl spinors, and decompose these spinors un-
der Spin(10) — Spin(4) x Spin(6). The ten-dimensional gamma matrices decompose
as

M= AUt o1, =t ®q . (A.28)
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For gamma matrices and spinor manipulations, we use the conventions of [73],

01 0 —io; 10 e 0 01
= (zo)’ h= (w 0 ) 7 <0—1)’ €= (0—e>’ = <—10)‘
(A.29)
Under this decomposition, a ten-dimensional Weyl spinor decomposes as 16,

(2, ®4,) ® (2_ ® 4_), where subscripts denote chirality. We can thus write the
ten-dimensional Majorana-Weyl spinors as

1
X1 = —e A2\ @+ ce (A.30)
47
and ]
X2 = —E€_2A+9u/2 )\D ® n2 + c.c. (A31)

where c.c. refers to charge conjugation, and Ap is the embedding of a four-dimensional
Weyl spinor A into a Dirac spinor via

Ap = ( Aoa) | (A.32)

A.2.3 Decomposition of D7-brane action

We can now expand the D7-brane action (A.9) in terms of the spinors in (A.30) and
(A.31). We will henceforth leave traces implicit, writing

1, ., 1
= X" = 5xx (A.33)

with the normalization 1
tr 77" = 55“’ (A.34)

for Lie algebra generators. We likewise leave implicit pullbacks to the divisor D.
The gaugino kinetic term can be decomposed as

Skin = —Uur vV —G tr XFADAX = \% -G (»Ckin,X + Lkin,D) ) (A35)
XxD XxD
with
V=G Lyinx = — 27 V=G tr xIT"D,x (A.36)
XxD XxD
=L J—ge AT mAGHD N (A.37)
4T Jx«p
- / V=g Re(T)A\6"D,\ (A.38)
47T X
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and

Lyinp = — 27 tr XDy x (A.39)
1 _ . .
= ﬁe_?’A)\‘jj)\D (nipv’Dml + ngv’Dmg) + c.c. (A.40)
1 - . .
- _ ﬁe_‘%)\k (an”yZDml + nglemg) + c.c. (A.41)
L aayy i
=gt M <n§71237 Dimn{ viasnz + (m > 772)) +ce. (A.42)
_ b kel gt
T Aidt- Q+ cc. (A.43)

In (A.43) we have omitted terms that are higher order in (A)), in particular the terms
of order (A\)? in (A.25), (A.26), and (A.27). We make the same approximation in the
computations below.

For the gaugino-flux couplings, we find

6(1)/2—2u—A

L= Ty (S\D 7 +AH ® 771T) Fapcy™9° (Ap @12 + A5 @ 133) + (m 4 o)
(A.44)
ef/2muA T  ABC -
== —3gp ApApm Y m + ) Fape + (1 ¢ 1) (A.45)
7;6(1>/2—2u L
T AMF-Q+cc (A.46)
e oA P ye T ABC, 5 c x
L= — BEETY <)\D ®m + Ap ®771> Hapcy™ "%y (Ao @m + Ap @n7) + (m <> m),
(A.47)
o—b/2-2u—A ,_  ABC
:W <)\CD>\D7]1 Y m + C.C.)HABC + (7]1 — 7]2) (A48)
6—¢/2—2u -
T AMH-Q+cec. (A.49)
Combining (A.46) and (A.49), we obtain the coupling
Sey = 32L7T - V=ge PTEING - Q + c.c (A.50)
X
Thus, combining (A.50) and (A.43), the total gaugino-flux coupling is
S@)\)\ = ! vV —g€_2u+¢/25\5\ ®-Q + c.c. (A51)

32—7‘- XxD
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The result (A.51) precisely agrees with that of [23] once one accounts for the difference
in normalization of the gaugino kinetic term there and here.
Similarly, we find the four-gaugino couplings

10u—6A 2
ﬁ)\)\)\)\ = — m (>\D (029 ’f]ir + C.C.)”yabc()\p & n2 + C.C.) + (7]1 e ’/]2)] (A52)
610“_&4 :_c T, abc 2
== g gm0 R e+ (m < 772)] (A.53)
etlu—a4 o XX ~abe -y =abc] 2
= — oo 20 - 200 ] (A.54)
V€8u 4A
— -2 0w, (A.55)

where v was defined below (3.23).
We have thus obtained the Lagrangian density for D7-brane gauginos, up to and
including [A\|? terms:

Lgangino = —ﬁe‘“““;\&“@)\ + ée—%”’/ 26 - QM +cc — LI

A0 QAN

(A.56)
Assigning the gaugino bilinear vev (3.6) and using (3.20), the gaugino-flux cou-
pling (A.51) dimensionally reduces to

je—iA+in0 T ()

Sexa = — V=ge??o — W0 4 e, A 57
o o L T [ e MQANQ 32 e (A-57)
= [ Ve e 4 (A58)
% 2rV
=— /@21/ V=01 EKTTO-W Ko W + c.c. (A.59)
X

We used the identity k2K77K; = —Re(T)/(27V), which follows from (3.11) and
(A.11).

Similarly, assigning the gaugino bilinear vev (3.6), the integral of the four-gaugino
term (A.55) dimensionally reduces to

_ k€2 Q T 50
S)\)\)\)\ = ge 8TWHP8TWHP5 (A60)
X M 24 VJ_
2R
- /X V=gaeriK g(v) OrW O W (A.61)
__/ V=02 KT 0L WO W (A.62)
X
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We used the identity K77 = Re(T)?/(3nV).

A.3 Normalization of the Kahler potential

We temporarily normalize the flux superpotential as
Wﬂux = a/ G N Q, <A63)
M

and the Kéahler potential as

kK = =3log(T+T) — log (2/ e 0 /\ﬁ) log(—i(r — 7)) —logb.  (A.64)
M
Given a complex structure, we normalize
i / e MONQ =c (A.65)
M

We now fix a, b, and ¢ by dimensional reduction of the ten-dimensional supergravity
action.

The first constraint is given by matching the F-term potential for the complex
structure moduli and axiodilaton. Matching the gravitino mass does not provide an
additional constraint. The potential

7_

- / et A2 G 2 (A.66)
10
e AA-12u+0 ( Ju G A §_€—4AQ) A %6 (_ JuGArQ _€—4A§)

M

:211%0 [y e 4N [y e QA Q
(A.67)
_ 1 —12u+¢fMG/\ QfMG/\Q (A.68)
2"610 i [, e MAQ
must match
V, = " IKKTT D WD W = k2ei 2 / GAQ / GAQ, (A.69)
M M
which requires
2
& oTp2ys, (A.70)

b

Another constraint is given by matching the F-term potential for D3-brane mod-
uli. Matching the F-term potential for the Kédhler modulus does not provide an addi-
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tional constraint. From (C.18) with the undetermined coefficient ¢ we have

o erit K®D W D:W ATl
Hence we fix
i / e MONQ =38V, (A.72)
M

There remains the freedom to choose a and b, corresponding to Kahler invariance.
All such choices are physically equivalent; for the sake of simplicity we normalize the
superpotential as

. / GAQ, (A73)
M

and the Kéahler potential as

k3K = —3log(T+T) —log <z /M e MQN ﬁ) —log(—i(t — 7)) +log(2"V?). (A.74)

B Spectroscopy of Interactions

In this appendix we show that the interactions of anti-D3-branes with a gaugino con-
densate that are mediated by Kaluza-Klein excitations of a Klebanov-Strassler throat
can be safely neglected, in the sense defined in §4.

B.1 Kaluza-Klein modes on 7!

We will use the conventions of [22] for denoting fields on the conifold and operators in
the Klebanov-Witten theory. We use labels L = (j1, j2, R) and M = (my, msg) for the
quantum numbers under the SU(2) x SU(2) x U(1)g isometries of T, and write a
solution to the Laplace equation on the conifold, V2f = 0, as

A
Fr, ) = %fw(m) Yiar(0), (B.1)

with the eigenvalues'”
Au(L) = =24 \[6js (i + 1)+ jalja + 1) — /8] +4. (B.2)

The singlet j; = jo = R =0 has A; = 0, and the next-lowest eigenvalue, for j; = j, =
1/2,R=1,1is Ay = 3/2.

13The eigenvalues A4(L) were denoted by A(L) in [57], by A¢(L) in [22], and by A(I) — 4 in [30].
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B.1.1 Perturbations sourced by D3-branes and anti-D3-branes

We now consider in turn the perturbations sourced by D3-branes or anti-D3-branes
in the infrared or ultraviolet regions of a Klebanov-Strassler throat. Recall that the
Dirac-Born-Infeld + Chern-Simons action of a probe D3-brane is Sp3 = pus®_, and
a D3-brane is a localized source for the scalar &, whereas the Dirac-Born-Infeld +
Chern-Simons action of a probe anti-D3-brane is Spz = u3®4, and an anti-D3-brane
is a localized source for the scalar ®_. As explained in [57], see also [30], it is useful
to define the fields ¢, = 7"4(1);1 and p_ := r~*®_, which have canonical kinetic terms
and so have solutions of the usual form

pr=ar 8 4 groet (B.3)

with «, § independent of 7.
e Anti-D3-brane in the infrared:

The leading perturbation of ®_ is a normalizable profile,
5<7°_4<I>_> ~ 80D (B.4)

The leading (singlet) mode scales as 7~8, and corresponds in the dual field theory
to an expectation value for the dimension-eight operator [51, 57, 65]

Og = / P04 T [W2TW2] . (B.5)

Higher multipoles in the linear solution result from operators such as (but not
limited to, cf. [22, 57])

~ —2
Og+3k/2 = /d29d29 Tr [W_?_W_i_ (AB)k] s (B6)
for k € Z,. The first non-singlet mode is Oyg/, and scales as r19/2 See
[22, 30, 57] for extensive analysis of this system.
e D3-brane in the infrared:
The leading perturbation of &, is a normalizable profile,
5(r4q>;1> ~ A D) (B.7)

The singlet is a constant, while higher multipoles correspond to expectation
values for operators such as (but not limited to, cf. [57])

ng/g = TI“ [(AB)k}

b (B.8)
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for k € Z,, with |, denoting the bottom (f = § = 0) component of a supermulti-
plet, as in [22]. The leading non-singlet mode scales as r—%/2 [22, 30, 35, 57], and
is dual to an expectation value for

O3y = Tr[AB]|, . (B.9)
Higher multipoles can be found in [22, 30, 57].

e D3-brane in the ultraviolet:

The leading perturbation of ®, is a non-normalizable profile [57]

5(7’4(1);1) ~ R+ (B.10)
The singlet mode scales as r?
(B.5) whose expectation value arose in the anti-D3-brane solution (B.4). Higher
multipoles are dual to sources for operators such as Og 32 in (B.6). The leading

, and is dual to a source for the operator Og in

non-singlet mode scales as /2, and is dual to O1g)s [22, 30, 57).

B.2 Effect of anti-D3-branes on gaugino condensate

We would like to examine the long-distance solution sourced by p anti-D3-branes
smeared'® around the tip of a Klebanov-Strassler throat. To start out, we will lin-
earize in the strength of the anti-D3-brane backreaction, and then discuss nonlinear
effects.

B.2.1 Coulomb interaction with a D3-brane

The SU(2) x SU(2) invariant part of the linearized long-distance solution sourced by p
anti-D3-branes at the tip of a noncompact Klebanov-Strassler throat has been studied
in [46, 48-52]. The leading perturbation of ®_ corresponds to the normalizable profile
(B.4), up to logarithmic corrections.

A strong consistency check of this solution comes from considering a D3-brane in
the ultraviolet region of the throat. The potential for motion of such a D3-brane can be
computed either by treating the D3-brane as a probe in the solution (B.4) sourced by
the anti-D3-branes, or by treating the anti-D3-branes as probes in the solution sourced
by the backreaction of a D3-brane in a Klebanov-Strassler throat. The former approach
amounts to evaluating the action of a probe D3-brane in the solution of [48-52].

14 At different stages of the evolution of a collection of anti-D3-branes interacting with flux, as
described in [45], the anti-D3-branes may be localized at a point on the S® at the tip, or puffed up
into a nontrivial configuration, and in such a case the supergravity equations of motion become difficult
partial differential equations. Fortunately (cf. [51]), in any of these cases the leading long-distance
solution linearized around AdSs x T1! can be obtained from the SU(2) x SU(2) invariant part of the
linearized solution, i.e. from the linearized solution obtained from considering anti-D3-branes smeared
around the S3. This latter problem requires solving only ordinary differential equations.
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The latter approach, which was used to compute the D3-brane Coulomb potential
in [44], is even simpler, because the D3-brane and the Klebanov-Strassler background
preserve the same supersymmetry, and so the perturbation due to the D3-brane enjoys
harmonic superposition. One finds [57] that the leading perturbation of ®, sourced
by D3-brane in the ultraviolet is the non-normalizable profile (B.10).

The Coulomb potential between an anti-D3-brane in the infrared and a D3-brane
in the ultraviolet can be computed either from (B.4) [49, 57] or from (B.10) [44], with
exact agreement.

We can understand this match in the language of the dual field theory (see §3.3 of
[57]). A D3-brane in the ultraviolet creates a potential by sourcing a non-normalizable'®
profile &, corresponding to a source (in the field theory Lagrangian) for operators
such as Og. An anti-D3-brane in the infrared creates a potential by sourcing a nor-
malizable profile 0®_, corresponding to an expectation value for operators such as Os.
Either way, the mediation occurs by a high-dimension operator, and leads to a very
feeble interaction at long distances.

The above arguments give several conceptually different — but precisely com-
patible — perspectives on a single fact, which is that the Coulomb interaction of a
D3-brane with an anti-D3-brane in a warped region is suppressed by eight powers of
the warp factor, and so is extremely weak [44].

B.2.2 Da3-brane perturbation to gauge coupling

Thus far, as a first step, we have used a D3-brane in the ultraviolet as a probe of
the solution generated by anti-D3-branes in the infrared. Our actual interest is in the
effect of anti-D3-branes in the infrared on D7-branes in the ultraviolet.

Now, as a further warm-up, we recall the effect of D3-branes (not yet anti-D3-
branes) in the infrared on gaugino condensation on D7-branes in the ultraviolet.' The
effect of the perturbation (B.7) on a gaugino condensate was computed in [35]. Upon
summing over all the chiral and non-chiral operators of the Klebanov-Witten theory
[59], and applying highly nontrivial identities to collapse the sum, the result for §7°
took the form of a logarithm of the embedding function of the D7-branes, expressed
in local coordinates [35]. The perturbation (B.7) is thus the effect responsible for the
dependence of the gaugino condensate on the D3-brane position [34, 35|, which is of
central importance in D3-brane inflation [44].

This result was exactly reproduced by an entirely different computation in [22],
as reviewed in Appendix C below: the G_ flux sourced by the gaugino-flux couplings
on the D7-branes leads to a solution for ®_, and a D3-brane probing this solution
experiences the potential implied by the perturbation §7" computed in [35].

15Tn the sense of footnote 8 of [57].

16Corrections to gaugino condensation on D7-branes due to interactions with distant branes have
been extensively studied in the context of D3-brane inflation, both from the open string worldsheet
[34, 74] and in supergravity [35]: see [9] for a review.

31



For completeness, we now explain an asymmetry between the effects of D3-branes
and of anti-D3-branes. As will be explained in §B.2.3 below, one finds from (B.4) that
an anti-D3-brane in the infrared has only extremely small effects on D3-branes or D7-
branes in the ultraviolet (except through couplings via the zero-mode e*). In contrast,
a D3-brane in the infrared does have a detectable effect at long distances. Adding a
D3-brane increases the total D3-brane charge of the throat by one unit, N — N + 1,
and this change is reflected in the solution by a non-normalizable correction relative
to the throat with N units of flux and no D3-brane.

Simply adding an anti-D3-brane would likewise change the net tadpole and the
flux, and so have a detectable effect at long distances. However, this is not the relevant
comparison for our purposes. The anti-D3-brane configuration of [45] is a metastable
state in a throat with less flux and some wandering D3-branes, but the same total
tadpole. The anti-D3-branes thus source small normalizable corrections to the solution
that is dual to the supersymmetric ground state.

B.2.3 Anti-D3-brane perturbation to gauge coupling

To compute the effect on the gaugino condensate of the perturbation (B.4) due to
anti-D3-branes in the infrared, we follow the same logic used in [35] and reviewed in
§B.2.2. We evaluate the D7-brane gauge coupling function (3.5),

T:e4“/ \/9_66_4A+i/ Cy, (B.11)
D D

in the perturbed solution, and use (3.7). Examining (B.11), we see that it suffices to
know the breathing mode e“, as well as the leading perturbations to &, and to the
metric g, at the location of the D7-brane. Because e* is a six-dimensional zero-mode,
we will treat it separately: at this stage we seek to check that any influences of the
anti-D3-branes on the condensate, except via the breathing mode, can be neglected.

Because ®_ = 0 in the Klebanov-Strassler background, we write (see Appendix
D of [67])
SReT ~ e /D VIO <—z(q>$>)‘2(5q>+ D) + (q>$>)‘1ggg)5gab> . (B12)

where for a field ¢, the background profile in the Klebanov-Strassler solution is denoted
»O),

Our consideration above of a D3-brane probe in the ultraviolet showed that d®_ is
mediated by Og (with subleading corrections from operators of even higher dimension)
and is negligible at the D7-brane location. Perturbations d®, (or more usefully, d¢. )
are mediated by operators such as Os/s, and can be sizable if strongly sourced, e.g. by
the presence of a D3-brane. However, in [30] it was shown that the leading profile dp
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that arises in the full nonlinear solution due to an anti-D3-brane scales as dp, ~ =%,

just like the profile dp_ in (B.4) that is directly sourced by the anti-D3-brane: see
§5 of [30]. Likewise, in Appendix D of [67] it was shown that the leading non-singlet
metric perturbation scales as r~1%/2 (see [30, 67] for definitions of the associated tensor
harmonics on T%1).

In summary, in the linearized background (B.4) sourced by anti-D3-branes in the
infrared, the leading corrections to Re T" are mediated by operators of dimension A > 8,
resulting in extremely small corrections to the D7-brane gaugino condensate when the
hierarchy of scales in the Klebanov-Strassler throat is large. Thus, the only influence of
the anti-D3-branes on the gaugino condensate that is non-negligible for our purposes
occurs via the breathing mode e*, and was already included in the four-dimensional
analysis of [1]. We have therefore established (4.9).

B.3 Effect of gaugino condensate on anti-D3-branes

For the avoidance of doubt, we now reverse the roles of source and probe relative to
§B.2, and examine the influence of gaugino condensation in the ultraviolet on anti-D3-
branes in the infrared. As in §B.2, we treat the breathing mode separately.

B.3.1 Leading effect of flux

The anti-D3-brane probe action is Spz = u3®y, so we seek the leading perturbations
of &, in the infrared. Gaugino condensation on D7-branes directly sources flux per-
turbations dG_ and dG. via the gaugino-flux coupling (3.17), as shown in [22] and
reviewed in §3. Expanding in Kaluza-Klein modes on 7!, the lowest mode of 6G is
dual to the operator

Os)p = /d29Tr[AB} , (B.13)

of dimension A = 5/2 [22]. The coefficient c;5/, of this mode in the ultraviolet is
at most of order (A\), because it is incompatible with the no-scale symmetry of the
Klebanov-Strassler background, and so is present only once it is sourced by the gaugino
condensate [22, 30]. We stress, however, that c;/; might well be parametrically smaller
than (A)): the operator Os, is easily forbidden by (approximate) symmetries, corre-
sponding in the bulk to symmetries of the D7-brane configuration.!” Our estimates of
the anti-D3-brane potential will therefore be upper bounds.
The equation of motion for the scalar ¢ is

68A

Vi, = IGL)* + ... (B.14)

Im 7

where the omitted terms (cf. §2) can be neglected for the present purpose. In the
Klebanov-Strassler background, the three-form flux has a nonvanishing profile Gf)

17See e.g. [75] for related work.
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[76]. With one insertion of the background flux and one insertion of the perturbation

0Gy, we have
84

26 _ € (0)
V20, — ImT<G+ 3G +c.c.) , (B.15)
from which one finds
SO, ~ e2iv x (AN (B.16)

with e44r the warp factor at the tip. Since
(AN) ~ O(e*ur) | (B.17)

we conclude that
Vs < pizeip (B.18)

which is smaller, by a power e%A“P, than the anti-D3-brane potential (4.1) in the

Klebanov-Strassler background. Thus, the influence of the gaugino condensate on the
anti-D3-brane, via the linearized perturbation dG., is a parametrically small correc-
tion.

B.3.2 Spurion analysis

Thus far we have considered only the linearized perturbation dG dual to Oy, lead-
ing to the small correction (B.18) to the anti-D3-brane potential. If the D7-brane
configuration enjoys no additional symmetries that enforce c5/, < (AA), then (B.18)
is indeed the parametrically dominant correction to the anti-D3-brane potential from
gaugino condensation [64]. However, establishing this requires extending the treat-
ment of §B.3.1 to incorporate more general perturbations, such as perturbations of
the metric, and also requires working at nonlinear order in these perturbations. A
complete analysis of this system is carried out in [64]; here we review the strategy and
summarize the main findings.

To find the general form of the infrared solution created by a partially-known
ultraviolet source, one can perform a spurion analysis, in which the parametric size of
the ultraviolet coefficient ca of a given mode d¢pa dual to a source for an operator Op
is determined by the symmetries preserved by Oa.

Specifically, perturbations allowed in a no-scale compactification of the Klebanov-
Strassler throat, asin [12], have cay ~ O(1). Perturbations that are allowed only after (a
single) insertion of the gaugino condensate expectation value (AX) have ca ~ O((AN)),
while perturbations that are allowed only after inserting [(AX)|? have ca ~ O((AN)?).

To determine the spurion assignment for a given operator, we examine couplings of
the field theory dual to the throat to the D7-brane field theory. Consider, for example,

/ d*0 Tr[AB] Tr [W, W] (B.19)

D7”
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where'® ]
<Tr [WQW"‘]D7>L = 50N (B.20)

From (B.19) we find the coupling
1
oW = §<A)\> /d29 Tr[AB], (B.21)

which can be interpreted as a perturbation to the superpotential of the Klebanov-
Witten theory, with the exponentially small spurion coefficient ().

Evidently, to carry out such a spurion analysis one needs to know which perturba-
tions of the supergravity fields are allowed in the background, versus requiring either
one or two factors of (A\) as spurion coefficients. This information can be read off
from an assignment of the operators of the dual field theory to supermultiplets, as in
(61, 62]. A systematic treatment along these lines appears in [22, 30, 64].

Examining (B.14), one sees that the leading linearized perturbations to the anti-
D3-brane potential are modes of the flux G, the axiodilaton 7, and the metric g. At
this stage we need to know, from Kaluza-Klein spectroscopy and from spurion analysis,
the dimensions A, of the lowest-dimension non-singlet modes of G, 7, and g, as
well as their spurion coefficients ca. For the flux, one finds [64]

Amin(G—l—) = 5/2 with C5/2 ~ <>\)\> y (B22)

corresponding to Osy in (B.13), as explained above. Another mode of flux gives a
slightly smaller contribution:

A(Gy) =3 with c3 ~ (AN), (B.23)
corresponding to the operator O = Tr [Wﬂ ‘b. For the dilaton, one finds [64]
Amin(T) = 11/2 with 011/2 ~ O(].) s (B24)

corresponding to

which is allowed in the background of [12]. (There is also a A = 4 mode of 7, but we
can absorb this into the background value of the dilaton.) For the metric, one finds
the leading contribution [14, 64]

Anin(g) =3 with 3~ (AN), (B.26)

18The D7-brane gauge field strength superfield W<|p7 should not be confused with W, appearing
in (B.5), which is the gauge field strength superfield of the D3-brane fields of the Klebanov-Witten
theory.
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corresponding to

O3 = Te[W?],. (B.27)
The first subleading correction from a metric mode has
A(g) =V28=529  with  c 55~ O(1), (B.28)
corresponding to
O /55 = /d29 d*0Tr[f(A, B, A B)], (B.29)

where f is a harmonic, but not holomorphic, function of the chiral superfields A and
B. The perturbation dual to O /4 is allowed in the background of [12].

Using (B.17), we find from the linearized perturbations (B.22),(B.23),(B.24),(B.26),(B.28)
that the anti-D3-brane potential receives corrections of the parametric form

5‘/@ 5 ,U/3€4Atip <€éA“p 4 eAtip + e(\/ﬁ—@f‘hip + e%AciP + .. ) . (B30)

For completeness, we remark that upon applying the methods of [30] to study the
nonlinear solution, one finds [64] that a specific nonlinear perturbation, corresponding
to two insertions of (B.22), gives a correction to the potential of the form

Vg S pgetdie x et (B.31)

which can be more important than some of the modes in (B.30), but less important
than the linearized flux perturbation (B.22).

Let us summarize. To compute the influence of a gaugino condensate in the
ultraviolet on anti-D3-branes in the infrared, one can allow perturbations of all of
the supergravity fields, grading these modes via a spurion analysis, and examine the
resulting solution for @ in the infrared. We have collected here, in (B.30), the leading
contributions of the fields that appear in (B.14), at linear order in perturbations.
Results for all fields, to all orders, appear in [30, 64], and the only nonlinear correction
competitive with any of the terms in (B.30) is the quadratic flux perturbation (B.31).

The final result is that the largest correction to the anti-D3-brane potential medi-
ated by excitations of the throat solution is suppressed by at least a factor ez e & 1
compared to the anti-D3-brane potential in the background solution, and so can be ne-
glected. This finding is compatible with that of §B.2, and constitutes strong evidence
for (4.9).
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C D3-brane Potential from Flux

The potential for motion of a spacetime-filling D3-brane in a nonperturbatively-stabilized
flux compactification, such as [1], is well understood from the perspective of the four-
dimensional effective supergravity theory [35, 44, 77, 78], with the Ké&hler potential
obtained in [36] (see also [79-81]) and with the nonperturbative superpotential com-
puted in [34, 35]. Showing that this potential is reproduced by the Dirac-Born-Infeld
+ Chern-Simons action of a probe D3-brane in a candidate ten-dimensional solution
sourced by gaugino condensation serves as a quantitative check of the ten-dimensional
configuration [21-23]. An exact match was demonstrated in [22] in the limit that
four-dimensional gravity decouples.

In this appendix we compute the potential of such a D3-brane probe. Through
a consistent treatment of the Green’s functions on the compact space, we extend the
match found in [22] to include terms proportional to x2.

Within this appendix we take the Kéhler potential (3.11) to include D3-brane
moduli,

k3K = —3log(T+T—k)—log(—i(r—7))—log (z /M e M ﬁ) +log(27V3) , (C.1)

with (cf. [36, 78, 80])"
2
v = gugl-{,i Re(T)e ™ =

1
3V,
Here k is the Kahler potential of M, obeying k,; = ¢,;, where a and b are holomorphic

(C.2)

and anti-holomorphic indices for D3-brane moduli. We use the convention ds?* =
29,45d2°dz" for the line element. As shown in [22], the G_ flux sourced by gaugino
condensation is

e AA -
(G_)goqg = —e 4470218 WaaﬁbG(z)(Z; 2p7) 9" Qpaq - (C.3)

Here G o) is the Green’s function on the internal space transverse to the D7-branes. If
this space is taken to be noncompact, we have

1
G)(20) = 5-log|z], (C.4)

in terms of a local coordinate z.
The flux (C.3) is a source for the scalar ®_, leading to a potential for D3-brane

19 As explained in [78], the relation (C.2) should be understood to hold exactly at a reference location
in field space. Deviations from (C.2) at other locations lead to corrections of order % in (C.16)
and (C.17) below, which we will neglect.
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motion. The equation of motion for &_

8A

V2P = Ie |G+ (C.5)

where the omitted terms are not important for the present computation. Solving
(C.5) and taking the D7-brane location to be given by an equation h(z) = 0 in local
coordinates, one finds®"

o = [ dya -’€8AG2 C
-=/ 4 ©) (2 2) |G| (C.6)
6H4K 16w a h&
= 47T2N2 g b ‘Wnp|2 (C7)
so that
ps®_ = et [ W oW (C.8)

Thus, the flux (C.3) sourced by gaugino condensation gives rise to a profile for ®_ that
matches the rigid part of the F-term potential.

At this point, the Kahler connection terms in the F-term potential are not evident
in the ten-dimensional computation. The result of this appendix, which we will now
establish, is that the Kahler connection terms arise once one consistently incorporates
finite volume effects in the Green’s function.

Taking the internal space transverse to the D7-branes to be compact, with volume
V., Green’s equation takes the form

1

297 0,05G (2 (2;0) = () (2) — v (C.9)
and the Green’s function reads
1 k
G)(2;0) = §10g|z| oA (C.10)
Using (C.10) to solve (C.5), one finds
/ ! / aa bb _16u )\)\ ? Ie)
d_ = G(G)(Z7 z )8a0bG(2)(z ) ZD7)aaagG(2)(Z ) ZD7)g g e 327‘(‘2 Q-0 (Cll)
M
1 o /. /. ab 16u AN ? re)
:i .y 5(6)(2, z )0QG(2)(Z ) ZD7)05G(2)(Z ) ZD7)g € 327T2 Q-0 (C.IQ)
1 Ouh(2) 21k, (O5h(2)  27kp\ i w2k 16 9
_ N b . ab k% U ] 1
Nz ( Bz 3 ) ( TEREE Y A (C.13)

20Throughout this appendix, we write only the contribution to ®_ sourced by G_ flux via (C.5).
Further contributions are present in general [22].
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The F-term potential that we wish to compare to (C.13) is given by
Vi = i (KATDAWDFW - 3H§WW) , (C.14)

where KT is the inverse Kéhler metric derived from the DeWolfe-Giddings Kéhler
potential [36, 82],

ar _ BT+ T = k) (7(T +T — k) + 72kak“bkbhkak“b> | (C.15)

3y kP kg | ket

and the index A runs over 7" and the D3-brane moduli y,. Using (C.2), we can rewrite
(C.13) as

k2K 16u  _ L -
P z%g“b (DWW + 7ko DrW) (DsW + vk Dz W) + . ... (C.16)
2 2 aB al; 17
— REK 12u K4R€(T) D D Y kak kl;‘fykak DTE/ C17
il (DrW D,W) T oy ) T (€17

where the omitted terms are of higher order in %
Combining (3.33) and (C.17), we conclude that in a compact space, the flux (C.3)
sourced by gaugino condensation leads to a ®_ profile that agrees with the F-term

potential (C.14):
p3e 20D _(2) + Vay 4 Vay = €€ <KA?DAWDTW - 3’@21WW> +..., (C1y)

where again the omitted terms are subleading in TPY—-fT

Finally, we note that from (2.22), the contribution of |G_|? to R4|g] is

2 2 et 2
M>3R — G_ C.19
iR > [ fla (©19)
which is finite, and indeed corresponds — comparing (C.19) to (C.6) — to the F-term
potential for a D3-brane.
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