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We show a hardness result for random smoothing to achieve certified adversarial robustness against
attacks in the £, ball of radius € when p > 2. Although random smoothing has been well understood
for the /5 case using the Gaussian distribution, much remains unknown concerning the existence
of a noise distribution that works for the case of p > 2. This has been posed as an open problem
by Cohen et al. (2019) and includes many significant paradigms such as the ¢, threat model. In
this work, we show that any noise distribution D over R? that provides £,, robustness for all base
classifiers with p > 2 must satisfy En? = Q(d'~2/P¢2(1 — §)/62) for 99% of the features (pixels)
of vector 7 ~ D, where ¢ is the robust radius and ¢ is the score gap between the highest-scored class
and the runner-up. Therefore, for high-dimensional images with pixel values bounded in [0, 255],
the required noise will eventually dominate the useful information in the images, leading to trivial
smoothed classifiers.

Keywords: random smoothing, certified adversarial robustness, hardness results, high-dimensional
data, ¢, adversarial examples

1. Introduction

Adversarial robustness has been a critical object of study in various fields, including machine
learning (Zhang et al., 2019; Madry et al., 2018), computer vision (Szegedy et al., 2013; Yang et al.,
2020b), and many other domains (Lecuyer et al., 2019). In machine learning and computer vision,
the study of adversarial robustness has led to significant advances in defending against attacks in the
form of perturbed input images, where the data is high dimensional but each feature is bounded in
[0, 255]. The problem can be stated as that of learning a non-trivial classifier with high test accuracy
on the adversarial images. The adversarial perturbation is either restricted to be in an ¢, ball of radius
e centered at 0 (Yang et al., 2020c), or is measured under other threat models such as Wasserstein
distance and adversarial rotation (Wong et al., 2019; Brown et al., 2018). The focus of this work is

the former setting.
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Despite a large amount of work on adversarial robustness, many fundamental problems remain
open. One of the challenges is to end the long-standing arms race between adversarial defenders and
attackers: defenders design empirically robust algorithms which are later exploited by new attacks
designed to undermine those defenses (Athalye et al., 2018). This motivates the study of certified
robustness (Raghunathan et al., 2018; Wong et al., 2018)—algorithms that are provably robust to the
worst-case attacks—among which random smoothing (Cohen et al., 2019; Li et al., 2019; Lecuyer
et al., 2019) has received significant attention in recent years. Algorithmically, random smoothing
takes a base classifier f as an input, and outputs a smooth classifier g that, given an input example z,
outputs the most probable class predicted by f on a distribution of perturbed versions of x.

Random smoothing has many appealing properties that one could exploit: it is agnostic to network
architecture, is scalable to deep networks, and perhaps most importantly, achieves state-of-the-art
certified /o robustness for deep learning based classifiers (Cohen et al., 2019; Li et al., 2019; Lecuyer
etal., 2019).

Open problems in random smoothing. Given the rotation invariance of Gaussian distribution,
most positive results for random smoothing have focused on the ¢2 robustness achieved by smoothing
with the Gaussian distribution (see Theorem 5). However, the existence of a noise distribution for
general £, robustness has been posed as an open question by Cohen et al. (2019):

We suspect that smoothing with other noise distributions may lead to similarly natural robustness
guarantees for other perturbation sets such as general {,, norm balls.

Several special cases of the conjecture have been proven for p < 2. Li et al. (2019) show that
£1 robustness can be achieved with the Laplacian distribution, and Lee et al. (2019) show that £,
robustness can be achieved with a discrete distribution. Much remains unknown concerning the
case when p > 2. On the other hand, the most standard threat model for adversarial examples is
£+ robustness, among which 8-pixel and 16-pixel attacks have received significant attention in the
computer vision community (i.e., the adversary can change every pixel by 8 or 16 intensity values,
respectively). In this paper, we derive lower bounds on the magnitude of noise required for certifying
¢, robustness that highlights a phase transition at p = 2. In particular, for p > 2, the noise that must
be added to each feature of the input examples grows with the dimension d in expectation, while it
can be constant for p < 2.

Preliminaries. Given a base classifier f : R? — ) and smoothing distribution D, the randomly
smoothed classifier is defined as follows: for each class y € ), define the score of class y at point =
tobe Gy(z; D, f) = Prpwp(f(x + 1) = y). Then the smoothed classifier outputs the class with the
highest score: g(x; D, f) = argmax, Gy(z; D, f).

The key property of smoothed classifiers is that the scores Gy (x; D, f) change slowly as a
function of the input point z (the rate of change depends on D). It follows that if there is a
gap between the highest and second highest class scores at a point z, the smoothed classifier
g(+; D, f) must be constant in a neighborhood of x. We denote the score gap by A(z; D, f) =
Ga(z; D, f) — Go(x; D, f), where a = argmax, Gy(z; D, f) and b = argmax, ., Gy (x; D, f).

Definition 1 ((A, 6)- and (¢, §)-robustness) For any set A C R? and § € [0,1], we say that the
smoothed classifier g is (A, d)-robust if for all x € R? with A(x; D, f) > §, we have that g(x +
v; D, f) = g(x; D, f) forallv € A. For a given norm ||-||, we also say that g is (€, d)-robust with
respect to ||-|| if it is (A, 6)-robust with A = {v € R% : |Jv|| < €}.
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When the base classifier f and the smoothing distribution D are clear from context, we will
simply write G (z), g(x), and A(x). We often refer to a sample from the distribution D as noise,
and use noise magnitude to refer to squared ¢ norm of a noise sample. Finally, we use D + v to
denote the distribution of 1 + v, where n ~ D.

1.1 Our Results

Our main results derive lower bounds on the magnitude of noise sampled from any distribution D
that leads to (€, §)-robustness with respect to ||-[|,, for all possible base classifiers f : R = Y. A
major strength of random smoothing is that it provides certifiable robustness guarantees without
making any assumption on the base classifier f : RY — )). For example, the results of Cohen et al.
(2019) imply that using a Gaussian smoothing distribution with standard deviation o = % guarantees
that g(+; D, f) is (e, §)-robust with respect to ||-|, for every possible base classifier f : R — ).
We show that there is a phase transition at p = 2, and that ensuring (e, §)-robustness for all base
classifiers f with respect to £, norms with p > 2 requires that the noise magnitude grows non-trivially
with the dimension d of the input space. In particular, for image classification tasks where the data is
high dimensional and each feature is bounded in the range [0, 255], this implies that for sufficiently
large dimensions, the necessary noise will dominate the signal in each example.

The following result, proved in Appendix A, shows that any distribution D that provides (.4, 0)-
robustness for every possible base classifier f : R? — ) must be approximately translation-
invariant to all translations v € A. More formally, for every v € A, we must have that the
total variation distance between D and D + v, denoted by TV (D, D + v) := supg | Prz.p(Z €
S) — Pryiopyio(Z' € 8S)|, is bounded by 6. The rest of our results are consequences of this
approximate translation-invariance property.

Lemma 2 Let D be a distribution on R? such that for every (randomized) classifier f : R* — ),
the smoothed classifier g(-; D, f) is (A, d)-robust. Then for all v € A, we have TV (D, D + v) < 0.

Lower bound on noise magnitude. Our first result is a lower bound on the expected squared ¢5-
magnitude of a sample 77 ~ D for any distribution D that is approximately invariant to £,-translations
of size e.

Theorem 3 Fix any p > 2 and let D be a distribution on R? such that there exists a radius € and
total variation bound § satisfying that, for all v € R? with [v]l, < € we have TV(D, D + v) < 6.
Then
Ed?2r 1§
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As a consequence of Theorem 3 and Lemma 2, it follows that any distribution that ensures
(€, 0)-robustness with respect to [|[|,, for any base classifier f must also satisfy the same lower bound.

Phase transition at p = 2. The lower bound given by Theorem 3 implies a phase transition in the
nature of distributions D that are able to ensure (¢, §)-robustness with respect to ||-[|,, that occurs at
p = 2. For p < 2, the necessary expected squared /5-magnitude of a sample from D grows only like
v/d, which is consistent with adding a constant level of noise to every feature in the input example
(e.g., as would happen when using a Gaussian distribution with standard deviation o = 2¢). On the
other hand, for p > 2, the expected £, magnitude of a sample from D grows strictly faster than \/d,
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which, intuitively, requires that the noise added to each component of the input example must scale
with the input dimension d, rather than remaining constant as in the p < 2 regime. More formally,
we prove the following:

Theorem 4 (hardness of random smoothing) Fixany p > 2 and let D be a distribution on R? such
that for every (randomized) classifier f : R? — Y, the smoothed classifier g(-; D, f) is (A, §)-robust.

Let 1 be a sample from D. Then at least 99% of the components of 1 satisfy E 771-2 = Q(W)
Moreover, if D is a product measure of i.i.d. noise (i.e., D = (D')%), then the tail of D' satisfies

(15 20/ (=2
Pre-p(¢] > 5) > (“U52)

p; for some s > ce(1 — 6)/6, where c is an absolute constant.

In other words, D' is a heavy-tailed distribution.}

The phase transition at p = 2 is more clearly evident from Theorem 4. In particular, the variance
of most components of the noise must grow with d'~2/P, which is an increasing function of d when
p > 2. Theorem 4 shows that any distribution that provides (e, §)-robustness with respect to [|-|,
for p > 2 must have very high variance in most of its component distributions when the dimension
d is large. In particular, for p = oo the variance grows linearly with the dimension. Similarly, if
we use a product distribution to achieve (e, §)-robustness with respect to |-, with p > 2, then
each component of the noise distribution must be heavy-tailed and is likely to generate very large
perturbations.

1.2 Technical Overview

Total-variation bound of noise magnitude. Our results demonstrate a strong connection between
the required noise magnitude I ||||3 in random smoothing and the total variation distance between
D and its shifted distribution D + v in the worst-case direction v. The total variation distance has
a natural interpretation from the hardness of testing D v.s. D + v: no classifier can distinguish D
from D + v with good probability relative to TV (D, D + v). Our analysis applies the following
techniques.

Warm-up: one-dimensional case. We begin our analysis of Theorem 3 with the one-dimension
case, by studying the projection of the noise 7 € R? on a direction v € R%. Chebyshev’s inequality
implies E,p [v " n|? > Hu||‘21 (1 —§)/8. To see this, let 1) be a sample from D and let ' = n + v so
that )" is a sample from D + v. Define Z = v nand Z’ = v/ = Z + |jv||3. Define r = |[v||3 /2
so that the intervals A = (—7,7) and B = [||v||5 — 7, ||v]|3 + 7] are disjoint. From Chebyshev’s
inequality, we have Pr(Z € A) > 1 — E|Z|?/r?. Similarly, Pr(Z’ € B) > 1 — E|Z|?/r? and,
since A and B are disjoint, this implies Pr(Z’ € A) < E|Z|?/r%. Therefore, TV(D,D + v) >
Pr(Z € A) —Pr(Z' € A) > 1 —2E|Z|?/r?. The claim follows from rearranging this inequality
and the fact 6 > TV (D, D + v).

The remainder of the one-dimensional case is to show E,p [v'n| > v]|3 (lgg)Q. To this
end, we exploit a nice property of total variation distance in R: every e-interval I = [a,a + €)
satisfies D(I) < TV(D, D + €). We note that for any 7 > 0, rearranging Markov’s inequality gives
ElvTn| > 7Pr(jv'n| > 7) = 7(1 — Pr(ju"n| < 7)). We can cover the set {z € R : |z| < 7}
using [27] intervals of width ¢ = ||v||2 and, by this property, each of those intervals has probability

€

1. A distribution is heavy-tailed, if its tail is not an exponential function of x for all z > 0 (i.e., not an sub-exponential or
sub-Gaussian distribution) (Vershynin, 2018).
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mass at most 8. It follows that Pr(|v " n| < 7) < [{}5 1mply1ng Elv"n| > 7(1 — [22]6). Finally,

we optimize 7 to obtain the bound E,.p v 7| > v H , as desired.

Extension to the d-dimensional case. We use the Pythagorean theorem to bridge from the one-
dimensional case to the d-dimensional case. If there exists a set of orthogonal directions v;’s such that

E,p [v] n|* > ”;’6'&2 152 and ||vi|2 = ed"/>71/P (the furthest distance to z in the £, ball B,(z, €)),
then the Pythagorean theorem implies the result for the d-dimensional case straightforwardly. The
existence of a set of orthogonal directions that satisfy these requirements is easy to find for the /o
case, because the ¢ ball is isotropic and any set of orthogonal bases of R¢ satisfies the conditions.
However, the problem is challenging for the ¢, case, since the ¢, ball is not isotropic in general. In
Corollary 11, we show that there exist at least d/2 vectors v; that satisfy the requirements. Using the

Pythagorean theorem in the subspace spanned by such v;’s gives Theorem 3.

Peeling argument and tail probability. We now summarize our main techniques to prove The-
orem 4. Since |72 < v/d||n||o, Theorem 3 implies E7,? > edlg];/p - 159 for at least one index
1, which shows that at least one component of 7 is large. However, this guarantee only highlights
the largest pixel of |n|. Rather than working with the {,-norm of 7, we apply a similar argument
to show that the variance of at least one component of 7 must be large. Next, we consider the
(d — 1)-dimensional distribution obtained by removing the highest-variance feature. Applying an
identical argument, the highest-variance remaining feature must also be large. Each time we repeat
this procedure, the strength of the variance lower bound decreases since the dimensionality of the
distribution is decreasing. However, we can apply this peeling strategy for any constant fraction of
the components of 7 to obtain lower bounds. The tail-probability guarantee in Theorem 4 follows a

standard moment analysis in (Vershynin, 2018).

Summary of our techniques. Our proofs—in particular, the use of the Pythagorean theorem—
show that defending against adversarial attacks in the £, ball of radius € by random smoothing is
almost as hard as defending against attacks in the £, ball of radius ed'/?~1/P. Therefore, the (4,
certification procedure—firstly using Gaussian smoothing to certify ¢s robustness and then dividing
the /; certified radius by v/d as in (Salman et al., 2019)—is almost an optimal random smoothing
approach for certifying ¢, robustness. The principle might hold generally for other threat models
beyond £, robustness, and sheds light on the design of new random smoothing and proofs of hardness
in the other threat models broadly.

2. Related Works

{5 robustness. Probably one of the most well-understood results for random smoothing is the /o
robustness. With Gaussian random noises, Lecuyer et al. (2019) and Li et al. (2019) provided the first
guarantee of random smoothing and was later improved by Cohen et al. (2019) with the following
theorem.

Theorem 5 (Theorem 1 of Cohen et al. (2019)) Let f : R® — Y by any deterministic or random
classifier, and let n ~ N(0,0%I). Let g(z) = argmax,cy Pr(f(z + 1) = ¢). Suppose cx € Y
and pa,pB € [0,1] satisfy: Pr(f(x +1) = ca) > pa > P > maxcx., Pr(f(x +n) = c). Then
g(x +6) = ca forall |6|a < € where e = %(@71(7&0 — & Y(pR)), and ®(-) is the cumulative
distribution function of standard Gaussian distribution.
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Note that Theorem 5 holds for an arbitrary classifier. Thus a hardness result of random
smoothing—the one in an opposite direction of Theorem 5—requires finding a hard instance of
classifier f such that a similar conclusion of Theorem 5 does not hold, i.e., the resulting smoothed
classifier g is trivial as the noise variance is too large. Our results in Theorems 3 and 4 are of this type.
Beyond the top-1 predictions used in Theorem 5, Jia et al. (2020) studied certified robustness for
top-k predictions via random smoothing under Gaussian noise and derive a tight robustness bound in
£2 norm. In this paper, however, we study the standard setting of top-1 predictions.

£, robustness. Beyond the /5 robustness, random smoothing also achieves the state-of-the-art
certified £, robustness for p < 2. Lee et al. (2019) provided adversarial robustness guarantees and
associated random-smoothing algorithms for the discrete case where the adversary is g bounded. Li
et al. (2019) suggested replacing Gaussian with Laplacian noise for the £; robustness. Dvijotham et al.
(2020) introduced a general framework for proving robustness properties of smoothed classifiers
in the black-box setting using f-divergence. However, much remains unknown concerning the
effectiveness of random smoothing for £, robustness with p > 2. Salman et al. (2019) proposed an
algorithm for certifying ¢, robustness, by firstly certifying {5 robustness via the algorithm of Cohen
et al. (2019) and then dividing the certified /5 radius by v/d. However, the certified /., radius by this
procedure is as small as O(1/v/d), in contrast to the constant certified radius as discussed in this

paper.

Training algorithms. While random smoothing certifies inference-time robustness for any given
base classifier f, the certified robust radius might vary a lot for different training methods. This
motivates researchers to design new training algorithms for the base classifier f that are particularly
well suited for use with random smoothing. Zhai et al. (2020) trained a robust smoothed classifier via
maximizing the certified radius. In contrast to using naturally trained classifier in (Cohen et al., 2019),
Salman et al. (2019) combined adversarial training of Madry et al. (2018) with random smoothing
in the training procedure of f. In our experiments, we introduce a new baseline that combines
TRADES (Zhang et al., 2019) with random smoothing to train a robust smoothed classifier.

Hardness of random smoothing. At the time of submission of this paper, we are aware of
two contemporaneous independent works by Kumar et al. (2020) and Yang et al. (2020a) which
study the similar problem of hardness of random smoothing. Kumar et al. (2020) showed that the
noise magnitude must have a polynomial dependency on d for p > 2 if the noise distribution D
is: (1) a product measure of i.i.d. noise from symmetric distribution with a continuous support; (2)
generalized Gaussian distribution; (3) uniform distribution within a finite region. In contrast, our
statements hold for arbitrary distributions. Yang et al. (2020a) showed that with only label statistics
under random input perturbations, random smoothing cannot achieve nontrivial certified accuracy

11 ,
against perturbations of £, norm Q(min(1,d» 2)), while the dependency on other factors beyond
dimension d was unclear. In this work, we provide more precise characterization on the £, norm

of perturbations when random smoothing fails, which is Q((E 7712)% \/ffédifé) for at least 99% of

the components 7; of noise 7, where ¢ is the score gap between the highest-scored class and the
runner-up.

3. Analysis of Main Results

In this section we prove Theorem 3 and Theorem 4.
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3.1 Analysis of Theorem 3

In this section we prove Theorem 3. Our proof has two main steps: first, we study the one-dimensional
version of the problem and prove two complementary lower bounds on the magnitude of a sample
7 drawn from a distribution D over R with the property that for all v € R with |v] < e we have
TV (D, D + v) < §. Next, we show how to apply this argument to 2(d) orthogonal 1-dimensional
subspaces in R? to lower bound the expected magnitude of a sample drawn from a distribution D
over R?, with the property that for all v € R with |Jv|| » <& wehave TV(D,D +v) < 6.

One-dimensional results. Our first result lower bounds the magnitude of a sample from any
distribution D in terms of the total variation distance between D and D + ¢ for any ¢ > 0.

Lemma 6 Let D be any distribution on R, 1 be a sample from D, € > 0, and let § = TV (D, D + ¢).

Then we have*
e 1-9
Elnf? > —-
™2 550 52

We prove Lemma 6 using two complementary lower bounds. The first lower bound is tighter for
large §, while the second lower bound is tighter when ¢ is close to zero. Taking the maximum of the
two bounds proves Lemma 6.

Lemma 7 Let D be any distribution on R, 1 be a sample from D, € > 0, and let § = TV (D, D + ¢).

Then we have
2

€
By > S - (1-9)

Proof Let ' = 1 + € so that 1)/ is a sample from D + € and define » = €/2 so that the sets

A = (—r,r) and B = [e — r,e + r| are disjoint. From Chebyshev’s inequality, we have that
2

Pripe A)=1—Pr(ln| >r)>1- EL—Z‘. Further, since ' € B if and only if € A, we have

Pr(n e B) > 1— El—zp. Next, since A and B are disjoint, it follows that Pr(n’ € A) <1—Pr(y €

2 2 2 2

B) < 1—1+E172| = EL—Z'. Finally, we have § > Pr(n € A)—Pr(n/ € A) > 1—2%‘277‘ = 1-8ElE

Rearranging this inequality proves the claim. |

Next, we prove a tighter bound when § is close to zero. The key insight is that no interval I C R
of width € can have probability mass larger than TV (D, D + €). This implies that the mass of D
cannot concentrate too close to the origin, leading to lower bounds on the expected magnitude of a
sample from D.

Lemma 8 Let D be any distribution on R, 1) be a sample from D, € > 0, and let § = TV (D, D + ¢).
Then we have

e (1—90)2
Ep> . L =9

which implies E |n|> > g—z . (15725)4.

2. We do not try to optimize constants throughout the paper.
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Proof The key step in the proof is to show that every interval Z = [a,a + €) of length € has
probability mass at most & under the distribution D. Once we have established this fact, then the
proof is as follows: for any 7 > 0, rearranging Markov’s inequality gives E || > 7 Pr(|n| > 7) =
7(1 = Pr(|n| < 7)). We can cover the set {z € R : |z| < 7} using [27] intervals of width €
and each of those intervals has probability mass at most &. It follows that Pr(|n| < ) < [27]5,
implying E || > 7(1 — [22]6). Since [27] < 22 4+ 1, we have E || > (1 — §)7 — 2—372. Finally,
we optimize 7 to get the strongest bound. The strongest bound is obtained at 7 = 6(1455), which gives
E|n| > UG

It remains to prove the claim that all intervals of length e have probability mass at most d. Let
Z = [a,a + €) be any such interval. The proof has two steps: first, we partition R using a collection
of translated copies of the interval Z, and show that the difference in probability mass between any
pair of intervals in the partition is at most 0. Then, given that there must be intervals with probability
mass arbitrarily close to zero, this implies that the probability mass of any interval (and in particular,
the probability mass of Z) is upper bounded by 4.

For each integer i € Z, let Z; = Z + ie = {x + i€ : x € I} be a copy of the interval Z translated
by ¢e. By construction the set of intervals Z; for ¢ € Z forms a partition of R. For any indices
1 < j, we can express the difference in probability mass between Z; and Z; as a telescoping sum:
D(Z;) — D(L;) = Zi;i [D(Zk+1) — D(Zy)]. We will show that for any ¢ < j, the telescoping sum
is contained in [—6, ¢]. Let P = {k € (i, j] : D(Z+1) — D(Zx) > 0} be the indices of the positive
terms in the sum. Then, since the telescoping sum is upper bounded by the sum of its positive terms
and the intervals are disjoint, we have

D(Z;) = D(Ti) < Y _[D(Zp+1) — D(Li)] =D (U Ik+1) -D (U Ik> .

kepP kepP keP

For all k € P we have n € Z; if and only if  + ¢ € Zy 1, which implies Pr(n € J,cpZi) =
Pr(n + € € Ugep Zr+1)- Combined with the definition of the total variation distance, it follows that

D (U Ik+1> -D (U Ik> = Pr (ne U IkH) —Pr (ne U Ik)
keP kepP kepP kepP
=Pr (ne U Ik+1> —Pr (7’]+6€ U Ik+1> <4,

keP keP

and therefore D(Z;) —D(Z;) < 4. A similar argument applied to the negative terms of the telescoping
sum guarantees that D(Z;) — D(Z;) > —4, proving that |D(Z;) — D(Z;)| < 0.

Finally, for any o > 0, there must exist an interval Z; such that D(7;) < « (since otherwise the
total probability mass of all the intervals would be infinite). Since no pair of intervals in the partition
can have probability masses differing by more than 4, this implies that D(Z) < « + ¢ for any «.
Taking the limit as « — 0 shows that D(Z) < ¢, completing the proof. [ |

Finally, Lemma 6 follows from Lemmas 7 and 8, and the fact that for any ¢ € (0, 1], we have

1-5 (1-6)* 1 1-§
max{-5>, g5} 2 350 * 57

Extension to the d-dimensional case. For the remainder of this section we turn to the analysis
of distributions D defined over R. First, we use Lemma 6 to lower bound the magnitude of noise
drawn from D when projected onto any one-dimensional subspace.
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Figure 1: Vectors pointing towards the corner of the cube in R? have large ¢ norm but small 4y
norm.

Corollary 9 Let D be any distribution on RY, 1) be a sample from D, v € R?, and let § = TV (D, D+
v). Then we have

2
Rl ol 1-8
P ol T 2000 62

Proof Let 1) be a sample from D, ¥ = 1 + v be a sample from D + v, and define Z = v "7 and
Z' = vy = Z + ||v||5. Then the total variation distance between Z and Z' is bounded by &, and Z’
corresponds to a translation of Z by a distance HUH% Therefore, applying Lemma 6 with € = ||v g
we have that E [v ' n|2 = E|Z|? > Hv||;1 . %. Rearranging this inequality completes the proof. ll

Intuitively, Corollary 9 shows that for any vector v € RY such that TV (D, D + v) is small, the
expected magnitude of a sample 17 ~ D when projected onto v cannot be much smaller than the
length of v. The key idea for proving Theorem 3 is to construct a large number of orthogonal vectors
v1,...,v, with small £, norms but large ¢ norms. Then D will have to be “spread out” in all of
these directions, resulting in a large expected ¢» norm. We begin by showing that whenever d is a
power of two, we can find an orthogonal basis for R? in {£1}<.

Lemma 10 For any n > 0 there exist d = 2" orthogonal vectors vy, . . .,vg € {+1}%,

Proof The proof is by induction on n. For n = 0, we have d = 1 and the vector v; = (1) satisfies
the requirements. Now suppose the claim holds for n and let vy, ..., v4 be orthogonal in {£1}¢
for d = 2". For each i € [d], define a; = (v;,v;) € {£1}*? and b; = (v;, —v;) € {£1}2%. We
will show that these vectors are orthogonal. For any indices ¢ and j, we can compute the inner
products between pairs of vectors among a;, a;, b;, and b;: a;raj = 21);r vj, b;rbj = 2viT v, and

aj b;j = v 'v; — v/ v; = 0. Therefore, for any i # j, since v; v; = 0, we are guaranteed that
a;raj = 0, binj = 0, and ainj = 0. It follows that the 24t vectors ay,...,aq, b1, .., by are
orthogonal. |

From this, it follows that for any dimension d, we can always find a collection of b > d/2 vectors
that are short in the £, norm, but long in the /5 norm. Intuitively, these vectors are the vertices of a
hypercube in a b-dimensional subspace. Figure 1 depicts the construction.
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Corollary 11 For any p > 2 and dimension d, there exist b > d /2 orthogonal vectors vy, . ..,vp €
R? such that ||v||, = b2~/ > (d/2)' /2~ Y/P and |vill, = 1 foralli € [b]. This holds even when
p = oQ.

Proof Let n be the largest integer such that 2" < d. We must have 2" > d/2, since otherwise
27+l < d. We now apply Lemma 10 to find b = 2" orthogonal vectors u1, ..., uy € {£1}°. For
each i € [b], we have that [[u; ||, = b'/P_ Finally, for i € [b], define v; = (u; - b='/7,0,...,0) € R?
to be a normalized copy of u; padded with d — b zeros. For all i € [b], we have |[v;[|, = 1 and
Joilly = (b b2/ = B2 > (df2)1 /2, .

With this, we are ready to prove Theorem 3.

Theorem 3 Fix any p > 2 and let D be a distribution on R? such that there exists a radius € and
total variation bound § satisfying that, for all v € R? with [v]l, < € we have TV(D, D + v) < 6.
Then
Ed?2r 1§

800 42

E 2>
nNDll??llg 2

Proof Let 1) be a sample from D. By scaling the vectors from Corollary 11 by €, we obtain b > d/2
vectors v1, ..., v, € R? with [vill, = € and [Jv;|, = €- b!/2-1/p_ By assumption we must have

T2 112
TV(D,D +v;) < 4, since [|v;]|,, < €, and Corollary 9 implies that E lﬁ;:ﬁé > ||;;6|(|)2 L3 for each i.

We use this fact to bound E ||n||§
Let Q € RY*? be the matrix whose i row is given by v;/ ||v;]|, so that Q is the orthogonal

projection matrix onto the subspace spanned by the vectors vy, ..., vy. Then we have E ||77||g >
T2 12

E HQ””% = Zle E ||1|);7|7||2 > Z?:l H;Jé‘(‘f 16;25, where the first inequality follows because orthog-
ill2

onal projections are non-expansive, the equality follows from the Pythagorean theorem, and the
last inequality follows from Corollary 9. Using the fact that [|v;|, = € - b'/>7/?, we have that

Elnl; > <™ - 172, Finally, since b > d/2 and (1/2)*"7 > 1/4 for p > 2, we have
E|n|3 > 62d820_02/p . 15;25, as required. -

Finally, Lemma 2 provides the main connection between random smoothing guarantees and total
variation distance which is used to anchor the above-mentioned arguments.

3.2 Analysis of Theorem 4

In this section we prove the variance and heavy-tailed properties from Theorem 4 separately.
Combining Theorem 3 with a peeling argument, we are able to lower bound the marginal variance
in most of the coordinates of 7.

Lemma 12 Fix any p > 2 and let D be a distribution on R? such that there exists a radius € and
total variation bound § so that for all v € R? with [vll, < ewe have TV(D, D +wv) < 4. Letn be a
sample from D and o be the permutation of [d] such that ]E[ng(l)] > > E[ng( d)}' Then for any

i € [d], we have E[ng(i)] > W%d‘

10
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Proof For each index i, let P; : R — R*~"*! be the projection P;(z) = (Zy (i), T (it1)s - - - s To(d))
and D; be the distribution of P;(n). First we argue that for each i € [d] and any v € R4-i+1
with [[v][,, < €, we must have TV(D;, D; +v) < . To see this, let z € R be the vector such that
Pi(z) =vand z,(1) = - - = 25(;—1) = 0. Then TV(D,,D +v) = sup gcra-i+1 | Pr(P(n) € A)—
Pr(Pi() + v € A)| = sup scgisnr | Pr(Pi(n) € A) — Pr(Pi(5+ 2) € A)| < sup gega | Pr(y €
A)=Pr(n+z € A)| = TV(D, D+z). Next, since | z||,, = [[v]|,, < €, we musthave TV(D, D+v) <
J.

Now fix an index i € [d] and let Z be a sample from D;. Applying Theorem 3 to Z, we

2(d—i+1)2—2/ . . .
have that E ||Z ||2 % . 15;25. Since there must exist at least one index [ such that

E(Zf] > = Zd s E[Z?], it follows that at least one coordinate | must satisfy E[Z7] >

Sld—it )20 5—25. Finally, since the coordinates of Z are the (d — ¢ + 1) coordinates of n with the

800
. . 2(d—i 1-2/ _ .
smallest variance, it follows that E[ni (i)] > % . 16—25, as required. |

Lemma 12 implies that any distribution D over R? such that for all v € R? with ||| p S ewe
have TV (D, D + v) < ¢ for p > 2 must have high marginal variance in most of its coordinates.
In particular, for any constant ¢ € [0, 1], the top c-fraction of coordinates must have marginal
variance at least Q(d' 2/ p6215;25)‘ For p > 2, this bound grows with the dimension d. Our next
lemma shows that when D is a product measure of d i.i.d. one-dimension distribution D’ in the
standard coordinate, the distribution D’ must be heavy-tailed. The lemma is built upon a fact that
Enll2 > Q(ed'~/P152), with a similar analysis as that of Theorem 3. We defer the proof of this
fact to the appendix (see Lemma 24). Note that the fact implies that E||7||o, > Q(ed!/?~Y/ ple‘;) by
the equivalence between ¢, and ., norms. We then have the following lemma.

Lemma 13 Let h(0) = IT_(S andp > 2. Let Xy, ..., X4 be d random variables in R sampled i.i.d.
from distribution D'. Then “Emax;c(q | Xi| > Cd'\?=V/Pen(8)” implies “Prx.p[|X| > z] >
(ceh(é) ) 2p/(p—2)

x

for some x > ceh(0) with an absolute constant ¢ > 0”, that is, in sufficiently high

dimensions, D' is a heavy-tailed distribution.

Proof Denote by G(z) = Prx..p/[|X| > z] the complementary Cumulative Distribution Function

/ « en() \ 2/ P=2) ch(8) s i
(CDF) of D'. We only need to show that “G(z) < <W> for all x > =57 implies
“Emax;c(q | Xi| < Cd"/?=1/Pen(5) for a constant C' > 0. We note that

Emax\X]—/ Pr [maX|X\>x] dx
i€(d] 0o XinD

eh(6)

:/0 * pr [max[X|>x] dx+/:;)[1—(1—G(96))d]dx

X;~D
eh(8)  eh(d) [ 1 d
20 T /1 =11 2p/(p—2) dt
p+2
24 T(d+52) ’

11
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where the second equality holds because for any i.i.d. Y; ~ D with CDF F(x), the CDF of
max;e(q Y; is given by (1 — F (x))4, the first inequality holds by the change of variable, and the last

~ i T+ g1/2-1/p
relation holds because s % ) d . |

Combining Lemmas 12 and 13 with Lemma 2 and the fact that E||n||. > Q(edl/z_l/p%}‘s)
completes the proof of Theorem 4.

4. Experiments

In this section, we evaluate the certified /. robustness and verify the tightness of our lower bounds by
numerical experiments. Experiments run with two NVIDIA GeForce RTX 2080 Ti GPUs. We release
our code and trained models at https://github.com/hongyanz/TRADES—-smoothing.

4.1 Certified /., Robustness

Despite the hardness results of random smoothing on certifying ¢, robustness with large perturbation
radius, we evaluate the certified £, robust accuracy of random smoothing on the CIFAR-10 data set
when the perturbation radius is as small as 2/255, given that the data dimension 32 x 32 X 3 is not
too high relative to the 2-pixel attack. The goal of this experiment is to show that random smoothing
based methods might be hard to achieve very promising robust accuracy (e.g., > 70%) even when
the perturbation radius is as small as 2 pixels.

Experimental setup. Our experiments exactly follow the setups of (Salman et al., 2019). Specifi-
cally, we train the models on the CIFAR-10 training set and test it on the CIFAR-10 test sets. We
apply the ResNet-110 architecture (He et al., 2016) for the CIFAR-10 classification task. The output
size of the last layer is 10. Our training procedure is a modification of (Salman et al., 2019): Salman
et al. (2019) used adversarial training of Madry et al. (2018) to train a soft-random-smoothing
classifier by injecting Gaussian noise. In our training procedure, we replace the adversarial training
with TRADES (Zhang et al., 2019), a state-of-the-art defense model which won the first place in the
NeurIPS 2018 Adversarial Vision Challenge (Brendel et al., 2020). In particular, we minimize the
empirical risk of the following loss:

mfin Ex yE,nvo02r) | L(f(X +n),Y) + BX,GIE?&’E) LIf(X+n), (X' + 77))] ;

where 7 is the injected Gaussian noise, L is the cross-entropy loss or KL divergence, (X, Y) is the
clean data with label, and f is a neural network classifier which outputs the logits of an instance. For
a fixed f, the inner maximization problem is solved by PGD iterations, and we update the parameters
in the outer minimization and inner maximization problems alternatively. In our training procedure,
we set {5 perturbation radius € = 0.435, perturbation step size 0.007, number of PGD iterations 10,
regularization parameter 5 = 6.0, initial learning rate 0.1, standard deviation of injected Gaussian
noise 0.12, batch size 256, and run 55 epochs on the training data set. We decay the learning rate by
a factor of 0.1 at epoch 50. We use random smoothing of Cohen et al. (2019) to certify £» robustness
of the base classifier. We obtain the /., certified radius by scaling the ¢5 robust radius by a factor
of 1/+/d. For fairness, we do not compare with the models using extra unlabeled data, ImageNet
pretraining, or ensembling tricks.

12
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Method ‘ Certified Robust Accuracy Natural Accuracy

TRADES + Random Smoothing 62.6% 78.8%
Salman et al. (2019) 60.8% 82.1%

Zhang et al. (2020) 54.0% 72.0%

Wong et al. (2018) 53.9% 68.3%

Mirman et al. (2018) 52.2% 62.0%

Gowal et al. (2018) 50.0% 70.2%

Xiao et al. (2019) 45.9% 61.1%

Table 1: Certified ¢, robustness at a radius of 2/255 on the CIFAR-10 data set (without extra
unlabelled data or pre-trained model).

Experimental results. We compare TRADES + random smoothing with various baseline methods
of certified ¢, robustness with radius 2/255. We summarize our results in Table 4.1. All results are
reported according to the numbers in their original papers.® It shows that TRADES with random
smoothing achieves state-of-the-art performance on certifying /., robustness at radius 2/255 and
enjoys higher robust accuracy than other methods. However, for all approaches, there are still
significant gaps between the robust accuracy and the desired accuracy that is acceptable in the
security-critical tasks (e.g., robust accuracy > 70%), even when the certified radius is chosen as
small as 2 pixels.

4.2 Effectiveness of Lower Bounds

For random smoothing, Theorem 4 suggests that the certified ¢, robust radius € be (at least)
proportional to o/ \V/d, where o is the standard deviation of injected noise. In this section, we verify
this dependency by numerical experiments on the CIFAR-10 data set and Gaussian noise.

Experimental setups. We apply the ResNet-110 architecture (He et al., 2016) for classification.*
The output size of the last layer is 10. We vary the size of the input images with 32 x 32 x 3,
48 x 48 x 3, and 64 x 64 x 3 by calling the resize function. We keep the quantity o/(v/de) as an
absolute constant by setting the standard deviation ¢ as 0.12, 0.18, and 0.24, and the ¢ perturbation
radius as 0.435, 0.6525, and 0.87 in the TRADES training procedure for the three input sizes,
respectively. Our goal is to show that the accuracy curves of the three input sizes behave similarly.
In our training procedure, we set perturbation step size 0.007, number of perturbation iterations 10,
regularization parameter 5 = 6.0, learning rate 0.1, batch size 256, and run 55 epochs on the training
data set. We use random smoothing (Cohen et al., 2019) with varying o’s to certify the ¢2 robustness.
The { certified radius is obtained by scaling the ¢ robust radius by a factor of 1/ V.

3. We report the performance of (Salman et al., 2019) according to the results: https://github.
com/Hadisalman/smoothing—adversarial/blob/master/data/certify/best_models/
cifarlO/ours/cifarl0/DDN_4steps_multiNoiseSamples/4-multitrain/eps_255/
cifarl0/resnetl110/noise_0.12/test/sigma_0.12, which is the best result in the folder “best
models” by Salman et al. (2019). When a method was not tested under the 2/255 threat model in its original paper, we
will not compare with it as well in our experiment.

4. The input size of the architecture is adaptive by applying the adaptive pooling layer.

13
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Figure 2: Certified accuracy of ResNet-110 models under varying input sizes by random smoothing.

We summarize our results in Figure 2. We observe that the three curves of varying input sizes
behave similarly. This empirically supports our theoretical finding in Theorem 4 that the certified £,
robust radius € should be proportional to the quantity o/ V/d. In Figure 2, the certified accuracy is
monotonously decreasing until reaching some point where it plummets to zero. The phenomenon
has also been observed by Cohen et al. (2019) and was explained by a hard upper limit to the radius
we can certify, which is achieved when all samples are classified by f as the same class.

5. Conclusions

In this paper, we show a hardness result of random smoothing on certifying adversarial robustness
against attacks in the ¢, ball of radius e when p > 2. We focus on a lower bound on the necessary
noise magnitude: any noise distribution D over R that provides ¢, robustness with p > 2 for all
base classifiers must satisfy En? = Q(d'~2/Pe2(1 — §)/6?) for 9% of the features (pixels) of vector
7 drawn from D, where ¢ is the score gap between the highest-scored class and the runner up in the
framework of random smoothing. For high-dimensional images where the pixels are bounded in
[0, 255], the required noise will eventually dominate the useful information in the images, leading to
trivial smoothed classifiers.

The proof roadmap of our results shows that defending against adversarial attacks in the £,, ball of
radius € is almost as hard as defending against attacks in the ¢, ball of radius ed'/2~/?, for random
smoothing. We thus suggest combining random smoothing with dimensionality reduction techniques,
such as principal component analysis or auto-encoder, to circumvent our hardness results, which
is left open as future works. Another related open question is whether one can improve our lower
bounds, or show that the bounds are tight.
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Appendix A. Total-Variation based Robustness

First, we argue that for any points = and 2/, we must have g(z) = g(2’) whenever the total variation
distance between D + 2 and D + 2/ is sufficiently small compared to the gap A(x), where D + x
denotes the distribution of 1 + x with n ~ D.

Lemma 14 For any distribution D on R?, base classifier f : R* — Y, and pair of points z, 2’ € R?,
if A(z) > 2TV(D + z,D + '), then we have g(x) = g(z').

Proof To simplify notation, let § = TV (D +x, D+x’) and let 7) be a sample from D so that n+x is a
sample from D+x and n+ 2’ is a sample from D+z’. By the definition of the total variation distance,
for any class y € Y, wehave § > |Pr(f(z +n) =y) — Pr(f(2/ +n) =y)| = |Gy(z) — G, ().
Now let y = g(z) and ¥’ # y. Then we have

Gy(a') = Gy(x) =6
> Gy (x) =0+ Ax)
> Gy (a') — 26 + Ax).

Whenever A(z) > 2§, we are guaranteed that Gy (z') > G,/ (2’) for all ¢/, and it follows that
9(z) =y = g(x). u

As a consequence of Lemma 14, we can provide certified robustness guarantees for the smoothed
classifier ¢ in terms of balls defined by the total variation distance. In particular, for any = € R¢ and
any 0 € (0, 1], define

Bry(z,6;D) = {2/ € RY: TV(D 4 2,D + 2') < 6}

to be the set of points z’ around x such that the distributions D + x and D + z’ have total variation
distance at most . When the distribution D is clear from context, we will simply write Brvy(x, ¢).

Corollary 15 For any distribution D, base classifier f, and x € R? we have g(z') = g(x) for all
x' € Bry(z, A(x)/2).

Note that the ball Bry(x,d) is translation invariant (i.e., for any center z € R4, we have
Brv(z,0) = Brv(0,0) + x) and the definition of the ball only depends on the distribution D.
Therefore, if we can relate the balls for a given distribution D to those of a norm |- p» then Corollary

|, < r} denote

15 implies robustness with respect to that norm. Let B, (z,7) = {2/ € R?: ||’ — 2
the ¢, ball of radius r centered at x.

Corollary 16 Fix any p > 0, radius € > 0, distribution D, and let § € [0, 1] be the smallest total
variation bound such that B,(0,7) C Brv(0,8). For any base classifier f : RY — Y and any point
x € RY with A(x) > 26, for all 2’ € By(z,7) we have g(x') = g(x).

The following lemma is in an opposite direction as Corollary 16.
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Lemma 17 Let D be a distribution on R? such that for every (randomized) classifier f : R? — ),
the smoothed classifier g(-; D, f) is (A, 6)-robust. Then for all v € A, we have TV (D, D + v) < 0.

Proof Suppose there exists a vector v € A such that TV(D,D + v) > §. We show that this
implies there is a randomized binary classifier f : R? — ), such that g(-; D, f) is not (A, §)-robust.
It follows that if g(+; D, f) is (\A, §)-robust for all randomized classifiers f, then we must have
TV(D,D +v) <¢forallv € A

Fix any v € A such that TV(D, D 4 v) > § and let D’ = D + v be shorthand notation for the
translated distribution. Since § < TV (D, D’) = supgcge D(S) — D/(S), there exists a set S C R?
so that D(S) — D/(S) > 6. Let S = {z € R? : 2 ¢ S} denote the complement of S. We assume
without loss of generality that ) = {0, 1} and define the randomized classifier f to take value 1 with
probability « and O with probability 1 — « for all € S and to take value 1 with probability 8 and 0

with probability 1 — 3 for all x € §¢, where « = 1 — w and 8 = % — Dlé‘s). That is,

fla) = 1 w.p. a and 0 otherwise, if z € S;
)1 w.p. # and O otherwise, if x € S°.

Note that since D'(S) € [0, 1] we have that « € [1,1] and 8 € [0, 1] are both valid probabilities. For
any distribution P over R¢ we have

Pr(f(2)=1) = Zlirp(f(Z) =1|ZeS8)-P(S) + Pr(f(2)=1|2¢ 8% - P(8°)
= aP(S) + SP(S°)
=P(S)-(a=p)+5
1 P(S)-D(S)
T2 2

Therefore, we have G1(0; D, f) = Przp(f(Z) = 1) = 5 + w > 5+ g. Similarly,
we have that G (v; D, f) = Przp(f(Z +v) = 1) = Przup (f(Z) = 1) = 5. It follows that
9(0;D, f) = 1, A(0; D, f) = 2G1(0; D, f) — 1 > 2(3 + $) — 1 = 8, and g(v; D, f) = 0 (since
Gi(v;D, f) = Go(v;D, f) = % and the ties are broken lexicographically). It follows that g(-; D, f)
is not robust to the adversarial translation v € A, as required. |

[ =

Appendix B. Total Variation Bounds for Specific Distributions

In this section, we provide the total variation bounds for isotropic Gaussian and uniform distributions.

B.1 Isotropic Gaussian

In this section we give bounds for the total variation distance between shifted copies of Gaussian
distributions with an isotropic covariance matrix. Our results are derived from the following theorem
due to Devroye et al. (2018).

Theorem 18 (Theorem 1.2 of Devroye et al. (2018)) Suppose d > 1, let iy # o € R and let
31, 29 be positive definite d x d matrices. Let v = 1 — g and let Il be a d X d — 1 matrix whose
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columns form a basis for the subspace orthogonal to v. Define the function
T (2 — So)v|  wvlw
UTElv ’ \/UTZW ’

where ||-||  denotes the Frobenius norm and 141 is the (d — 1)-dimensional identity matrix. Then
we have

to(u1, S1, 12, S2) = max { H(HTElﬂ)’IHTZQH - Id_IHF ,

i < TV(N(:U’lvzl)?N(N?aEQ))
200 — min{l,tv(m,El,ug,Eg)}

9
< —.
-2

Theorem 18 takes a simpler form when 31 = ¥ = o?I and 11 = 0 because then the first and
last terms in the max of tv(puy, X1, pe, Xo) are zero, giving the following:

Corollary 19 Suppose d > 1 and let v € R and o > 0. Then

: HUHQ 2 2 9 : HUH2
200 min {17 T (N(O, g I),N(’U, g I)) 5 min ].,

We can use this result to show that the variance bounds given by Lemma 12 are nearly tight,
except for the dependence on the total variation bound, 4.

Corollary 20 Fix any d, radius € > 0, total variation bound § € [0,1], and p > 2. Setting o =
5£d"/27YP guarantees that for all v € R? with [0]l,, < € we have TV(N(0,6°1), N (v, 0°I)) < 6.

€2

Moreover, if ) ~ N (0,0%I) then E[n?] = 02 = (§)*- & - d*=2/P and E[||n||,] < 3€ - d*=1/P.

Proof Since for every v € R? with ||v||,, < e we have ||v[|, < e-d'/?71/7, itis sufficient to choose o

as in the statement. To bound E[||7||,], we use Jensen’s inequality: E[||7]l,] < \/E[|n]|3] = Vdo =
9eqi-1/p |
20 :

B.2 Uniform Distribution on 5., (0, )
In this section, let ¢, denote the uniform distribution on Bo, (0, ) with density p,(x) = ﬁ {x €
B (0,7)}.

Lemma 21 For any dimension d, any vector v € RY and any radius r > 0, we have

d
Vs
V(U U +v)=1— Hmax {0,1 - |2:J} .
=1
Proof To simplify notation, let A = B, (0, ) and B = By, (v, ). Since U, has a density function,
we can write the total variation distance as

1

VU, U, +v) = 3 /Rd lpr(x) — pr(z —v)| dz

- %(zr)—d /Rd |{z € A} —I{z € B}| dz

_ %(2r)_dVol(AAB),
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where AAB denotes the symmetric difference of A and B. Since Vol(AAB) = Vol(.A) 4+ Vol(B) —
2 Vol(A N B), it is sufficient to calculate the volume of .4 N . The intersection is a hyper-rectangle
with side length max{0, 2r — |v;|} in dimension i. Therefore, the volume of the intersection is given
by Vol (AN B) =[], max{0, 2r — |v;|}. Combined with the fact that Vol(A) = Vol(B) = (2r)¢
this gives

TV(U,, Uy +v) = (271a)d ((ZT)d - H max{0, 2r — |vl}>
—1—Hmax{0,1—|;);|},

as required. |

We can also compute the TV-distance for the worst-case shift v with [jv]| < e.
Corollary 22 For any e > 0, the vector v = (e, . . ., €) € R? satisfies

v € argmax TV(U,, U, + v),

vil[of| o <e
and TV (Uy, Uy +v) = min{1,1 — (1 — £)}. Finally, for € € [0, 7], we have

1—e 5 < max TV(U,U +v)<1—475.
v:||v|| o <€
Proof To see that v = (e, ..., €) is a maximizer, observe that the optimization problem decouples
over the components v; and that to maximize the term corresponding to component v; we want to
choose |v;| as large as possible. It follows that all vectors v € {=e}¢ are maximizers.
The bounds for when € € [0,7] follow from the fact that for any z € [0, 5], we have 47 <
1 —2 < e *applied with 2 =1 — 5. |

Corollary 23 Fix any dimension d, radius € > 0, and total variation bound 6 € [0,1]. Setting
r = L<dlog(4) guarantees that for all v € R such that ||v||, < € we have TV (U, U, + v) < 6.
Moreover, if n ~ U, then E[n?] is the variance of a uniform random variable on [—r,r], which is
\/ilzg(4)2 géd2 < %dz'

Proof This follows by determining the smallest value of r for which 1 — 475 < 4. |

Appendix C. Lower Bound on /,-Norm of Noise

Lemma 24 Fix any p > 2 and let D be a distribution on R® such that there exists a radius € and
total variation bound § satisfying that for all v € R with [v][, < e we have TV(D,D + v) < 4.
Then

ed =P 14§

>
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Proof We first prove the lemma in the one-dimensional case. Let 7’ = n + ¢ € R so that 7/ is a
sample from D + € and define » = ¢/2 so that the sets A = (—r,r) and B = (¢ — r,e + r) are
disjoint. From Markov’s inequality, we have that Pr(n € A) =1—Pr(ln| >r) > 1— %. Further,
since ' € B if and only if € A, we have Pr(n/ € B) > 1 — M. Next, since A and B are
disjoint, it follows that Pr(n’ € A) <1—-Pr(n e B) <1—-1+ M = M Finally, we have
§>Prine A) —Pr(n e A) > 1— %‘"' =1- 4E|"| Rearrangmg this 1nequa11ty proves the

claim that E|n| > (1 — d§)e/4. Combining with Lemma 8, we obtain that E |n| > 5 - 1= ‘5, due to the
1-6

fact that for any § € (0, 1] we have max{lzl;‘s, (1-9) T

We now prove the d-dimensional case. Let 1 be a sample from D. By scaling the vectors from
Corollary 11by €, we obtain b > d/2 vectors vy, ..., v, € R% with [[v;|, = eand [|vg[|, = e-b"/271/P,
By assumption we must have TV(D, D + v;) < 4, since [|v;]|,, < €, and the above-mentioned one-

dimensional case implies that E Iﬁ) ﬁ” > HUZHQ 152 for each i. We use this fact to bound E ||n]],.

Let Q € R4 be the matrix whose 4 h row is given by v;/ HvzH2 so that Q is the orthogonal

projection matrix onto the subspace spanned by the vectors vy, ..., v. Then we have E||n|, >
1 _ 150 pmllnl o ”Uz“ 1
ElQnl, = ZElQnl, = NG Zi:1 B 2 \[ S0 W2 120 \where the first inequality fol-
lows because orthogonal projections are non-expansive, the second inequality follows from the
v 7] [lvi l 1
A > 2
[[villa 12

equivalence of ¢ and ¢; norms, and the last inequality follows from E

Usmg

the fact that ||v;||, = € - b/271/P, we have that E |||, > Ebl 1/,, . ﬂ Finally, since b > d/2 and
(1/2)'=1/P > 1/2 for p > 2, we have E |||, > €d1241/p : 15—5 as requlred [
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