
Debugging for Art’s Sake: Beginning Programmers’ Debugging
Activity in an Expressive Coding Context

Corey Brady, Melissa Gresalfi, Selena Steinberg, and Madison Knowe

corey.brady@vanderbilt.edu, melissa.gresalfi@vanderbilt.edu, selena.k.steinberg@vanderbilt.edu,

madison.l.knowe@vanderbilt.edu

Vanderbilt University

Abstract: Debugging is fundamental to the theory, practice, and learning of computing, and

recent research suggests that a learning trajectory for debugging can be defined alongside

trajectories for other core disciplinary practices. At the same time, other work in computing

education has pressed the field to broaden its conception of the contexts where computational

thinking occurs, identifying debugging activities and practices across diverse and multi-modal

settings. In resolving this productive tension between systematically describing debugging and

recognizing its broad reach, we argue researchers should attend to rich descriptions of situated

debugging, especially among beginning debuggers. We present data from a week-long, free

summer camp, Code Your Art, that engaged middle-school students in creating expressive

computational visual effects. Here we find that students’ responses to debugging tasks varied

sharply across tasks. We argue that debugging work emerges in interaction with features of the

environment, and we discuss design refinements we have made to pursue and study this

conjecture.

Introduction
Debugging is fundamental to computing and to computing education, and it is a core feature of professional

programming. For computing education, debugging tasks can play a pivotal role in learning as they can be used

to introduce or assess important computational ideas. Moreover, learners’ interactions with debugging tasks can

impact their motivation and sense of belonging in the classroom community and in computing more generally

(Lui et al, 2017). Research has made efforts to understand the way debugging, as a practice, might develop over

time. For example, Rich and colleagues (2019) have proposed a learning trajectory for debugging, identifying it

as a separable constellation of skills and practices.

Meanwhile, recent approaches to computing and computational thinking have broadened the contexts in

which learners are seen to engage with computation, and hence with debugging. Though perhaps most strongly

visible in work on computational making and e-textiles, this trend toward widening context also appears in

increased emphasis on networking, distributed computing, and computing in social context. Such efforts may

raise questions about the degree to which debugging can be treated as a monolithic activity or skill, across this

range of settings. They may instead suggest situation-specific connections with test-and-refine patterns from other

fields (e.g., the design cycle in engineering or the modeling cycle in mathematics). Following this logic, one might

be skeptical about the broad applicability of models of debugging as a single, discipline-specific practice centered

on virtual constructions in text-based coding environments. We propose that these two trends (carefully describing

debugging and broadening its reach) create a productive tension—on one hand producing systematic descriptions

of learning and development over time, and on the other extending the reach of the construct to new, rich and

multi-modal settings where it is increasingly occurring. Both trends provoke a need in the field for building deep

understandings of the responses that beginning programmers exhibit in debugging settings in particular contexts.

In this paper we work to address this need, focusing on a programming context that bridges the traditional

and the new: a choice-based learning setting (a summer camp called Code Your Art) that used a text-based coding

environment for expressive purposes in creating visual art. We aim to understand the variability of students’

debugging activity in this setting and to generate hypotheses about the sources of this variability, as we address

the following questions: (1) How variable are beginning programmers’ ways of responding to and engaging with

debugging tasks in the Code Your Art context? and (2) How did different debugging tasks offer opportunities for

learners to tap into knowledge resources?

We found that a wide range of forms and levels of engagement with debugging could emerge even within

the particular form of computational creation realized in our camp setting. We propose that students’ activity, the

resources they draw upon, and ultimately their success in debugging emerge in interaction with features of the

environment. Thus, we argue that it is important to consider the circumstances under which debugging is taking

place and how beginning programmers’ computational habits and experiences intersect with the kinds of tasks

and code that they are attempting to debug. Rather than (or alongside) considering stable attributes of “effective

ICLS 2020 Proceedings 1229 © ISLS

and ineffective novices” (Robins, 2019), then, we argue for attending to situation-specific features of debugging

and ways that learners frame their engagement. What students take to be their goals, what kinds of problem they

are trying to fix, and what they need to attend to, all contribute to the overall “debugging experience” that students

have. While there is reason to think that people improve at these tasks over time, we argue it may be premature

to think about a trajectory of individual learning independent of factors of learning in context.

Brief overview of debugging literature
Essentially every effort to create a computational artifact requires debugging of some kind, and rather than framing

debugging in terms of errors and deficiencies in expressing one’s knowledge or understanding, computer science

educators increasingly see debugging as an organic part of elaborating and expressing ideas in computational

media and through computational representation infrastructures. This shift is reflected in the inclusion of

debugging in learning trajectories, with a focus on debugging as element of a system of disciplinary competencies

including the use of decomposition, iteration, and conditionals (Rich et al, 2017; 2018; 2019).

This literature is rapidly evolving, yet much of the research base on debugging has historically proceeded

from descriptions of expert practices and/or contrasts between experts and novices (Bednarik, 2012; Gould &

Drongowski, 1974; Lin et al., 2016; Vessey, 1985). Rich characterizations of novice activities on their own are

less common. In addition to the tendency of expert-novice approaches to characterize novices in deficit terms and

by contrast to experts, there is also a tendency to view novices’ behaviors as indicating stable attributes of the

novices, rather than responses to features of situations. For instance, an influential categorization of programming

behavioral patterns among novices distinguishes “stoppers,” “movers,” and “tinkerers” (Perkins et al, 1986). In

this view, movers “keep trying, experimenting with and modifying their code. They can use feedback about errors

effectively to solve programs and progress.” and “[t]inkerers are extreme movers who are not able to trace their

code and may be making changes more or less at random, with little chance of progress” (Robins, 2019, p. 337).

Furthermore, even traditional accounts of expert debugging may themselves be outmoded. Professional

debugging practice is evolving, as is the image of expertise that emerges in debugging. This is not an entirely new

trend, as some early accounts emphasized fluidity and iteration; Turkle and Papert’s (1992) work revealed a

diversity of styles of debugging and programming. Nevertheless, the emergence of tools that encourage fluid

debugging (e.g., by enabling “live coding” (cf, Blackwell, McLean, Noble, & Rohrhuber, 2014)) may increase

the view of debugging as blended with and interacting with other programming activities and practices. In this

context, we argue that “thick” descriptions of beginning programmers’ responses to debugging challenges are

needed as the field works to conceptualize debugging and its role.

Theoretical approach and design perspectives
While we aim to benefit from the insights in the research base on debugging, we approach the problem of

understanding beginning programmers’ interactions with debugging tasks with the assumption that human activity

is a joint accomplishment between people and the learning environment, which includes people, tools, norms, and

broader social narratives that give significance to interaction (Hall & Jurow, 2015; Nolen, Horn, & Ward, 2015;

Wertsch, 1994). This assumption broadens the focus of analysis from questions that ask what an individual is

doing to include descriptions of how activity is unfolding. This sociocultural framing of learning has demonstrated

that the very concepts of “novice” or “expert” fail to account for the rich and varied performances we see in folks

with more and less experience. Perhaps the most well-known re-imagining of expert-novice roles can be seen in

the work of Lave and Wenger (1991), who reframed these ideas by considering the path through activity that a

newcomer might take in the process of learning and becoming a member of a community. In this account, the

change in participation that characterizes learning can only be understood in relation to the opportunities for

learning that are present, and the ways that those opportunities shape and sometimes determine what, ultimately,

a learner can do. The idea that learning is constituted in participation is an important lens for our work, as it attunes

us to the ways that tools, classroom norms, and interactions with others afford particular kinds of opportunities to

learn. In broadening our analysis to include these other elements of the activity system, we find ourselves asking

different kinds of questions—not “what does novice debugging look like,” but rather, “why do students debug in

that way with that model and in this space.” Looking across activities can often help to highlight the role that

these different affordances (Greeno, 1994) can play in the ultimate activity that unfolds.

We build upon this socio-cultural perspective taking a Constructionist (Papert & Harel, 1991) approach

to the design of our learning environments, to the significance of debugging, and to the role of debugging in

creative computational work. Broadly, Constructionist designs reflect the idea that learning processes can be both

supported and illuminated when learners create public artifacts that are personally meaningful (Kafai 2006; Papert

& Harel 1991). Debugging in particular also holds a central role in Constructionist approaches to computational

thinking and learning. From early articulations in Mindstorms (Papert, 1980), the surprise associated with

ICLS 2020 Proceedings 1230 © ISLS

debugging, and the unexpected potential inherent in “buggy” lines of code, figure as drivers for the creative

process of programming as a whole. Programming appears here as an interactive activity with a dynamic

representation that gives its participants the opportunity to debug their thinking and achieve new perspectives on

phenomena described or produced in code: ideas emerge and are shaped in interaction. E.M. Forester’s description

of written composition captures the spirit: “How do I know what I think till I see what I say?” (Forester, 1970)

Papert and the Constructionists’ approach also endorses a view of computational thinking that explicitly

connects it with expressive and artistic activities. Although the LOGO turtle, the central agent of Papert’s initial

vision, was clearly a citizen of “MathLand” (Papert, 1980), it was also enthusiastically presented as a tool for the

learner to create beautiful and visually compelling creations. Turtles have since been used to explore forms of

artistic expressivity, in environments such as TurtleArt (Bontá, Papert, & Silverman, 2010) and more recently,

Scratch (Resnick et al, 2009). A fundamental idea behind this strand of the Constructionist tradition is the notion

that creating turtle graphics or producing media with turtles can introduce learners to the core principles of turtle

geometry and/or programming in playful ways (Papert, 1980; Papert & Harel, 1991). Debugging in this context

can be a part of the process of discovery, in which surprises in the computer’s execution of authors’ code suggest

possible directions the computational artifact can take. Describing a similar productive tension between

expressivity and the medium of representation, writer, Arts-and-Crafts designer, and printmaker William Morris

famously said, “You can’t have art without resistance in the materials” (qtd in McGann, 2001).

Methods and study context
We report on debugging data collected from the CAMPS project (NSF#1742257), which uses design-based

research (Cobb et al, 2003) to explore intersections between art, computational thinking, and mathematics with

middle-school learners. In this paper, we consider our initial uses of debugging activities, in the first iteration of

Code Your Art, which we designed and ran in the first year of this project.

Code Your Art was a one-week (five-day) free summer camp for middle school students, held in the

classrooms of a public middle school in a southeastern U.S. city. It consisted of two groups of 16 rising 6th -8th

grade students. Each group was taught collaboratively by a pair of public-school mathematics teachers. These

four teachers engaged in an intensive one-week professional development workshop before the camp, in which

they were introduced to the programming environment as learners and where they collaboratively adapted an

initial set of curricular materials. During the camp itself, the research team (2 professors, 4 graduate students, and

2 computer science undergraduates) provided support for the teachers, resolving any technical issues and

responding to questions and other needs of the students.

We used NetLogo (Wilensky, 1999) as the programming environment for Code Your Art. NetLogo is an

agent-based modeling platform, offering a powerful means to describe complex systems in nature and society

(Wilensky & Rand, 2015). However, we designed our project based on the conjecture that NetLogo could also

provide a powerful and expressive medium for creating computational art. We leveraged NetLogo’s ability to

produce images from (a) the computational state of a Cartesian grid of fixed agents (called “patches”) and (b) the

state and actions of mobile agents (called “turtles”). Turtles can draw on the surface of the patches, change their

shape, color, or size, and move information from one location to another. To illustrate the two agent-types in

action, the red region in Fig 1a involved 297 individual patches (out of the entire population of 1089) changing

color to red. In Fig 1b, large arrowhead-shaped turtles of different colors draw with pens on black patches.

Figure 1. Patches and Turtles in NetLogo (images from the debugging activities discussed in the analysis).

Code Your Art was project oriented, with students’ work culminating in creating a visual “computational

performance” using NetLogo patches and turtles. In the first three days of camp, as students’ project ideas

emerged, the teachers and research team agreed that a set of debugging activities might be useful. In a meeting

following the third day of the camp, we designed a group of eight activities as an addition to the curriculum for

use the following morning. Our goals with these activities, based on insights about the students’ thinking from

our intense observation of them, were (a) to mirror back to the learners some of the key concepts they had learned,

ICLS 2020 Proceedings 1231 © ISLS

and (b) to solidify their familiarity with NetLogo commands and syntax as a foundation for their project work. In

this paper, we focus on two of the eight activities: Make a Stripe (which foregrounded patches, see Fig 3) and

Draw Parallel Lines (which foregrounded turtles, see Fig 2). We analyze four students’ work across these

activities (pseudonyms Ethan, Brandon, Zaair, and Brianna). These four students constitute all of the consented

students in one classroom who attempted both activities.

Each of the debugging activities is framed in terms of helping a “client” to achieve a desired effect. Each

consists of a pair of buttons—a setup button that returns the environment to an initial state and creates agents if

necessary; and a second button whose label indicates a result the client was attempting to achieve. In each case,

there is a fundamental problem with the client’s code, which the students are aiming to remedy.

Button Name Buggy Code Run of Buggy Code

Set Up ca

ask patches with [pycor = 4] [sprout 1]

Draw Parallel

Lines

ask turtles [pd]

repeat 15 [ask turtles [fd 1] wait .5]

Figure 2. Draw Parallel Lines, the third of eight debugging challenges.

Figure 3. Make a Stripe, the seventh of eight debugging challenges.

We expected Make a Stripe to be the easier challenge for our students for several reasons. First, the camp

had been working with patches for three days and with turtles for only one. Moreover, the first debugging activity

in the set of eight, White Square, had dealt with similar concepts and was in fact more complex (involving filtering

of both pxcor and pycor). All four of our focal students had produced a solution to that first problem (though all

had required substantial help of some kind from a teacher or researcher). Thus, while a compound Boolean filter

(“with [pxcor < 10 and pxcor > 20]”) is a challenging programming construct and inequalities are a challenging

mathematics concept, Make a Stripe was a second exposure to these ideas in the debugging activities. Meanwhile,

Draw Parallel Lines involved compressed-syntax commands (pd for “pen-down” and fd for “forward”) and a

loop (repeat 15) that both addressed turtles and triggered a delay with a decimal-number argument (wait .5).

Nevertheless, students had substantially more success with Draw Parallel Lines than with Make a Stripe. Why?

Data collection and analysis
Throughout the camp, we collected a variety of sources of data to understand students’ experiences. These

included pre-post questionnaires, interviews, classroom video from standing and mobile (GoPro) cameras, and

on-computer screen-recordings. For this paper, we focus on the screen-recording data, which enabled us to take a

microgenetic view of the debugging process as it unfolded.

Because we were concerned with the way students made sense of NetLogo-specific constructs in the

context of expressive visual effects, we used methods of inductive coding and constant-comparative analysis

(Charmaz, 2006; Strauss & Corbin, 1990), rather than applying theoretically motivated codes derived from the

debugging literature. We created analytical memos (Hatch, 2002) to increase our ability to see connections across

the video corpus. This exploratory work led us to identify an “edit-test pair” as a unit of debugging action and to

develop conjectures about “phases” in students’ unfolding debugging work on a given problem. In the larger

context of the full suite of debugging activities, we noticed the recurrence of patterns in edit-test pairs and phases

Button Name Buggy Code Run of Buggy Code

setup ca

vertical stripe ask patches with [pycor < 20 and pxcor > 10] [set pcolor red]

ICLS 2020 Proceedings 1232 © ISLS

across students and activities (e.g., repeatedly changing constants and reverting the change), which suggested

patterns in the relations between students and the task environments. At the same time, we were struck by

fundamental differences in students’ activity and affect as they worked on different problems. Indeed, we

remarked more than once that students seemed “like different kids” in Make a Stripe and Draw Parallel Lines.

Findings
In this section we describe students’ work on these two debugging challenges. We begin by providing an account

of Ethan’s work across the two challenges as an illuminating example, and then we describe patterns in work

across the student group as a whole.

Ethan begins the Draw Parallel Lines challenge by running the code and commenting, “They’re all not

even in the…even in the same way, and I don’t like it, and I don’t like it, and I don’t like it.” He then returns to a

still-open NetLogo window containing his solution to a prior challenge. He spends the next several minutes talking

with peers at his table-group and showing them his solution. In the course of these exchanges, Ethan demonstrates

facility with NetLogo code and the environment. For example, the prior challenge required him to turn all the

turtles in a model red: Ethan’s companion asks if he could make them blue instead. Rather than altering the code

of his solution, he enters completely new code into NetLogo’s Command Center, and configures it to send a

command to all turtles, writing: turtles> set color blue. He dramatically presses Enter and adds “Boom! Are you

happy now?” He later opens each button of the model, reverts the code to its original buggy state, and

reimplements his fixes while explaining them to his companion. Overall, we get a strong image here of Ethan’s

confidence and “fluency” with syntax and with agent-based thinking, as well as of his ability to use NetLogo code

and the NetLogo environment to communicate ideas with fellow students.

Ethan then returns to Draw Parallel Lines saying, “I’m gonna move on to the other, third one, because

the third one is probably also easy.” Once he starts editing, Ethan’s progress is rapid. Opening the buggy button,

he immediately cuts all of the code (placing it on the clipboard) and types: ask turtles [set heading 90] He then

pastes the original code back below this new line. After setting up, he runs the new code (see Figure 4a), saying,

“Boom!” He then reflects, “They’re not parallel, but they’re in the same place, so I’m gonna…[2 sec pause]. That

looks NICE, actually.” He runs this code several times, finding the visual effect interesting. Because the turtles

move in steps equal to the distance between them, they can be ‘read’ as moving to the right or as changing colors

in place. Ethan next arranges the buttons in the interface, seeming to invest in the appearance of his solution.

A teacher passes by and asks “What should we do to those arrows [the turtles] to make them vertical?”

Ethan responds immediately by opening the button and changing “90” to “180,” which produces Fig 4b. The

teacher celebrates Ethan’s success with him and then moves on to other students. At this point, Ethan extends his

solution to explore what he can make with it. He says “I made a cage door!” Next, he decides to create a “forever”

performance integrating the horizontal and vertical movements he has programmed. By running his buttons one

after the other, he creates a symmetric pattern on the screen (Fig 4c). He celebrates: “Yes! Yes! I’ve made a work

of art.” After reflecting for a moment, he says “I’m going to turn the third one into my own work of art. Wait, I

already did that, so I’m just gonna do a setup button. He creates a “Set Up 2” button to contain the code “ask

patches [set pcolor white]” and then edits it to “ask patches [set pcolor red + 3],” using his knowledge of the

NetLogo color space to create a shade of pink (Fig 4d). He then calls his peers over, “Look at this work of art I’ve

made….out of the third one.” He ends with “I’m going to save this” before closing the model.

Figure 4. Ethan’s progressive solutions and extensions to Draw Parallel Lines.

In contrast, Ethan begins Make a Stripe with an unsuccessful sequence of rapid alterations to the code:

what we have described in our data as “tweaks.” Below, the highlighted characters show his changes (cf Fig 5):

* ask patches with [pycor < 20 and pxcor > 10] [set pcolor red]

1 ask patches with [pxcor < 20 and pxcor > 20] [set pcolor red]

2 ask patches with [pxcor < 20 and pycor > 20] [set pcolor red]

3 ask patches with [pycor < 20 and pxcor > 20] [set pcolor red]

ICLS 2020 Proceedings 1233 © ISLS

4 ask patches with [pycor > 20 and pxcor > 20] [set pcolor red]

5 ask patches with [pycor > 20 and pxcor < 20] [set pcolor red]

6 ask patches with [pycor = 20 and pxcor = 20] [set pcolor red]

7 ask patches with [pycor = 20 and pxcor 20] [set pcolor red]

Change #6 creates a single red patch on the screen (at coordinates (20, 20)). Seeing this, Ethan audibly expresses

frustration for the first time in this activity (“mmm!”). After Change #7 the button turns red (indicating a syntax

error). Ethan closes NetLogo, opens another copy of the model, goes to the Command Center, and types:

observer> ask patches [if pcolor = black [set pcolor white]]

Given how work in the Command Center figured into his peer interactions above, we speculate he does this as a

way to re-establish confidence. He then opens yet another copy of NetLogo and says to himself, “I wanna give up

SO bad!” When a researcher comes up to him, he says “I tried like everything but it never made a stripe.”

Figure 5. Results of Ethan’s “tweaks” corresponding to the start state and to Changes 1-6, above.

The researcher asks Ethan which patches he wants to turn red; then over the next 3 minutes he guides

Ethan through selecting a series of strategically selected patches from the grid and testing whether each of them

would turn red based on code of the button and whether they should turn red, based on the client’s goal.

Responding to this structured questioning, Ethan identifies and fixes the error. He responds to the researcher’s

encouraging “Awesome, right?” with silent assent. Though he does run the solution several times after the

researcher leaves, he does not show signs of positive affect comparable to his response to Draw Parallel Lines.

While working on Make a Stripe, Ethan does not engage with his peers or sing to himself as he had done earlier.

His code changes do not suggest the confident fluency that he evinced during Draw Parallel Lines. He responds

to the researcher’s questions and solves the problem, but it does not appear to give him joy. And the difference

across activities extends to problem-solving strategies as well as affect and social interaction. Indeed, in the

categories described in Perkins et al (1986), Ethan would present as a “mover” in Draw Parallel Lines and as a

“tinkerer” and/or “stopper” in Make a Stripe. These contrasts in his behavior and affect are consistent with a

general trend across the group of focal students we observed in these two activities.

Broader picture: Responses of our four focal students overall
All four students solved the Draw Parallel Lines problem. Three received some intervention from an adult: two

received support on syntax and one received encouragement to improve an initial solution (Ethan). All four

students gave spontaneous signs of positive affect or pride in their solution (see Fig 6). Three of the four extended

their solution to create additional visual effects.

Figure 6. Celebrations: Brandon’s happy dance. Zaair: “Yes! I did it: I am so smart! I did it.” Brianna “Yay!”

In addition to celebrating their successes, all four of the students produced work on Draw Parallel Lines

that went beyond a simple solution. Brandon, in partnership with a researcher, explored different angles and

altered the setup to make the turtles start on a vertical line (Fig 7a). Zaair, though he did not extend his solution,

made his turtles draw squares before settling on parallel lines (Fig 7b). And Brianna worked on her own to re-

enact and modify code changes that a researcher had supported her in creating (Fig 7c).

 In contrast, only two of the four focal students solved the Make a Stripe problem. Both received

substantial intervention from an adult to do so, while an additional student rejected help. One intervention (with

Ethan) involved a strongly-guided exploration of coordinates of patches, while the other intervention consisted of

ICLS 2020 Proceedings 1234 © ISLS

leading questions to support the student in decoding the buggy line of code. One student (Ethan) expressed

negative affect; one expressed mixed positive and negative affect; and one expressed a muted positive reaction to

a teacher’s congratulations on solving the problem. Neither of the two students who solved Make a Stripe extended

their solution or added visual effects, though one student who did not solve it for lack of time attempted to use

turtles to create a solution that we did not anticipate.

Figure 7. Extensions: Brandon changes starting state and explores angles. Zaair draws squares. Brianna fills the

screen by setting the turtles’ heading to 295.

Discussion and conclusion
How can we explain the stark contrast in students’ success, strategies, and affective responses across the two

debugging activities? As mentioned above, we expected the reverse, based on our sense of the difficulty of the

syntax and programming structures involved and because turtles were new to the students while patches were

more familiar. We can generate conjectures about causes. For instance, we have considered that the mathematics

of inequalities (and even the symbols) might have been opaque enough to cause Make a Stripe to be inaccessible,

even after White Square. We have also considered the accessibility of turtles versus patches. Papert (1980)

described the syntonicity of turtles—that they encourage learners to project into them—and this affordance may

have overridden the students’ longer exposure to patches. Both activities involved reasoning about agent-sets

(rather than single agents), but the number of patches that needed to be coordinated in Make a Stripe was an order

of magnitude greater than the size of the turtle-set in Draw Parallel Lines. Moreover, patches are less individually

visible or visually distinguishable than turtles, and so the inaccessibility of Make a Stripe could connect with

difficulties with aggregate reasoning.

These conjectures all have some plausibility and each likely offers a partial explanation. However, all of

these conjectures point to the interpretation that what was going on in these activities was a form of mediated

debugging. We have no explanation for our data that is based purely on increasing expertise or on a change in

their mastery of situation-independent debugging practices. This is not to say that learners do not develop

debugging practices and strategies: rather, it suggests that for our beginning NetLogo learners, something about

their sense of the activity mediated their work more strongly than these factors.

As a clue to factors that mediated the character of the focal students’ debugging, we note that, in the two

activities discussed above and throughout the debugging set, students demonstrated a higher level of knowledge

and confidence in the activities they were able to take up in a spirit of artistic expressivity. Though their work to

date within the camp had focused on patches, the data above show that this prior experience did not prevent them

from taking up turtle-based debugging activities with creativity and enthusiasm. And conversely, even though

these students used patches in expressive ways both before the debugging activities and in their final projects

afterwards, it was still possible for a patch-based debugging activity such as Make a Stripe to “fall flat” for them.

These findings are highly relevant to our goals in the Code Your Art camp, and they have informed

refinements to our design that we have undertaken this past year. In ongoing work, we are aiming to integrate

debugging tasks with invitations to modify, extend, or remix the “client’s” code. In this way, we intend to

encourage creative responses that demonstrate not only the ability to “fix” the code but also to manipulate its

effects, exploring the space of where a given visual effect embodied in code could be taken. We argue that better

understanding how debugging (or debugging-and-extending) tasks can invite and support different kinds of

participation is an important contribution to the understanding of debugging competencies among learners. Our

own future work will continue to explore these ideas by examining students’ debugging behavior under different

mediations and refined forms of the design principles we are developing, across iterations of Code Your Art.

References
Bednarik, R. (2012). Expertise-dependent visual attention strategies develop over time during debugging with

multiple code representations. International Journal of Human-Computer Studies, 70(2), 143–155.

ICLS 2020 Proceedings 1235 © ISLS

Blackwell, A., McLean, A., Noble, J., & Rohrhuber, J. (2014). Collaboration and learning through live coding

(Dagstuhl Seminar 13382). Dagstuhl Reports 3(9), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

Bontá, P., Papert, A., & Silverman, B. (2010). Turtle, art, turtleart. In Proc. of Constructionism 2010 Conference.

Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis. Thousand

Oaks, CA: Sage.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design Experiments in Educational

Research. Educational Researcher, 32(1), 9–13.

Forester, E. M. (1970). Aspects of the Novel. New York: Penguin Books.

Gould, J., & Drongowski, P. (1974). An exploratory study of computer program debugging. Human Factors, 16,

258–277.

Greeno, J. (1994). Gibson’s affordances. Psychological Review 101(2), 336-342.

Hall, R., & Jurow, A. S. (2015). Changing concepts in activity: Descriptive and design studies of consequential

learning in conceptual practices. Educational Psychologist, 50(3), 173-189.

Hatch, J. A. (2002). Doing qualitative research in education settings. Albany, NY: SUNY Press.

Lui, D., Anderson, E., Kafai, Y. B., & Jayathirtha, G. (2017, October). Learning by fixing and designing problems:

A reconstruction kit for debugging e-textiles. In Proceedings of the 7th Annual Conference on Creativity

and Fabrication in Education (p. 6). ACM.

McGann, J. (2001). The rationale of hypertext. In Radiant Textuality (pp. 53-74). New York: Palgrave.

Kafai, Y. B. (2016). From computational thinking to computational participation in K--12 education.

Communications of the ACM, 59(8), 26-27.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge Univ. Press.

Lin, Y., Wu, C., Hou, T., Lin, Y., Yang, F., & Chang, C. (2016). Tracking Students’ Cognitive Processes During

Program Debugging—An Eye-Movement Approach. IEEE Transactions on Education, 59(3), 175–186.

Nolen, S. B., Horn, I. S., & Ward, C. J. (2015). Situating motivation. Educational Psychologist, 50(3), 234-247.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1-11.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions of learning in novice

programmers. Journal of Educational Computing Research, 2(1), 37-55.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y. B. (2009).

Scratch: Programming for all. Communications of the ACM, 52(11), 60-67.

Rich, K. M., Strickland, C., Binkowski, T. A., & Franklin, D. (2019). A K-8 Debugging Learning Trajectory

Derived from Research Literature. Proceedings of the 50th ACM Technical Symposium on Computer

Science Education, 745–751. https://doi.org/10.1145/3287324.3287396

Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., & Franklin, D. (2017, August). K-8 learning trajectories

derived from research literature: Sequence, repetition, conditionals. In Proceedings of the 2017 ACM

conference on international computing education research (pp. 182-190). ACM.

Rich, K. M., Binkowski, T. A., Strickland, C., & Franklin, D. (2018, August). Decomposition: A K-8

Computational Thinking Learning Trajectory. In Proceedings of the 2018 ACM Conference on

International Computing Education Research (pp. 124-132). ACM.

Robins, A. (2019) Novice Programmers and Introductory Programming. In S. Fincher & A. Robins (Eds.). The

Cambridge Handbook of Computing Education Research. (pp. 327-376). Cambridge, UK: Cambridge

University Press.

Strauss, A., & Corbin, J. (1990). Basics of qualitative research (Vol. 15). Newbury Park, CA: Sage.

Turkle, S., & Papert, S. (1992). Epistemological pluralism and the revaluation of the concrete. Journal of

Mathematical Behavior, 11(1), 3-33.

Vessey, I. (1985). Expertise in debugging computer programs: A process analysis. International Journal of Man–

Machine Studies, 23, 459–494.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA:

Harvard U Press.

Wertsch, J. V. (1994). The primacy of mediated action in sociocultural studies. Mind, culture, and activity, 1(4),

202-208.

Wilensky, U. (1999). NetLogo [Computer Software]. Evanston, IL: Northwestern U.

Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling. Modeling Natural, Social, and

Engineered Complex Systems with NetLogo.

Acknowledgments
This work is supported by the National Science Foundation under Grant No. 1742257.

ICLS 2020 Proceedings 1236 © ISLS

