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Future detectors such as LISA promise signals at signal-to-noise ratios potentially in the thousands
and data containing simultaneous signals. Is numerical relativity prepared for this new data analysis
challenge? We estimate the minimum resolution a simulation must have as a function of signal-
to-noise ratio in order to be indistinguishable from a true binary black hole signal of the same
parameters. We demonstrate how numerical errors may leave residuals that could obscure higher
modes and elaborate on the fractional loss of signal-to-noise ratio by using numerical templates.

Introduction: The Laser Interferometer Gravitational-
wave Observatory (LIGO) and Virgo [1, 2] have ushered
in the field of gravitational wave (GW) astronomy, a field
that will enter a new era as the sensitivity of GW observa-
tories improve and access new GW frequency bands [3, 4].
Together with experiment and data analysis, theory has
been a partner in the success of the GW enterprise; it will,
therefore, need to match the increase in sensitivity and
reach of the detectors. In particular, numerical relativity
(NR) has played a crucial role in the detection and inter-
pretation of GWs from merging black holes (BHs) and
neutron stars. The waveforms extracted from NR simu-
lations have been used both to construct models [5–9] in
direct analysis of the data [10], and as injections to stress
test the detection pipeline[11]. It is crucial that NR codes
have the capability to create waveforms at standards that
will allow the community to capitalize on the wealth of
information that will be provided by future detectors.
If the source modeling is not on par with the advances
on the experimental front, the data analysis that goes
into detecting and characterizing signals will be seriously
compromised.

Differences between a template waveform and a grav-
itational wave signal could have many origins, including
but not limited to, using the “wrong” theory of gravity,
using an approximate theory of gravity, or having differ-
ences in the parameters of the system. Such errors or
missing physics in the template waveform have the po-
tential to lead to misleading or incorrect results. Assum-
ing general relativity (GR) is the correct gravitational
theory, the solutions to the vacuum Einstein equations,
as well as the waveforms extracted from the solutions,
only have errors associated with numerical discretization.
This is in contrast with simulations containing neutron
stars where the micro-physics of the stars is not well un-
derstood nor is the impact on the waveforms. We will fo-
cus only on waveforms generated by evolving binary black
holes (BBHs) in vacuum under Einstein’s theory of GR.
Fig. 1 shows an example of how the use of a low resolution
template, one with significant discretization errors, can
lead to residuals remaining in the data after the template
is used to match the signal. We show this in comparison
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FIG. 1: Strains (gray) for q = 6 sources with an aligned
spin of a = 0.2 on the larger BH; also plotted are noise

curves and the residuals remaining in the data after
using a low resolution template to match the signal

(high resolution waveform).

to the noise curves of the Laser Interferometer Space An-
tenna (LISA) [12], the Einstein Telescope (ET) [4], and
Advanced LIGO at design sensitivity [13, 14]. This is for
an unequal mass binary of mass ratio 6:1 with a small
spin of 20% maximal on the larger BH.

To further stress the importance of having high res-
olution in unequal mass ratio binaries for which higher
modes are relevant, we show in Fig. 2 the strain of the
same binary but now at an inclination of ι = 150 for
LISA, along with two residuals [3, 15]. The blue dashed
line is a low resolution waveform and the solid blue
line is the residual resulting from using that waveform
as the template in matched filtering. The red dashed
line is a high resolution waveform containing only the
(l,m) = (2, 2) mode, with the solid red line showing the
residual resulting from using it as the template wave-
form. Notice that the two residuals are comparable, both
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FIG. 2: Strain (black line) of a high resolution
(q, ι) = (6, 15o) source with an aligned spin of a = 0.2
on the larger BH for LISA at a distance of 30 Gpc,
ρ = 976. The blue dashed line is a low resolution

waveform of the same source parameters, with the solid
blue line denoting the residual resulting from using it as
the template. The red dashed line is a high resolution
template containing only the (l,m) = (2, 2) mode, with
the solid red line showing the residual resulting from

using it as the template waveform.

in strength and even in structure for this case, although
we note that the structure of the residual will change
depending on the details of the match and waveform.

Several studies have explored the potential impact
that numerical errors could have on interpreting LIGO
data [11, 16–18], including bounds on the numerical er-
rors necessary for detection as well as for measurement
[16, 19, 20]. Ref. [17] presents follow up work detailing
different methods of assessing the accuracy of waveforms
and the appropriate scenarios for each measure. Ref.
[21] discusses the requirements on waveform model accu-
racy in order to be prepared for third-generation ground-
based detectors and the relative errors in NR waveforms.
While NR simulations produce waveforms for which the
numerical errors are less significant than the noise asso-
ciated with the current detectors, this will likely change
as the sensitivity of the detectors increases.

The focus of this work is to investigate the impact of
the errors associated with NR simulations of BBHs. We
present a metric to access the errors arising from using
a discrete resolution in NR waveforms and use that
metric to estimate the minimum resolution required of
NR simulations to produce waveforms indistinguishable
from the true signal as a function of signal-to-noise
ratio (SNR) in the context of LIGO, LISA, and

ET [4, 22]. We also demonstrate how using templates
with low resolution may leave residuals that could po-
tentially obscure or be confused with higher order modes.

NR Waveforms: Our results are based on the Maya (for-
merly known as Georgia Tech) catalog of waveforms [23]
produced using the MAYA code [24–27], a branch of the
Einstein Toolkit [28] which is a NR finite-differencing
code that evolves the BSSN formulation [29, 30] built
upon Cactus, with mesh refinement from Carpet [31].
The simulations used in this study were performed on a
grid with 10 refinement levels with the largest grid radii
being 409.6M and the smallest grid radii being 0.2M
(0.1M) for mass ratios of 1:1 (6:1). The inspiral param-
eters quoted for this study are computed at the beginning
of the simulation, but there is evidence that the excess
radiation emitted at the beginning of an NR simulation
does not significantly impact the values of the parame-
ters [32].

As with all BSSN codes, our MAYA code computes wave-
forms from the Weyl Scalar Ψ4 extracted at a finite ra-
dius away from the BBH and then extrapolated to in-
finity [33]. In order to avoid introducing additional er-
rors from the extrapolation procedure, for this study,
all waveforms have been extracted at a radius 75M .
We have checked that our results do not change signif-
icantly when using other extraction radii. The strain,
h, is given by the second time integral of Ψ4. To fa-
cilitate analysis, the strain is decomposed in terms of
spin-weighted spherical harmonics −2Yl,m, of which the
(l,m) = (2, 2) quadrupole mode is generally the most
dominant. In the present work, we only use the modes:
(2, 1), (2, 2), (3, 2), (3, 3), (4, 3) and (4, 4).

For the binary masses detected and expected, NR
simulations are not generally able to produce waveforms
with enough cycles to cover the sensitive frequency range
of the LIGO and Virgo detectors. This will be even
more significant for LISA and ET. To circumvent this,
NR waveforms are stitched to approximates (e.g. post-
Newtonian), thus creating hybridized waveforms [34].
However, since the goal of this paper is to analyze
specifically the truncation error associated with limited
NR resolution, we are using only the NR waveform and
computing the relevant quantities over the frequency
range spanned by it. The starting frequencies for a total
mass of 1M� are provided by the NR waveforms, and
we divide by total mass to obtain the desired frequency.
For the NR waveforms utilized in this study, this means
a total mass of 1M� would have a starting frequency
flower = 2043 Hz for the equal mass scenario and
flower = 4772 Hz for the case with mass ratio 6:1. These
should be scaled according to the total mass in each case.

Metric for Accessing Accuracy: A waveform hi extracted
from a NR simulation will differ from the exact solution h
by an error δhi; that is, hi = h+δhi. Since our code uses
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finite differencing, to leading order we have δhi = c∆α
i .

Here α is the convergence rate of the code, c depends on
derivatives of h, and ∆i is the characteristic discretiza-
tion scale, or grid-spacing, used in the simulation. Due
to our use of adaptive mesh refinements, ∆i will refer
to the grid spacing of our finest mesh, which covers the
smallest of the two initial BHs.

By carrying out simulations of different resolutions,
one can determine the convergence rate α of the code
and extrapolate hi to infinite resolution and, in prin-
ciple, obtain h in a process called Richardson extrapo-
lation [35]. Computing matches between a finite reso-
lution template and the Richardson extrapolated wave-
form would be an ideal way to quantify the errors as-
sociated with limited resolution. However, effects from
boundary refinements [31], extrapolations during tempo-
ral stepping, and outer boundary conditions, to name a
few, make the process of Richardson extrapolation more
challenging. Therefore, to approximate the truncation
errors of a given resolution, we compute the relative er-
rors between multiple simulations of different resolutions
and, by doing this for multiple pairs of resolutions, com-
pute our code’s convergence rate and express the impact
of the truncation errors as a function of resolution. To
compute α we make use of a q = 1 BBH system with
aligned, dimensionless spin of a = 0.6 for which we have
multiple resolutions. By keeping the higher resolution
waveform fixed at ∆1 = 200 and varying the lower reso-
lution template, we compute α = 4. As our simulations
are performed using 6th order spatial finite-differencing
and 4th order Runge-Kutta for time evolution, this value
of convergence rate is consistent.

With the convergence rate established, let us consider
the overlap of two NR waveforms, h1 and h2:

O[h1, h2] ≡ 〈h1|h2〉√
〈h1|h1〉〈h2|h2〉

, (1)

where

〈h1|h2〉 = 2

∫ ∞
0

h∗1h2 + h1 h
∗
2

Sn
df , (2)

with Sn being the one-sided power spectral density of
the detector, and ∗ denoting the complex conjugate. Ex-
panding Eq. 1 to second order in the truncation error
[36]:

O[h1, h2] ≈ 1− 1

2
(∆α

2 −∆α
1 )

2 〈c|c〉
〈h|h〉

[
1−O2[h, c]

]
. (3)

Noting that c depends on derivatives of h, we can ap-
proximate that O2[h, c] ≈ 0 and write Eq. 3 in terms of
the mismatch, ε = 1−max

t0φ0

O, as

ε[h1, h2] =
β2

2
(∆α

2 −∆α
1 )

2
, (4)

with β2 = 〈c|c〉/〈h|h〉 = 〈c|c〉/ρ2 and ρ = 〈h|h〉1/2 being
the SNR.

Following [16], a NR waveform will be indistinguish-
able by the detector from the true signal if and only if:
〈δh|δh〉 < 1, or equivalently ∆2α〈c|c〉 < 1 . We propose a
new version of this metric for accessing accuracy written
in terms of β as

ρ <
1

β∆α
, (5)

allowing a direct computation between SNR and NR
discretization.

Applying Accuracy Metric to Detectors: Once we obtain
values for α and β, Eq. 5 provides the SNRs for which a
NR waveform of a given resolution will be indistinguish-
able from a signal of the same parameters. Using sim-
ulations with multiple different resolutions, we compute
mismatches ε to obtain α and β from Eq. 4. It is impor-
tant to keep in mind that β depends on both the detector
and the parameters of the source (mass Mdet, mass ratio
q, spins a, and inclination ι). Here we define mass ratio
such that q ≥ 1. For this analysis, we primarily consider
total masses in the detector frame of Mdet = 300M� for
ET and LIGO and Mdet = 5× 106M� for LISA.

We explore the values of β for three different BBH
systems each for LIGO, ET, and LISA. For the equal
mass BBH case, we keep the higher resolution waveform
fixed at ∆1 = M/200 and consider lower resolutions of
∆2 = M/80, M/120, and M/140. Using these, we com-
pute β ≈ 106 for all three detectors. For unequal mass
simulations, finer resolution is required to fully resolve
the smaller initial black hole. Therefore, for a q = 6 BBH
with the more massive BH having an aligned, dimension-
less spin of a = 0.2, we use resolutions of ∆1 = M/280
and ∆2 = M/200 to obtain β ≈ 107 when observed with
ι = 0 and β ≈ 5 × 108 when observed with ι = 15o, in
each of the detectors. While these values do change with
total mass, they remain at the same order of magnitude.

Figure 3 shows Eq. 5 for (q, ι) = (1, 0o) in the case of
LIGO for several Mdet. The horizontal line shows ρ =
32.4, the highest SNR yet observed by LIGO. The BBH
case in this figure is characteristic of most of the q ≈ 1
BBH systems observed so far. Since the NR waveforms
used in the data analysis of those signals had resolutions
∆ < M/120, they were not distinguishable by LIGO from
the true signal.

Looking towards the future detectors as well, Eq. 5
is plotted in Fig. 4 for all three detectors, LIGO, ET,
and LISA. Each of the shaded regions show the values of
ρ for which an NR waveform of a given resolution ∆ is
guaranteed to be indistinguishable from the true signal of
the same parameters. Blue is for the case (q, ι) = (1, 0o),
and red is for the case (q, ι) = (6, 15o). Below the red
dashed line is the case (q, ι) = (6, 15o). The vertical line
shows the highest resolution Maya waveform in the LIGO
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FIG. 3: Plot of ρ < 1/(β∆α) where ∆ is the resolution
of a NR simulation for (q, ι) = (1, 0o) with an aligned
spin of a = 0.6 for both BHs in the case of LIGO for
several Mdet. The horizontal line shows ρ = 32.4, the

highest SNR yet observed.

and Virgo Collaboration (LVC) catalog (∆ = M/400).
We do not include data below the lowest NR resolutions
we analyze, ∆ = M/80 for q = 1 and ∆ = M/200 for
q = 6.

For LISA and ET, it also appears that for low mass
ratio cases, current NR waveforms will be sufficient at
the expected SNRs. For the (q, ι) = (6, 0o) case (red
regions), NR waveforms at our current highest resolution
(∆ = M/400) would be sufficient for ρ < 800 for each of
the detectors. Since it is expected that LISA and ET will
be able to detect signals in the hundreds or thousands, it
is clear from Fig. 4 that one would require resolutions of
at least ∆ ≈M/600. The situation gets more challenging
if the source has inclination, allowing higher modes to be
more observable. For ET and LISA in the case (q, ι) =
(6, 15o), resolutions at the level of ∆ ≈M/103 are needed
to reach ρ ≈ 103.

Equation 5 also allows us to estimate the fractional loss
of SNR due to numerical errors:

δρ

ρ
=
ρi − ρ
ρ

=

√
〈hi|hi〉
〈h|h〉

− 1 ≈ 1

2
∆2αβ2 <

1

2 ρ2
. (6)

This equation allows us to see that for signals with large
SNR, the fractional loss will be less than for low SNR
signals.

Conclusions: Given the SNR of BBH signals, we have
provided estimates of the resolution needed in NR finite-
differencing codes to produce waveforms that are indis-
tinguishable by the LIGO, LISA and ET detectors from
the real signal, assuming that the template and the signal
have the same parameters. We showed that for detections
such as the ones obtained by LIGO so far, with ρ < 40,

current finite-difference codes are capable of producing
adequate waveforms if ∆ < M/120. We also showed that
for high mass ratio binaries or binaries with inclination,
where higher modes play an important role, NR codes
need to improve significantly. To reach SNRs above a
thousand, finite-difference NR code would have to effi-
ciently scale to resolutions of at least ∆ < M/700. Be-
ing able to reach resolutions for template indistinguisha-
bility is particularly important because, as we demon-
strated, residuals resulting from using lower resolution
templates could be comparable to those resulting from
ignoring higher modes entirely. While this paper investi-
gates the relationship between resolution and SNR, there
are alternative ways to increase the convergence rate of
the codes, including increasing the finite-differencing or-
der or implementing more efficient differencing schemes.
The need for high quality NR waveforms may be allevi-
ated if the very high SNR signals are not coincident in
the detectors, allowing on-demand NR simulations to be
deployed per high SNR event.

Our next step is to perform a parameter estimation
study to understand how this NR truncation error trans-
lates to uncertainty in the physical parameters of the
source. Furthermore, the present work was done using
the methodology typical for LIGO data analysis, and
simply using the noise curves for each detector. However,
LISA’s data analysis will be notably more complicated,
and it will be a crucial future step to study the impact
of these errors with LISA’s data analysis machinery [37].
This is particularly important since it is expected that
LISA will detect numerous signals concurrently.
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