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Abstract

The goal of data-driven algorithm design is to
obtain high-performing algorithms for specific
application domains using machine learning
and data. Across many fields in AI, science,
and engineering, practitioners will often fix a
family of parameterized algorithms and then
optimize those parameters to obtain good per-
formance on example instances from the appli-
cation domain. In the online setting, we must
choose algorithm parameters for each instance
as they arrive, and our goal is to be competitive
with the best fixed algorithm in hindsight.

There are two major challenges in online data-
driven algorithm design. First, it can be com-
putationally expensive to evaluate the loss func-
tions that map algorithm parameters to perfor-
mance, which often require the learner to run
a combinatorial algorithm to measure its per-
formance. Second, the losses can be extremely
volatile and have sharp discontinuities. How-
ever, we show that in many applications, evalu-
ating the loss function for one algorithm choice
can sometimes reveal the loss for a range of
similar algorithms, essentially for free. We de-
velop online optimization algorithms capable of
using this kind of extra information by working
in the semi-bandit feedback setting. Our algo-
rithms achieve regret bounds that are essentially
as good as algorithms under full-information
feedback and are significantly more computa-
tionally efficient. We apply our semi-bandit
results to obtain the first provable guarantees
for data-driven algorithm design for linkage-
based clustering and we improve the best regret
bounds for designing greedy knapsack algo-
rithms.
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1 INTRODUCTION

Overview. This paper concerns data-driven algorithm
design for combinatorial settings, which is an important
area at the intersection of machine learning and com-
puting that has been long of interest to the AI commu-
nity [23, 41, 29, 18]. However, until recently, most algo-
rithm design procedures did not have any provable guar-
antees on their performance, especially in the realistic
online scenario. The first general online data-driven algo-
rithm design procedures with regret bounds were given
by Balcan et al. [11], who studied the problem under full-
information and bandit feedback regimes. We develop
efficient semi-bandit algorithms that achieve nearly the
same regret as their full information algorithms, while
being as efficient as their bandit algorithms.

The goal of data-driven algorithm design is to use ma-
chine learning and data to decide what algorithm to use
from a large (typically parametrized) family of algorithms
for a given problem domain. For example, we may want
to decide which clustering algorithm to use from a large
family of clustering procedures in order to obtain the
highest quality results. We are concerned with the on-
line setting, where at each round the learner chooses an
algorithm from the family and receives a new instance
of the problem. The problem is characterized by a loss
function that measures the performance of each algorithm
in the family for the given instance, and the goal is to se-
lect algorithms so that the cumulative performance of the
learner is nearly as good as the best algorithm in hindsight
for that sequence of problems.

The major challenge in these settings is that it is poten-
tially computationally expensive for the learner to char-
acterize the loss function for each round, since each run
of the algorithm reveals the value of the loss function for
just the selected parameters. Moreover, for combinatorial
problems, small differences between two algorithms can
lead to a cascade of changes in their behavior and sig-
nificantly change their performance. However, when the



algorithm family is parameterized, it can often be shown
that the losses—though highly nonconvex in general—are
at least piecewise Lipschitz in the algorithm parameters,
so we can phrase the problem as online optimization of
piecewise Lipschitz functions.

Prior work on piecewise Lipschitz optimization was lim-
ited to two extreme feedback regimes: Either the learner
carries out a computationally expensive process to obtain
full-information feedback (i.e., it observes the loss of ev-
ery algorithm in the family on each instance), or accepts
suboptimal regret bounds to work in the bandit feedback
setting (i.e., it only observes the loss of one algorithm for
each instance). This creates a tradeoff between computa-
tional efficiency and good regret bounds. However, many
data-driven algorithm design problems exhibit rich addi-
tional structure that is ignored by these two approaches.
We show that, surprisingly, evaluating the loss function
for a single algorithm can sometimes reveal the loss for
a range of similar algorithms, essentially for free; in the
context of the loss function, we show that an entire Lips-
chitz region can often be learned at once. This motivates
us to define a new learning model, which we call the semi-
bandit feedback setting for learning piecewise Lispchitz
functions. Our new results in this model achieve the best
of both worlds: we can efficiently obtain the necessary
feedback while also having regret bounds that are nearly
as good as under full-information.

We instantiate our results for data-driven algorithm de-
sign on two combinatorial problems. These are machine
learning problems where the goal is to learn an optimal
algorithm, rather than a prediction rule. Our results for
optimizing over a family of greedy knapsack algorithms
improve over the procedures of Balcan et al. [11], Gupta
and Roughgarden [21], and Cohen-Addad and Kanade
[16] by simultaneously being more efficient and having
tighter regret bounds. We also provide the first online
data-driven algorithm design procedures for a rich fam-
ily of linkage based clustering algorithms introduced by
Balcan et al. [9] that interpolates between single and com-
plete linkage, which are algorithms that are widely used
in practice [6, 34, 40] and known to perform optimally
in many settings [5, 8, 7, 20]. Balcan et al. [9] consider
the data-driven algorithm design problem for this family
of algorithms in the batch setting, rather than the online
setting, where they model the application domain as a
distribution over problem instances, the goal is to find the
algorithm with the highest expected performance given
an i.i.d. sample from the distribution as training data.

Problem Setup. We study the problem of online piece-
wise Lipschitz optimization. The learning protocol is
as follows: on each round t, the learner chooses a pa-
rameter ρt belonging to a d-dimensional parameter space

C ⊂ Rd, the adversary chooses a piecewise Lipschitz loss
function `t : C → [0, 1], and the learner incurs a loss
equal to `t(ρt). A function `t : C → [0, 1] is piecewise
L-Lipschitz if we can partition the parameter space C into
regions such that `t is L-Lipschitz when restricted to each
region. Many important instances of data-driven algo-
rithm design require optimizing piecewise Lipschitz func-
tions, including greedy combinatorial algorithms [21],
clustering algorithms and SDP-rounding schemes [9],
branch and bound mixed integer program solvers [10],
initialization procedures for k-means clustering [12], and
various auction design problems [13]. In these problems,
the family of algorithms is parameterized and each pa-
rameter ρ ∈ C corresponds to one algorithm. We suppose
that on each round t there is a partition A(t)

1 , . . . , A
(t)
M of

the parameter space C, called the feedback system. If the
learner’s parameter ρt belongs to the set A(t)

i , then they
observe both the set A(t)

i as well as the loss `t(ρ) for ev-
ery ρ ∈ A(t)

i . We consider the uninformed setting, where
the learner does not know the feedback system for round
t in advance of selecting a parameter. For simplicity, we
consider oblivious adversaries that choose their sequence
of loss functions `1, `2, . . . adversarially, but before the
interaction with the learner begins. The learner’s goal is
to minimize regret, which is the difference between their
total accumulated loss and that of the best parameter in
hindsight:

∑T
t=1 `t(ρt)−minρ∈C

∑T
t=1 `t(ρ).

Throughout the paper, we use the notation Õ(·) to option-
ally suppress all logarithmic terms and dependence on
parameters other than the time horizon T and the dimen-
sion of the parameter space d.

Main Results and Techniques.
Semi-bandit Regret Bounds in the Dispersed Setting. It is
not always possible to achieve sub-linear regret for piece-
wise Lipschitz loss functions [30, 14, 32]. Balcan et al.
[11] provide regret bounds in the full-information and
bandit feedback settings under a dispersion condition that
roughly measures the number of discontinuous functions
in any ball of a given radius, and which is satisfied for a
diverse collection of combinatorial algorithm configura-
tion problems. In this paper, we introduce a related and
more general version of this condition that captures what
is asymptotically important for our regret bounds.

Definition 1. The sequence of loss functions `1, `2, . . .
is β-point-dispersed for the Lipschitz constant L if for
all T and for all ε ≥ T−β , we have that, in expectation,
the maximum number of functions among `1, . . . , `T that
fail the L-Lipschitz condition for any pair of points at
distance ε in C is at most Õ(εT ). That is, for all T and
for all ε ≥ T−β , we have E

[
maxρ,ρ′

∣∣{t ∈ [T ] : |`t(ρ)−
`t(ρ

′)| > L‖ρ − ρ′‖2}
∣∣] = Õ(εT ). where the max is

taken over all ρ, ρ′ ∈ C : ‖ρ− ρ′‖2 ≤ ε.



Note that the righthandside Õ(εT ) is roughly the number
L-Lipschitz failures one would expect across T functions
for a pair of points at distance ε if Lipschitz failures are
distributed reasonably randomly, and their probability of
occuring between a pair of points at distance ε is roughly
proportional to ε. The definition of β-dispersion measures
how small ε can be while maintaining the correctness of
this rough bound for the loss functions `i.

In our applications, the sequence of loss functions will
be chosen by a smoothed adversary, in the sense of Spiel-
man and Teng [36]. Informally, the discontinuity loca-
tions of the functions chosen by a smoothed adversary are
randomly perturbed. The expectation in Definition 1 is
over this randomness in the sequence of loss functions.
(Balcan et al. [11] also show examples where sufficient
randomness can arise from the algorithm itself, rather
than smoothness constraints on the adversary.) In all of
our applications, we prove β-dispersion with β = 1/2.
We provide an algorithm for online piecewise Lipschitz
optimization under semi-bandit feedback whose regret is
characterized by the β-dispersion parameter of the losses.
In Section 2, we prove the following result:
Theorem 2. Let C ⊂ Rd be a bounded parameter space
and `1, `2, · · · : C → [0, 1] be piecewise Lipschitz func-
tions that are β-point-dispersed. Running the contin-
uous Exp3-SET algorithm (Algorithm 1) under semi-
bandit feedback with an appropriate parameter λ has
expected regret bounded by E

[∑T
t=1 `t(ρt)− `t(ρ∗)

]
≤

Õ
(√
dT + T 1−β).

In comparison, the bandit-feedback algorithm of Balcan
et al. [11] has expected regret bounded by Õ(dT

d+1
d+2 3d +

T 1−β). Even in one-dimensional problems, this bound is
Õ(T 2/3 + T 1−β), which is worse than our results. Under
different assumptions, the bandit algorithm of Cohen-
Addad and Kanade [16] has Õ(T 2/3) regret for the special
case of one-dimensional piecewise constant functions.

General Tools for Verifying Dispersion. We also pro-
vide general tools for proving that a sequence of piece-
wise Lipschitz functions satisfies dispersion. When
the sequence `1, `2, . . . is random, we can usually di-
rectly bound the expected number of loss functions that
are not L-Lipschitz between any fixed pair of points ρ
and ρ′ with ‖ρ − ρ′‖2 ≤ ε by Õ(Tε). However, this
does not imply that the functions are β-point-dispersed,
since the expected number of non-Lipschitz functions
between the worst pair of points at distance ε will typ-
ically be larger than the expected number for any fixed
pair. Building on uniform convergence from learning
theory [35], we show that if each loss function has a
one-dimensional domain, at most K discontinuities and
any interval of radius ε has at most Õ(Tε) non-Lipschitz
functions in expectation, then the expected number of non-

Lipschitz losses on the worst interval of length ε is at most
Õ(Tε +

√
T log(TK)). This implies that for all pairs

of points at distance ε, at most O(Tε +
√
T log(TK))

functions are non-Lipschitz between them and demon-
strates β-dispersion with β = 1/2. Our result gives an
exponential improvement in the dependence on K com-
pared to the results of Balcan et al. [11], who upper bound
the expected number of non-Lipschitz losses in the worst
interval of length ε by Õ(TKε+K

√
T log(TK)).

Semi-bandit Online Data-driven Algorithm Design. In
Section 4, we combine our general regret analysis from
Theorem 2 together with application-specific dispersion
analysis to obtain practical data-driven algorithm design
procedures for linkage-based clustering and the knapsack
problem. In both applications, we show that the discon-
tinuities of each loss function are the roots of polyno-
mials depending on the corresponding problem instance,
and that the roots are dispersed under mild smoothness
assumptions on the adversary. We obtain the first on-
line data-driven algorithm design procedures for linkage
based clustering, and algorithm design procedures for
the knapsack problem with substantial computational im-
provements over the prior work, while at the same time
achieving nearly the same regret bound.

Explicit Comparison for Knapsack. To highlight the ben-
efits of our new learning model and results applied to
data-driven algorithm design, we give an explicit com-
parison of the computational complexity for obtaining
different types of feedback and the corresponding regret
bounds for the family of greedy knapsack algorithms in-
troduced in Section 4.1. In each round of the online game,
the algorithm chooses a parameter ρ, a new knapsack in-
stance with n items arrives, and our goal is for the total
value of items selected by the learner to be close to the
total value of the best fixed parameter ρ in hindsight. We
compare our results to the best prior full-information and
bandit feedback procedures.

• Full-information. Balcan et al. [11] show that the ex-
ponentially weighted forecaster with full-information
feedback achieves a regret bound of Õ(n2

√
T ). Our

tighter analysis improves the bound to Õ(
√
T ). Ob-

taining full-information feedback has a total cost of
O(n3 log n) time per round.
• Bandit Feedback. The discretization-based bandit algo-

rithm of Balcan et al. [11] has regret Õ(T 2/3n2), but
only requires O(n log n) time per round.

• Semi-bandit Feedback. In this paper we give an algo-
rithm whose regret is Õ(n

√
T ) using semi-bandit feed-

back obtainable in time O(n log n) per round. Note
that our algorithm is as efficient as the bandit-feedback
algorithm, yet its regret is only larger by a factor of n.



Related Work. There is a rich literature on data-driven
algorithm design. Most prior work focuses on the statisti-
cal setting, where the learner is given a large iid sample of
problem instances from some distribution, and the goal is
to find the algorithm with the best performance in expecta-
tion. Gupta and Roughgarden [21] introduced this formal
setting and provide sample complexity results for several
families of greedy algorithms. Balcan et al. [9] consider
semidefinite rounding schemes for integer quadratic pro-
grams and linkage based clustering algorithms, Balcan
et al. [10] consider learning the best branch and bound
algorithms for mixed integer programs, and Balcan et al.
[12] consider learning the best initialization procedures
for k-means clustering. Aamand et al. [1] and Hsu et al.
[24] use learned algorithms for streaming frequency es-
timation. Indyk et al. [25] study the problem of using a
learned sketching matrix to improve low-rank approxi-
mation algorithms. Dong et al. [19] use learned space
partitions to improve nearest neighbor search. In addition
to these formal results, this statistical setting has been the
predominant model for data-driven algorithm configura-
tion in artificial intelligence [33], combinatorial auctions
[28], numerical linear algebra [17], vehicle routing [15],
and SAT solving [41].

Another related line of work focuses on the problem of
choosing the algorithm with the shortest running time over
a distribution of problem instances [27, 39, 38]. This work
makes minimal assumptions about the algorithm family
and instead designs procedures that can avoid running
every algorithm to completion, since this may be very
expensive. Our work, on the other hand, explores special
structure in algorithm families and can be used to optimize
more general performance measures in the online rather
than stochastic setting.

For online optimization of one-dimensional piecewise
constant functions, Cohen-Addad and Kanade [16] pro-
vide full-information and bandit online optimization pro-
cedures. Balcan et al. [11] consider the more general
setting of multi-dimensional piecewise Lipschitz func-
tions. They introduce a dispersion condition that roughly
measures how many functions are not Lipschitz in any
ball, and provide algorithms with dispersion-dependent
full-information and bandit regret bounds. They also ver-
ify that dispersion is satisfied for a diverse collection of
data-driven algorithm design problems.

Prior work on semi-bandit feedback has focused predomi-
nantly on finite-armed bandits. Semi-bandit feedback was
first considered for online shortest path problems, where
on each round the learner selects a path through a graph
and observes the length of the edges along that path (but
not for other edges) [22, 26]. Audibert et al. [3] obtain
minimax bounds for a generalization to combinatorial

bandits, where the learner’s action space is described by
boolean vectors in {0, 1}d, the losses are linear, and the
on each round the learner observes the entries of the loss
vector corresponding to the non-zero entries in their ac-
tion. Alon et al. [2] introduce the Exp3-SET algorithm
for semi-bandit feedback for finite-armed bandits. They
consider the graph-feedback setting introduced by Man-
nor and Shamir [31], where on each round t, there is a
feedback graph Gt over the arms of the bandit and play-
ing arm i reveals the loss for arm i and all arms adjacent
in the graph Gt. We extend the Exp3-SET algorithm to
online optimization problems where there are infinitely
many arms and where the feedback system on each round
is a partition of the parameter space C.

2 SEMI-BANDIT OPTIMIZATION OF
PIECEWISE LIPSCHITZ LOSSES

In this section we provide an algorithm for online piece-
wise Lispchitz optimization and analyze its regret under
dispersion. Our results are for the following continuous
semi-bandit setting.

Definition 3 (Uninformed Semi-bandit Feedback.).
An online optimization problem with loss functions
`1, `2, . . . has semi-bandit feedback if for each time t,
there is partition A(t)

1 , . . . , A
(t)
M of the parameter space

C, called a feedback system, such that when the learner
plays point ρt ∈ A(t)

i , they observe the set A(t)
i and `t(ρ)

for all ρ ∈ A(t)
i . For any ρ ∈ C, we let A(t)(ρ) denote the

feedback set that contains ρ.

We analyze a continuous version of the Exp3-SET algo-
rithm of Alon et al. [2]. This algorithm uses importance
weighting to construct unbiased estimates of the com-
plete loss function on each round, which it passes as input
to a continuous version of the exponentially weighted
forecaster. Pseudocode is given in Algorithm 1. Unlike
the Exp3 algorithm of Auer et al. [4], the Exp3-SET al-
gorithm and our continuous version do not include an
explicit exploration term (i.e., we do not mix the distri-
bution pt with a uniform distribution over C). Stoltz [37]
was the first to show that mixing with the uniform dis-
tribution is unnecessary for the Exp3 algorithm to have
optimal expected regret.

In Appendix A.2, we show how to implement this algo-
rithm with O(log T ) per round time complexity for one
dimensional piecewise constant losses using the interval
tree data structure of Cohen-Addad and Kanade [16].

Given the learner’s observations on round t, Algorithm 1
uses importance weighting to estimate the complete loss
function by ˆ̀

t(ρ) = I{ρ∈A(t)(ρt)}
pt(A(t)(ρt))

`t(ρ). The estimate
ˆ̀
t(ρ) is only non-zero for parameters ρ that belong to

the feedback set observed by the algorithm at round



Algorithm 1 Continuous Exp3-SET
Parameter: Step size λ ∈ [0, 1]
1. Let w1(ρ) = 1 for all ρ ∈ C
2. For t = 1, . . . , T

(a) Let pt(ρ) = wt(ρ)
Wt

, where Wt =
∫
C wt(ρ) dρ.

(b) Sample ρt from pt, play it, and observe feedback
set A(t)(ρ) and losses `t(ρ) for all ρ ∈ At.

(c) Let ˆ̀
t(ρ) = I{ρ∈A(t)(ρt)}

pt(A(t)(ρt))
`t(ρ), where we define

pt(A
(t)(ρt)) =

∫
A(t)(ρt)

pt(ρ) dρ.

(d) Let wt+1(ρ) = wt(ρ) exp(−λˆ̀
t(ρ)) for all ρ.

t. The key property of ˆ̀
t is that it is an unbiased es-

timate of the true loss function conditioned on the his-
tory until the beginning of round t. More formally, let
Et[·] = E[·|ρ1, . . . , ρt−1, `1, . . . , `t] denote the condi-
tional expectation given the learner’s choices until round
t − 1 and the first t loss functions. This expectation is
only over the randomness of the learner’s choice of ρt
at time t. For clarity, we also use the notation E<t[·] to
denote the expectation of any random variable that is a
function of only ρ1, . . . , ρt−1 and `1, . . . , `t so that for
any random quantity X , we have E[X] = E<t

[
Et[X]

]
.

For any ρ ∈ C and t, a straight forward calculation shows
that Et[ˆ̀t(ρ)] = `t(ρ).

To simplify presentation, we assume that the sequence
of loss functions has an r0-interior minimizer: with
probability one, for all times T there exists ρ∗ ∈
argminC

∑T
t=1 `t(ρ) such that B(ρ∗, r0) ⊂ C. We can

usually modify a sequence of loss functions to obtain
an equivalent optimization problem that is guaranteed to
have an r0-interior minimizer. In Appendix A we discuss
such a transformation that works whenever the parameter
space C is convex (with no condition on the losses).

We bound the regret of Algorithm 1 under a slightly more
precise version of β-point-dispersion which leads to more
precise bounds and broader applicability.

Definition 4. The sequence of loss functions `1, `2, . . . is
f -point-dispersed for the Lipschitz constant L and disper-
sion function f : N× [0,∞)→ R if for all T and for all
ε > 0, we have E

[
maxρ,ρ′

∣∣{t ∈ [T ] : |`t(ρ)− `t(ρ′)| >
L‖ρ − ρ′‖2}

∣∣] ≤ f(T, ε). where the max is taken over
all ρ, ρ′ ∈ C : ‖ρ− ρ′‖2 ≤ ε.

We can express both β-point-dispersion and (w, k)-
dispersion from Balcan et al. [11] in terms of f -point-
dispersion. For any T ∈ N and ε > 0, let D(T, ε) =
E[max‖ρ−ρ′‖2≤ε

∣∣{1 ≤ t ≤ T : |`t(ρ) − `t(ρ
′)| ≥

L‖ρ − ρ′‖2}
∣∣ be the expected number of non-Lipschitz

functions among `1, . . . , `T across the worst pair of points
within distance at most ε. If the loss functions are β-point-
dispersed, then we know that for all T and ε ≥ T−β ,

we have D(T, ε) = Õ(Tε). Since D(T, ε) is a non-
decreasing function of the distance ε, we are guaranteed
that for any ε < T−β we have D(T, ε) ≤ D(T, T−β) =
Õ(T 1−β). It follows that the functions are also f -point-
dispersed for f(T, ε) = Õ(Tε + T 1−β). Similarly, the
functions are (w, k)-dispersed if every ball of radius w
in C has at most k non-Lipschitz functions. Since any
pair of points within distance ε are contained in a ball of
radius ε, it follows that for ε ≤ w we ahve D(T, ε) ≤ k,
but for ε > w we could have D(T, ε) as large as T . It
follows that the functions are f -point-dispersed where
f(T, ε) = k for all ε < w and f(T, ε) = T otherwise.

We bound the regret of Algorithm 1 in terms of the f -
point-dispersion of the losses. The proof is given in Ap-
pendix A.

Theorem 5. Let C ⊂ Rd be contained in a ball of radius
R and `1, `2, · · · : C → [0, 1] be piecewise L-Lipschitz
functions that are f -point-dispersed with an r0-interior
minimizer. Moreover, suppose the learner gets semi-
bandit feedback and, on each round t, the feedback system
A

(t)
1 , . . . , A

(t)
M has M feedback sets. For any r ∈ (0, r0],

running Algorithm 1 with λ =
√
d log(R/r)/(TM)

satisfies the following regret bound: E
[∑T

t=1 `t(ρt) −
`t(ρ

∗)
]
≤ O

(√
dTM log(R/r) + f(T, r) + TLr

)
.

Our regret bound for β-dispersed losses given in Theo-
rem 2 follows immediately from Theorem 5.

Note that our results are also applicable in two closely re-
lated settings: maximizing dispersed piecewise Lipschitz
utility functions, and the case when losses are bounded
in [0, H] for some known bound H instead of [0, 1]. A
discussion of the necessary transformations can be found
in Appendix A.1.

3 A RECIPE FOR VERIFYING
DISPERSION

In this section we illustrate a general recipe for proving
dispersion in data-driven algorithm design problems. We
work in the framework of smoothed analysis [36] and
suppose that nature injects a small amount of randomness
into the problem instances chosen by the adversary be-
fore the learner sees them. Our goal is to leverage this
framework to prove that the loss functions are dispersed.

At a high-level, a general strategy for proving dispersion
in this setting which has proved successful across a range
of examples is to:

1. Bound the probability density of the random set of
discontinuities of the loss functions, to obtain a bound
on the typical rate of Lipschitz condition violations.

2. Use a VC-dimension based uniform convergence argu-
ment to transform this typical rate into a bound on the



dispersion of the loss functions.

In this section, we give general tools which can be used
to accomplish each of these steps in real-world problems.

For many combinatorial algorithm families, the loss func-
tion for a given instance is piecewise L-Lipschitz on a
partition of C whose boundaries are defined by the roots of
a collection of polynomials. In the smoothed analysis set-
ting, the coefficients of these polynomials have bounded
probability density, and may (or may not) be independent.
The following theorem translates this randomness in the
coefficients into a statement about the randomness of their
roots, making it easy to accomplish Step 1 in the strategy
above.

Theorem 6. Consider a random degree d polynomial
φ(ρ) with leading coefficient 1 and subsequent coefficients
which are real of absolute value at most R, whose joint
density is at most κ. There is an absolute constant K
depending only on d and R such that every interval I of
length ≤ ε satisfies Pr(φ has a root in I) ≤ κε/K.

(In Appendix B we prove a generalization of Theorem 6
that allows for less structured coefficient vectors.)

In the 1-dimensional setting (i.e., when optimizing a
single-parameter family of algorithms), Theorem 6 of-
ten allows us to argue that no interval of width ε con-
tains any discontinuity from each loss function with large
probability. In the multidimensional setting, the sets of
discontinuities of the L-Lipschitz loss functions will of-
ten be algebraic curves (or in more than 2 dimensions,
algebraic varieties) defined as the zero sets of multivari-
ate polynomials. In this case, Theorem 6 can still be
used to accomplish Step 1 of the dispersion strategy, by
showing that few zeros are likely to occur on any fixed
piecewise-linear path (on whose pieces the zero sets of the
multivariate polynomial is the zero set of a single-variable
polynomial). In particular, this accomplishes Step 1 of
the basic strategy for proving dispersion.

For Step 2, we wish to transform our bound on the typical
rate of Lipschitz violations to a uniform bound on the
worst number of Lipschitz violations, over all pairs of
points ρ, ρ′. For example, the following theorem accom-
plishes this in the 1-dimensional case:

Theorem 7. Let `1, `2, · · · : R → R be inde-
pendent piecewise L-Lipschitz functions, each hav-
ing at most K discontinuities. Let D(T, ε, ρ) =∣∣{1 ≤ t ≤ T | `t is not L-Lipschitz on [ρ− ε, ρ+ ε]}

∣∣
be the number of functions in `1, . . . , `T that are not
L-Lipschitz on the ball [ρ − ε, ρ + ε]. Then we
have E[maxρ∈RD(T, ε, ρ)] ≤ maxρ∈R E[D(T, ε, ρ)] +

O(
√
T log(TK)).

To see the general utility of Theorem 7, observe that if in

Step 1 we show that for all times T , radiuses ε > 0 and
any fixed interval I of radius ε, the expected number of
non-Lipschitz functions on interval I is at most Õ(Tε),
then Theorem 7 guarantees that the losses are 1

2 -dispersed.

To accomplish Step 2 in the case of higher dimensions
with discontinuities given as the 0 sets of (multivariate)
polynomials, the 0-sets are now not finite sets but finite-
degree algebraic curves (or varieties). To verify disper-
sion, we need a uniform-convergence bound on the num-
ber of Lipschitz failures between the worst pair of points
ρ, ρ′ at distance≤ ε, but the definition allows us to bound
the worst rate of discontinuties along any path between
ρ, ρ′ of our choice. The following theorem bounds the
VC dimension of axis aligned segments against bounded-
degree algebraic curves, which will allow us to accom-
plish Step 2 by considering piecewise axis-aligned paths
between points ρ and ρ′.

Theorem 8. There is a constant Kd (e.g., K2 ≤ 11)
depending only on d such that axis-aligned line segments
cannot shatter any collection of Kd algebraic curves of
degree at most d.

The proof, which appears in the appendix, makes repeated
use of Bezout’s theorem which bounds the number of
intersection points of algebraic curves in terms of their
degrees. In particular, a family of k algebraic curves
will always a poly(k)-bounded number of intersection
points and local extrema, which, one can show, makes
it impossible to label the exponentially-many subsets of
such curves with axis-aligned segments.

Theorem 8 allows us now to obtain a 2-dimensional ana-
log of Theorem 7 as follows, giving an implementation
of Step 2 in this setting.

Theorem 9. Let `1, `2, · · · : R2 → R be inde-
pendent piecewise L-Lipschitz functions, each hav-
ing a set of discontinuities specified by a collec-
tion of K algebraic curves of bounded degree. Let
L denote the set of axis-aligned line-segments in
R2. For each s ∈ L, define D(T, s) =

∣∣{1 ≤
t ≤ T : `t has a discontinuity along s}

∣∣. Then
we have E[sups∈LD(T, s)] ≤ sups∈L E[D(T, s)] +

O(
√
T log(TK)).

4 ONLINE DATA-DRIVEN
ALGORITHM DESIGN WITH
SEMI-BANDIT FEEDBACK

In this section we apply our semi-bandit optimization re-
sults to online data-driven algorithm design for two rich
parameterized families of algorithms. For both families,
we show how to obtain semi-bandit feedback by running
a single algorithm from the family. We also analyze dis-
persion for these problems under the assumption that the



adversary is smoothed. In both cases, we obtain Õ(
√
T )

regret bounds in the semi-bandit feedback setting. Fi-
nally, in Appendix C.1 we show how to use binary search
to obtain semi-bandit feedback for a large class single-
parameter algorithm families.

Smoothed adversaries. We consider adversaries that are
smoothed in the sense of Spielman and Teng [36], where
their decisions are corrupted by small random perturba-
tions. Formally, we say that a parameter chosen by the
adversary is κ-smooth if it is a random variable whose
density is bounded by κ. After the adversary chooses the
density for each smoothed parameter, nature samples each
parameter value independently from their corresponding
distributions. Small values of κ correspond to larger ran-
dom perturbations of the problem parameters, while in
the limit as κ → ∞, the adversary is able to choose the
parameters deterministically. In each application, we will
specify which problem parameters are smoothed, together
with the bound κ on their density. For simplicity, we
assume that all κ-smooth random variables are indepen-
dent (i.e., the corruption of the adversary’s choices is not
correlated across variables), though many of our results
can be exteneded to allow for some correlation between
the parameters of each instance.

4.1 GREEDY ALGORITHMS FOR KNAPSACK

First, we consider selecting the best algorithm from a
parameterized family of a greedy algorithms for the knap-
sack problem. An instance of the knapsack problem con-
sists of n items, where item i has a value vi and a size
si, and a knapsack capacity C. Our goal is to find the
most valuable subset of items whose total size does not
exceed C. Gupta and Roughgarden [21] propose using
the following parameterized family of greedy knapsack
algorithms: for a given parameter ρ ∈ [0, R], set the score
of item i to be σρ(i) = vi/s

ρ
i . Then, in decreasing order

of score, add each item to the knapsack if there is enough
capacity left. This algorithm runs in time O(n log n). In
our analysis, we assume that the adversary’s item values
are κ-smooth.

First, we show how to obtain semi-bandit feedback for
this family of greedy knapsack algorithms by running a
single algorithm in the family. Pseudocode is given in
Algorithm 2.

Lemma 10. Consider a knapsack instance with capacity
C and n items with values v1, . . . , vn and sizes s1, . . . , sn.
Algorithm 2 runs in time O(n log n). Moreover, there
is a feedback system A1, . . . , AM partitioning C into
M = O(n2) intervals such that set of items output by
the algorithm is constant for ρ ∈ Ai. When run with
parameter ρ, in addition to the item set S, the algorithm
outputs the interval Ai containing ρ.

Algorithm 2 Semi-bandit Knapsack
Input: Parameter ρ ≥ 0, item values v1, . . . , vn, item
sizes s1, . . . , sn, knapsack capacity C ≥ 0.
1. Let π : [n] → [n] be the item permutation such that
σρ(π(1)) ≥ · · · ≥ σρ(π(n)).

2. Initialize S ← ∅.
3. For i = 1, . . . , n: if sπ(i) ≤ C then add π(i) to S and

set C ← C − sπ(i).
4. For i = 1, . . . , n− 1: let ci ←

log(vπ(i)/vπ(i+1))

log(sπ(i)/sπ(i+1))
.

5. Let ρmin ← max{ci | ci ≤ ρ}.
6. Let ρmax ← min{ci | ci > ρ}.
7. Return S and interval A = (ρmin, ρmax).

Proof sketch. The items selected by the algorithm only
depend on the item ordering π. Steps 4 and 5 compute
the largest parameter interval containing ρ with the same
item ordering as ρ, and therefore the items output by the
algorithm is constant on this interval. Based on the work
of Gupta and Roughgarden [21], we know there are at
most O(n2) such intervals.

In contrast to Algorithm 2, the most direct approach to
obtaining full-information feedback for this family of
knapsack algorithms is to first compute a set of O(n2)
critical parameter values arising from all pairs of points
and to run the algorithm once for each cell in the corre-
sponding partition, taking O(n3 log n) time.

Next, we provide a dispersion analysis for selecting the
parameter ρ ∈ [0, R] in order to maximize the value of
items selected. We assume that each instance has the
same capacity C, item sizes are in [1, C], and the item
values are in [0, 1] and κ-smooth. The corresponding loss
function is `(ρ) = C −

∑
i∈Sρ vi ∈ [0, C], where Sρ is

the set of items selected by Algorithm 2 when run with
parameter ρ.

Lemma 11. Consider an adversary choosing knap-
sack instances with a fixed knapsack capacity C where
the tth instance has item sizes s(t)1 , . . . , s

(t)
n ∈ [1, C],

and κ-smooth item values v(t)1 , . . . , v
(t)
n ∈ [0, 1]. The

loss functions `1, `2, . . . defined above are piecewise
constant, f -dispersed for f(T, ε) = Tεn2κ2 ln(C) +
O(
√
T log(Tn)), and β-dispersed for β = 1/2.

Proof. Let c(t)ij = log(v
(t)
i /v

(t)
j )/ log(s

(t)
i /s

(t)
j ) be the

critical parameter value such that at ρ = c
(t)
ij , items i and

j swap their relative order in the tth instance. Balcan et al.
[11] show that each critical value c(t)ij is random and has a
density function bounded by κ2 ln(C)/2. It follows that
for any interval I of radius ε, the expected total number
of critical values c(t)ij summed over all pairs of items and



t = 1, . . . , T is at most Tεn2κ2 ln(C). This is also an
upper bound on the expected number of loss functions
in `1, . . . , `T that are not constant on I . Applying The-
orem 7, it follows that the functions are f -dispersed for
f(T, ε) = Tεn2κ2 ln(C) + O(

√
T log(Tn)) = Õ(Tε+√

T ), which implies β-dispersion with β = 1/2.

Running Algorithm 1 using the semi-bandit feedback
returned by Algorithm 2, we obtain the following.

Corollary 12. Under the same conditions as Lemma 11,
using Algorithm 1 to tune the parameter ρ ∈ [0, R] of
Algorithm 2 under semi-bandit feedback has expected
regret bounded by O(Cn

√
T log(RTnκ log(C))).

The full-information regret bound obtained by Balcan
et al. [11] is Õ(Cn2

√
T ), which is worse than our semi-

bandit bound (but can be improved to Õ(C
√
T ) using our

tighter dispersion analysis).

4.2 INTERPOLATING BETWEEN SINGLE AND
COMPLETE LINKAGE CLUSTERING

Next, we consider a rich family of linkage-based cluster-
ing algorithms introduced by Balcan et al. [9] that inter-
polates between the classic single and complete linkage
procedures. Clustering instances are described by a ma-
trix D = (dij) ∈ Rn×n giving the pairwise distances
between a collection of n data points and the goal is to
organize the points into a hierarchy or cluster tree. We
provide the first dispersion analysis and online configura-
tion procedures for this class of algorithms. We assume
that each distance dij is κ-smooth.

The algorithm family we consider, called ρ-linkage, is
family of agglomerative clustering algorithms with a
single parameter ρ ∈ [0, 1]. These algorithms take as
input a distance matrix D ∈ Rn×n with entries dij
and the parameter value ρ ∈ [0, 1] and output a clus-
ter tree, which is a binary tree where each node corre-
sponds to a cluster in the data. The leaves of the tree
are the individual data points, while the root node cor-
responds to the entire dataset. The children of each
node subdivide that cluster into two subclusters. The
ρ-linkage algorithm starts with each point belonging to
its own cluster. Then, it repeatedly merges the clos-
est pair of clusters according the distance defined by
dρ(A,B) = (1− ρ) dmin(A,B) + ρ dmax(A,B), where
A and B are clusters (i.e., subsets of [n]), dmin(A,B) =
mina∈A,b∈B dab and dmax(A,B) = maxa∈A,b∈B dab.
When there is only a single cluster remaining, the al-
gorithm outputs the constructed cluster tree.

For any pair of candidate cluster merges (C1, C2)
and (C ′1, C

′
2), where C1, C2, C

′
1 and C ′2 are clus-

ters, there is a critical parameter value c such that

dρ(C1, C2) = dρ(C
′
1, C

′
2) only when ρ = c. To

simplify notation in the rest of this section, we let
c(C1, C2, C

′
1, C

′
2) = ∆min/(∆min − ∆max), where

∆min = dmin(C ′1, C
′
2) − dmin(C1, C2) and ∆max =

dmax(C ′1, C
′
2)− dmax(C1, C2).

First, we show how to obtain semi-bandit feedback for
this family of linkage algorithms by running a single al-
gorithm in the family. Our modified algorithm maintains
an interval (ρmin, ρmax) with the invariant that at any iter-
ation, for all parameters ρ′ ∈ (ρmin, ρmax), the algorithm
would make the same merges that have been made so far.
Pseudocode for this procedure is given in Algorithm 3

Algorithm 3 Semi-bandit ρ-Linkage
Input: Parameter ρ ∈ [0, 1], distance matrix D ∈ Rn×n.
1. Let S ← {Leaf(i) for i ∈ [n]}.
2. Let ρmin ← 0 and ρmax ← 1.
3. While |S| > 1:

(a) Let (C1, C2) = argminC1,C2∈S dρ(C1, C2).
(b) For each pair (C ′1, C

′
2) 6= (C1, C2) in S

i. Let c′ ← c(C1, C2, C
′
1, C

′
2).

ii. If c′ > ρ then set ρmax ← min(ρmax, c
′),

otherwise set ρmin ← max(ρmin, c
′).

(c) Remove C1 and C2 and add Node(C1, C2) to S.
4. Return the only element T of S and A = [ρmin, ρmax].

Lemma 13. Consider a clustering instance with distance
matrix D ∈ Rn×n. Algorithm 3 runs in time O(n3).
Moreover, there is a feedback system A1, . . . , AM par-
titioning [0, 1] into M = O(n8) intervals such that the
cluster tree output by the algorithm is constant for ρ ∈ Ai.
When run with parameter ρ, in addition to the cluster tree
T , the algorithm outputs the interval Ai containing ρ.

Proof sketch. On each iteration, we compute the critical
parameter values where the pair of clusters chosen in step
(a) of Algorithm 3 would change. All parameters in the
largest interval containing ρ and no critical parameter
values from any iterations will result in exactly the same
clustering. Balcan et al. [9] showed that each clustering
instance has at most O(n8) discontinuities, which bounds
the number of feedback sets obtained in this way.

Similarly to the knapsack example, the most direct ap-
proach for obtaining full-information feedback is to first
calculate a set of O(n8) critical parameter values aris-
ing from all O(n8) subsets of 8 points and to run ρ-
linkage once for each interval in the corresponding parti-
tion. By using a priority queue to maintain the distances
between clusters, it is possible to implement ρ-linkage in
O(n2 log n) time. This leads to a total running time of
O(n10 log n)—much higher than the O(n3) running time
in Lemma 13. Note that using a priority queue in Algo-
rithm 3 does not reduce the running time to O(n2 log n),



since updating the interval (ρmin, ρmax) requires a linear
pass through all O(n2) pairs of clusters, so finding the
closest pair faster does not reduce the running time.

Next, we provide a dispersion analysis for selecting the
parameter ρ of Algorithm 3 when the clustering instances
are chosen by a smoothed adversary. In particular, we
suppose that on each round the adversary chooses a dis-
tance matrix D(t) where each distance d(t)ij is κ-smooth
and takes values in [0, B]. The quantity B/(1/κ) = Bκ
roughly captures the scale of the perturbations relative to
the true distances. Our analysis leads to regret that de-
pends on Bκ only logarithmically and give good bounds
even for exponentially small perturbations.

Fix any loss function g : Rn×n × CLUSTERTREES →
[0, 1], where g(D,T ) measures the cost of cluster tree T
for distance matrixD. For example, g(D,T ) could be the
k-means cost of the best k-pruning of the tree T or the dis-
tance to a ground-truth target clustering. We study the loss
functions given by `t(ρ) = g(D(t),A(D(t); ρ)), where
A(D; ρ) denotes the output cluster tree of Algorithm 3
run on distance matrix D with parameter ρ.

Lemma 14. Consider an adversary choosing clustering
instances where the tth instance has symmetric distance
matrix D(t) ∈ [0, B]n×n and for all i ≤ j, d(t)ij is κ-
smooth. The losses `1, `2, . . . defined above are piece-
wise constant, f -dispersed for f(T, ε) = 32Tεn8κ2M2+
O(
√
T log(Tn)) and β-dispersed for β = 1/2.

Proof sketch. In the proof of Lemma 13, we showed that
for each time t, there are O(n8) critical parameter values
partitioning C into regions so that the algorithm output is
constant on each region. Since the loss `t only depends
on ρ through the algorithm output, `t is also piecewise
constant with at most O(n8) pieces.

Moreover, we argued that every discontinuity of `t occurs
at a critical parameter value of the form c = (d

(t)
rr′ −

d
(t)
ii′ )/(d

(t)
jj′−d

(t)
ii′ +d

(t)
rr′−d

(t)
ss′) where i, i′, j, j′, r, r′, s, s′

are 8 point indices. Similarly to the knapsack example,
we show that each critical parameter value is random and
has a density function bounded by 16(κB)2. From this,
it follows that for any interval I of radius ε, summing
over all times t = 1, . . . , T and all subsets of 8 points,
we have that the expected total number of critical values
that land in interval I is at most 32Tε(κB)2. This also
bounds the expected number of functions `1, . . . , `T that
are not constant on I . By Theorem 7, the functions are
f -dispersed for f(T, ε) = 32Tε(κB)2 +

√
T log(Tn) =

Õ(Tε+
√
T ), also implying 1

2 -dispersion.

There are several cases when bounding the density of
the critical value c, depending on whether any of the 4
distances correspond to the same entry in the distance

matrix D. We give the argument for the case when all 4
distances are distinct entries and therefore independent.
The remaining cases are similar and considered in Ap-
pendix C. LetX = drr′−dii′ and Y = djj′−dss′ so that
c = X/(X+Y ). The variablesX and Y are independent.
Since X and Y are each the sum of κ-smooth random
variables, Lemma 25 implies that they are each have κ-
bounded densities. Using the fact that |X + Y | ≤ 2B,
applying Lemma 27 implies that the ratio c = X/(X+Y )
has a 16(κB)2 bounded density, as required.

Running Algorithm 1 using the semi-bandit feedback
returned by Algorithm 3, we obtain the following:

Corollary 15. Under the same conditions as Lemma 14,
using Algorithm 1 to tune the parameter ρ ∈ [0, 1] of
Algorithm 3 under semi-bandit feedback has expected
regret bounded by O(n4

√
T log(TnκB)).

In Appendix C.2 we show how to extend these results to
apply to the case of also learning a metric in addition to
interpolating between single and complete linkage.

5 CONCLUSION
In this work, we provide the first online optimization algo-
rithm for piecewise Lipschitz functions under semi-bandit
feedback with regret bounds that depend on the dispersion
of the loss functions. We also give general tools for veri-
fying dispersion in applications with exponentially tighter
bounds than prior work. Finally, we apply our results to
two data-driven algorithm design problems. We obtain the
first online data-driven algorithm design procedure for a
family of linkage-based clustering algorithms, and an on-
line data-driven algorithm design procedure for a greedy
family of knapsack algorithms that is more efficient and
has better regret bounds than prior work. A cornerstone
of our results is that, for many data-driven algorithm de-
sign problems, semi-bandit feedback can be obtained as
efficiently as bandit-feedback and is sufficient for our
algorithms to achieve nearly the same regret bounds as
under full-information feedback. Our results largely mit-
igate the tradeoff between computational efficiency and
good regret bounds suffered by prior approaches, making
online data-driven algorithm design practical.
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A APPENDIX FOR ONLINE
OPTIMIZATION (Section 2)

Problem Transformations to Obtain r0-interior Min-
imizers. Recall that a sequence of loss functions
`1, `2, . . . has an r0-interior minimizer if with proba-
bility 1, for all times T we have that there exists ρ∗ ∈
argminρ∈C

∑T
t=1 `t(ρ) such that B(ρ∗, r0) ⊂ C. We can

usually modify a sequence of loss functions to obtain
an equivalent optimization problem that is guaranteed to
have an r0-interior minimizer. For example, when the
parameter space C is convex (e.g., a cube in Rd, which
covers most algorithm configuration applications), we
can apply the following transformation: define an en-
larged parameter space C′ =

⋃
ρ∈C B(ρ, r0) and a mod-

ified sequence of loss functions `′t : C → [0, 1] given by
`′t(ρ

′) = `t(ΠC(ρ
′)), where ΠC denotes the Euclidean

projection onto C. Using the fact that projections onto
convex sets are contractions, it follows that the sequence
`′1, `

′
2, . . . is also L-Lispchitz and f -dispersed. More-

over, it has an r0-interior minimizer and any sequence
of parameters ρ′1, ρ

′
2, · · · ∈ C′ can be converted into

ρ1, ρ2, · · · ∈ C by taking ρt = ΠC(ρ
′
t). This guaran-

tees that `t(ρt) = `′t(ρ
′
t) for all t. In particular, an algo-

rithm with low regret playing against `′1, `
′
2, . . . can be

converted into one that plays against `1, `2, . . . with an
identical regret bound. The cost of this transformation is
that it increases the diameter of the parameter space C by
2r. Our regret bounds have logarithmic dependence on
the diameter of C.

Theorem 5. Let C ⊂ Rd be contained in a ball of radius
R and `1, `2, · · · : C → [0, 1] be piecewise L-Lipschitz
functions that are f -point-dispersed with an r0-interior
minimizer. Moreover, suppose the learner gets semi-
bandit feedback and, on each round t, the feedback system
A

(t)
1 , . . . , A

(t)
M has M feedback sets. For any r ∈ (0, r0],

running Algorithm 1 with λ =
√
d log(R/r)/(TM)

satisfies the following regret bound: E
[∑T

t=1 `t(ρt) −
`t(ρ

∗)
]
≤ O

(√
dTM log(R/r) + f(T, r) + TLr

)
.

Proof of Theorem 5. For the majority of the proof we con-
sider an arbitrary deterministic sequence of piecewise Lip-
schitz loss functions `1, . . . , `T with an r0-interior mini-
mizer. We will only suppose they are f -point-dispersed
in the final steps of the proof.

Following the proof of the Exp3-Set algorithm of Alon
et al. [2], we will upper and lower bound the quantity
E[log(WT+1/W1)]. Our upper bound will be in terms of
the learner’s total expected loss, while the lower bound
will be in terms of the expected total loss of the optimal
parameter in hindsight. Dispersion plays a crucial role
in the lower bound, since it allows us to guarantee that

a set of parameters with non-trivial volume has nearly
optimal total loss. Combining these bounds and then
finally taking the expectation of the bound for a sequence
of losses `1, . . . , `T that are f -dispersed will give the final
bound.

Upper Bound. Consider the ratio of consecutive normal-
izing constants Wt+1/Wt. Using the definition of wt+1

and pt, we have

Wt+1

Wt
=

∫
C

wt(ρ)

Wt
exp(−λˆ̀

t(ρ)) dρ

=

∫
C
pt(ρ) exp(−λˆ̀

t(ρ)) dρ.

Next, using that e−z ≤ 1 − z + z2/2 for all z ≥ 0, we
have

Wt+1

Wt
≤
∫
C
pt(ρ)

(
1− λˆ̀

t(ρ) +
λ2

2
ˆ̀
t(ρ)

)
dρ

= 1− λ
∫
C
pt(ρ)ˆ̀

t(ρ) dρ+
λ2

2

∫
C
pt(ρ)ˆ̀

t(ρ)2 dρ.

Using the fact that 1 − z ≤ exp(−z) for all
z ≥ 0 and taking the product over t = 1, . . . , T ,
we have WT+1

W1
≤ exp

(
−λ
∑T
t=1

∫
C pt(ρ)ˆ̀

t(ρ) dρ +
λ2

2

∑T
t=1

∫
C pt(ρ)ˆ̀

t(ρ)2 dρ
)
. Taking logs, we have

log(
WT+1

W1
) ≤− λ

T∑
t=1

∫
C
pt(ρ)ˆ̀

t(ρ) dρ

+
λ2

2

T∑
t=1

∫
C
pt(ρ)ˆ̀

t(ρ)2 dρ.

(1)

Next, we will take the expectation of the above bound
to simplify the two integrals. Recall that for each time
t, we let A(t)

1 , . . . , A
(t)
M be the feedback system and for

any ρ ∈ C and let A(t)(ρ) denote the set A(t)
i such that

ρ ∈ A(t)
i . Recall that the importance-weighted losses ˆ̀

t

were constructed to ensure that for any time t and any
fixed ρ ∈ C, we have Et[ˆ̀t(ρ)] = `t(ρ). Therefore,

E
[∫
C
pt(ρ)ˆ̀

t(ρ) dρ

]
= E<t

[
Et
[∫
C
pt(ρ)ˆ̀

t(ρ) dρ

]]
= E<t

[∫
C
pt(ρ)`t(ρ) dρ

]
.

The integral in the final expectation is the defini-
tion of Et[`t(ρt)], which gives E

[∫
C pt(ρ)ˆ̀

t(ρ) dρ
]

=

E<t[Et[`t(ρt)]] = E[`t(ρt)]. Therefore, we have

E

[
T∑
t=1

∫
C
pt(ρ)ˆ̀

t(ρ) dρ

]
= E

[
T∑
t=1

`t(ρt)

]
, (2)



which is the total expected loss of the algorithm on the
first T rounds.

Now we turn to simplifying the expectation of the second
integral in (1). For any ρ ∈ C and any time t, we have

Et[ˆ̀t(ρ)2] =

∫
C
pt(ρ

′)

(
I{ρ ∈ A(t)(ρ′)}
pt(A(t)(ρ′))

`t(ρ)

)2

dρ.

Using the fact that ρ ∈ A(t)(ρ′) if and only if ρ′ ∈
A(t)(ρ), we can upper bound the integral as follows:

∫
C
pt(ρ

′)

(
I{ρ ∈ A(t)(ρ′)}
pt(A(t)(ρ′))

`t(ρ)

)2

dρ

=

(
`t(ρ)

pt(A(t)(ρ))

)2

·
∫
A(t)(ρ)

pt(ρ
′) dρ

=
`t(ρ)2

pt(A(t)(ρ))

≤ 1

pt(A(t)(ρ))
.

This implies that

E
[∫
C
pt(ρ)ˆ̀

t(ρ)2 dρ

]
= E<t

[
Et
[∫
C
pt(ρ)ˆ̀

t(ρ)2 dρ

]]
≤ E

[∫
C
pt(ρ)

1

pt(A(t)(ρ))
dρ

]
Finally, we evaluate the integral by writing it as the sum
of integrals over the feedback sets A(t)

1 , . . . , A
(t)
M , which

is justified since these sets partition C. In particular, we
have∫
C
pt(ρ)

1

pt(A(t)(ρ))
dρ =

M∑
i=1

1

pt(A
(t)
i )
·
∫
A

(t)
i

pt(ρ) dρ

= M.

Putting it together, we have

E

[
T∑
t=1

∫
C
pt(ρ)ˆ̀

t(ρ)2 dρ

]
≤ TM. (3)

Taking the expectation of (1) and using the calculations
given by (2) and (3), we have

E
[
log

WT+1

W1

]
≤ −λE

[
T∑
t=1

`t(ρt)

]
+
λ2

2
TM.

Lower Bound. Next, let ρ∗ ∈ argminρ∈C
∑T
t=1 `t(ρ) be

such that B(ρ∗, r0) ⊂ C and fix any radius r ≤ r0. Using

the fact that W1 =
∫
C 1 dρ = Vol(C) and the weights

wT+1(ρ) are positive, we have

WT+1

W1
=

1

Vol(C)

∫
C
wT+1(ρ) dρ

≥ 1

Vol(C)

∫
B(ρ∗,r)

exp

(
−λ

T∑
t=1

ˆ̀
t(ρ)

)
dρ.

Taking the log of this bounds gives log WT+1

W1
≥

log 1
Vol(C) + log

(∫
B(ρ∗,r)

exp
(
−λ
∑T
t=1

ˆ̀
t(ρ)

)
dρ
)
.

At this point it is tempting to apply dispersion to
lower bound the term exp

(
−λ
∑
t

ˆ̀
t(ρ)

)
in terms of

exp
(
−λ
∑
t

ˆ̀
t(ρ
∗)
)
. In particular, if at each time t the

feedback system A
(t)
1 , . . . , A

(t)
M corresponds to the piece-

wise Lispchitz partitioning of C for the loss function `t,
then the estimated loss function ˆ̀

t has a subset of the
discontinuities of `t. In this case, the estimated losses
ˆ̀
1, ˆ̀

2, . . . are also f -dispersed for the same function f
as the true losses. However, when the feedback system
at around t does not match the piecewise Lipschitz par-
tition, we would require a separate dispersion analysis
for the sequence of estimated losses ˆ̀

1, ˆ̀
2, . . . . The more

serious challenge, however, is that the importance weight
1/pt(A

(t)(ρt)) in the definition of ˆ̀
t causes it to take val-

ues in the range [0, 1/pt(A
(t)(ρt))], which is much larger

than the true losses which take values in [0, 1]. More-
over, the Lipschitz parameter of the estimated loss `t is
L′ = L/pt(A

(t)(ρt)). This larger loss range and Lips-
chitz constant lead to a worse final regret bound. Instead,
we defer applying dispersion until after taking expecta-
tions so that we can use the dispersion properties of the
true losses `1, `2, . . . directly.

Towards this end, we first use Jensen’s inequality to sim-
plify the above bound. Let h : C → R be any function
and S ⊂ C be any subset of the parameter space. Then,
using the fact that log is concave, we can apply Jensen’s
inequality to obtain the following bound:

log

(∫
S

exp(h(ρ)) dρ

)
= log

(
Vol(S)

∫
S

1

Vol(S)
exp(h(ρ)) dρ

)
= log(Vol(S)) + log

(∫
S

1

Vol(S)
exp(h(ρ)) dρ

)
≥ log(Vol(S)) +

∫
S

1

Vol(S)
log(exp(h(ρ))) dρ

= log(Vol(S)) +

∫
S

1

Vol(S)
h(ρ) dρ,

Applying this inequality to our lower bound on
log WT+1

W1
with h(ρ) = −λ

∑T
t=1

ˆ̀
t(ρ) and S =

B(ρ∗, r) gives log WT+1

W1
≥ log Vol(B(ρ∗,r))

Vol(C) −



λ
∫
B(ρ∗,r)

1
Vol(B(ρ∗,r))

∑T
t=1

ˆ̀
t(ρ) dρ. Next, since C is

contained in a ball of radius R and the volume of a
ball of radius R in Rd is proportional to Rd, it fol-
lows that the volume ratio is at least (r/R)d. Tak-
ing expectations, we have E

[
log WT+1

W1

]
≥ d log r

R −

λ
∫
B(ρ∗,r)

1
Vol(B(ρ∗,r))

∑T
t=1 `t(ρ) dρ, where we used the

fact that for any fixed ρ ∈ C, we have E[ˆ̀t(ρ)] =

E<t[Et[ˆ̀t(ρ)]] = `t(ρ). Finally, we will upper bound the
sum of losses

∑T
t=1 `t(ρ) for points in the ball B(ρ∗, r)

in terms of the number of non-Lipschitz functions on
the worst pair of points within distance r in C. After
taking expectations, this quantity will be bounded using
f -point-dispersion. For any pair of points ρ, ρ′ ∈ C,
define Dr = supρ,ρ′∈C:‖ρ−ρ′‖2≤r

∣∣{1 ≤ t ≤ T :

|`t(ρ) − `t(ρ
′)| > L‖ρ − ρ′‖2}

∣∣ to be the number of
functions among `1, . . . , `T that violate the L-Lipschitz
condition between the worst pair of points ρ and ρ′ within
distance r. Then, for any ρ ∈ B(ρ∗, r) we have that

T∑
t=1

`t(ρ) ≤
T∑
t=1

`t(ρ) + TLr +Dr,

since at most Dr of the losses violate the L-Lipschitz
condition between ρ and ρ∗ and the remaining loss func-
tions can change value by at most 1 between ρ and ρ∗.
Substituting into our bound gives

E
[
log

WT+1

W1

]
≥ d log

r

R
− λ

T∑
t=1

`t(ρ
∗)− TLr −Dr.

Combined bound. Combining the upper and lower bounds
and rearranging, we have

T∑
t=1

E[`t(ρt)]−`t(ρ∗) ≤
λ

2
TM+

d

λ
log

R

r
+TLr+Dr.

(4)

Finally, now suppose that the functions `1, . . . , `T are a
random sequence that satisfy f -point-dispersion. Taking
the expectation of both sides of (4) with respect to the
loss sequence, we have that

E

[
T∑
t=1

`t(ρt)− `t(ρ∗)

]

≤ λ

2
TM +

d

λ
log

R

r
+ TLr + E[Dr]

≤ λ

2
TM +

d

λ
log

R

r
+ TLr + f(T, r),

where the final inequality follows from the definition of
f -segment-disperison. The specific bounds given in the
theorem statement follow by substituting the chosen value
of λ.

A.1 OPTIMIZING UTILITIES AND
H-BOUNDED LOSSES

We note that the regret bound obtained in Theorem 5 for
Algorithm 1 can also be used to obtain similar results in
two closely related settings. First, if we instead have piece-
wise Lipschitz utility functions u1, u2, · · · : C → [0, 1]
and our goal is to maximize utility rather than minimize
loss, we can transform this into a loss-minimization prob-
lem by minimizing the losses given by `t(ρ) = 1−ut(ρ).
This transformation preserves the regret of any algorithm,
the feedback system at each round, and the piecewise
Lipschitz and dispersion properties of the functions. Sim-
ilarly, if the losses take values in [0, H] for some known
maximum loss H , instead of [0, 1], the learner can pre-
process the losses to fall in [0, 1] by dividing them by
H . The rescaled functions take values in [0, 1] and have
Lipschitz constant L′ = L/H . Then expected regret of
Algorithm 1 with respect to the unscaled loss functions is
O(H

√
TMd log(R/r) +Hf(T, r) + TLr).

Lemma 16. Let u1, u2, · · · : C → [0, H] be a sequence of
utility functions that are each piecewise L-Lipschitz and
f -dispersed. Define a corresponding sequence of losses
`1, `2, · · · : C → [0, H] given by `t(ρ) = H −ut(ρ). The
functions `1, `2, . . . are also piecewise L-Lispchitz and
f -dispersed.

Proof. First, consider any time t. Since ut : C → [0, H]
is piecewise L Lipschitz, by definition we know that there
is a partition C1, . . . , CM of C so that for each i ∈ [M ] and
any ρ, ρ′ ∈ Ci, we have |ut(ρ)− ut(ρ′)| ≤ L · ‖ρ− ρ′‖2.
We will argue that the loss function `t is also piecewise
L-lispschitz on the same partition. Fix any i ∈ [M ] and
any pair of points ρ, ρ′ ∈ Ci. Then we have that

|`t(ρ)− `t(ρ′)| =
∣∣(H − ut(ρ))− (H − ut(ρ′))

∣∣
= |ut(ρ′)− ut(ρ)|
≤ L · ‖ρ− ρ′‖2,

where the last inequality follows from the fact that ut is
L-Lipschitz restricted to Ci. It follows that `t is also piece-
wise L-Lipschitz and has the same piecewise Lipschitz
partition. This holds for all times t.

Next, we argue that whenever the utility functions
u1, u2, . . . are f -dispersed, so are the loss functions
`1, `2, . . . . For any time horizon T , radius ε > 0, and
parameter ρ ∈ C, define Du(T, ε, ρ) =

∣∣{1 ≤ t ≤ T :

ut is not L-Lipschitz on B(ρ, ε)}
∣∣ and D`(T, ε, ρ) =∣∣{1 ≤ t ≤ T : `t is not L-Lipschitz on B(ρ, ε)}

∣∣. Fol-
lowing an identical argument as in the first part, with
probability 1, whenever ut is L-Lipschitz on the ball
B(ρ, ε), so is the function `t. From this, it follows that
Du(T, ε, ρ) = D`(T, ε, ρ) for all T ∈ N, ε > 0, and



ρ ∈ C. Finally, since the functions u1, u2, . . . were f -
dispersed, we have that for all T ∈ N and all radiuses
ε > 0, we have

E[max
ρ∈C

Du(T, ε, ρ)] ≤ f(T, ε).

It follows that

E[max
ρ∈C

D`(T, ε, ρ)] = E[max
ρ∈C

Du(T, ε, ρ)] ≤ f(T, ε),

and the loss functions `1, `2, . . . are also f -dispersed.

A.2 EFFICIENT IMPLEMENTATIONS VIA
INTERVAL TREES

In this section we show how to use the modified interval
tree data structure of Cohen-Addad and Kanade [16] to
implement the continuous Exp3-SET algorithm efficiently
for one-dimensional problems with piecewise constant
loss functions. In particular, the per-round cost of up-
dating the algorithm weights and sampling from them at
time t is only O(log(t)), while a direct implementation
has running time given by O(t) instead. We also show
how to use interval trees to implement the Exp3 algorithm
on a set of N arms with per-round running time that is
O(logN), which implies that a discretization-based algo-
rithm in the bandit setting can be efficiently implemented
even in high dimensions.

Interval Tree Summary. Cohen-Addad and Kanade [16]
introduce a modified interval tree data structure used for
representing piecewise constant functions mapping R to
R. Their data structure represents the function as a bal-
anced tree with one leaf corresponding to each constant
interval of the function. It supports two main operations
called DRAW and UPDATE:

• The DRAW procedure returns a sample from the den-
sity function that is proportional to the represented
piecewise constant function f .

• The UPDATE procedure takes an interval [a, b) and
an update u, and updates the represented piecewise
function by multiplying the function values in [a, b)
by u. That is, if the represented function was orig-
inally f : R → R, after executing UPDATE with
interval [a, b) and update u, the resulting function is

f ′(x) =

{
f(x) if x 6∈ [a, b)

u · f(x) if x ∈ [a, b).

Cohen-Addad and Kanade [16] show that the operations
DRAW and UPDATE can be implemented in O(logP )
time, where P is the number of constant pieces in the

represented function. The data structure also makes it
possible to implement a third procedure INTEGRATE in
O(logP ) time, which takes an interval [a, b) and returns
the integral of the represented represented function on the
interval [a, b).

Exp3-Set for Piecewise Constant One Dimensional
Problems. First, we show how to efficiently implement
Algorithm 1 efficiently for one-dimensional optimization
problems with piecewise constant loss functions. We sim-
ply use the interval tree datastructure of Cohen-Addad
and Kanade [16] to represent the weight function at each
round. Pseudocode is given in Algorithm 4.
Lemma 17. Consider an online optimization problem
with loss functions `1, `2 : [0, 1] → [0, 1] that are piece-
wise constant. Moreover, suppose that on each round
t, the loss `t is constant on each of the feedback sets
A

(t)
i . For such a problem, Algorithm 4 is equivalent to

Algorithm 1. The overhead of sampling and updating the
weights on round t takes O(log t) time.

Proof. On each round we run UPDATE once to update the
interval tree. This at most increases the number of con-
stant intervals in the weights by 2, since the only constant
intervals that might get split are the two containing the
end points of the feedback set At. Therefore, on round
t, the weight function is piecewise constant with at most
O(2t) intervals. It follows that the sampling, integration,
and update operations all take O(log t) time, giving a
total per-round cost of O(log t).

Algorithm 4 Continuous Exp3-SET for Piecwise Con-
stant One Dimensional Problems
Parameter: Step size λ ∈ [0, 1]
1. Initialize W to be the interval tree representing
w(ρ) = I{ρ ∈ [0, 1]}.

2. For t = 1, . . . , T
(a) Let ρt ← DRAW(W ) and play ρt.
(b) Observe feedback interval At = A(t)(ρ) and loss

`t(ρt).
(c) Let ˆ̀

t ← `t(ρt)
pt(At)

, where pt(At) ←
INTEGRATE(W,At)

INTEGRATE(W,[0,1]) .

(d) Call UPDATE(W,At, ˆ̀
t).

B APPENDIX FOR DISPERSION
RECIPE (Section 3)

We begin by proving Theorem 6. In fact, we prove a more
general version, given below:
Theorem 18. Consider real vector a = (a1, . . . , ak)T

(k ≤ d+ 1, |ai| ≤ R)

φ(x) = αdx
d + αd−1x

d−1 + · · ·+ α0



where the coefficient vector (αd−1, . . . , α0)T is f(a) for
some affine transformation f : Rk → Rd+1 which has the
property that for any real number r, there is some input
to f for which r is not a root of φ(x). Then there is an
absolute constant K depending only on d, R, and f such
that if the vector a is chosen randomly from a distribution
of density bounded by κ, and there is some interval I ⊆ R
of length ≤ ε such that

Pr(φ has a root in I) ≥ p,

then we have that
κε/p ≥ K.

Proof. We consider the polynomial

φ(x) = αdx
d + αd−1x

d−1 + · · ·+ α1x
1 + α0,

where, in particular

|αi| ≤ Rf := |f |∞R (5)

for all i, where |f |∞ denotes the `∞ operator norm of f .

Moreover, as the coefficient vector (αd, . . . , α0) belongs
to the f -image of the cube [−R,R]k, the set SA of possi-
ble coefficient vectors has volume

VA :=
√

detATA(2R)k,

where here A denotes the linear part of A.

For a root % of φ, we can factor φ(x) as
φ(x) = (x − %)ψ(x) where we define ψ(x) =(
βd−1x

d−1 + βd−2x
d−2 + · · ·+ β1x

1 + β0
)

and

αj = βj−1 − % · βj for each 1 ≤ j ≤ d, (6)

and α0 = % · β0. In particular, the vector
(αd, αd−1, . . . , α0)T is the product B% · b where b is the
vector (βd−1, βd−2, . . . , β0)T and B% is the (d+ 1)× d
matrix

B%ij =


1 j = i

−% j = i+ 1

0 otherwise.

In particular, allowing arbitrary βd−1, . . . , β0 ∈ R, the
product B% · b defines a d-dimensional subspace HB,% of
Rd+1; this is precisely the subspace of coefficient vectors
(αd, . . . , α0) for which ρ is a root of φ. By assumption,
the image of f is an affine subspace of dimension k ≤ d
in Rd+1 which is not a subset of HB,%, as a consequence,
their intersection is (empty or) a hyperplane HC,% of di-
mension d′ < k, and the d′-dimensional volume VS of
SA,% := SA ∩HC,% satisfies

VS ≤ 2d
′√

2
k−d′

(2Rf )d ≤ 2d+1Rdf (7)

simply because this is the maximum d′-dimensional vol-
ume of the intersection of a d′-hyperplane with a k-cube
of volume (2Rf )k (see Ball, “Volumes of sections of
cubes and related problems”, 1989). Note that we are
using here the bound (5) on the αi’s to bound the volume
of the cube of possible coefficient vectors.

Now we need to bound the change that can occur by
allowing small changes in the root %. Observe that by
Cauchy’s bound on the roots of a polynomial, any root %
of φ satisfies |%| ≤ 1 +Rf ≤ 2Rf for Rf ≥ 1.

Now from (6) we have that

|βj−1| ≤ Rf + |%||βj |,

so that induction gives that

|βd−j | ≤
2Rjf −R

j−1
f −Rf

Rf − 1
≤ 2Rdf (8)

for all j.

In particular, if |%′ − %| ≤ ε, then any point in HB,%

is at distance at most ε · 2Rdf from HB,%′ by (6) and
(8), and likewise any point in SA,% is at distance at most
ε · 2Rdf from SA,%′ , implying (recall VS from (7)) that the
k-dimensional volume of

⋃
%′∈I SA,%′ is at most (2ε) ·VS

if the interval I has width at most ε.

In particular, if, with probability p, the polynomial φ has
a root in the interval I (which has width ε), then

p ≤ κA · 2εVS/VA,

where κA = κ/
√

det(ATA) is the bound on the k-
dimensional density of joint distribution of the αi’s inher-
ited from the density bound on the distribution of a.

Theorem 7. Let `1, `2, · · · : R → R be inde-
pendent piecewise L-Lipschitz functions, each hav-
ing at most K discontinuities. Let D(T, ε, ρ) =∣∣{1 ≤ t ≤ T | `t is not L-Lipschitz on [ρ− ε, ρ+ ε]}

∣∣
be the number of functions in `1, . . . , `T that are not
L-Lipschitz on the ball [ρ − ε, ρ + ε]. Then we
have E[maxρ∈RD(T, ε, ρ)] ≤ maxρ∈R E[D(T, ε, ρ)] +

O(
√
T log(TK)).

Proof. For simplicity, we assume that every function
has exactly K discontinuities. For each function `t,
let α(t) ∈ RK denote the vector whose entries are the
discontinuity locations of `t. That is, `t has discon-
tinuities at α(t)

1 , . . . , α
(t)
K , but is otherwise L-Lispchitz.

Since the functions `1, `2, . . . are independent, the vec-
tors α(1), α(2), . . . are also independent.



For any interval I ⊂ R, define the function fI : RK →
{0, 1} by

fI(α) =

{
1 if for some i ∈ [K] we have αi ∈ I
0 otherwise,

where α = (α1, . . . , αK) ∈ RK . The sum∑T
t=1 fI(α

(t)) counts the number of vectors
α(1), . . . , α(T ) that have a component in the inter-
val I or, equivalently, the number of functions `1, . . . , `T
that are not L-Lipschitz on I . We will apply VC-
dimension uniform convergence arguments to the class
F = {fI : RK → {0, 1} | I ⊂ R is an interval}. In
particular, we will show that for an independent set of
vectors α(1), . . . , α(T ), with high probability we have
that 1

T

∑T
t=1 fI(α

(t)) is close to E
[
1
T

∑T
t=1 fI(α

(t)
]

for
all intervals I . This uniform convergence argument will
lead to the desired bounds.

We begin by bounding the VC-dimension of F by
O(logK). The key observation is the following con-
nection between F and the class of indicator func-
tions for intervals: let S = {x(1), . . . , x(n)} ⊂ RK
be any collection of n vectors in RK and let P =

{x(1)1 , . . . , x
(1)
K , . . . , x

(n)
1 , . . . , x

(n)
K } ⊂ R denote the set

containing the union of their combined nK component
values. Now consider any pair of intervals I and I ′. If
the indicator functions for I and I ′ agree on all the points
in P (i.e., the intervals contain exactly the same subset
of P ), then we must have that fI and fI′ agree on every
vector in S. This is because if I and I ′ contain exactly the
same subset of P , then for each vector x(i), both intervals
contain the same subset of its component values. In par-
ticular, either they both contain none of the components,
or they both contain at least one. In either case, we have
that fI(x(i)) = fI′(x

(i)). This shows that the number of
distinct ways that functions from the class F can label
the set of vectors S is at most the number of ways that
indicator functions for intervals can label the set of points
P .

Now suppose that the VC-dimension of F is V . Then
there exists a set S ⊂ RK of vectors of size V that is
shattered by F . Let P ⊂ R be the set containing the
union of their combined V K components (as above).
From Sauer’s Lemma together with the fact that the VC-
dimension of intervals is 2, we are guaranteed that indica-
tor functions for intervals can label the set P of points in
at most (eV K)2 distinct ways. By the above reasoning,
it follows that F can label the set S of vectors in at most
(eV K)2 distinct ways. On the other hand, since F shat-
ters S, we know that it can label S in all 2V possible ways,
and it follows that 2V ≤ (eV K)2. Taking logs on both
sides and rearranging, we have V ≤ 2

ln 2 ln(V )+ 2 ln(eK)
ln 2 .

Using the fact that for any a ≥ 1 and b ≥ 0, the inequality

y ≤ a ln(y) + b implies that y ≤ 4a ln(2a) + 2b, we
further have that V ≤ 8 ln(4/ ln 2)

ln 2 + 4 ln(eK)
ln 2 = O(logK),

as required.

Applying VC-dimension uniform convergence arguments
for the class F , for any failure probability δ > 0, if
x(1), . . . , x(T ) ∈ RK are independent random vectors
(but not necessarily identically distributed), then follow-
ing holds with probability at least 1− δ simultaneously
for all fI ∈ F :∣∣∣∣∣ 1

T

T∑
t=1

`I(x
(t))− E

[
1

T

T∑
t=1

`I(x
(t))

]∣∣∣∣∣
≤ O

(√
VCDim(F) + log(1/δ)

T

)
= O

(√
log(K/δ)

T

)
.

In particular, for any point ρ and any radius ε, we have that
D(T, ε, ρ) =

∑T
t=1 fI(α

(t)), where I = [ρ − ε, ρ + ε].
Therefore, uniform convergence for F implies that for all
T ∈ N and all ε > 0, and any failure probability δ > 0,
we have that with probability at least 1− δ the following
holds for all ρ ∈ R:∣∣∣∣ 1

T
D(T, ε, ρ)−E

[
1

T
D(T, ε, ρ)

]∣∣∣∣ ≤ O(
√

log(K/δ)

T

)
.

Multiplying both sides by T and rearranging gives

D(T, ε, ρ) ≤ E[D(T, ε, ρ)] +O(
√
T log(K/δ)).

Taking the maximum of both sides over ρ ∈ R, we have

max
ρ∈R

D(T, ε, ρ) ≤ max
ρ∈R

E[D(T, ε, ρ)]+O(
√
T log(K/δ)).

This is a high probability bound on the maximum num-
ber of non-Lipschitz functions among `1, . . . , `T for any
interval of radius ε. All that remains is to convert this
into a bound in expectation. Let δ = 1/

√
T and let G

denote the high-probability uniform convergence event
above. Then we have

E[max
ρ∈R

D(T, ε, ρ)]

= E[max
ρ∈R

D(T, ε, ρ) |G] Pr(G)

+ E[max
ρ∈R

D(T, ε, ρ) |G] Pr(G)

≤ max
ρ∈R

E[D(T, ε, ρ)] +O(
√
T log(TK)) +

√
T

= max
ρ∈R

E[D(T, ε, ρ)] +O(
√
T log(TK)),

where the last inequality uses the facts that Pr(G) ≤ 1
and E[maxρ∈RD(T, ε, ρ) |G] Pr(G) ≤ Tδ =

√
T . This

argument holds for all T and ε, proving the claim.

Next, we prove a weaker bound that follows from the
analysis techniques of Balcan et al. [11].



Lemma 19. Let `1, `2, · · · : R → R be independent
piecewise L-Lipschitz functions, each having at most
K discontinuities. Let D(T, ε, ρ) =

∣∣{1 ≤ t ≤
T | `t is not L-Lipschitz on [ρ− ε, ρ+ ε]}

∣∣ be the (ran-
dom) number of functions in `1, . . . , `T that are not
L-Lipschitz on the ball [ρ − ε, ρ + ε]. Moreover, let
D̃(T, ε, ρ) =

∣∣{(t, i) ∈ [T ]× [K] |α(t)
i ∈ [ρ− ε, ρ+ ε]}

∣∣,
where α(t) ∈ RK is the vector of discontinuities of the
loss `t. That is, D̃(T, ε, ρ) is the number of discontinu-
ities of the functions `1, . . . , `T in the ball [ρ− ε, ρ+ ε].
Then we have

E[max
ρ∈R

D(T, ε, ρ)] ≤ max
ρ∈R

E[D̃(T, ε, ρ)]+K
√
T log(TK).

Note that, using the notation of Lemma 19, we always
have D(T, ε, ρ) ≤ D̃(T, ε, ρ) ≤ KD(T, ε, ρ). It follows
that Lemma 19 is looser than Theorem 7 in two ways:
first, the error term is a factor K larger. Second, the
upper bound of Lemma 19 multiply-counts functions that
have repeated discontinuities in the same ball, while our
sharper bound does not.

Proof. For simplicity, we assume that every function `t
has exactly K discontinuities. The proof techniques can
be generalized to the case where each functions has at
most K discontinuities.

For each time t, let α(t) ∈ RK be the vector of disconti-
nuities of `t. That is, `t has discontinuities at the points
α
(t)
1 , . . . , α

(t)
K and is otherwise L-Lipschitz. The key chal-

lenge is that the discontinuity locations α(t)
1 , . . . , α

(t)
K are

not independent.

Fix any discontinuity index i ∈ [K] and define
D̃i(T, ε, ρ) =

∣∣{1 ≤ t ≤ T |α(t)
i ∈ [ρ − ε, ρ + ε]}

∣∣.
That is, D̃i(T, ε, ρ) counts the number of times t for
which the ith discontinuity α

(t)
i of `t lands in the in-

terval of radius ε centered on ρ. Then we have that
D̃(T, ε, ρ) =

∑
i D̃i(T, ε, ρ) counts the total number of

discontinuities that belong to the interval of radius ε cen-
tered on ρ. Since the function `t is not L-Lipschitz on an
interval I only when I contains some discontinuity for `t,
we have

D(T, ε, ρ) ≤
K∑
i=1

D̃i(T, ε, ρ) = D̃(T, ε, ρ).

Next we will apply uniform convergence arguments to ob-
tain high probability bounds on each D̃i(T, ε, ρ) in terms
of their expectations. Fix a discontinuity index i ∈ [K].
The set of discontinuity locations α(1)

i , . . . , α
(T )
i are inde-

pendent and, since intervals have VC-dimension 2, apply-
ing standard uniform convergence guarantees implies that

for any δ > 0, with probability at least 1−δ the following
holds for all ρ:

D̃i(T, ε, ρ) ≤ E[D̃i(T, ε, ρ)] +O(
√
T log(1/δ)).

Setting the failure probability to be 1/(K
√
T ), taking the

union bound over all K discontinuities, and summing the
resulting bounds, the following holds with probability at
least 1− 1/

√
T for all ρ:

D̃(T, ε, ρ) =
K∑
i=1

D̃i(T, ε, ρ)

≤ E

[
K∑
i=1

D̃i(T, ε, ρ)

]
+K ·O(

√
T log(KT ))

= E[D̃(T, ε, ρ)] +O(K
√
T log(KT )).

Using the fact thatD(T, ε, ρ) ≤ D̃(T, ε, ρ) and taking the
supremum over ρ, the following holds with probability at
elast 1− 1/

√
T .

max
ρ∈R

D(T, ε, ρ) ≤ max
ρ∈R

E[D̃(T, ε, ρ)]+O(K
√
T log(KT )).

Let G denote the high-probility uniform convergence
event above. Then we have

E[max
ρ∈R

D(T, ε, ρ)]

= E[max
ρ∈R

D(T, ε, ρ) |G] Pr(G)

+ E[max
ρ∈R

D(T, ε, ρ) |G] Pr(G)

≤ max
ρ∈R

E[D̃(T, ε, ρ)] +O(K
√
T log(TK)) +

√
T

= max
ρ∈R

E[D̃(T, ε, ρ)] +O(K
√
T log(TK)),

as required.

Theorem 8. There is a constant Kd (e.g., K2 ≤ 11)
depending only on d such that axis-aligned line segments
cannot shatter any collection of Kd algebraic curves of
degree at most d.

Proof. Let the x-extreme points for f be the points p0 =
(x0, y0) such that there is an open neighborhoodN around
p0 for which p0 has the smallest or largest x-coordinate
among all points p ∈ N on f . We begin by noting the
simple fact that f has a bounded number of x-extreme
points, as a consequence of Bezout’s theorem bounding
the number of intersection points of algebraic curves (by
the product of the degrees).

To recall how this goes, let the y-critical points for f be
the points p at which d

dyf(p) = 0. By the Implicit Func-
tion Theorem, if p is not y-critical, then f locally defines



a curve whose y coordinate γ(x) is a continous function
of x; in particular, we see that if p is x-extreme then it
must be y-critical. On the other hand, there are at most
d(d− 1) y-critical points. This is a simple consequence
of Bezout’s theorem, since if p0 is a y-critical point for f
then we have that

f(p0) = 0 =
d

dy
f(p0),

where f and d
dyf are polynomials of degrees at most d

and d− 1, respectively.

Now y-extreme points can be defined analogously, and
there are also at most d(d− 1) of those.

Consider now a collection C of k algebraic curves of
degree at most d, and let the set P be the set of all points
p where either:

• Two curves in C intersect at p, or

• p is x-extreme or y-extreme for some curve in C.

By Bezout’s theorem, there are at most
(
k
2

)
d2 points of

the first type in C, and at most 2kd(d − 1) points of the
second type.

Moreover, consider the horizontal lines Lc defined by the
equations y = c for constants c. Define the equivalence
relation Lc1 ∼ Lc2 if the same curves in C intersect Lc1
and Lc2 , and in the same order (including with multiplici-
ties). Note that if no points in P lie between the lines Lc1
and Lc2 , then Lc1 ∼ Lc2 . In particular, there are at most

|P|+ 1 ≤
(
k

2

)
d2 + 2kd(d− 1) + 1

equivalence classes for this equivalence relation.

Say a subset of C is hit by a line segment if the subset is
exactly the set of curves in C which intersect the segment,
and hit by a line if some segment of the line hits the
subset.

Now for a given horizontal line Lc, the set of subsets of
C which can hit by any segment of Lc is just determined
by the pattern intersection points of curves with Lc. The
number of intersection points is at most d+ 1 by Bezout’s
theorem, so for a given line there are at most

(
d+2
2

)
subsets

which can be hit. On the other hand, any two lines in the
same equivalence class hit precisely the same subsets. In
total, the number of subsets hit by any x-axis aligned
segment is thus

≤
(
d+ 2

2

)((
k

2

)
d2 + 2kd(d− 1) + 1

)
,

and the number of subsets hit by either an x- or y-axis
aligned segment is at most twice this. We are done since
this is less than 2k for large k.

In the particular case d = 2, the upper bound in the last
line is

24 ·
((

k

2

)
+ k +

1

4

)
,

which is less than 2k for k ≥ 11, showing that K2 ≤ 11.

Theorem 9. Let `1, `2, · · · : R2 → R be inde-
pendent piecewise L-Lipschitz functions, each hav-
ing a set of discontinuities specified by a collec-
tion of K algebraic curves of bounded degree. Let
L denote the set of axis-aligned line-segments in
R2. For each s ∈ L, define D(T, s) =

∣∣{1 ≤
t ≤ T : `t has a discontinuity along s}

∣∣. Then
we have E[sups∈LD(T, s)] ≤ sups∈L E[D(T, s)] +

O(
√
T log(TK)).

Proof. The key steps of the proof are identical to The-
orem 7. The main difference is that instead of relating
the number of ways intervals can label vectors of dis-
continuity points to the VC-dimension of intervals, we
instead relate the number of ways line segments can la-
bel vectors of K algebraic curves of dimension d to the
VC-dimension of line segments (when labeling algebraic
curves), which from Theorem 8 is constant.

C APPENDIX FOR APPLICATIONS
(Section 4)

Lemma 10. Consider a knapsack instance with capacity
C and n items with values v1, . . . , vn and sizes s1, . . . , sn.
Algorithm 2 runs in time O(n log n). Moreover, there
is a feedback system A1, . . . , AM partitioning C into
M = O(n2) intervals such that set of items output by
the algorithm is constant for ρ ∈ Ai. When run with
parameter ρ, in addition to the item set S, the algorithm
outputs the interval Ai containing ρ.

Proof. Sorting the items in step 1 requires O(n log n)
time, while all remaining steps make linear passes through
the items, resulting in a total running time of O(n log n).

Computing the permutation π in step 1 of Algorithm 2
takes O(n log n) time. Finding the item set S in steps
2 and 3 only requires a linear pass through the items.
Similarly, finding the interval A in steps 4 and 5 also only
requires a linear pass through the items. Therefore, the
total running time is O(n log n).

Gupta and Roughgarden [21] show that for any knapsack
instance, the algorithm’s output is a piecewise constant
function of the parameter ρ with at most O(n2) disconti-
nuities. In particular, for each pair of items i and j, there
is a critical parameter value cij = log(vi/vj)/ log(si/sj)
such that the relative order of items i and j only changes
at ρ = cij . These critical parameter values partition C



into M = O(n2) sets A1, . . . , AM such that the item or-
dering is fixed for all ρ ∈ Ai. Algorithm 2 computes the
critical values for each consecutive pair of items π(i) and
π(i+ 1) and outputs the largest interval A containing ρ
and none of these critical values. For all ρ′ ∈ A, we must
have σρ′(π(i)) ≥ σρ′(π(i + 1)) for i = 1, . . . , n − 1,
and therefore the item ordering is constant for ρ′ ∈ A. It
follows that that A does not contain cij for any pair of
items i and j. On the other hand, the end points of A are
critical values, so A must be equal to one of the M sets
Ai.

Lemma 14. Consider an adversary choosing clustering
instances where the tth instance has symmetric distance
matrix D(t) ∈ [0, B]n×n and for all i ≤ j, d(t)ij is κ-
smooth. The losses `1, `2, . . . defined above are piece-
wise constant, f -dispersed for f(T, ε) = 32Tεn8κ2M2+
O(
√
T log(Tn)) and β-dispersed for β = 1/2.

Proof. The key insight of Balcan et al. [9] for this fam-
ily of algorithms is that for a fixed distance matrix D,
the function ρ 7→ Aρ(D) is piecewise constant with at
most O(n8) pieces. That is, the algorithm will only out-
put at most O(n8) different cluster trees, and each is
produced for some subinterval of the parameter space.
Their argument is as follows: for any pair of candi-
date cluster merges, say merging clusters C1 and C2

versus C ′1 and C ′2, we can determine the values of the
parameter ρ ∈ [0, 1] for which the algorithm would pre-
fer to merge (C1, C2) instead of merging (C ′1, C

′
2) (i.e.,

the values of ρ so that the dρ distance between C1 and
C2 is smaller than between C ′1 and C ′2). In particular,
the algorithm will merge clusters C1 and C2 instead
of C ′1 and C ′2 if dρ(C1, C2) ≤ dρ(C

′
1, C

′
2) or, equiva-

lently, when (1 − ρ) dmin(C1, C2) + ρ dmax(C1, C2) ≤
(1 − ρ) dmin(C ′1, C

′
2) + ρ dmax(C ′1, C

′
2). Since the

above inequality is linear in ρ, there is a sin-
gle critical value of the parameter, given by c =

dmin(C
′
1,C
′
2)−dmin(C1,C2)

dmax(C1,C2)−dmin(C1,C2)+dmin(C′1,C
′
2)−dmax(C′1,C

′
2)

such
that the relative preference of merging C1 and C2 or C ′1
and C ′2 changes only at ρ = c. Moreover, the definition
of c only depends on a collection of 8 points: the closest
and farthest pair between C1 and C2 and between C ′1 and
C ′2. In particular, every such critical parameter value c is
given by

c =
d
(t)
rr′ − d

(t)
ii′

d
(t)
jj′ − d

(t)
ii′ + d

(t)
rr′ − d

(t)
ss′

(9)

where i, i′, j, j′, r, r′, s, s′ ∈ [n] are the indices of 8
points. Similarly to the knapsack example, we show that
each critical parameter value is random and has a density
function bounded by 16(κB)2. From this, it follows that
for any interval I of radius ε, the expected total number of

critical values summing over all instances t = 1, . . . , T
that land in interval I is at most 32Tε(κB)2. This also
bounds the expected number of functions `1, . . . , `T that
are not constant on I . By Theorem 7, the functions are
f -dispersed for f(T, ε) = 32Tε(κB)2 +

√
T log(Tn) =

Õ(Tε+
√
T ), also implying 1

2 -dispersion.

When the four distances present in the equation for c are
distinct entries of the distance matrix D, then they are
independent. However, it is possible that the closest and
furthest pair of points between a pair of clusters can be
the same, for example, when both clusters consist of just a
single point. In this case, the corresponding distances are
no longer independent, and we will need to modify our
analysis slightly. Note a critical parameter c only arises
for competing pairs of merges (C1, C2) and (C ′1, C

′
2) that

differ on at least one cluster (since otherwise both merges
are identical). Moreover, since the set of clusters at any
given round of the algorithm partition the data, any pair
of clusters the algorithm encounters are either equal or
disjoint. From this it follows that there are only four cases
to consider depending on whether the closest and farthest
pairs of points between C1 and C2 are the same, and
whether the closest and farthest pairs of points between
C ′1 and C ′2 are the same. That is, whether (i, i′) = (j, j′)
and whether (s, s′) = (r, r′).

Case 1: (i, i′) 6= (j, j′) and (r, r′) 6= (s, s′). Let
X = drr′ − dii′ and Y = djj′ − dss′ . Rewriting ex-
pression for c given in (9), we have that c = X/(X + Y ).
Moreover, both X and Y are the sum of two independent
random variables having κ-bounded densities, so from
Lemma 25, it follows that X and Y also have densities
bounded by κ. Next, since X and Y are independent,
take values in [−2M, 2M ], and have κ-bounded densi-
ties, Lemma 27 ensures that the ratio X/(X + Y ) has an
16(κM)2 bounded density.

Case 2: (i, i′) = (j, j′) and (r, r′) 6= (s, s′). In this case,
we are guaranteed that dii′ = djj′ , and the expression for
c simplifies to

c =
drr′ − dii′
drr′ − dss′

Defining X = −dii′ , Y = −dss′ , and Z = drr′ , we have
that β = (X + Z)/(Y + Z). The variables X , Y , and
Z are independent, each have κ-bounded densities, and
|Y | ≤ M and |Z| ≤ M with probability 1. Applying
Lemma 28 to these random variables guarantees that the
density function for β is 4(κM)2-bounded.

Case 3: (i, i′) 6= (j, j′) and (r, r′) = (s, s′). This case is
symmetric to case 2 and an identical argument applies.



Case 4: (i, i′) = (j, j′) and (r, r′) = (s, s′). In this case,
the dρ distance between C1 and C2 is constant, as is the
dρ distance between C ′1 and C ′2. Therefore, for all values
of ρ we will prefer to merge the same pair of clusters and
there is no critical parameter value where we switch from
one merge to the other.

In every case, the density of the critical parameter value β
is upper bounded by 16κ2M2, completing the proof.

Lemma 13. Consider a clustering instance with distance
matrix D ∈ Rn×n. Algorithm 3 runs in time O(n3).
Moreover, there is a feedback system A1, . . . , AM par-
titioning [0, 1] into M = O(n8) intervals such that the
cluster tree output by the algorithm is constant for ρ ∈ Ai.
When run with parameter ρ, in addition to the cluster tree
T , the algorithm outputs the interval Ai containing ρ.

Proof. The algorithm performs n− 1 merges. For each
merge, the algorithm makes two passes through theO(n2)
clusters in order to find the closest pair, as well as to up-
date the interval (ρmin, ρmax). These passes both require
us to compute the dρ distance between all pairs of clus-
ters. However, starting from the input matrix D, we can
maintain two distance matrix Dmin and Dmax storing the
minimum and maximum distances between the current
set of clusters, respectively. After merging two clusters,
these distance matrices can be updated in O(n) time,
since at most O(n) distances change. It follows that find-
ing the closest pair of clusters and updating the interval
(ρmin, ρmax) can be done in O(n2) time per merge. This
leads to a total running time of O(n3).

Balcan et al. [9] prove that there exists a partition
A1, . . . , AM of C into M = O(n8) intervals such that
the algorithm output is constant for ρ ∈ Ai. In particu-
lar, for any pair of possible cluster merges (C1, C2) and
(C ′1, C

′
2) with dmin(C1, C2) < dmin(C ′1, C

′
2), the algo-

rithm prefers to merge C1 and C2 over C ′1 and C ′2 for all
values of the parameter ρ < c(C1, C2, C

′
1, C

′
2). More-

over, since c(C1, C2, C
′
1, C

′
2) only depends on 8 points—

the closest and farthest pairs of points between C1 and C2

and between C ′1 and C ′2—and there are only O(n8) ways
to select 8 points, these critical parameter values partition
C into the M = O(n8) intervals. For ρ ∈ Ai, the order-
ing on all possible merges is fixed, so the algorithm will
output the same cluster tree.

Finally, on each iteration of the algorithm, we iterate
through all O(n2) pairs of clusters (C ′1, C

′
2) that the algo-

rithm did not merge. For each, we calculate the critical
parameter value c(C1, C2, C

′
1, C

′
2), which is the value of

ρ at which the algorithm would prefer to merge (C ′1, C
′
2)

over (C1, C2). We shrink the interval (ρmin, ρmax) so
that it does not contain any of these critical values. It
follows that the interval (ρmin, ρmax) satisfies the follow-

ing invariant: for all ρ′ ∈ (ρmin, ρmax), the sequence
of cluster merges made by the algorithm with parame-
ter ρ′ up until the current iteration would match those
made by the algorithm with parameter ρ. In particular,
when the algorithm returns, we are guaranteed that the
same cluster tree would be output for all parameter values
ρ′ ∈ (ρmin, ρmax). Since the endpoints ρmin and ρmax

always belong to the M = O(n8) critical parameter val-
ues, there are at most M = O(n8) intervals the algorithm
might output for a fixed clustering instance.

C.1 SINGLE PARAMETER PIECEWISE
UNIQUE ALGORITHMS

Next we provide a general approach for obtaining semi-
bandit feedback that applies to many single-parameter
algorithms. This enables semi-bandit feedback, but we
still rely on problem-specific dispersion analysis. This ap-
proach applies to any algorithm with a single real-valued
parameter whose output is both a piecewise constant func-
tion of the parameter for any instance, and such that
no output value is repeated across any distinct intervals
in the piecewise decomposition. We call such an algo-
rithm single-parameter piecewise-unique. Without loss
of generality, we assume that the parameter space is given
by C = [0, 1]. Let A : Π × [0, 1] → Y be an algo-
rithm mapping problem instances x ∈ Π and parameters
ρ ∈ [0, 1] to outputs in some space Y . Given a parame-
ter ρ ∈ [0, 1] and a problem instance x, and an accuracy
parameter ε > 0, we will return both A(x, ρ), together
with an interval I = [ρmin, ρmax] such that for all ρ′ ∈ I
we have A(x, ρ′) = A(x, ρ). Moreover, for any point
ρ′ 6∈ [ρmin − ε, ρmin + ε], we have A(x, ρ′) 6= A(x, ρ).
In other words, the interval I output by the algorithm is
nearly the largest piecewise constant interval containing
ρ. The high level idea of our approach is to run binary
search twice to determine the upper and lower bounds
ρmax and ρmin, respectively. Each search will require
that we run the algorithm A at most O(log 1/ε) times. In
cases where the algorithm parameters are specified using
b bits of precision, then this procedure exactly determines
the interval using O(b) invocations of the base algorithm.
Pseudocode is given in Algorithm 5. Steps 3 and 4 per-
form binary search to find the upper bound on the constant
interval, while steps 5 and 6 perform binary search to find
the lower bound.

Lemma 20. Let A : Π × [0, 1] → Y be any single-
parameter piecewise-unique algorithm and suppose yρ
and I = [ρmin, ρmax] is output by Algorithm 5 when run
on A with problem instance x ∈ Π, parameter ρ ∈ [0, 1],
and target accuracy ε. Then Algorithm 5 runs the base
algorithm A at most O(log 1/ε) times and we have that
A(x, ρ′) = yρ for all ρ′ ∈ I , ρ ∈ I , and for all ρ′ 6∈
[ρmin − ε, ρmax + ε] we have A(x, ρ′) 6= yρ.



Proof. From step 1 of the algorithm, we know that
A(x, ρ) = yρ, by definition. Since the algorithm is
single-parameter and piecewise-unique, we know that
A(x, ρ′) will output yρ for all ρ′ belonging to some inter-
val [ρ∗min, ρ

∗
max] containing ρ, and it will not output yρ for

any point outside that interval. In particular, restricted to
the interval [ρ, 1], there is exactly one critical parameter
value, namely ρ∗max below which the algorithm always
outputs yρ and above which the algorithm always outputs
something different. The binary search performed in step
3 guarantees that ρ∗max is always contained in the interval
[a, b], yet on each iteration the length of the interval is
halved. Similarly, each iteration of the binary search in
step 6 guarantees that ρ∗min ∈ [c, d], and the width of the
interval halves on each iteration. Each iteration of both
binary search instances requires us to run the base algo-
rithm A once, and we will require O(log 1/ε) iterations
to guarantee the width of both intervals is less than ε.

Since a ≤ ρ∗max and d ≥ ρ∗min, we have [a, d] ⊂
[ρ∗min, ρ

∗
max] and it follows that A(x, ρ′) = yρ for all

ρ′ ∈ [a, d], as required. Moreover, we know that
a + ε ≥ b ≥ ρ∗max and d − ε ≤ c ≤ ρ∗min, implying
that A(x, ρ′) 6= yρ for all ρ′ 6∈ [a− ε, d+ ε], as required.
Figure 1 depicts the relation between [a, b], [c, d], and
[ρ∗min, ρ

∗
max] at the end of the algorithm.

Algorithm 5 Blackbox Bandit Feedback for Single-
parameter Algorithms
Input: Algorithm A : Π × [0, 1] → Y , parameter ρ ∈
[0, 1], problem instance x ∈ Π.
1. Let yρ ← A(x, ρ) be the output of A run on x with

parameter ρ.
2. Let a← 0 and b← ρ.
3. While b− a > ε:

(a) Set m← (a+ b)/2.
(b) If A(x,m) = yρ then set b← m
(c) Otherwise set a← m.

4. Let ρmin ← b.
5. Let c← ρ and d← 1.
6. While d− c > ε:

(a) Set m← (c+ d)/2.
(b) If A(x,m) = yρ then set c← m
(c) Otherwise set d← m.

7. Let ρmin ← c
8. Output yρ and interval I = (ρmin, ρmax).

C.2 LEARNING A METRIC AND
INTERPOLATING BETWEEN SINGLE
AND COMPLETE LINKAGE

Finally, we consider an extension of the clustering algo-
rithm family introduced in Section 4.2 that allows us to

][

Figure 1: Relationship between the binary search intervals
[a, b] and [c, d] and the true interval [ρ∗min, ρ

∗
max] on which

A(x, ρ′) outputs yρ.

also learn the best metric to use for a specific cluster-
ing domain. We suppose that the clustering domain is
equipped with two base metrics and our goal is to learn
the best convex combination of them. For example, one
metric could be based on a neural network feature em-
bedding and the other could be a hand-designed metric
based on domain expertise. Formally, each clustering in-
stance is described by a pair of distance matrices D0 and
D1 specifying the distances between each pair of points
according to the two metrics.

The algorithm family we consider called ρ-metric-linkage
has two parameters, ρ ∈ [0, 1] which is used to interpolate
between single and complete linkage as in Section 4.2,
and α ∈ [0, 1], which is used to interpolate between the
two distance metrics. In particular, for any α ∈ [0, 1], let
Dα = (1−α)D0+αD1 and denote its entries by (dα,i,j).
The algorithm with parameters ρ and α repeatedly merges
the pair of clusters A and B that are closest according to
the distance dρ,α(A,B) = (1− ρ) mina∈A,b∈B dα,a,b +
ρmaxa∈A,b∈B dα,a,b.

We provide dispersion analysis for this algorithm family
under the assumption that both distance matrices for each
problem instance are κ-smooth, meaning that their entries
are independent and each have κ-bounded discontinuities.

Theorem 21. Consider an adversary choosing cluster-
ing instances where the tth instance has two symmet-
ric distance matrices D(t)

0 , D
(t)
1 ∈ [0, B]n×n and for all

i < j, the (i, j)th entry of D(t)
0 and D(t)

1 are κ-smooth.
The loss functions `1, `2, . . . defined above are piecweise
constant and f -dispersed for f(T, ε) = O(Tn8κ3ε +√
T log(Tn)) and β-dispersed for β = 1/2.

Proof sketch. First, we argue that for any pair of distance
matrices D0 and D1, we can partition the α-parameter
space into O(n4) regions such that on each region the or-
dering over pairs of points (i, j) according to the distance
dα,i,j is fixed. In particular, on each region, the closest
and farthest pair of points between any pair of clusters
are constant. Next, restricted to each of these regions, we
find that we can express the distance dρ,α(A,B) between
any pair of clusters as a quadratic function of the param-
eters ρ and α. This implies that for any pair of candi-
date merges (A,B) and (A′, B′), the algorithm prefers to
merge (A,B) over (A′, B′) whenever the quadratic poly-



nomial qA,B,A′,B′(ρ, α) = dρ,α(A,B)− dρ,α(A′, B′) is
negative. While there are exponentially many choices
of the 4 clusters, the coefficients of this quadratic de-
pend on the distances between a set of 8 points, and
therefore there are only O(n8) unique quadratic func-
tions. Next, we argue that for any fixed α, the polynomial
ρ 7→ qA,B,A′,B′(ρ, α) has coefficients with joint density
bounded by O(κ3) and whose magnitude are bounded by
O(B) (and similarly for fixing any ρ and treating the poly-
nomial as a function of α alone). Now consider any pair
of parameters (ρ, α) and (ρ′, α′) that are within distance
ε. The piecewise-linear path given by the line segment
from (ρ, α) to (ρ, α′) followed by the line segment (ρ, α′)
to (ρ′, α′) has total length O(ε). The above arguments
combined with Theorem 6 ensures that this path con-
tains a root of the quadratic qA,B,A′,B′ with probability
at most O(κ3ε). Therefore, the expected number of dis-
continuities intersecting the rectilinear path between any
pair of paremeter vectors at distance ε is upper bounded
by O(Tn8κ3ε) (by summing over the O(n8) different
quadratics obtained from each of the T instances). Apply-
ing Theorem 9 we are guaranteed that the worst rectilinear
path has at most Õ(Tn8κ3ε+

√
T ) discontinuities, which

proves the claim.

D TRANSFORMATIONS OF BOUNDED
DENSITIES

In this section we summarize several useful results that
provide upper bounds on the density of random variables
that are obtained as functions of other random variables
with bounded density functions. These results allow us
to reason about the distribution of discontinuity locations
that arise as transformations of random problem parame-
ters in algorithm configuration instances.

In many cases, we make use of the following result:

Theorem 22 (Density Function Change of Variables). Let
X ∈ Rd be a random vector with joint probability density
function fX : Rd → [0,∞) and let φ : Rd → Rn be any
bijective differentiable function. Then the random vector
Y = φ(X) also has a density function fY : Rn → [0,∞)
given by fY (y) = | det(Jφ−1(y))|fX(φ−1(y)), where
Jφ−1(y) denotes the Jacobian of φ−1 evaluated at y.

Lemma 23 (Lemma 6 from [11]). Suppose X and Y are
random variables taking values in (0, 1] and suppose that
their joint distribution is κ-bounded. Then the distribution
of Z = ln(X/Y ) is κ/2-bounded.

Lemma 24 (Lemma 8 from [11]). Suppose X is a ran-
dom variable with a κ-bounded density and suppose c is
a constant. Then Z = X/c has a cκ-bounded density

Lemma 25. Let X and Y be two independent random
variables each having densities upper bounded by κ. The

random variable U = X + Y has density fU satisfying
fU (u) ≤ κ for all u.

Proof. Let fX and fY be the density functions for X and
Y , respectively. The density for U is the convolution of
fX and fY . With this, we have

fU (u) =

∫ ∞
−∞

fX(u−y)fY (y) dy ≤
∫ ∞
−∞

κfY (y) dy = κ.

It follows that U = X + Y has a density that is upper
bounded by κ.

Lemma 26. Let X and Y be random variables with joint
density fXY that is κ-bounded and such that |Y | ≤ M
with probability 1 and let U = X/Y . Then the density
function fU is κM2-bounded.

Proof. Consider the change of variables given by U =
X/Y and V = Y . This corresponds to the transformation
function φ(x, y) = (x/y, y). The inverse of φ is given by
φ−1(u, v) = (uv, v). The Jacobian of φ−1 is

Jφ−1(u, v) =

[
v u
0 1

]
,

whose determinant is always equal to v. Therefore, the
joint density of U and V is given by

fUV (u, v) = |v|fXY (uv, v).

To get the marginal density for U , we integrate over v
and use the fact that the density fXY (x, y) = 0 whenever
|y| > M . This gives

fU (u) =

∫ M

−M
|v|fXY (uv, v) dv ≤ κ

∫ M

−M
|v| dv = κM2.

It follows that the density for U satisfies fU (u) ≤ κM2

for all u, as required.

Lemma 27. Let X and Y be independent random vari-
ables with κ-bounded densities so that |X| ≤ M and
|Y | ≤ M with probability one and define Z = X/(X +
Y ). The random variable Z has a density function fZ
that is 4κ2M2-bounded.

Proof. Consider the change of variables given by U = X
and V = X + Y . We will argue that the joint density
fUV is κ2-bounded. Then, since |X + Y | ≤ 2M with
probability 1, we can apply Lemma 26 to ensure that the
density of Z = U/V is bounded by κ2(2M)2 = 4κ2M2,
as required.

It remains to bound the joint density of U = X and
V = X + Y . This change of variables corresponds to
the transformation function φ(x, y) = (x, x+ y), whose



inverse is given by φ−1(u, v) = (u, v− u). The Jacobian
of φ−1 is given by

Jφ−1(u, v) =

[
1 0
−1 1

]
,

whose determinant is always 1. It follows that the joint
density for (U, V ) is given by fUV (u, v) = fXY (u, v −
u) = fX(u)fY (v − u) ≤ κ2, as required.

Lemma 28. Let X , Y , and Z be independent random
variables with κ-bounded densities such that |Y | ≤ M ,
and |Z| ≤ M with probability one. Then the ran-
dom variable R = X+Y

Z+Y has a density fR that satisfies
fR(u) ≤ 4κ2M2.

Proof. Consider the change of variables given by U =
X + Y , V = Z + Y . We will argue that the joint density
fUV for U and V is κ2-bounded. Then, since |V | = |Z +
Y | ≤ 2M with probability 1, we can apply Lemma 26
to ensure that the density of R = U/V is bounded by
4κ2M2, as required.

It remains to bound the joint density of U = X + Y and
V = Z + Y . Consider the change of variables given by
U = X+Y , V = Z+Y , andW = Y . This corresponds
to the transformation function φ(x, y, z) = (x + y, z +
y, y), and has inverse φ−1(u, v, w) = (u−w,w, v −w).
The Jacobian of φ−1 is given by

Jφ−1(u, v, w) =

1 0 −1
0 0 1
0 1 −1

 ,
which always has determinant given by −1. It follows
that the joint density for (U, V,W ) is given by

fUVW (u, v, w) = fXY Z(u− w,w, v − w)

= fX(u− w)fY (w)fZ(v − w).

To get the joint density over only U and V we integrate
over w:

fUV (u, v) =

∫ ∞
−∞

fX(u− w)fY (w)fZ(v − w) dw

≤ κ2
∫ ∞
−∞

fY (w) dw

= κ2,

as required.
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