Learning piecewise Lipschitz functions in changing environments

Maria-Florina Balcan
Carnegie Mellon University

Abstract

Optimization in the presence of sharp (non-
Lipschitz), unpredictable (w.r.t. time and
amount) changes is a challenging and largely
unexplored problem of great significance. We
consider the class of piecewise Lipschitz func-
tions, which is the most general online set-
ting considered in the literature for the prob-
lem, and arises naturally in various combi-
natorial algorithm selection problems where
utility functions can have sharp discontinu-
ities. The usual performance metric of ‘static’
regret minimizes the gap between the pay-
off accumulated and that of the best fixed
point for the entire duration, and thus fails
to capture changing environments. Shifting
regret is a useful alternative, which allows
for up to s environment shifts. In this work
we provide an O(y/sdTlogT + sT'=#) re-
gret bound for S-dispersed functions, where
B roughly quantifies the rate at which dis-
continuities appear in the utility functions
in expectation (typically 8 > 1/2 in prob-
lems of practical interest [Balcan et al., 2019,
Balcan et al., 2018a]). We also present a
lower bound tight up to sub-logarithmic fac-
tors. We further obtain improved bounds
when selecting from a small pool of experts.
We empirically demonstrate a key application
of our algorithms to online clustering prob-
lems on popular benchmarks.

1 Introduction

Online optimization is well-studied in the online
learning community [Cesa-Bianchi and Lugosi, 2006,
Hazan et al., 2016]. It consists of a repeated game

Proceedings of the 23" International Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

Travis Dick
Carnegie Mellon University

Dravyansh Sharma
Carnegie Mellon University

with T iterations. At iteration ¢, the player chooses
a point p; from a compact decision set C C R?; after
the choice is committed, a bounded utility function
ut : C — [0, H] is revealed. We treat u; as a reward
function to be maximized, although one may also con-
sider minimizing a loss function. The goal of the player
is to minimize the regret, defined as the difference
between the online cumulative payoff (i.e. Zle ut(pt))
and the cumulative payoff using an optimal offline
choice in hindsight. In many real world problems,
like online routing [Awerbuch and Kleinberg, 2008,
Talebi et al., 2018|, detecting spam email/bots
[Sculley and Wachman, 2007, Cormack et al., 2008]
and ad/content ranking [Wauthier et al., 2013,
Combes et al., 2015], it is often inadequate to assume
a fixed point will yield good payoff at all times. It
is more natural to compute regret against a stronger
offline baseline, say one which is allowed to switch
the point a few times (say s shifts), to accommodate
‘events’ which significantly change the function values
for certain time periods. The switching points are
neither known in advance nor explicitly stated during
the course of the game. This stronger baseline is known
as shifting regret [Herbster and Warmuth, 1998].

Shifting regret is a particularly relevant metric for on-
line learning problems in the context of algorithm con-
figuration. This is an important family of non-convex
optimization problems where the goal is to decide in
a data-driven way what algorithm to use from a large
family of algorithms for a given problem domain. In the
online setting, one has a configurable algorithm such as
an algorithm for clustering data [Balcan et al., 2017],
and must solve a series of related problems, such as
clustering news articles each day for a news reader or
clustering drugstore sales information to detect disease
outbreaks. For problems of this nature, significant
events in the world or changing habits of buyers might
require changes in algorithm parameters, and we would
like the online algorithms to adapt smoothly.

Related work: We present the first results for shift-
ing regret for non-convex utility functions which
potentially have sharp discontinuities. Restrict-
ing attention to specific kinds of decision sets C

Learning piecewise Lipschitz functions in changing environments

and utility function classes yields several impor-
tant problems. If C is a convex set and utility
functions are concave functions (i.e. corresponding
loss functions are convex), we get the Online Con-
vex Optimization (OCO) problem [Zinkevich, 2003],
which is a generalization of online linear regression
[Kivinen and Warmuth, 1997] and prediction with ex-
pert advice [Littlestone and Warmuth, 1994]. Algo-
rithms with O(v/sTlog NT') regret are known for the
case of s shifts for prediction with N experts and
OCO on the N-simplex [Herbster and Warmuth, 1998,
Cesa-Bianchi et al., 2012] using weight-sharing or reg-
ularization. We show how to extend the result
to arbitrary compact sets of experts, and more
general utility functions where convexity can no
longer be exploited. Our key insight is to view
the regularization as simultaneously inducing mul-
tiplicative weights update with restarts matching
all possible shifted expert sequences, which allows
us to use the dispersion condition introduced in
[Balcan et al., 2018a|. Related notions like adaptive
regret [Hazan and Seshadhri, 2007, strongly adaptive
regret [Daniely et al., 2015, Jun et al., 2017], dynamic
regret [Zinkevich, 2003, Jadbabaie et al., 2015] and
sparse experts setting [Bousquet and Warmuth, 2002]
have also been studied for finite experts.

Intuitively, a sequence of piecewise L-Lipschitz func-
tions is well-dispersed if not too many functions are
non-Lipschitz in the same region in C. An assumption
like this is necessary, since, even for piecewise constant
functions, linear regret is unavoidable in the worst
case |[Cohen-Addad and Kanade, 2017]. Our shifting
regret bounds are O(y/sdT logT + sT'~#) which im-
ply low regret for sufficiently dispersed (large enough
B) functions. In a large range of applications, one
can show 3 > 1 [Balcan et al., 2018a]. This allows
us to obtain tight regret bounds modulo subloga-
rithmic terms, providing a near-optimal characteri-
zation of the problem. Our analysis also readily ex-
tends to the closely related notion of adaptive regret
[Hazan and Seshadhri, 2007]. Note that our setting
generalizes the Online Non-Convex Learning (ONCL)
problem where all functions are L-Lipschitz through-
out [Maillard and Munos, 2010, Yang et al., 2018] for
which shifting regret bounds have not been studied.

We demonstrate the effectiveness of our algorithm in
solving the algorithm selection problem for a fam-
ily of clustering algorithms parameterized by differ-
ent ways to initialize k-means [Balcan et al., 2018b].
We consider the problem of online clustering, but un-
like prior work which studies individual data points
arriving in an online fashion [Liberty et al., 2016,
Rakhlin et al., 2007], we look at complete clustering
instances from some distribution(s) presented sequen-

tially. Our experiments provide the first empirical
evaluation of online algorithms for piecewise Lipschitz
functions — prior work is limited to theoretical analy-
sis [Balcan et al., 2018a] or experiments for the batch
setting [Balcan et al., 2018b]. Our results also have
applications in non-convex online problems like portfo-
lio optimization [Merton, 1976] and online non-convex
SVMs [Ertekin et al., 2010]. More broadly, for appli-
cations where one needs to tune hyperparameters that
are not ‘nice’, our results imply it is necessary and
sufficient to look at dispersion.

2 Problem setup

Consider the following repeated game. At each round
1 <t < T we are required to choose p; € C C Rd, are
presented a piecewise L-Lipschitz function u; : C —
[0, H] and experience reward w;(p;).

In this work we will study s-shifted regret and (m-
sparse, s-shifted) regret notions defined below.

Definition 1. The s-shifted regret (‘tracking regret’ in
[Herbster and Warmuth, 1998]) is given by

s t;—1
E max

ek Z Z (ue(p) — ue(pe))

to=1<ty - <ty=T+1 =1 t=ti-1

Note that for the i-th phase (i € [s]) given by [t;—1,%; —
1], the offline algorithm uses the same point p}. The
usual notion of regret compares the payoff of the online
algorithm to the offline strategies that pick a fixed point
p* € C for all t € [T] but here we compete against more
powerful offline strategies that can use up to s distinct
points p; by switching the expert s — 1 times. For
s = 1, we retrieve the standard static regret.

Definition 2. FExtend Definition 1 with an additional
constraint on the number of distinct experts used, |{p} |
1 << s}’ < m. We call this (m-sparse, s-shifted)
regret [Bousquet and Warmuth, 2002].

This restriction makes sense if we think of the adver-
sary as likely to reuse the same experts again, or the
changing environment to experience recurring events
with similar payoff distributions.

Without further assumptions, no algorithm achieves
sublinear regret, even when the payout functions are
piecewise constant [Cohen-Addad and Kanade, 2017].
We will characterize our regret bounds in terms of the
‘dispersion’ [Balcan et al., 2018a, Balcan et al., 2019]
of the utility functions, which roughly says that discon-
tinuities are not too concentrated. Several other restric-
tions can be seen as a special case [Rakhlin et al., 2011,
Cohen-Addad and Kanade, 2017].

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

Definition 3. The sequence of wutility functions
Ui, ..., ur is B-dispersed for the Lipschitz constant L
if, for all T and for all e > T~ at most O(eT) func-
tions (the soft-O notation suppresses dependence on
quantities beside €, T and (3) are not L-Lipschitz in any
ball of size € contained in C. Further if the utility func-
tions are obtained from some distribution, the random
process generating them is said to be B-dispersed if the
above holds in expectation, i.e. if for all T and for all
e>T75,

E max |{t | u¢ not L-Lipschitz in B(p,e)}|| < O(€T)
pe

For ‘static’ regret, a continuous version of exponential
weight updates gives a tight bound of O(vVdT + T"~7)
[Balcan et al., 2018a]. They further show that in sev-
eral cases of practical interest one can prove dispersion
with 3 = 1/2 and the algorithm enjoys O(v/dT) regret.
This algorithm may, however, have Q(T") s-shifted re-
gret even with a single switch (s = 2), and hence is not
suited to changing environments (Appendix B).

3 Algorithms with low shifting regret

In this section we describe online algorithms with good
shifting regret, but defer the actual regret analysis
to Section 4. First we present a discretization based
algorithm that simply uses a finite expert algorithm
given a discretization of C. This algorithm will give us
the reasonable target regret bounds we should shoot
for, although the discretization results in exponentially
many experts.

Algorithm 1 Discrete Fixed Share Forecaster

Input: 3, the dispersion parameter

1. Obtain a T~ #-discretization D of C (i.e. any ¢ € C
is within 777 of some d € D)

2. Apply an optimal algorithm for finite experts
with points in D as the experts (e.g. fixed share
[Herbster and Warmuth, 1998])

We introduce a continuous version of the fixed share
algorithm (Algorithm 2). We maintain weights for
all points similar to the Exponential Forecaster of
[Balcan et al., 2018a] which updates these weights in
proportion to their exponentiated scaled utility e**+(-)
(A € (0,1/H] is a step size parameter which controls
how aggressively the algorithm updates its weights).
The main difference is to update the weights with a
mixture of the exponential update and a constant ad-
ditive boost at all points in some proportion « (the
exploration parameter, optimal value derived in Sec-
tion 4) which remains fixed for the duration of the

game. This allows the algorithm to balance exploita-
tion (exponential update assigns high weights to points
with high past utility) with exploration, which turns
out to be critical for success in changing environments.
We will show this algorithm has good s-shifted re-
gret in Section 4. It also enjoys good adaptive regret
[Hazan and Seshadhri, 2007] (see Appendix D).

Algorithm 2 Fixed Share Exponential Forecaster
(Fixed Share EF)

Input: step size parameter A € (0,1/H], exploration
parameter « € [0,1]

1. wi(p)=1forall peC
2. Foreacht=1,2,...,T:

i W= [wi(p)dp

ii. Sample p with probability proportional to wy(p),
i.e. with probability p;(p) = wtv(rp)

iii. Observe u(-) ’

iv. Let e;(p) = e*t (P, (p). For each p € C, set

wia(p) == o) + gy [eelolde (1)

Notice that it is not clear how to implement the Al-
gorithm 2 from its description. We cannot store all
the weights or sample easily since we have uncountably
many points p € C. We will show how to efficiently
sample according to p; without necessarily computing
it exactly or storing the exact weights in Section 5.

Algorithm 3 Generalized Share Exponential Fore-
caster (Generalized Share EF)

Input: step size parameter A € (0,1/H], exploration
parameter « € [0, 1], discount rate v € [0, 1]

1. wi(p)=1forall peC
2. Foreacht=1,2,...,T:

W= fwlp)dp
ii. Sample p with probability proportional to w;(p),
_ wi(p)

i.e. with probability p:(p) = =7+

iii. Let e;(p) = e (Pwy(p) and B =

For each p € C, set wiy1(p) to
(1 —a)edp) + o ([ec(p)dp) S Bipi(p)

e~ (t=1%)
23:1 e—(t—3) "

As it turns out adding equal weights to all points for
exploration does not allow us to exploit recurring en-
vironments of the (m-sparse, s-shifted) setting very
well. To overcome this, we replace the uniform update
with a prior consisting of a weighted mixture of all the
previous probability distributions used for sampling

Learning piecewise Lipschitz functions in changing environments

(Algorithm 3). Notice that this includes uniformly ran-
dom exploration as the first probability distribution
p1(+) is uniformly random, but the weight on this dis-
tribution decreases exponentially with time according
to discount rate vy (more precisely, it decays by a factor
e~ 7 with each time step). While exploration in Algo-
rithm 2 is limited to starting afresh, here it includes
partial resets to explore again from all past states, with
an exponentially discounted rate (cf. Theorems 6, 7).

4 Analysis of algorithms

We will now analyse the algorithms in Section 3. At a
high level, the algorithms have been designed to ensure
that the optimal solution, and its neighborhood, in
hindsight have a large total density. We achieve this
by carefully setting the parameters, in particular the
exploration parameter which controls the rate at which
we allow our confidence on ‘good’ experts to change.
Lipschitzness and dispersion are then used to ensure
that solutions sufficiently close to the optimum are also
good on average.

4.1 Regret bounds

In the remainder of this section we will have the
following setting. We assume the utility functions
ut : C — [0, H],t € [T] are piecewise L-Lipschitz and
B-dispersed (definition 3), where C C R? is contained
in a ball of radius R.

Theorem 4. Let R"(T,s, N) denote the s-shifted
regret for the finite experts problem on N experts, for
the algorithm used in step 2 of Algorithm 1. Then Algo-
rithm 1 enjoys s-shifted regret RS (T, s) which satisfies

RO(T,5) < RF (T, 5, (3RT?)") +(sH+L)O(T').

The proof of Theorem 4 is straightforward using the
definition of dispersion and is deferred to Appendix A.
This gives us the following target bound for our more
efficient algorithms.

Corollary 5. The s-shifted regret of Algorithm 1 is
O(H\/sT(dlog(RT?) +log(T/s)) + (sH + L)T*~5).

Proof. There are known algorithms e.g. Fixed-
Share ([Herbster and Warmuth, 1998]) which obtain
Rfinite(T s N) < O(y/sT log(NT/s)). Applying Theo-
rem 4 gives the desired upper bound. O

Under the same conditions, we will show the following
bounds for our algorithms. In the following statements,
we give approximate values for the parameters «, v and
A under the assumptions m < s, s < T. See proofs in
Appendix C for more precise values.

Theorem 6. The s-shifted regret of Algorithm 2 with
a=s/T and X\ = \/s(dlog(RT?) +log(T/s))/T/H is
O(H/sT(dlog(RT?) +log(T/s)) + (sH + L)T*~5).

Remark. The algorithms assume knowledge of
s/T, the average number of shifts per time. For
unknown s, the strongly adaptive algorithms of
[Daniely et al., 2015, Jun et al., 2017] can be used
with the same meta-algorithms and substituting contin-
wous exponential forecasters as black-box algorithms.

Similarly for Algorithm 3 we can show low (m-sparse,
s-shifted) regret as well. (In particular this implies
s-shifted regret almost as good as Algorithm 2.)

Theorem 7. The (m-sparse, s-shifted) regret of Al-
gorithm 3 is O(H+/T(mdlog(RT?) + slog(mT/s)) +
(mH + L)T*P) for a = s/T, v = s/mT and \ =
V/(mdlog(RTF) + slog(T/s))/T/H.

4.2 Proof sketch and insights

We start with some observations about the weights W,
in Algorithm 2.

Lemma 8 (Algorithm 2). Wiy = [, e’ wy(p)dp.

The update rule (1) had the uniform exploration
term scaled just appropriately so this relation is sat-
isfied. We will now relate W; with weights resulting
from pure exponential updates, i.e. a = 0 in Algo-
rithm 2 (also the Exponential Forecaster algorithm of
[Balcan et al., 2018a]). The following definition corre-
sponds to weights for running Exponential Forecaster
starting at some time 7.

Definition 9. For any p € C and 7 < 7' € [T] define
w(p;7,7") to be the weight of expert p, and W(T, 7' to
be the normalizing constant, if we ran the Exponential
Forecaster of [Balcan et al., 2018a] starting from time

T up till time 7', i.e. W(p;T,T') = et D) and
W(Tv T/) = fc ’lf}(p7 T, Tl)dp’

We consider Algorithm 4 obtained by a slight mod-
ification in the update rule (1) of Fixed Share EF
(Algorithm 2) which makes it easier to analyze. Es-
sentially we replace the deterministic a-mixture by a
randomized one, so at each turn we either explicitly
‘restart’ with probability o by putting the same weight
on each point, or else apply the exponential update.
We note that Algorithm 4 is introduced to simplify the
proof of Theorem 6, and in particular does not result
in low regret itself. The issue is that even though the
weights are correct in expectation (Lemma 10), their
ratio (probability p:(p)) is not. In particular, the op-
timal parameter value of a for Fixed Share EF allows
the possibility of pure exponential updates over a long
period of time with a constant probability in Algorithm

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

4, which implies linear regret (see Appendix B, Theo-
rem 21). This also makes the implementation of Fixed
Share EF somewhat trickier (Section 5).

Algorithm 4 Random Restarts Exponential Fore-
caster (Random Restarts EF)

Input: step size parameter A € (0,1/H], exploration
parameter « € [0, 1]

1. W(p)=1forall peC
2. Foreacht=1,2,...,T:

i. Wt = fC wt dp
ii. Sample p with probability proportional to w;(p),
W (p)
W,
iii. Sample z; uniformly in [0, 1] and set

i.e. with probability p:(p) =

s (0) e P)apy (p) ifzp <1—a
Wi1(p) = Aut(p)
fce%&(p)d’) otherwise

The expected weights of Algorithm 4 (over the coin
flips used in weight setting) are the same as the actual
weights of Algorithm 2 (proof in Appendix C).

Lemma 10. (Algorithm 2) For each t € [T],
we(p) = E[ws(p)] and Wy = E[W,], where the expecta-
tions are over random restarts z; = {z1,...,zt—1}-

The next lemma provides intuition for looking at our
algorithm as a weighted superposition of several ex-
ponential update subsequences with restarts. This
novel insight establishes a tight connection between the
algorithms and is crucial for our analysis.

Lemma 11. (Algorithm 2) Wr1 equals the sum

17 S
22 avOL—aHWW

s€[T] to=1<ty1--<ts=T+1

Proof Sketch. Each term corresponds to the weight
when we pick a number s € [T'] for the number of times
we start afresh with a uniformly random point p at
times ts = {t1,...,ts—1} and do the regular exponen-
tial weighted forecaster in the intermediate periods. We
have a weighted sum over all these terms with a factor
a/VOL(C) for each time we restart and (1 — «) for each
time we continue with the Exponential Forecaster. [

We will now prove Theorem 6. The main idea is to show
that the normalized exploration helps the total weights
to provide a lower bound for the algorithm payoff. Also
the total weights are competitive against the optimal
payoff as they contain the exponential updates with
the optimal set of switching points in Lemma 11 with
a sufficiently large (‘probability’) coefficient.

Proof sketch of Theorem 6. We provide an upper and
lower bound to Tl“ The upper bound uses Lemma
8 and helps us lower bound the performance of the
algorithm (see Appendix C) as

Wrst (P(A)(e’” - 1>)

(2)

where P(A) is the expected total payoff for Algorithm
2. We now upper bound the optimal payoff OPT by

providing a lower bound for % By Lemma 11 we
have
as—l(i
Wri 2 Vo (C W ti_1t7)

by dropping all terms save those that ‘restart’ exactly at
the OPT expert switches t§.,. Now using [S-dispersion
we can show (full proof in Appendix C)

Wri1
Wy, —

a* 1 -«
(RT#B)sd

) AOPT—(sH+L)O(T' 7))

Putting together with the upper bound (2), rearranging
and optimizing the difference for o and A concludes
the proof. (See Appendix C for a full proof.) O

We now analyze Algorithm 3 for the sparse experts
setting. We can adapt proofs of Lemmas 8 and 11 to

easily establish Lemmas 12 and 13.
Lemma 12 (Algorithm 3). Wiy = [, e?(p)dp.

Lemma 13. Let m(p) = Zi:l Biapi(p). For Algo—
rithm 3, Wp41 can be shown to be equal to the sum

Z Z a* (1 _O‘)TszW(Wti_l;tiflvti)

s€[T) to=1<...ts=T+1 i=1

w(p;T,m")dp

Corollary 14. Wz > a1 — a)T~ tW(m,t TYW,, for
allt <T.

where W (p; 7,7) == Jop(p)

Proof. Consider the probability of last ‘reset’ (setting
we(p) = Wymi(p)) at time ¢ when computing Wr 1 as
the expected weight of a random restart version which
matches Algorithm 3 till time ¢. O

Now to prove Theorem 7, we show that the total weight
is competitive with running exponential updates on all
partitions (in particular the optimal partition) of [T]
into m subsets with s switches, intuitively the property
of restarting exploration from all past points crucially
allows us to “jump” across intervals where a given expert
was inactive (or bad).

Learning piecewise Lipschitz functions in changing environments

Proof sketch of Theorem 7. We provide an upper and
lower bound to WXL similar to Theorem 6. Using
Lemma 12 we can show that inequality 2 holds here
as well. By Corollary 14 and Lemma 23 (which relates
7¢(.) to past weights, proved in Appendix C), and j-
dispersion we can show a better lower bound Putting
together the lower and upper bounds, rearranging and
optimizing for -, a, A concludes the proof. O

5 Efficient implementation

In this section we show that the Fixed Share Expo-
nential Forecaster algorithm (Algorithm 2) can be im-
plemented efficiently when w;’s are piecewise concave
(dimishing returns). In particular we overcome the
need to explicitly compute and update wy(p) (there are
uncountably infinite p in C) by showing that we can
sample the points according to p:(p) directly.

The high-level strategy is to show (Lemma 16) that
pi(p) is a mixture of ¢ distributions which are Exponen-
tial Forecaster distributions from [Balcan et al., 2018a]

e pilp) = s
Ci. As shown in [Balcan et al., 2018a] these distribu-
tions can be approximately sampled from (exactly in
the one-dimensional case, C C R), summarized below
as Algorithm BDV-18. We need to sample from one of
these ¢ distributions with probability Cy ; to get the dis-
tribution p;, and we can approximate these coefficients
efficently (or compute exactly in one-dimensional case).
The rest of the section discusses how to do these ap-
proximations efficiently, and with small extra expected
regret. Asymptotically we get the same bound as the
exact algorithm. (Formal proofs in Appendix E).

for each 1 <14 < ¢, with proportions

Algorithm BDV-18: Simply integrate pieces of the
exponentiated utility function, pick a piece with prob-
ability proportional to its integral, and sample from
that piece. [Lovész and Vempala, 2006] show how to
efficient sample from and integrate logconcave distribu-
tions. See [Balcan et al., 2018a] for more details.

The coefficients have a simple form in terms of normal-
izing constants W,’s of the rounds so far, so we first
express Wiy in terms of Wy’s from previous rounds
and some W (i, j)’s

Lemma 15. In Algorithm 2, fort > 1,

Wi =(1 — o)W (1, t 4 1)+
t
(1—a) 1
VOL ;[Q) TTWW (it + 1)

As indicated above, p;(p) is a mixture of ¢ distributions.

Lemma 16. In Algorithm 2, for t > 1, p/(p) =

S 1C“w<p,z 0

W The coefficients Cy; are given by

1 i=t=
Chi= o 1=t>1
(1—a)Weor WGD o <y

W W(i,t—1)

and (Cy,. .., Chy) lies on the probability simplex A1

The observations above allow us to write the algorithms
for efficiently implementing Fixed Share EF, for which
we obtain formal guarantees in Theorem 17. We present
an approximate algorithm (Algorithm 5) with the same
expected regret as in Theorem 6 (and also present an
exact algorithm, Algorithm 6 in Appendix E, for d = 1).
We say Algorithm 5 gives a (7, () estimate of Algorithm
2, i.e. with probability at least 1 —(, its expected payoff
is within a factor of €” of that of Algorithm 2.

Algorithm 5 Fixed Share Exponential Forecaster -
efficient approximate implementation

Input: approximation parameter 1 € (0, 1), confidence
parameter ¢ € (0,1)

1. Wy = VOL(C)

2. Foreacht=1,2,...,T:

i. Estimate C ; using Lemma 16 for each 1 < j <.

ii. Sample ¢ with probability C; ;.

iii. Sample p with probability approximately propor-
tional to w(p;i,t) by running Algorithm BDV-
18 with approximation-confidence parameters
(n/3.¢/2).

iv. Estimate Wy, 1 using Lemma 15. Algorithm BDV-
18 to get (1/6T,1/2T?) estimates for all W (r,7')
and memoize values of W;,i < t.

Theorem 17. If utility functions are piecewise con-
cave and L-Lipschitz, we can approrimately sample
a point p with probability p,41(p) in time O(Kd*T?)
for approzimation parameters n = ¢ = 1/V/T and

V/s(dIn(RTP) +1n(T/s))/T/H and enjoy the
same regret bound as the exact algorithm. (K is number
of discontinuities in u;’s).

Note that in this section we concerned ourselves with
developing a poly(d,T) algorithm. For special cases
of practical interest, like one-dimensional piecewise
constant functions, we can implement much faster
O(K log KT) algorithms as noted in Section 7.

6 Lower bounds

We prove our lower bound for C = [0,1] and H = 1.
Also we will consider functions which are S-dispersed

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

and 0-Lipschitz (piecewise constant). For such utility
functions uy,...,ur we have shown in Section 4 that
the s-shifted regret is O(y/sTlogT + sT'~7). Here we
will establish a lower bound of Q(v/sT + sT 7).

We show a range of values of s, 8 where the stated
lower bound is achieved. For s = 1, this improves over
the lower bound construction of [Balcan et al., 2018a]
where the lower bound is shown only for 8 =1/2. In
particular our results establish an almost tight charac-
terization of static and dynamic regret under dispersion.

Theorem 18. For each 3 > llcc’)ggif, there exist util-
ity functions uq,...,

urp : [0,1] — [0,1] which are (-
dispersed, and the s-shifted regret of any online algo-
rithm is Q(V/sT + sT'=P).

Proof. We perform the construction in ©(s) phases,
each phase accumulating Q(+/7/s+T*~7) regret, yield-
ing the desired lower bound.

Let I; = [0,1]. In the first phase, for the first %Tlfﬁ
functions we have a single discontinuity in the interval
(% (1 - 3—18) , % (1 + 3—18)) C (%, %) The functions have
payoff 1 before or after (with probability 1/2 each)
their discontinuity point, and zero elsewhere. We intro-
duce 377 functions each for the same discontinuity
point, and set the discontinuity points 77 apart for

[-dispersion. This gives us ;/_?’,f — 1 potential points
1 2 (1/33 _ 1) _
T8 -

3,3], 80 we can support RY
L 371 such functions (% — 3T*# > 0 since

B> llzgg ?;). By Lemma 31 (Appendix F) we accumulate

Q(4/ Tf?’%m) = Q(+/T/s) regret for this part of the
phase in expectation. Let I{ be the interval from among
[0,%(1—35)] and [§ (14 55),1] with more payoff in
the phase so far. The next function has payoff 1 only at
first or second half of I (with probability 1/2) and zero
everywhere else. Any algorithm accumulates expected
regret 1/2 on this round. We repeat this in successively
halved intervals. [-dispersion is satisfied since we use
only ©(T*~#) functions in the interval I’ of size greater
than 1/3, and we accumulate an additional Q(T'~#)
regret. Notice there is a fixed point used by the optimal
adversary for this phase.

Finally we repeat the construction inside the largest
interval with no discontinuities at the end of the last
phase for the next phase. Note that at the i-th phase
the interval size will be ©(3). Indeed at the end
of the first round we have ‘unused’ intervals of size
s(1—-35),1(1—-3%),s(1=%),... At the i = 27-
th phase, we’ll be repeating inside an interval of size
771 (1—35) = ©(3). This allows us to run ©(s)
phases and get the desired lower bound (intervals must
be of size at least % to support the construction). O

inside |

7 Experiments

The simplest demonstration of significance of our al-
gorithm in a changing environment is to consider the
2-shifted regret when a single expert shift occurs. We
consider an artifical online optimization problem first,
and will then look at applications to online clustering.
Let C = [0,1]. Define utility functions

w9 (p) = {; and u) (p) = {

Now consider the instance where u(?)(p) is presented
for the first 7'/2 rounds and u(!) (p) is presented for the
remaining rounds. We observe constant average regret
for the Exponential Forecaster algorithm, while Fixed
Share regret decays as O(1/v/T) (Figure 2). While the
example is simple and artificial, it qualitatively captures
why Fixed Share dominates Exponential Forescaster
here — because the best expert changes and the old
expert is no longer competitive. (cf. Appendix B)

if p<
if p >

0 ifp<
1 ifp>

N N|=
N N

060 -

=] =

in L

[=3 i
T v

045 -

Average regret

0.40 -
0 10 20 30 4 S0 &0
Time
Figure 2: Average 2-shifted regret vs game duration
T for a game with single expert shift. Color scheme:
Exponential Forecaster, Fixed Share EF

[Arthur and Vassilvitskii, 2007] proposed k-means++,
a celebrated algorithm which shows the impor-
tance of initial seed centers in clustering using
the k-means algorithm (also called Llyod’s method).
[Balcan et al., 2018b] generalize it to (@, 2)-Lloyds++-
clustering, which interpolates between random initial
seeds (vanilla k-means, & = 0), k-means++ (a = 2)
and farthest-first traveral (& = oo0) [Gonzalez, 1985,
Dasgupta and Long, 2005] using a single parameter a.
The clustering objective (we use the Hamming distance
to the optimal clustering, i.e. the fraction of points
assigned to different clusters by the algorithm and the
target clustering) is a piecewise constant function of
a, and the best clustering may be obtained for a value
of & specific to a given problem domain. In an online
problem, where clustering instances arrive in a sequen-
tial fashion, determining good values of & becomes
an online optimization problem on piecewise Lipshitz
functions.

Learning piecewise Lipschitz functions in changing environments

0147 0.08
012 L Ll
ki 1]
2 o 0.06
S 010 - o 006 -
v = v
008 - ¥ 005+
= =
2 006 - g 004~
S b3
0.04 - 0031
o 0.02
D 10 2 3® 4 50 60 0w
Time
(a) MNIST

(b) Omniglot _small 1

012 -

-—
-...

Average regret
= [=1 =
h (=] =]
1 1 1

P mricon, WP 0.04 -

; : 0.02 = i i H : i !
50 60 o 10 20 30 40 50 &0
Time

(¢) Omniglot (full)

E
Tirme

Figure 1: Average 2-shifted regret vs game duration 1" for online clustering against 2-shifted distributions. Color

scheme: Exponential Forecaster, Fixed Share EF,

We perform our evaluation on four benchmark datasets
to cover a range of examples-set sizes, N and num-
ber of clusters, k: MNIST, 28 x 28 binary images
of handwritten digits with 60,000 training examples
for 10 classes [Deng, 2012|; Omniglot, 105 x 105 bi-
nary images of handwritten characters across 30 al-
phabets with 19,280 examples [Lake et al., 2015]; Om-
niglot_small_ 1, a “minimal" Omniglot split with only
5 alphabets and 2720 examples.

We consider a sequence of clustering instances drawn
from the four datasets and compare our algorithms
Fixed Share EF (Algorithm 2) and Generalized Share
EF (Algorithm 3) with the Exponential Forecaster algo-
rithm of [Balcan et al., 2018a]. At each time ¢t < T <
60 we sample a subset of the dataset of size 100. For
each T, we take uniformly random points from half
the classes (even class labels) at times t = 1,...,7T/2
and from the remaining classes (odd class labels) at
T/2 <t <T. We determine the hamming cost of
(@, 2)-Lloyds++-clustering for o € C = [0, 10] which is
used as the piecewise constant loss function (or payoff
is the fraction of points assigned correctly) for the on-
line optimization game. Notice the Lipschitz constant
L = 0 since we have piecewise constant utility, and
utility function values lie in [0,1]. We set exploration
parameter « = 1/T and decay parameter v = 1/T in
our algorithms. We plot average 2-shifted regret until
time T (i.e. Rr/T) and take average over 20 runs to
get smooth curves. (Figure 1). Unlike Figure 2, the
optimal clustering parameters before the shift might be
relatively competitive to new optimal parameters. So
the Exponential Forecaster performance is not terrible,
although our algorithms still outperform it noticeably.

We observe that our algorithms have significantly lower
regrets (about 15-40% relative for the datasets con-
sidered, for T > 40) compared to the Exponential
Forecaster algorithm across all datasets. We also note
that the exact advantage of adding exploration to ex-
ponential updates varies with datasets and problem

instances. In Appendix G we have compiled further
experiments that reaffirm the strengths of our approach
against different changing environments and also com-
pare against the static setting.

Remark. For the applications considered above, the
utility functions are piecewise constant with d = 1. For
these it is possible to simply maintain the weight on each
piece of Lyue(p) in O(K log Kt) time for round t where
each u(+) has O(K) pieces by using a simple interval
tree data structure [Cohen-Addad and Kanade, 2017].
The tree lazily maintains weight for each of O(Kt)
pieces, takes O(log Kt) time each for lazy insertion of
O(K) new pieces and allows drawing with probability
proportional to weight in O(log Kt) time. Similarly
O(K log Kt) updates are possible for Algorithm 3. Sec-
tion 5 addresses the harder problem of polynomial time
implementation of Algorithm 2 for arbitrary d.

8 Discussion and open problems

We presented approaches which trade off exploitation
with exploration for the online optimization problem
to obtain low shifting regret for the case of general
non-convex functions with sharp but dispersed dis-
continuities. Optimizing for the stronger baseline of
shifting regret leads to empirically better payout, as
we have shown via experiments bearing applications
to algorithm configuration. Our focus here is on the
full-information setting which corresponds to the entire
utility function being revealed at each iteration, and
we present almost tight theoretical results for it. Other
relevant settings include bandit and semi-bandit feed-
back where the function value is revealed for only the
selected point or a subset of the space containing the
point. It would be interesting to obtain low shifting
regret in these settings [Auer et al., 2002].

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

9 Acknowledgements

We thank Ellen Vitercik for helpful feedback. This work
was supported in part by NSF grants CCF-1535967, I1S-
1618714, 11S-1901403, CCF-1910321, SES-1919453,an
Amazon Research Award, a Microsoft Research Faculty
Fellowship, a Bloomberg Data Science research grant,
and by the generosity of Eric and Wendy Schmidt
by recommendation of the Schmidt Futures program.
Views expressed in this work do not necessarily reflect
those of any funding agency.

References

[Adamskiy et al., 2012] Adamskiy, D., Koolen, W. M.,
Chernov, A., and Vovk, V. (2012). A closer look at
adaptive regret. In International Conference on Al-
gorithmic Learning Theory, pages 290-304. Springer.

[Arthur and Vassilvitskii, 2007] Arthur, D. and Vassil-
vitskii, S. (2007). k-means++: The advantages of
careful seeding. In Proceedings of the eighteenth an-
nual ACM-SIAM symposium on Discrete algorithms,
pages 1027-1035. Society for Industrial and Applied
Mathematics.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., Freund,
Y., and Schapire, R. E. (2002). The nonstochas-
tic multiarmed bandit problem. STAM journal on
computing, 32(1):48-77.

[Awerbuch and Kleinberg, 2008] Awerbuch, B. and
Kleinberg, R. (2008). Ouline linear optimization
and adaptive routing. Journal of Computer and
System Sciences, 74(1):97-114.

[Balcan et al., 2019] Balcan, M.-F., Dick, T., and
Pegden, W. (2019). Semi-bandit Optimization
in the Dispersed Setting. arXiv e-prints, page
arXiv:1904.09014.

[Balcan et al., 2018a] Balcan, M.-F., Dick, T., and
Vitercik, E. (2018a). Dispersion for data-driven
algorithm design, online learning, and private op-
timization. In 2018 IEEE 59th Annual Symposium
on Foundations of Computer Science (FOCS), pages
603-614. IEEE.

[Balcan et al., 2017] Balcan, M.-F., Nagarajan, V.,
Vitercik, E., and White, C. (2017). Learning-
theoretic foundations of algorithm configuration for
combinatorial partitioning problems. In Conference
on Learning Theory, pages 213-274.

[Balcan et al., 2018b| Balcan, M.-F. F., Dick, T., and
White, C. (2018b). Data-driven clustering via pa-
rameterized lloyd’s families. In Advances in Neural
Information Processing Systems, pages 10641-10651.

[Bassily et al., 2014] Bassily, R., Smith, A., and
Thakurta, A. (2014). Private empirical risk minimiza-
tion: Efficient algorithms and tight error bounds. In
2014 IEEE 55th Annual Symposium on Foundations
of Computer Science, pages 464-473. IEEE.

[Ben-David et al., 2009] Ben-David, S., Pal, D., and
Shalev-Shwartz, S. (2009). Agnostic online learning.
In COLT.

[Bousquet and Warmuth, 2002] Bousquet, O. and
Warmuth, M. K. (2002). Tracking a small set of
experts by mixing past posteriors. Journal of Ma-
chine Learning Research, 3(Nov):363-396.

[Cesa-Bianchi et al., 2012] Cesa-Bianchi, N., Gaillard,
P., Lugosi, G., and Stoltz, G. (2012). Mirror descent
meets fixed share (and feels no regret). In Advances

in Neural Information Processing Systems, pages
980-988.

[Cesa-Bianchi and Lugosi, 2006] Cesa-Bianchi, N. and
Lugosi, G. (2006). Prediction, learning, and games.
Cambridge university press.

[Cohen-Addad and Kanade, 2017] Cohen-Addad, V.
and Kanade, V. (2017). Online optimization of
smoothed piecewise constant functions. In Artifi-
cial Intelligence and Statistics, pages 412-420.

[Combes et al., 2015] Combes, R., Magureanu, S.,
Proutiere, A., and Laroche, C. (2015). Learning to
rank: Regret lower bounds and efficient algorithms.
ACM SIGMETRICS Performance Evaluation Re-
view, 43(1):231-244.

[Cormack et al., 2008] Cormack, G. V. et al. (2008).
Email spam filtering: A systematic review. Foun-
dations and Trends® in Information Retrieval,
1(4):335-455.

[Daniely et al., 2015] Daniely, A., Gonen, A., and
Shalev-Shwartz, S. (2015). Strongly adaptive online
learning. In International Conference on Machine
Learning, pages 1405-1411.

[Dasgupta and Long, 2005] Dasgupta, S. and Long,
P. M. (2005). Performance guarantees for hierar-
chical clustering. Journal of Computer and System
Sciences, 70(4):555-569.

[Deng, 2012] Deng, L. (2012). The mnist database
of handwritten digit images for machine learning
research [best of the web|. IEEE Signal Processing
Magazine, 29(6):141-142.

[Ertekin et al., 2010] Ertekin, S., Bottou, L., and
Giles, C. L. (2010). Nonconvex online support vector
machines. IEEFE Transactions on Pattern Analysis
and Machine Intelligence, 33(2):368-381.

Learning piecewise Lipschitz functions in changing environments

[Gonzalez, 1985] Gonzalez, T. F. (1985). Clustering to
minimize the maximum intercluster distance. Theo-
retical Computer Science, 38:293-306.

[Hazan et al., 2016] Hazan, E. et al. (2016). Introduc-
tion to online convex optimization. Foundations and

Trends® in Optimization, 2(3-4):157-325.

[Hazan and Seshadhri, 2007] Hazan, E. and Seshadhri,
C. (2007). Adaptive algorithms for online decision
problems. In FElectronic colloquium on computational
complezity (ECCC), volume 14.

[Herbster and Warmuth, 1998] Herbster, M. and War-
muth, M. K. (1998). Tracking the best expert. Ma-
chine learning, 32(2):151-178.

[Jadbabaie et al., 2015] Jadbabaie, A., Rakhlin, A.,
Shahrampour, S., and Sridharan, K. (2015). Online
optimization: Competing with dynamic compara-
tors. In Artificial Intelligence and Statistics, pages
398-406.

[Jun et al., 2017] Jun, K.-S., Orabona, F., Wright, S.,
and Willett, R. (2017). Improved strongly adap-
tive online learning using coin betting. In Artificial
Intelligence and Statistics, pages 943-951.

[Kivinen and Warmuth, 1997] Kivinen, J. and War-
muth, M. K. (1997). Exponentiated gradient versus
gradient descent for linear predictors. information
and computation, 132(1):1-63.

[Lake et al., 2015] Lake, B. M., Salakhutdinov, R., and
Tenenbaum, J. B. (2015). Human-level concept learn-
ing through probabilistic program induction. Science,
350(6266):1332-1338.

[Liberty et al., 2016] Liberty, E., Sriharsha, R., and
Sviridenko, M. (2016). An algorithm for online k-
means clustering. In 2016 Proceedings of the eigh-

teenth workshop on algorithm engineering and exper-
iments (ALENEX), pages 81-89. STAM.

[Littlestone and Warmuth, 1994] Littlestone, N. and
Warmuth, M. K. (1994). The weighted majority
algorithm. Information and computation, 108(2):212—
261.

[Lovasz and Vempala, 2006] Lovasz, L. and Vempala,
S. (2006). Fast algorithms for logconcave functions:
Sampling, rounding, integration and optimization. In
2006 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’06), pages 57-68. IEEE.

[Maillard and Munos, 2010] Maillard, O.-A. and
Munos, R. (2010). Online learning in adversarial lip-
schitz environments. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 305-320. Springer.

[Merton, 1976] Merton, R. C. (1976). Option pricing
when underlying stock returns are discontinuous.
Journal of financial economics, 3(1-2):125-144.

[Rakhlin et al., 2007] Rakhlin, A., Abernethy, J., and
Bartlett, P. L. (2007). Online discovery of similar-
ity mappings. In Proceedings of the 24th interna-

tional conference on Machine learning, pages 767—
774. ACM.

[Rakhlin et al., 2011] Rakhlin, A., Sridharan, K., and
Tewari, A. (2011). Online learning: Stochastic, con-
strained, and smoothed adversaries. In Advances in
neural information processing systems, pages 1764—
1772.

[Sculley and Wachman, 2007] Sculley, D. and Wach-
man, G. M. (2007). Relaxed online svms for spam
filtering. In Proceedings of the 30th annual inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 415-422.

ACM.

[Talebi et al., 2018] Talebi, M. S., Zou, Z., Combes, R.,
Proutiere, A., and Johansson, M. (2018). Stochastic
online shortest path routing: The value of feedback.
IEEE Transactions on Automatic Control, 63(4):915—
930.

[Wauthier et al., 2013] Wauthier, F., Jordan, M., and
Jojic, N. (2013). Efficient ranking from pairwise com-
parisons. In International Conference on Machine
Learning, pages 109-117.

[Yang et al., 2018] Yang, L., Deng, L., Hajiesmaili,
M. H., Tan, C., and Wong, W. S. (2018). An optimal
algorithm for online non-convex learning. Proceed-
ings of the ACM on Measurement and Analysis of
Computing Systems, 2(2):25.

|Zinkevich, 2003] Zinkevich, M. (2003). Online convex
programming and generalized infinitesimal gradient
ascent. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pages
928-936.

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

Appendix
A Discretization based algorithm

Definition 19 (r-discretization). An r-discretization
or r-net of a bounded set S C RY is a finite set of points
D such that the Euclidean distance of any point in S
is at most r from some point in D.

Recall that C C R? is contained in a ball of radius R. A
standard greedy construction gives an r-discretization
of size at most (3R/r)? [Balcan et al., 2018a. Given
the dispersion parameter [, a natural choice is to use
a T~ P-discretization as in Algorithm 1.

Theorem 4. Let RF"¢(T,s, N) denote the s-shifted
regret for the finite experts problem on N experts, for
the algorithm used in step 2 of Algorithm 1. Then Algo-
rithm 1 enjoys s-shifted regret RS (T, s) which satisfies

RO(T,5) < RF (T, 5, (3RT)") +(sH+L)O(T').

Proof of Theorem 4. We show we can round the opti-
mal points in C to points in the (7~#)-discretization
D with a payoff loss at most (sH + L)T*~? in expec-
tation. But in D we know a way to bound regret by
Rfivite(T s N), where N, the number of points in D,
is at most (%)d = (3RTﬁ)d.

Let tg.s denote the expert switching times in the opti-
mal offline payoff, and p] be the point picked by the
optimal offline algorithm in [¢;_1,¢; — 1]. Consider a
ball of radius 7~# around p}. It must have some point
pr € D. We then must have that {u; | ¢ € [t;—1,t; — 1]}
has at most O(T~?T) = O(T*~?) discontinuities due
to B-dispersion, which implies

t;—1 t;—1

Yo w(pi) = Y wlp))—OT P) H-L(ti—ti-)T~°

t=t;_1 t=t;_1

Let py = p} for each t;_; <t <t; —1. Summing over ¢
gives
T
> uilp) = OPT — O(T"~P)sH — LT 7
t=1

= OPT — (sH + L)O(T'")

Now payoff of this algorithm is bounded above by the
payoff of the optimal sequence of experts with s shifts

T
Z ut(,ﬁt) < OPTfinite

t=1

Let the finite experts algorithm with shifted regret
bounded by Rfi"*(T, s, N') choose p; at round ¢. Then,

using the above inequalities,

T
Zut(pt) > OPTfinite _ Rﬁnite(T’ s, N)
t=1

> OPT — (sH + L)O(T'~#) — Rinite(T 5 N)

We use this to bound the regret for the continuous case

T
RE(T,s) = OPT — > u(pr)
t=1
< Rfinite(7 s N) 4 (sH + L)O(T'#)

B Counterexamples

We will construct problem instances where some sub-
optimal algorithms mentioned in the paper suffer high
regret.

We first show that the Exponential Forecaster algo-
rithm of [Balcan et al., 2018a] suffers linear s-shifted
regret even for s = 2. This happens because pure
exponential updates may accumulate high weights on
well-performing experts and may take a while to adjust
weights when these experts suddenly start performing
poorly.

Lemma 20. There exists an instance where Expo-
nential Forecaster algorithm of [Balcan et al., 2018a/
suffers linear s-shifted regret.

Proof. Let C =10, 1].

u(p) = {é

Now consider the instance where u(?)(p) is presented
for the first 7'/2 rounds and u(!) (p) is presented for the
remaining rounds. In the second half, with probability
at least %, the Exponential Forecaster algorithm will
select a point from [0, %] and accumulate a regret of
1. Thus the expected 2-shifted regret of the algorithm
is at least Z - 1 = Q(T'). Notice that the construction
does not depend on the step size parameter . O

Define utility functions

if p <
if p >

0 if p<
1 ifp>

N[D=

and uV(p) = {

N|—= D=

We further look at the performance of Random Restarts
EF (Algorithm 4), an easy-to-implement algorithm
which looks deceptively similar to Algorithm 2, against
this adversary. Turns out Random Restarts EF may
not restart frequently enough for the optimal value of
the exploration parameter, and have sufficiently long
chains of pure exponential updates in expectation to
suffer high regret.

Learning piecewise Lipschitz functions in changing environments

Theorem 21. There exists an instance where Random
Restarts EF (Algorithm 4) with parameters X and « as
in Theorem 6 suffers linear s-shifted regret.

Proof. The probability of pure exponential updates
from t = T'/4 through t = 3T'/4 is at least

- L NT2
1- =(1-—— =
(1=a) (T—1> 73

for T'> 5. By Lemma 20, this implies at least % regret
in this case, and so the expected regret of the algorithm
is at least <& = Q(T). O

C Analysis of algorithms

In this section we will provide detailed proofs of lemmas
and theorems from Section 4. We will restate them for
easy reference.

Lemma 10. (Algorithm 2) For each t € [T],
we(p) = E[iy(p)] and Wy = E[W,], where the expecta-
tions are over random restarts z; = {z1,...,2:-1}.

Proof of Lemma 10. w¢(p) = E[w:(p)] implies Wy =
E[W;] by Fubini’s theorem (recall C is closed and
bounded). w;(p) = E[w:(p)] follows by simple induc-
tion on t. In the base case, z; is the empty set and
wi(p) =1 =1(p) = E[i(p)]. For ¢t >1,

E[d(p)] =(1 — a)E[eX* P,y (p)]+

@ Aut (p)
Vor @) { /C e e (p)dp

(definition of ;)

=(1- a)em‘(p)E[lth—l(P)]"'

(expectation is over z;)

=(1—a)e* P,y (p)

« Aug(p)
+ Vor(C) /Ce wi—1(p)dp

(inductive hypothesis)

=w(p)
(definition of wy)

O

Lemma 11. (Algorithm 2) Wy, equals the sum

1_ S
22 avOL—aHW“’

SE[T] to=1<t1---<ts=T+1

Pmof. We use Ler{lma 10 to note thAat Wry =
E,, Wri1] =Es¢ [Wri1 | s,ts], where Wryq | s, t, is
the total weight of Algorithm 4 at time T + 1 given
restarts occur exactly at t,, and is deterministic since
all weights wy1(p) are fixed given exact restart times.
We will now show by an induction on s,

s—1

= U~/(P, ts—la ts)
=1

W(ti—lati)

Vo)

wry1(p) | s, ts

In other words, we wish to show that wry1(p) | s,ts
(weights of Algorithm 4 at time T + 1 given restarts
occur exactly at ts) can be expressed as the product
of weight w(p;ts_1,ts) at p of regular Exponential
Forecaster since the last restart times the normalized
total weights accumulated over previous runs.

For s = 1, we have no restarts and

s—1 %

0 -

- Witi—1,t; -

w(p;tsfl,ts)H; LY (b, 1) N ~orer
i=1 =1

217

VoL(C) VoL

w(p;1,T + 1)
wry1(p) | 1,41

For s > 1, the last restart occurs at t;_; > 1. By
inductive hypothesis for time ¢;_1 — 1 until which we’ve
had s — 2 restarts,

>

1(p) | s —1,ts1
s—2

= @(P, ts—2,ts—1 — 1)
i=1

wtsflfl(p) | s, ts = wt5717

W(ti1,ti)
VoL(C)

Due to restart at t5_1,

Jo " Py, 1 (p)dp
VoL(C)

_ g} (ti—1,ts)
N 21;[1 VoL(C)

It’s regular exponential updates from this point to ts,
which gives (3).

U}ts—l (p) ‘ S7ts =

Integrating (3) to get Wy | s, ts, and noting proba-
bility of s — 1 restarts at t, is a®~1(1—a)T =% completes
the proof.

O

Theorem 6. The s-shifted regret of Algorithm 2 with
a=s/T and \ = \/s(dlog(RTP) +log(T/s))/T/H is
O(H\/sT(dlog(RT?) +log(T/s)) + (sH + L)T*~¥).

Full proof of Theorem 6. We first provide an upper
and lower bound to XZL,

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

Upper bound: The proof is similar to the up-
per bound for exponential weighted forecaster in
[Balcan et al., 2018a] and uses Lemma 8 for W;.

Wit _ fc X Phwy(p)dp
Wy W,
_ Aug(p) wi(p) d
=le —
/c w, 7
= /C A Ppy(p)dp

Finally use inequalities e** < 1+ (e —1)z for z € [0, 1]
and 14 z < e* to get

s [(1 @ -0 g

P
+ (e)i

<o (e 177

where P; denotes the expected payoff of the algorithm in
round ¢. Let P(A) be the expected total payoff. Then

T+1

we can write as a telescoping product which gives

H M
<(€ - H> @)

o (P)

WT+1 H Wt+1

Lower bound: Again the proof is similar to
[Balcan et al., 2018a] and the major difference is use
of Lemma 11.

We first lower bound payoffs of points close to the opti-
mal sequence of experts using dispersion. If the optimal
sequence with s shifts has shifts at tf (1 <i<s—1),
by [-dispersion for any p; € B(p}, w)

i1

Z Ut(Pi) Z

t=t;_,

tr—1
> uelp}) —RH = L(t; —t;_)w (5)

t=t;_,

where w = T~ and k = O(T'~#). Summing both
sides over i € [s — 1] helps us relate the lower bound
to the payoff OPT of the optimal sequence.

s ti—1 s ti—1

SN w20 D wie)) -

i=1t=tr_, i=1 t=t}

kH — L(t}
-1
=OPT — ksH — LTw
(6)
Now to lower bound we first lower bound Wrp 1.

We use Lemma 11 and lower bound by picking the term
corresponding to times of expert shifts in the optimal

WT+1

—ti_)w

sequence with s-shifted expert.
Wria

af 1—a
Z Z VOL

SG[T] to=1<ty--<t,=T+1

Hthz

HW’L]J

o’ 1—a
VOL

(7)

The product of W’s can in turn be lower bounded
by restricting attention to points close (i.e. within
a ball of radius w centered at optimal expert p;) to
the optimal sequence. The payoffs of such points was
lower-bounded in (5) and (6) in terms of the optimal
payoff.

t*fl

HW i-11) HC/QXP< pa t(P))dp

i—1
-
=1B(p7,w) =t

ut(p)) dp
tr—1

exp(ST wilpt) — KH — L t;;“_l)w) dp
t=t*

i—1

ti—1

>H exp(Z

> H
B(pi,w)
— VoL(B(w))*-
s t;—1

exp(Z)\ > wlp)

i=1 t=t7_,

— kH - L(t: — t;_l)w>

= VoL(B(w))® exp (/\ (OPT — ksH — LTw))

Plugging into equation (7) we get

a1 —a)T=*VoL(B(w))*
VoL(C)*~1 '

Wry1 >

exp ()\ (OPT — ksH — LTw))

Also, W1 = [, wi(p)dp = VOL(C). Thus, using the
fact that ratio of volume of balls B(w) and B(R) in
d-dimensions is (w/R)%, and assuming C is bounded
by some ball B(R).

Wria —1 s f(w)™
Lt Y s =) .
W, 2o (1-a) R

exp <)\(0PT — ksH — LTw)> ”

Putting together: Combining upper and lower bounds
from (4) and (8) respectively,

R
log (@* (1 — a)”"™*) — sdlog —+

P(A)(e™ 1)

ANOPT — ksH — LTw) < 7

Learning piecewise Lipschitz functions in changing environments

which rearranges to

HA 1 - H) n sdlog(R/w)
HX A
log(a®~1(1 = a)T~)
A

OPT — P(A) <P(A)

+ ksH + LTw —

Using P(A) < HT and using e* < 1+ z+ (e — 2)22 for
z €]0,1] we have

(eI —1— H)) sdlog(R/w)
— <
OPT ~ P(A) SHT—— + ==
s—1 _ T—s
T ksH 4 LTw — 08 (i))
dl
<HTA+ %(R/w) +ksH + LTw
 logla™1(1 - a)7~)
A
Now we tighten the bound, first w.r.t. a then w.r.t. A.
Note min, —log(a* (1 — a)T~*) occurs for ag = 2=+
and
—log(ay ™' (1 —)" ™)
s—1 s—1 T-—s T—-5s
=T -1)| - 1 - 1
T=D| - F7=qle7 T—lOgT—l}

T —
<(s—1)loge
s —

(binary entropy function satisfies h(z) < zIn(e/x) for
x €]0,1]). Finally minimizing over A\ gives

OPT — P(A) <
O(H\/sT(dlog(R/w) + log(T/s)) + ksH + LTw)

for A = \/s(dlog(R/w) +1log(T/s))/T/H. Plugging
back w =T~ and k = O(T'~#) completes the proof.
O

The rest of this section is concerned with the analysis
of Algorithm 3 for the sparse experts setting.

Lemma 22. For anyt <T,

wr(p) > a(l —)" ~'m(p)d(p; t, T)W,

Proof. Follows using the restart algorithm technique
used in Lemmas 11 and 13. Consider the probability of
last ‘restart’ being at time ¢. Notice this also implies
Corollary 14. O

Lemma 23. Let m(p) = S'_, Biipi(p) in Algorithm

3. Then

/\uz p)
al ‘ Z wi(p)
B + B A L+1

where

o >

e—(i—1)

and ey := 22:1

Proof. Notice, by definition of weight update in Algo-
rithm 3,

eui—1(p)
(1 o a) wt 1

+a2ﬁzt lpz

+am1(p)

pi(p) =

e*wmwt_l(p)

=1-a) W

This gives us a recursive relation for o ;.

Q¢ =

Bir(1—a) + o Zj‘:i-ﬁ-l B ifi>1
Bt +a Xy B ifi=1

Thus for each 1 <7 <t

t

aig > Bi(l—a)+a Y Bjija

j=it+1

We proceed by induction on t — i. For i = ¢,

1— t—t
()
€t €t

For i < t, by inductive hypothesis

Z /Bj tQQy 51

Jj=i+1
e—V(t—1)

are > Bl —a) =

a; s >Pii(l —a)

>(1—a)

which completes the induction step. O

Corollary 24. Let wi(p), Wy be as in Algorithm 3
and 7y as in Lemma 13. For each T < 7' <t and any
bounded f defined on C.

a(l—a)"T(1—e) W, .
(e +a(l—e))" Wy

/C 7w (p)w(p; 7, 7') f(p)dp

/ () F(p)dp >
C

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

Proof. By Lemma 23,

/ m(p) f(p)dp = / m(p) f(p)dp
C C

eAuT’—l(p)wT,71 (p)
> | a. d
> [[an = gy

S l—a(_, n a1
e —_— .
e €t W-,—'

/C eAuT/_l(P)wT/,1 (p)f(/’)dp

o t—7' o ' —1—7
> 1-—«a (G’Y n oz) a(l —«) W
€t €t WT/

AﬂﬂmﬂmﬁHV@Mp

where for the last inequality we have used Lemma 22.
The lemma then follows by noting
1 1—e™

= >1—e7
ey 1—et —

where e; = 2221 e~70=1) as defined in Lemma 23. [
Theorem 7. The (m-sparse, s-shifted) regret of Al-
gorithm 3 is O(H+/T(mdlog(RT?) + slog(mT/s)) +
(mH + L)T*~ /3) for a = /T, v = s/mT and A =
V/(mdlog(RTF) + slog(T/s))/T/H.

Proof of Theorem 7. Like Theorem 6 we first provide
an upper and lower bound to WT“ . The upper bound
proof is identical to that of T heorem 6 by replacing
Lemma 8 by Lemma 12.

For the lower bound we use Corollaries 14 and 24.
Applying corollary 24 repeatedly to collect exponential
updates for the times OPT played the same expert lets
us use the arguments for Theorem 6 to get Equation 77.
Indeed if {(s;, fi) | 1 < i <1} are the start and finish
times of a particular expert p in the OPT sequence, we
can use Corollary 14 to write

W1 > a(l — o)t W, W (mg,; 51, fi + 1)
Applying Corollary 24 repeatedly now gets us
al(1— a)zézl fitl=si(q —
(e=7 + a(l — e=7)) Zim fitl=sin

Hz 1WSL /
Hz IWfL+1

al(1— a)2§-=1 Jitl=siq

e -1
Wfl+1 2) .

or

Hz 1 Wf7.+1
Hz 1WSz

_ e—'y)l—l
(e*” Fa(l — e=7)Zi= fitlsin
l

[(ol

Jj=1

pasjvfj+1) dp

l
va pisjy fi+1) | dp

Multiplying these inequalities for each of m experts in
the optimal sequence gives us va,fl on the left side.

Also note
meﬂde%%waw

and, using dispersion as in proof of Theorem 6,

l

A

experts in OPT j=

VoL(B(T~7))™ exp (A (OPT —

@(p;sj»fj + 1) dp >

(mH + L)O(T*9)))

Putting it all together gives Equation ??. Combining
the lower and upper bounds on m gives us a bound
on OPT — P(A).
mdlog(RT?)
A

+ (mH + L)O(T*~#)

5(1— 1—e™?
g (20T
(e77+a(l—e7))—m

We now chose parameters ~y,a, A to get the tightest
regret bound. Note that —log(a®(1—a)T) is minimized
for a = =0O(%) and —log((1—e 7)*(e™ " +a(l—
e=7))™T) is minimized for v = log (%) =

O(->7). The corresponding minimum values can be

bounded as
s s
Tl (1 f)
+Tlog (1+ 7

s
+s

s
=0 (s log T)
s

< =z, and substituting e =

OPT — P(A) <H?*T\ +

S5
T+s

T
—log(a®(1 — a)?) = slog +

T
< slog +

using log(l + x)
1—sa/mT(1—a)

14+s/mT
—log((1—e M) (e™ +a(l —e)T
L 1

- EH))H
o (s0™T)

Finally we minimize w.r.t. A, to obtain the desired
regret bound. O

D Adaptive Regret

It is known that the fixed share algorithm obtains
good adaptive regret for finite experts and OCO

Learning piecewise Lipschitz functions in changing environments

[Adamskiy et al., 2012].
here as well.

Definition 25. The 7-adaptive regret (due to
[Hazan and Seshadhri, 2007]) is given by

We show that it is the case

S
E max

Imax > (ur(p*) = uelpr))

1<r <5<T s—r<7 t=T

The goal here is to ensure small regret on all intervals
of size up to 7 simultaneously. Adaptive regret mea-
sures how well the algorithm approximates the best
expert locally, and it is therefore somewhere between
the static regret (measured on all outcomes) and the
shifted regret, where the algorithm is compared to a
good sequence of experts.

Theorem 26. Algorithm 2 enjoys
O(H\/7(dlog(R/w) +log7) + (H + L)r'=P) r-
adaptive regret for X\ = \/(dlog(R7#) +log(r))/7/H
and a =1/7.

Proof sketch of Theorem 26. Apply arguments of The-
orem 6 to upper and lower bound W1 /W, for any
interval [r, s] C [1,T] of size 7. We get

1)>

HX

H
where P(A) is the expected payoff of the algorithm in
[r, s], Also, by Corollary 14 (equivalent for Algorithm
2)

a(l —«a

)s+1 T
VoL(C) W(r,s)W,
a(l—a)”

= WW(T’,)W,

Wot1

I \/
)

By dispersion, as in the proof of Theorem 6,

W(r,s) > VoL(B(r ")) exp (A (OPT - (H+L)O(t

)

Putting the upper and lower bounds together gives us a
bound on OPT — P(A), which gives the desired regret
bound for a = 1. O

E Efficient Sampling

In Section 5 we introduced Algorithm 5 for efficient
implementation of Algorithm 2 in R?. We present
proofs of the results in that section, and an exact
algorithm for the case d = 1.

Lemma 15. In Algorithm 2, fort > 1,
=(1—)W (L, t+ 1)+
t

=2

Wt+1

VOL([1—a)t TWiW iyt + 1)

Algorithm 6 Fixed Share Exponential Forecaster -
exact algorithm for one dimension

Input: X € (0,1/H]

1. Wy = VoL(C)

2. Foreacht=1,2,...,T":

Estimate C; ; using Lemma 16 for each 1 < j <¢
using memoized values for weights.

Sample ¢ with probability Ct ;.

Sample p with probability proportional to
w(p;i,t).

Estimate Wy using Lemma 15.

Proof of Lemma 15. For t = 1, first term is W (1,2) =
f (P dp = W, and second term is zero. Also, by
Lemma 8, for t > 1

Wi :/ Oy (p)dp
c
:/ o {(1 —a)e™ 1Py (p)
c

a Aug—1(p) dold
+VOL(C)[3€ wt—l(P) P|ap

—(1- a)/ex(ut(p)mH(p))wtil(p)dp
C

Aut(/’)
VOL(C) Vorc) "t /C dp

(1= a)eXsPw;_y(p) +
Vor@ Je e*i (P, 1 (p)dp in the first summand until
wi = 1 to get the desired expression. O

Continue substituting w;(p) =

Definition 27. For a > 0 we say A is an (o, C)-
approzimation of A if

Pr(ef‘)‘A <A< eO‘A) >1-¢

Lemma 28. If A is an (v, ¢)-approzimation of A and
B is a (B, ¢")-approzimation of B, such that A, B, A, B
are all positive reals

1. AB is an (o + B, ¢ + ¢')-approzimation of AB

2. pA +¢B is a (max{a, 8}, ¢ + ¢)-approzimation
of pA+¢B forp,q=>0

Proof. The results follow from union bound on failure
probabilities. O

Corollary 29. For one-dimensional case, we can ez-
actly compute W(i,j), 1<i<j<t, hence W; at each
iteration can be computed in O(t) time using Lemma
15. More generally, if we have a (8,() approximation

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

for each W(Lj), 1 <i<j<t, then by Lemma 15 we
can compute a (t3,t2C)-approzimation for Wiy 1.

Proof. Union bound on failure probabilities of all
W(i,j), 1 <i< j <t gives we have a 3 approxi-
mation for each with probability at least 1 — ¢t2¢. This
covers failure for all terms in W;,2 < i < ¢. Further,
by induction, the error for estimates for W; is at most
(1 —1)B. By Lemma 28, the error for Wy, estimates
is at most t0. O

Lemma 16. In Algorithm 2, for t > 1, pi(p) =

w(p;i,t
Zz 1Ctz (P35 t))'

The coefficients Cy; are given by

1 1=t=1
Cpi={¢ 1=t>1
(1—a)WV}t1WVE(1t)1)Ct i<t

and (Cy 1, ..., Chry) lies on the probability simplex A1

Proof of Lemma 16. At each iteration, p; is obtained
by mixing e%tp; 1 with the uniform distribution, i.e.
we rescale distributions that p;_; was a mixture of and
add one more. Another way to view it is to consider
a distribution over the sequences of exponentially up-
dated or randomly chosen points. The final probability
distribution is the mixture of a combinatorial number
of distributions but a large number of them have a
proportional density. C;; are simply sums of mixture
coefficients. This establishes the intuition for the ex-
pression for p; and that the mixing coefficients should
sum to 1, but we still need to convince ourselves that
the coeflicients can be computed efficiently.

We proceed by induction on ¢. For t =1 (using defini-
tions for wa(p) and wa(p))

@(pi1,1)
W(1,1)

wi(p) 1
= = = O
nP) = == = Yore
(recall w(p;1,1) := 1 and W(1,1) = [, d(p;1,1)dp).
For the inductive step, we ﬁrst express pyy1 in terms
of p;

_ we1(p)
pev1(p) = Wit
eAut(P)w P «
=(1-a) o)
Wt+1 VOL(C)
Au(p)
(-0 W, e wt(p)+ «
Wt+1 W, VOL(C)
Wt Aut(p) o
= (1 — ut (P
(Oé) Wt+1e pt(p) =+ VOL(C)

The lemma is now straightforward to see with induction
hypothesis.

pe+1(p)
Wi au)[; ﬁ)(p;i,t)] o
=(1 - a) -)| S0 +
(O[)VVtJrle ; b W (i, t) Voi(C)
[(W, c _u?(p;i,t-i—l)] «
- Wit W (i, t) VoL(C)

[((1 o W, W(i,t—i—l)c)"I'}Nf/p(,litt_:—))}

o~

»—
|
Q

)

(2

I
.
I M“
—_

Wigr W (i, t)
Cii1,041
T VoL(©)
w(p;i,t+1) Ciy141
Ci1,i—= + ’
Z YW+ 1) VoL(C)
Finally noting
Coirint wpit+1,t+1) ot _ O
gl t41,t =
WL+ T (dp -~ Vor(C)

completes the proof.

Thus W; (by Lemma 15) and C;; can be computed
recursively for logconcave utility functions using in-
tegration algorithm from [Lovasz and Vempala, 2006].
We can compute them efficiently using Dynamic
Programming.

Finally it’s straightforward to establish that the
coefficients for p; must lie on the probability simplex
At=1 All coefficients are positive, which is easily seen
from the recursive relation and noting all weights are
positive. Also we know

. B3t
pt(p) - th,l W(Z,t)

i=1

Since p¢(p) is a probability distribution by definition,
integrating both sides over C gives

O

Corollary 30. If we have a (8,() approzimation for
each W(z 7), 1<i<j<t, then by Corollary 29 and
Lemma 16 we can compute Cyy1,; which are (2t3,t2C)-
approximation for each Cyyy ;.

Learning piecewise Lipschitz functions in changing environments

Proof. For i =t, we know C} ; exactly by Lemma 16.
For i < t,

W W(it)
t—i ") .
W, Vor(e) 7%)

In Corollary 29, we show how to compute ((: —1)8, (i —
1)2¢)-approximation for W; and ((t — 1)3, (t — 1)2()-
approximation for W; given (3, () approximations for
each W (i,j), 1<i<j<t. A similar argument using
Lemma, 28 shows with failure probability at most 2,
plugging in the approximations in equation 9 has at
most (¢t +)/ error. O

Cii=(01—-0a)

Theorem 17. If utility functions are piecewise con-
cave and L-Lipschitz, we can approximately sample
a point p with probability p,y1(p) in time O(Kd*T?)
for approzimation parameters n = ¢ = 1/VT and
A = /s(dIn(RTP) +1In(T/s))/T/H and enjoy the
same regret bound as the exact algorithm. (K is number
of discontinuities in uz’s).

Proof of Theorem 17. Based on Lemma 16, we can
sample a uniformly random number r in [0,1] and
then sample a p from one of ¢ distributions (selected
based on r) that p:(p) is a mixture of with proba-
bility proportional to C;;. The sampling from the
exponentials can be done in polynomial time for con-
cave utility functions using sampling algorithm of
[Bassily et al., 2014]. At each round we sample from ex-
actly one of ¢ distributions in the sum for p; in Lemma
16. We compute (n/6T,(/2T?) approximations for
W (i,5), 1 <i<j<T intime O(T?*K.T}) where T} is
the time to integrate a logconcave distribution (at most
O(d*/€®) from [Lovész and Vempala, 2006]). These
give (n/3,(/2)-approximation for C ;’s by corollary 30.
Finally we run Algorithm 2 from [Balcan et al., 2018a]
with approximation-confidence parameters (1/3,(/2).
With probability at least 1 — ¢, C; estimation and p
sampling according to w(p;i,t) succeeds. If i denotes
output distribution of p with approximate sampling,
and p denotes the exact distribution per p:(p), then we
show Dy (fi,) < n. Indeed, for any set of outcomes
EccC

((E)=Pr(p€ E) =Y Pr(p€E | E;;)Pr(Ei,)

i=1

. .
= u(E) Ot?l
i=1 Zj Ctyj
where E;, denotes the event that @(p;,t) was used for
sampling p;(p), and [i; corresponds to the distribution
for approximate sampling of w(p;,t). Noting that we
used 7/3 approximation for ji; and each CA’M, we have

t
Cy 4
A(E) <) e Ppy(B)e®? <—r— = e"u(E)
; 22 Cry

Similarly, i(E) > e "u(FE) and hence Do (fi,) < .
Finally we can show (cf. Theorem 12 of
[Balcan et al., 2018a]) that with probability at
least 1 — ¢ the expected utility per round of the
approximate sampler is at most a (1 — n) factor
smaller than the expected utility per round of the
exact sampler. Together with failure probability of
¢, this implies at most (n + ¢)HT additional regret
which results in same asymptotic regret as the exact
algorithm for n = ¢ = 1/V/T.

To compute the time complexity, we note from
[Lovasz and Vempala, 2006] that logconcave functions
can be integrated in O(d*/e?) and sampled from in
O(d®) time. The time to integrate dominates the
complexity, and the overall complexity can be up-
per bounded by O(T?K - d*/(n/T)?) = O(KT*d*).
Note: The approximate integration and sampling are
only needed for multi-dimensional case, for the one-
dimensional case we can compute the weights and sam-
ple exactly in polynomial time. O

F Lower bounds

We start with a simple lower bound argument for
s-shifted regret for prediction with two experts based
on a well-known Q(+/T) lower bound argument for
static regret. We will then extend it to the continuous
setting and use it for the Q(v/sT) part of the lower
bound in Theorem 18 in Section 6.

Lemma 31. For prediction with two experts, there
exists a stochastic sequence of losses for which the s-
shifted regret of any online learning algorithm satisfies

E[Rr] > /sT/8

Proof. Let the two experts predict 0 and 1 respectively
at each time t € [T]. The utility at each time ¢ is
computed by flipping a coin - with probability 1/2 we
have u(0) = 1,u(1) = 0 and with probability 1/2 it’s
u(0) = 0,u(1) = 1. Expected payoff for any algorithm
A is

T T

PAT) =E[Y u(p)] = 3 Elu(o)] = &

t=1 t=1

since expected payoff is 1/2 at each ¢ no matter which
expert is picked.

To compute shifted regret we need to compare this
payoff with the best sequence of experts with s — 1
switches. We compare with a weaker adversary A’
which is only allowed to switch up to s — 1 times, and

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

016 - 0.055 -
W 015+ o D050 -
£ 014 £
i g 0045 -
013 -
N & 0040 -
° 012 -] 003
o @ o T
= =
Z 011 - z
010 0,030 -
0.025 -
oog " i i i i i i i i
20 23 31 3/ 40 45 50 20 5
Time
(a) MNIST

0

(b) Omniglot small 1

0,045 -
00040 -
01035 -
0.030 -
0.025 -

Average regret

0,020 -

0.015 -

20 B4 & 50

Time

B 40 & 50 = B

Time

(c) Omniglot (full)

Figure 3: Average k-shifted regret vs game duration 7" for online clustering against k-shifted distributions. Color

scheme: Exponential Forecaster, Fixed Share EF,

switches at only a subset of fixed times t; = iT/s to
lower bound the regret.

E[Rr] = OPT — P(A,T)
> P(A,T)— P(A,T)
T T
= Z [u Pt ZE ut(pr)]
t—1 =1
s—1 tit1
= Elui(pt)] — Elue(pr)]
i=0 t=t;+1
Now let P, ; = i’*t 41 E[ug(5)] for i + 1 € [s] and
j€{0,1}
tit1 tita1
S Blu()] = max S Elu(p)]
=1 PO}, ST
1
=3 [Pi,O +P, 1+ |Pio— Pi,l@
T

— P,og—T/2
23+| 0 /25|

using P, o+ P;1 = T/s. Thus,

T
| > Pio—T/2) - —]
255> (5 + IR0 = T/26]) o
s—1
= ‘ 0—T/23‘
1=0
Noting P;g = i;*;iﬂ Efut(0)] = igt1i+1 (1+20t)

where o, are Rademacher variables over {—1,1} and
applying Khintchine’s inequality (see for example
[Ben-David et al., 2009]) we get

— tit1 s—1
E[Rr] z Z at/2‘ > " \/T/8s = \/sT/8
1=0"t=t;+1 =0

O

Corollary 32. We can embed the two-expert setting
to get a lower bound for the continuous case.

Proof. Indeed in Lemma 31 let C = [0, 1], expert 0
correspond to p; = 1/4, expert 1 corresponds to ps =
3/4 and replace the loss functions by

ul(p) = { ;

We can further generalize this while dispersing the
discontinuities somewhat. Instead of having all the
discontinuties at p = 2, we can have discontinuities
dispersed say within an interval | and still have

Q(V/sT) regret. O

if p <
if p >

0 ifp<
1 ifp>

and vV (p) = {

[N NI
= N|=

3’3]

G Experiments

We supplement our results in Section 7 by looking at
different changing environments and comparing with
performance in the static environment setting. We
also look at differences between Generalized and Fixed
Share EFs.

G.1 Frequently changing environments

In Section 7 we presented a comparison of our algo-
rithms Fixed Share EF (Algorithm 2) and General-
ized Share EF (Algorithm 3) with the Exponential
Forecaster algorithm of [Balcan et al., 2018a| for online
clustering using well-known datasets. We evaluated
the 2-shifted regret for problems where the clustering
instance distribution changed exactly once and com-
pletely at T/2. Here we consider experiments with
environments that change more gradually but more
frequently.

We consider a sequence of clustering instances drawn
from the four datasets. At each time t < T < 50 we
sample a subset of the dataset of size 100. For each

Learning piecewise Lipschitz functions in changing environments

T, we take uniformly random points from all but one
classes. The omitted class is changed every T'/k rounds,
where k is the total number of classes for the dataset.
We use parameters oo = %, v = % in our algorithms.
We determine the hamming cost of (&, 2)-Lloyds++-
clustering for @ € C = [0,10] which is used as the
piecewise constant loss function.

We compute the average regret against the best offline
algorithm with £ shifts. In Figure 3 we plot the average
of 20 runs for each dataset. The average regret is higher
for all algorithms here since the k-shifted baseline is
stronger.

G.2 Generalized vs Fixed Share EFs

30-
25-
20+
15+

10~

recurrences

05 -

0.0 - -

recurrences
[
I

(b) Omniglot _small 1
30k
25-
20-
15 -

10 -

recurrences

05 -

00 -

=18

(c) Omniglot (full)

Figure 4: Number of recurrences of various values of «
in the top decile across all rounds

We note that Generalized Share EF performs better
on most problem instances. This is because it is better

able to use recurring patterns in good values for the
parameter that occur non-contiguously, which depends
upon the dataset and the problem instance. We verify
this hypothesis by a simple experiment (Figure 4).

We compute the set of intervals containing the top
10% of the measure of o € [0,10] for each ¢ and sum
up occurrences of such intervals across all rounds. We
observe most recurrences in Omniglot_small_ 1 dataset,
which explains the large gap between Generalized vs
Fixed Share EFs.

G.3 Comparison with static environments

We compare the performance of Fixed Share EF with
Exponential Forecaster in static vs dynamic environ-
ments on the MNIST dataset. For the changing envi-
ronment we consider the setting of Section 7, where
we present clustering instances for even digits for ¢t = 1
through ¢t = T'/2 and odd digits thereafter. For the
static environment we continue to present clustering
instances from even labeled digits even after ¢t = T'/2.
We plot the 2-shifted regret in both cases for easier
comparison (Figure 5). Note that even though static
regret is the more meaningful metric in a static environ-
ment, this only changes the baseline and the relative
performance of algorithms is unaffected by this choice.

0.07 -
0.06 -

0.05 -

Average regret

0.04 -

003 -

o 2 31 40 s &
Time

(a) static environment
0o7 -

0.06 -

0.05 -

Average regret

004 -

003 -
SV VIR VR R VIR
Time

(b) dynamic environment

Figure 5: Average 2-shifted regret vs game duration
T for online clustering against static/dynamic distri-
butions for the MNIST dataset. Color scheme: Expo-
nential Forecaster, Fixed Share EF

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

007 - 00400 -
006 -
- - o |
£ £ 006 g 00375
[=3] on on
L nos - e & 00350 -
.é_;“ %“ 0.05 - %“
G 004 G 004 G ol
G 004- @ 004- £ po300 -
a a a
003 - 0.0275 -
003 -
i i i i i i i i i i |}0250 - i i ' i
20 0 40 50 60 20 30 40 50 60 20 El] 40 50 60
Time Time Time
(a) {0,2,4,6,8} (b) {0,1,2,3,4} (c) {2,3,5,6,9}
00375 - 0.055 -
0050 -
00350 -
= = i 0050 -
= 0.045 - S 00325 - e
g E?" 00300 E?" 0.045 -
&, 0.040 - g 2, 0040 -
g g 0.0275 - g
> 0035 - > ¥ > 0035~
E Z 00250 E
0.030 - 00225 00307
i i i " i i i i i 0025 - i . i i
20 El] 40 50 60 20 El] 40 50 60 0 0 40 50 60
Time Time Time
(d) {1,3,4,8,9) (e) {0,4,5,7,8} (f) Average

Figure 6: Average 2-shifted regret vs game duration T for online clustering against various dynamic instances for
the MNIST dataset. Color scheme: Exponential Forecaster, Fixed Share EF

Notice that Fixed Share EF is slightly better in the
static environment but significantly better in the dy-
namic environment. It’s also worthwhile to note that
while the performance of Exponential Forecaster de-
grades with changing environment, Fixed Share EF
actually improves in the dynamic environment since
the exploratory updates are more useful.

G.4 Different environments from the same
dataset

We look at 2-shifted regret of MNIST clustering in-
stances with the same setting as in Section 7 but with
different partitions of clustering classes (i.e. classes
used before and after 7'/2). The results are summa-
rized in Figure 6. For each instance we note the set of
5 digits used for drawing uniformly random clustering
instances from MNIST till T'/2, the complement set is
used for the remaining rounds. We observe that perfor-
mance gap between Fixed Share EF and Exponential
Forecaster depends not only on the dataset, but also
on the clustering instance from the dataset. Across sev-
eral partitions, Fixed Share EF performs significantly
better on average (Figure 6 (f)).

	sharma20a
	Introduction
	Problem setup
	Algorithms with low shifting regret
	Analysis of algorithms
	Regret bounds
	Proof sketch and insights

	Efficient implementation
	Lower bounds
	Experiments
	Discussion and open problems
	Acknowledgements
	Discretization based algorithm
	Counterexamples
	Analysis of algorithms
	Adaptive Regret
	Efficient Sampling
	Lower bounds
	Experiments
	Frequently changing environments
	Generalized vs Fixed Share EFs
	Comparison with static environments
	Different environments from the same dataset

	sharma20a-supp
	Introduction
	Problem setup
	Algorithms with low shifting regret
	Analysis of algorithms
	Regret bounds
	Proof sketch and insights

	Efficient implementation
	Lower bounds
	Experiments
	Discussion and open problems
	Acknowledgements
	Discretization based algorithm
	Counterexamples
	Analysis of algorithms
	Adaptive Regret
	Efficient Sampling
	Lower bounds
	Experiments
	Frequently changing environments
	Generalized vs Fixed Share EFs
	Comparison with static environments
	Different environments from the same dataset

