Parallel Frameworks for Robust Optimization of
Medium Frequency Transformers

Kristen Booth, Member, IEEE, Harish Subramanyan, Jun Liu, and Srdjan Lukic, Member, IEEE

Abstract—Current optimization methods for Medium Fre-
quency Transformers (MFTs) within power electronic converters
yield unrealistic results in the multiphysics framework. Compar-
ing the optimal design to an experimental setup for a 3.5kW
MFT, the core loss is underestimated by 28 %, which results in
the experimental steady-state temperatures being 10 °C greater
than the analytically optimized model. To counteract these
disadvantages, an optimization procedure, using the Aggressive
Space Mapping (ASM) technique, is experimentally verified and
compared to the previous State of the Art (SOA) method. It is
shown that the ASM design produces more realistic and feasible
experimental outcomes than the SOA design. The core losses
are accurately predicted to within 10%, which in turn, vastly
improves the thermal modeling accuracy. The ASM method accu-
rately predicts the core hot spot temperature and the average core
temperature. This work also introduces a robust optimization
method to the MFT design process to handle variations from
both converter-level attributes and manufacturing tolerances to
create a potential design region which contains 97.725% of
possible design outcomes. This method replaces the nominal
design optimization that is used to produce the optimized MFTs
in the SOA and ASM methods.

I. INTRODUCTION

EDIUM Frequency Transformers (MFTs) are vital

components of galvanically isolated converters. These
transformers are used in a variety of applications, such as Solid
State Transformers [1]-[6], Power Electronics Transformers
(PETs) [7], [8], and EV fast chargers [9]-[11]. There are two
main design considerations, leakage inductance and power
density, that constrain MFT implementation when utilized
within these converter systems. A tuned leakage inductance
enables soft switching for many converters using resonant
tanks and aids in power transfer for Dual Active Bridge
(DAB) converters. Therefore, the motivation for designing
a transformer from the leakage inductance requirements is
readily apparent [12], [13]. Optimization processes enable
increased converter efficiencies and power densities by tuning
the leakage inductance for soft switching and sweeping a
switching frequency range for best performance [14].

While the leakage inductance has been the forefront of
research in MFT optimization, power density is generally
defined as an objective in the optimization process. Notably,
the key constraint of power density, thermal dissipation, is
modeled yet the implications of a poor thermal design are
often overlooked. For example, the experimental steady-state
temperatures found in [15] were approximately 20 °C warmer
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than suggested by the analytical model and FEA. This temper-
ature difference was located at a cooler site of the transformer
core, and the effects of this are only exacerbated in hot spot
locations, such as the center core limb.

There are several search techniques for multiobjective op-
timization. The most popular in transformer optimization
are brute force methods and genetic algorithms [13], [16]-
[21]. When converting these simulated, optimized designs to
experimental hardware, there is a large mismatch between
the expected outcomes and the experimental results. This
negatively impacts the potential of MFT optimization since
there is currently no advantage to using optimization on MFTs.
By incorporating model-to-hardware mapping and calculating
the parametric uncertainties, MFT optimization procedures
have the potential to achieve greater usage.

Overall, it can be seen that discrepancies between MFT
models and experimentation exist. The literature has attempted
to reduce this error by implementing Space Mapping algo-
rithms for previous MFT designs using analytical and FEA
models [22]-[24]. However, these works proposed minutely
modifying core dimensions to improve the design [22], [23].
This is not feasible with commercially available core shapes
which forces these discussions to remain theoretical. In this
proposed method, an analytical model and experimental hard-
ware are conjointly implemented to create feasible, realistic
design changes. The proof for the usefulness of this technique
is provided in [24]. Space mapping created a dominating
Pareto front when compared to an efficient global optimization
routine. Space mapping techniques have also been used for
designing electrical machines as a method to reduce compu-
tational effort while increasing accuracy [25]-[27].

It is important to note the assets and requirements of
space mapping techniques. The advantages lie in the ease of
implementation and reduction of computational effort. When
space mapping was compared to a 3-D FEA optimization
routine in [27], the space mapping technique converged within
15% of the time needed for the FEA. However, a space
mapping approach assumes the existence of two models: a
fast, less accurate model and a more intensive, high accuracy
model. The faster model must also maintain a similar trend
to the accurate model for efficient implementation of space
mapping.

The purpose of this work is twofold: (i) to reduce the error
between the analytical and experimental results and (ii) to
understand the parametric uncertainties in MFT optimization.
The discrepancies between the modeled and physical realms
is caused by model assumptions. Using a technique called
Aggressive Space Mapping (ASM), the MFT optimization is
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Fig. 1. Single-active bridge DC-DC converter used in MFT testing.

modified to reduce the error between the core losses in the
analytical and experimental realms. The proposed optimization
method uses a formulated mathematical procedure to shift
the analytical design and the physical implementation results
into agreement. This algorithm is advantageous for small-scale
production of MFTs for various applications, but it does not
aid design for large-scale manufacturing nor encourage a deep
understanding of design variation impacts.

In mass production, infeasible hardware can be created
from a feasible, nominally optimized design. This optimized
design is susceptible to variation, and infeasibility, due to the
active optimization constraints. Infeasible hardware includes
any prototype that cannot function at its desired performance
due to any specification, such as temperature constraints,
being surpassed. Even though space mapping creates accurate
mapping from an optimized design point to experimental
results, parametric uncertainties cause variation which can
impede realization of the design point. Therefore, an optimized
design is not adequate; the ideal situation is an optimized
design that is robust and can tolerate variation. Tolerances
are the means to define deviation due to uncertainty in the
manufacturing process or system-level attributes.

Robust optimization was originally developed in 1993 to
account for these deviations in design [28]. This method
was extended to worst-case tolerances which contains all
the potential designs in the feasible region [29]. Since the
likelihood of all worst-case variances being combined into
one design is low, this method would overdesign the MFT
and excessively increase its size and reduce its efficiency.
A Taguchi-based method that minimizes variation is dis-
cussed in [30]; however, this method is inaccurate for highly
nonlinear optimization problems, such as MFT optimization.
Variations of robust optimization are discussed in detail, and
the applications of these methods are given in [31]. For this
work, a straight-forward statistical analysis method enables
optimization while acknowledging variation in design based
on parameter uncertainty [32]. These variations can occur in
product manufacturing or changing operating conditions.

This paper is divided into six sections. The design con-
siderations are given in Section II. Section III provides the
analytical background into the transformer optimization pro-
cess. These equations are then used in Section IV to develop
the multiobjective optimization algorithms with power density
and efficiency as the objectives. Experimental results of the
the two nominal optimization methods are also compared.
Moving into design regions of robust optimization, Section

TABLE I
TRANSFORMER DESIGN REQUIREMENTS

Specification Rating or Range

Primary Voltage, Vr; 450V
Turns Ratio, Npaio 1:1

Design Specifications

Rated Power, P, 3.5kW

Number of Cores, Ncore 1-10
Design Variables Primary Turns, Npr; 2-24

Switching Frequency, fsq 25-200 kHz

V defines the methodology and compares these results to
the experimental results of the nominal optimization method.
Finally, conclusions are discussed in Section VI.

II. DESIGN CONSIDERATIONS

To implement this transformer optimization algorithm, a
simple single-active bridge DC-DC converter, shown in Fig.
1, is used to experimentally verify the transformer losses and
steady-state temperatures. The transformer requirements, given
in Table I, detail the design specifications and variable ranges
for the optimization procedure. As this design is a scaled-
down model for grid applications, the rated power is designed
such that the experiment can run until the temperature of the
MEFT reaches steady state. While currently uncommon for SiC
MOSFETs to be switched at these higher frequencies, they are
capable, and future designs for power electronics may require
it. Therefore, the goal of this work is to specifically focus on
the most optimal case for MFTs. Future work will implement
the trade-offs between the semiconductors and the MFTs. For
the design variables, all ranges have been chosen such that
there is a large range of potential, feasible designs within the
performance space of the optimization procedure. The primary
turns are limited by the window area of the core, and the
switching frequency spans the frequency range given in the
datasheet of the magnetic material. For this design, the leakage
inductance consideration is beyond the scope of this work;
however, the changes in leakage inductance must be monitored
in ASM to ensure a feasible application to a converter with
specific requirements.

To avoid designs that cannot be built due to expensive
specialty components, the design variables are discrete and can
be adjusted using only commercially available components.
For this case study, the E-cores are chosen to be TDK N87
ferrite E80/38/20, and the windings are 40 AWG stranded Litz
wire that can handle the required current. The frequency can be
modified by the microcontroller, TI TMS320F28069M, with
high accuracy.

All optimization techniques within this work are multiobjec-
tive. The two objectives are power density, p, and efficiency,
n.

III. METHODOLOGY

This section describes the transformer characteristic equa-
tions used in the optimization routine. These analytical equa-
tions are the basis of the fast, less accurate model for use
in the Space Mapping approach. While these models need
to have a similar trend, and hence moderate accuracy, as the
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Fig. 2. Physical parameters for leakage inductance calculation.

finer and more computationally taxing model, there is room
for assumptions that can aid in the computational speed of
the algorithm. The fine model results, in coordination with
the mapping procedure, help to overcome the inaccuracies
that may develop due to assumptions in the faster model.
Fundamental models necessary to the optimized design for
MFTs are the leakage inductance, winding and core losses, and

L steady-state thermal analyses. These analytical models have

been previously developed and verified to within a reasonable
degree of accuracy by the respective authors as cited. The
purpose of this section is to provide the analytical models
used for this research. The overview of each analytical model,
as previously described in [33], is provided.

A. Leakage Inductance
The leakage inductance, L, is calculated using the methods

described in [34]. For Litz wire, the porosity factor can be

calculated as
o Ns’udeq

hC()T’C
where deq = ﬁdr and h.ore is the height of the core.
Addressing the nonuniform structure of Litz winding, the

number of strands within the Litz wire oriented horizontally,
Ngp, or vertically, Ny, can be calculated as

[N,
Ny, = . and 2
Ngy = V KNy 3

where the assumed proportional total winding cross-sectional
profile is given as

n 6]

how
deq

The Rogowski factor adjusts the equivalent length of the
magnetic flux and is found by

K, = “4)

1— e*ﬂhw/(dm,pm‘ +dg+dw,sec)

Kr=1- 5

R th/(dw,pri + dd + dw,sec) ( )
which creates the improved height,
hy,

heg = K;, (6)

as shown in Fig. 2.

Therefore, the modified Dowell’s method to include these
modifications is

MLT
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Npy; is the number of primary winding turns, M LT' is the
mean length per turn, A = dgq, dq is the gap between
the primary and secondary windings, d,,, is the equivalent
winding width, d,;, is the width of the dielectric between
layers, o is the conductivity of the conductor, and fy,, is the

switching frequency.

(10)

B. Winding Losses

Winding losses are comprised of two facets: skin effect and
proximity losses. These two loss components can be assumed
to be orthogonal for a model containing a symmetric conductor
about its axes in its cross-sectional area [17]. Therefore,

Pcu:PAC+Pd (]2)

where P,, is the total winding loss, P is the winding losses
due to skin effect as calculated by AC resistance, R ¢, and
Py, is defined as proximity losses.

Using the manufacturer’s method for winding resistance due
to the skin effect as described in [35], the winding losses for
Litz wire can be determined using

Rs(1.015)VE (1.025)Ne

Rpc = Ns 13)

and
NS X D[

Do

Rpc is DC resistance [§2/1000 ft], Rg is the maximum
DC resistance, Np is the bunching operations number, N¢
is the cabling operations number, and Ng is the number of
individual strands. Ra¢ is AC resistance [©2/1000 ft], Dy is
the individual strand diameter [in], and Do is entire cable
diameter [in]. H and K are given by the manufacturer, and
G (Df\/m)“.

Rac = [H+K( >2G]RDC. (14)

10.44
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Fig. 3. (a) Two-dimensional MFT structure with nodal temperature locations. (b) Thermal resistive network for MFT design [33].

Then, the proximity losses can be calculated by a simplified D. Power Density

Dowell’s method [36] using

MLT;H?
Py =hy Z doio [(1+27)G1(A:) -

4v;G2(A)] (15)

where N is the number of winding layers, H; is the magnetic

field at the ith layer, v is the ratio of magnetic fields on either

side of layer 1,

sinh(2A) + sin(2A)

cosh(2A) — cos(2A)’

sinh(A) cos(A) + cosh(A) sin(A)
cosh(2A) — cos(2A)

and (16)

Gi(A) = A

G2(A) =A a7

as defined in [37].

C. Core Losses

The improved General Steinmetz Equation (iGSE) is most
commonly used to calculated core losses for MFT optimization
algorithms [38]. iGSE is defined as

1 T
P.=
rl

P =

dB(t) ’a(AB)ﬁ*adt (18)

h
where K

(2m)a=t 27| cos f|a28-dh’

K, a, and B are given by the manufacturer [39]. iGSE is
the most widely used core loss empirical method for MFTs
as it reduces to a simple equation for square wave excitation
found in MF converters. These coefficients are found using
a loss map, generated from manufacturer information, which
is dependent on the switching frequency, flux density, and
temperature. Since K, «, and (3 are dependent on the core
temperature, an iterative process between the core losses and
thermal steady-state calculations occurs until equilibrium is
reached.

19)

The volume of the MFT is calculated in two parts: (i) the
volume of the cores, including the free space in the window,
and (ii) the winding outside the window area of the core. The
volume of the cores is defined as

‘/core = Ncore X Lcore X Wcore X Hcore (20)

where N is the number of core sets, L¢or 1S the length of
the core, Wy is the width of the core on the window side,
and H_q is the height of a full core set.

The winding volume, outside the core volume, for each
winding is calculated as

Vw = (MLT - 2AfcoreLcore) Ac~ (21)
Finally, the power density is given as
P,
p= (22)

‘/core + Vw, pri + Vw,sec

where P, is the rated power of the MFT.

E. Thermal modeling

A 2-D analytical thermal model is employed to estimate the
temperatures of the core and windings, a simplified version of
which can be found in [15]. It was first validated using steady-
state thermal FEA in ANSYS in order to confirm the hot spot
locations and verified using experimental results on a selected
transformer design that was built prior to the optimized MFT
hardware in this study.

In order to calculate the average temperature of the core,
it is divided into four zones: center limb, upper yoke, lower
yoke, and outer limb, as shown in Fig. 3(a). The core losses are
assumed to be uniformly distributed across these four zones



as internal heat generation sources which are directly propor-
tional to the volume of the corresponding zone. Similarly, the
primary and secondary winding losses are modeled as heat
sources.

The heat is transferred across the different core zones
and the windings by conduction. Convection and radiation
pathways are responsible for loss of heat from the sides and
top of the core [15], [40]. The bottom surface is assumed to
be perfectly insulated to emulate extreme conditions. The heat
is exchanged between the windings and the core by conduction
across the contact surface. The model also incorporates con-
vection in the core window into the temperature calculations. It
was observed that heat transfer within the core window played
a critical role in determining the temperature of the windings
accurately.

The well-known electrical circuit analogy is used to couple
the heat transfer across the core and windings where different
heat transfer mechanisms are characterized by thermal resis-
tances. A detailed resistance network is shown in Fig. 3(b).
The admittance matrix, Y, was derived using the six nodal
points which were selected to best reflect the temperature pro-
file across the transformer. The temperatures at the respective
nodes can be obtained using

Q = YAT (23)

where Q is the heat loss and AT is the temperature matrix.
Nodes 1, the center core limb, and 5, the primary winding,
are expected to be the hot spots for the core and winding
respectively due to the nature of their locations in the resis-
tance network and the power loss generated by the individual
components of the MFT.

The steady-state thermal module in ANSYS Workbench was
used to verify the analytical model temperatures, and thereby,
the core and winding losses. A 3-D model of the transformer
was constructed, identical to the experimental setup with the
assumption that the windings can be modeled as a rectan-
gular volume that encompasses the center limb. The losses
were modeled as internal heat generation sources across the
core and windings. Radiation transfer was defined across all
winding surfaces and view factors were incorporated into the
calculations to avoid overestimation of winding temperatures.
Furthermore, temperature dependent heat transfer coefficients
were specified for all convection calculations. To improve
the accuracy of the model and replicate the test conditions
as closely as possible, the heat transfer in the air interface
between the windings and core were represented by defining
a manual contact in ANSYS. The thermal resistance of air
was input into the formulation to emulate the thermal con-
ductance between the contact surfaces [41], [42]. To ensure
the accuracy of the FEA model, a random nonoptimal MFT
design was experimentally tested, and real-time effects were
incorporated into the FEA model.

F. Experimental Measurements

To compare the optimization techniques, a 3.5kW MFT
is optimized and verified via experimentation. Three separate
tests enable full transformer characterization. The first test

Full Bridge

Fig. 4. Experimental setup for full load test.

Fig. 5. Infrared imaging used during MFT testing.

involves allowing the fully-loaded transformer setup, shown
in Fig. 4, to run until steady-state temperature is reached.
The DSP sends the gating signals to the full bridge which
is then connected to the transformer. The increased MFT
winding length enables thermal isolation from the rest of the
converter as assumed by the thermal model and allows the
MFT under test to be placed in the thermal chamber for
core loss measurements. The secondary side is connected to
a diode bridge which is loaded to achieve nominal power.
Since the scope of this research does not include full converter
efficiency, losses outside the MFT are not considered. The
temperatures were measured using thermocouples mounted on
the MFT at the strategic nodes from Fig. 3. The data was then
collected and recorded via a thermal DAQ. The steady-state
condition metric was a temperature change of less than 1°C
every 15 min for the selected nodes. An infrared camera was
also used to monitor the temperature profile, as shown in Fig.
5, but it is important to note that the camera cannot provide
thermal data internal to the transformer, such as at the center
limb or primary winding.

Due to the temperature-loss relationship, the core losses are
measured at the average core temperature produced in the first
measurement. This is accomplished by heating the device in a
thermal chamber and reproducing the voltage waveform, hence



the flux density, to recreate the core losses at the specified
temperature as shown in Fig. 6. Two key assumptions of this
test include that the temperature of the transformer must be
uniform. This test can only be performed after the MFT has
been heated for a long period of time. Second, it is important
to maintain a temperature as close to the average temperature
found in the first test due to the relationship between core
loss and temperature. A slight shift in temperature can create
misalignment in the core loss measurement.

Finally, the winding losses are measured by shorting the
secondary winding of the transformer in Fig. 6. This test does
not need to correlate with heating the device. These last two
tests allow for separation of the MFT losses for better analysis.
All measurements are taken with a Tektronix MDO3034 with
a P2500A voltage probe and a TCP312A current probe. The
data are then imported to MATLAB for analysis.

IV. NOMINAL OPTIMIZATION OF TRANSFORMER DESIGN

Using the equations laid out in Section III and the design
specifications from Section II, an optimization routine can be
implemented based on the generic optimization stated as

Min f(x)
st gi(x) < b;
where x is an n dimensional vector of design variables, g; is the
i™ constraint with its respective boundary, b;. This optimiza-
tion problem statement is considered a nominal optimization
algorithm. This means that the design is undisturbed by any
variation and assumes that nominal inputs and outputs will
occur. For this specific case study, (24) is written as
Max f (x) = n(x) + p(x)
st. 50mT < B,, <200mT and
T =Toms + AT < Toiax

24
t=1,....m @4)

(25)

where 7) is the MFT efficiency and p is the power density.

In this section, two nominal optimization methods are
discussed, experimentally tested, and compared. By starting
with the SOA method as a baseline, the differences between
the optimized design and hardware can be inspected for this
3.5kW setup. Then, the ASM technique, which relies on the
both the analytical model and the results from the SOA, can
map the analytical model to the experimental setup to redesign
the experimental setup until the experimental results are within
a specified tolerance of the analytical estimations.

Thermal Chamber
Y
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Fig. 6. Core loss measurement method.
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A. State of the Art Method

There are several search techniques for multiobjective op-
timization. The most popular in transformer optimization are
brute force methods [13], [16], [43]. Brute force is known
to be computationally expensive based on the mesh scale.
This can be improved by refining the mesh closer to desirable
designs [43]. Another method in the literature is steepest
decent [44]. The disadvantage of steepest descent for MFT
optimization is the potential for entrapment in local minima.
A local minimum could occur for various core materials,
winding structures, and switching frequencies. To overcome
this challenge, the initial design estimate must be carefully
considered.

This work uses the Natural Selection Genetic Algorithm
(NSGA-II) to further reduce computational effort via the

MATLAB Optimization Toolbox™ [45]. The optimization
objectives are efficiency and power density. The algorithm is
detailed in Fig. 7. This method follows the NSGA-II methodol-
ogy, but the evaluation of the population is shown in detail for
this specific application. Due to the highly dependent nature of
the total loss and thermal calculations, a second optimization
routine is employed within the NSGA-II to minimize the error
within the thermal model from the previous calculation for
each individual. After all individuals have been evaluated, the
population fitness is determined, and NSGA-II proceeds with
updating the population for the next generation.

Based on the requirements in Table I, the objective space
is shown in Fig. 8. Due to the discrete design variables, the
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multiobjective optimization has displayed seemingly vertical
lines for each change in core size. While it appears as
though the two objectives require no trade-offs, there are
small variations in the total volume by changing the number
of turns, and the Pareto front extends to a 2-core design
with an efficiency of 92.55% and a power density of 13.41
kW/L outside the bounds of Fig. 8. These trade-offs are more
apparent in previous publications, such as [13], that do not
use discrete components, yet these show outcomes that require
specialty components with increased cost. The chosen nominal
design point for the experimental build has three shell-type
cores, 10 turns for each winding, and a switching frequency of
187.5 kHz as the design variables. The projected outcomes for
this design are a power density of 9.1 kW /L and an efficiency
of 99.62%.

B. State of the Art Experimental Results

To measure the inconsistency between the analytical model
and its hardware, the initial experimental design is identical to
the chosen nominal design in Section IV-A. The transformer
was built using three cores, 10 turns for each winding, and a
switching frequency of 187.5 kHz.

The full load test results are found in Fig. 9. The average
temperature of the core is 82 °C. The core losses are 7.4 W,
and the winding losses are 3.8 W and 4.3 W, respectively.
The measured efficiency is 99.56%, and the power density is
9.03kW /L. This information is summarized for comparison
in Section IV-E.

The data from this test shows a 28% difference between
the simulated and experimental core losses while the winding
losses are accurately depicted by the model. This, in turn,
creates a steady-state average core temperature difference of
10°C. The core hot spot at Node 1 is underestimated by
12.5°C while the winding temperatures are overestimated. It
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Fig. 9. SOA full load experimental results.

is concluded that the differences between the analytical model
and these experimental results are not compatible.

The FEA thermal model was simulated with the experimen-
tal losses, and the temperatures obtained from the experiment
are in good agreement, as shown in Fig. 10. The calculated
values closely resemble those measured by the thermocouples.
The core hot spot is accurately predicted as 97.1°C. The
average temperature of the core from FEA is 88.1°C. This
overestimation can be attributed to the assumption within
ANSYS that the bottom surface is perfectly insulated. In real-
time conditions, the core was observed to dissipate heat from
the bottom surface to the test workbench, which in turn acted

Nodal temperatures (°C)

(1) Inner (2) Top (3) Outer (4) Bottom (5) Primary | (6) Secondary

97.1 87.7 77.4 90.5 113.8 111.1

. 113.8 Max
1071
91.26
89.03

86.8
. 84.56

8233

80.09
I 77.86
75.62 Min

_

0.000 0.035 0.070 (m)

0018 0.053

Fig. 10. Thermal FEA model results of SOA design and predicted nodal
temperatures.
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as a heat spreader causing the bottom surface to be cooled. The
nodal temperatures at all other points are accurately predicted
by the| FEA model within a 5% margin of error.

C. Aggressive Space Mapping Method

With the discrepancies between the optimization algorithm
and the experimental results due to modeling error, the next
logical step is to reduce the error. Therefore, ASM is used
to counteract these disadvantages. The flow chart of ASM is
shown| in Fig. 11. Since ASM requires a unique solution to
converge, the core losses for the NSGA-II optimal design and
experimental results are employed as the initial step for ASM.
Using |the total losses or one of the final objectives would
cause the algorithm to fail due to this requirement.

Utilizing the design point chosen in the previous subsec-
tion, ASM can be realized using the analytical results and
experimental data from the previous two subsections. In this
work, the coarse model is the NSGA-II approach. This method
enables a fast design space exploration to report potential
designs from the Pareto front. The fine model can be either
a morg accurate model, such as 3-D FEA, or the physical
experiment itself. Since all models have some limitation, the
experimental hardware is chosen for the fine model. This
eliminates modeling error in the reported outcomes in the final
experimental design.

In ASM, a coarse model is calibrated using a fine model.
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Fig. 12. ASM full load experimental results.
such that
R.(P(xf)) ~ Ry (xy) (28)

in a region of interest where R. and Ry € IR™*" are the
corresponding response vectors. This means that the coarse
model can be mapped to the fine model through the parameter
extraction, P, in some small region near x*. In this case, X,
is the chosen NSGA-II nominal optimal point from Section
IV-A in Fig. 8.

By reducing the error of this mapping, the optimal result
in the fine model is reached. As Rf(x?'l) goes to R.(x.),
then x/*1 = P(xJ,}H) approaches x* as the iteration number
reaches a final converging iteration, M,

Xt —xi[| <e asj— M (29)

where € is a set tolerance. As the iterations occur to improve
the mapping, this creates a set of n nonlinear equations,

f(x;) =P(xy) —x; =€ (30)

where f is called the residual vector. This is used to create the

ASM starts with the optimization argument

x* £ arg min U (R(x)), (26)
where R € IR™*! is a vector of m responses of the model,
x is the vector of n design parameters, and U is the objective
function [46], [47]. x* is the unique optimal solution to be
determined.

The fundamental component of ASM is that the coarse
model (analytical model) and fine model (experimental data),
X. and Xy € IR™*! respectively, can be mapped, P, as

x. = P(xy) 27

change for the fine model updates.
Let xgcj ) be the jth iteration to the solution of (30) and £7)

stand for f(xgcj )). The next iteration can be found by a quasi-
Newton method

KD _ x4y a1
where h is the solution to
BWh() — ,f(j)7 (32)

and B is an approximation to the Jacobian matrix. For the
first iteration, B(") is the identity matrix. For every iteration



Thermocouples

Fig. 13. Physical transformer for the ASM design with thermocouples.

following, B is updated by the Broyden formula which can be
reduced to

) ] U+ DRGT
G+1) _pG) . -~
B =B o (33)
The algorithm is complete when
[[fUHD]] <. (34)

D. Aggressive Space Mapped Experimental Results

This space mapping method uses the SOA experimental
results from Section IV-B to shift the final design build into the
core loss and temperature region expected from the simulated
results. The parameter extraction to solve for the mapping, P,
can be an abstraction. To clarify, the coarse model is swept to
find a design point that also has the same core loss of 7.4 W
as the SOA experimental result. Due to the nonlinearity of
the system, the sweep is limited to designs that are limited
to within 1% of the core loss while being as near to the
original design variables as possible. This output is then used
in (30)-(32) to choose the new design point. The outcome of
this calculation is a transformer with 11 turns, 3 cores, and
a switching frequency of 180.4 kHz. The 3 experimental tests
were replicated, and the full load waveforms are shown in Fig.
12.
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Fig. 14. Thermal FEA model results of ASM design and predicted nodal
temperatures.

This experiment shows much better correlation with the
analytical model. The core losses, now at 5.8 W, are only
10% error from the simulated core losses in one iteration.
This single-step process has been found to occur with other
applications of space mapping techniques [48]. The steady-
state temperatures, fundamental to a functional transformer,
follow the analytical thermal model temperatures. Vitally,
the hot spot temperature at Node 1, the center core limb,
matches the simulated value. This ensures that the steady-
state temperature for the transformer is not underestimated
and thereby avoids failure in long-term testing and reliability.
The other nodal temperatures are reasonably estimated using
the analytical model. Refer to Table II for these results and
Fig. 13 for the physical build of the ASM design used for
testing. The final efficiency is 99.53%, and the power density
is 9kW/L.

In a similar manner to the SOA design, the estimations
from FEA correlate to the loss and temperature measurements
as shown in Fig. 14. The FEA model predicted the core hot
spot as 84.7 °C while the average temperature of the core was
74.5°C.

E. Comparison of Nominal Optimization Results

It is straightforward in Table II that the SOA experimental
results are far from expected by the analytical model in terms
of losses and steady-state temperatures. This is due to the
limiting assumptions created by modeling physical behaviors
[49]. However, it is possible to improve the thermal outcomes
using this ASM technique to find a new design point which
is accurately characterized through the analytical model via
the space mapping shift at the core loss value. In compar-
ing these two optimization methods, the trade-offs of each
method should be discussed. By using the SOA method, the
electrical requirements are the only ones which are satisfied.
The mechanical requirements are not met since the estimated
temperatures are not paralleled in the experimental results.
However, the ASM method enables the integration of both
electrical and mechanical designs to create a trade-off that
accurately depicts both domains.

It is important to discuss the changes in the transformer
design to achieve the final product. Of the three design
variables, the number of cores, and thus core volume, remains
unchanged. There is a small adjustment applied by increasing
the number of turns by one which increases the total winding
losses. It is also pertinent to discuss the change in leakage
inductance due to the change in the number of turns. The
SOA design hosted a 3.79 uH leakage inductance while the
ASM build maintained 3.84 pH. The minute 1% difference in
these values implies that using ASM does not affect the leak-
age inductance considerations while reducing modeling error.
Thus, a leakage inductance requirement would be unaffected.

While the total losses have increased, shifting losses from
the core to the windings reduces the steady-state temperatures
of the transformer, most notably in the hot spot of Node
1 and the rest of the core. Though it may seem that the
SOA method offers an optimum design point with higher
efficiency, it is based on the incorrect assumption that tem-
perature estimations are accurate, which has been proven to



TABLE II
COMPARISON OF OPTIMIZATION MODEL AND EXPERIMENTAL RESULTS

Analytical Model

SOA Hardware ASM Hardware

Number of Cores 3 3 3

Design Variables Turns 10 10 11
Switching Frequency (kHz) 187.5 187.5 180.4

Core Losses 5.26 74 5.8

e Primary Losses 3.86 3.8 4.8
Losses (W) Secondary Losses 4.17 4.3 5.7
Total Losses 13.29 15.5 16.3
(1) Center limb 85 97.5 84.4

(2) Upper yoke 64.5 84.4 72.5
° (3) Outer limb 62 69.8 57.8
Nodal Temperatures (°C) oy e voke 76.2 76.5 66.6
(5) Primary 121.7 115 115

(6) Secondary 118.8 108 109

TABLE I

be false. If unchecked, the underestimation of the hotspot
temperature can be detrimental to the MFT and, ultimately,
cause failure of the component. Therefore, ASM is beneficial
to incorporate without adding impactful negative consequences
for the final transformer design. While this process is more
intensive than the SOA in terms of design and implementation,
it is a formulated, iterative process that shifts the design
using previously collected data. This removes the guesswork
of iterative design changes that do not rely on such a process.

The winding temperatures are overestimated in the analyti-
cal model for two reasons. First, the windings are assumed
to only emit heat in the horizontal direction of Fig. 3(a).
Realistically, heat is transferred also in the vertical direction.
Secondly, the contact resistances between the windings and
the central core limb have been simplified to an air gap
which leads to a higher thermal resistance. These reasonable
assumptions enable a fast coarse model which can be adjusted
for better accuracy with ASM. The assumption of a completely
insulated bottom causes Node 4 to be inaccurate. However,
this work also shows that inaccuracies made by assumptions
in the coarse model can be overcome by the ASM technique
in a single iteration of the ASM method.

F. Thermal Influence on Practical Designs

The experiments were designed based on the assumption of
thermal isolation for the MFT. However, this is not an accept-
able assumption for practical applications. Therefore, an exten-
sion of the SOA experiment occurred to include MFT prox-
imity to other components. In this experiment, an electrical
insulation board of 0.125" thickness was placed 40 mm away
from the upper yoke and 35 mm away from the outer limb of
the core. These nodes were chosen based on the likelihood of
component placement next to the MFT and to trap the rising
heat from escaping to cause a worst-case scenario. Table III
shows the minute changes over the course of 30 min in the core
nodal temperatures with this change. The first row at 180 min
shows the initial steady-state temperatures before the addi-
tion of the board. These results show that lower loss, nearby
components in converter design may not affect the MFT op-
timization procedure. More research is needed to understand
how and at what temperature heat generating components can

EXPERIMENT ON THERMAL CONSIDERATIONS OF PRACTICAL DESIGN

Time (1) Center | (2) Upper | (3) Outer | (4) Lower
(min) limb (°C) yoke (°C) limb (°C) yoke (°C)
180 97.5 84.4 69.8 76.5

195 97.7 86.3 69.5 76.8

210 97.6 86.6 70.6 76.8

affect an MFT, beyond higher enclosure ambient temperature.

V. ROBUST OPTIMIZATION

The nominal optimization routines previously described are
best for single-build setups that occur in research facilities.
ASM enables high efficiency and power density while incorpo-
rating accurate temperature estimations. However, close prox-
imity to active constraints leads to the possibility of infeasible
experimental results. This section aims to incorporate a well-
known optimization technique to avoid infeasible designs by
moving the optimal design away from active constraints that
may be violated due to tolerances in the design.

Unlike Section IV, robust optimization does not rely solely
on a nominally optimized algorithm. Therefore, the variations
in the optimal design can be shown and integrated into the
optimization routine for mass production with low numbers
of defective products. This differs from ASM optimization as
ASM is better suited for small-scale production.

A. Robust Optimization Methodology

Differences between the simulated and physical results are
considered to be expected. However, this research seeks to
examine the variations to a further degree than has been
done before with MFTs. The technique of robust optimization
enables this analysis. First, the robust optimization algorithm
is defined. Then, the variances that create the differences in
the analytical model and experimental results are calculated.
This step enables a deeper understanding of overall MFT
variation, and the outcomes are probed thoroughly in Section
V-B. Finally, this MFT design is robustly optimized. Statistical
tolerances were used in this optimization technique since a



collection of tolerances to create the worst-case design is
unlikely.

There is a simple process to follow to create a robust design
with statistical tolerances:

1) Solve the nominal optimization process as previously
completed in Section IV-A,

2) Calculate the transmitted variation,

3) Adjust the constraints by the amount of transmitted
variation, and

4) Re-optimize to find the robust optimization.

The assumptions to this method are:

The transmitted variance is constant in the design space,
The robust optimum is near the nominal optimum,

The derivatives are constant,

e Constraints have a normal distribution, and

o Constraints are independent.

Following the methodology in [32], the generic optimization
problem, updated from Section 1V, is

Min f(x,p)

35
St gi(xp) < b 53

i=1,...,m

where x is an n dimensional vector of design variables, and
p is an / dimensional vector of constant parameters. In the
case of the MFT, x is the array of the design variables, the
number of windings and cores and the switching frequency.
The variable p includes any parameters that are not design
variables but have tolerances. For the nominal values of x, p,
and b, deviations, Ax, Ap, and Ab, can occur. To mitigate
the effects due to these fluctuations, the size of the feasible
region is appropriately reduced. In this instance, the nominal
optimization method (without any tolerances) was defined in
Section IV-A, and this section is the means to extend the
optimization algorithm to account for variations that may
occur in the MFT.

To avoid the overly-conservative worst-case analysis, devia-
tions are considered as independent random variables, and the
likelihood of all worst-cases happening simultaneously is rare.
Therefore, statistical tolerances are used to handle this low
probability of occurrence. The statistical variance is estimated
by a first order Taylor series to be

7= Y () + 30 ()
j=1 J=1

The mean is the nominal value of the parameter being varied,
and the standard deviation, o, is the square root of the variance.
The total constraint variance is

(36)

2 2 2
% _Ubi+09i'

(37

g

The constraints can be modified to handle the transmitted
variance using

gi < by — ko (38)

where £ is the number of standard deviations selected to shift
the constraint. The level of feasibility is given in Table IV
for different values of k. Based on the percentage of feasible
designs, k is chosen to be 2 for this robust optimization. To

TABLE IV
RELATION OF k TO DESIGN FEASIBILITY

k Value  Percentage of Designs within ko
1 84.13%
2 97.725%
3 99.865%
4 99.9968%

convey the magnitude of variation due to individual tolerances,

o2 is defined as
9ip,

o2 = 09 o2
Jip; 517]‘ p;°

(39)

B. Sensitivity Analysis

In monitoring the differences between the analytical model
and experimentation, it is important to recognize the impacts
of variations that can occur in the MFT hardware. While
[50], [51] attempts to show this variation, it is only shown in
comparison of the modeled design and the singular hardware
implementation. This work is directed at all potential devia-
tions that can occur, for example, in large-scale manufacturing.
These variations may cause unwanted behaviors in the system
that can influence the experimental results. There are two
categories of variability that can occur in hardware. First, there
are system-level attributes, such as closed-loop controls, which
can affect power loss of the MFT. Second, manufacturing
tolerances of the cores or the winding length per turn exist
which are outside of the system or researcher control.

Figure 15 depicts the affects of both these variabilities based
on a single set of design variables within a reasonable variation
of each parameter individually. These values are chosen based
on data from existing literature and generic converter design
requirements [2], [SO]. Changes to these variations should be
made depending on the requirements for a specific system
as needed. The parameter tolerances, Ap, are identified in
Table V. The percentages denote the variation in terms of the
nominal design point. Variations in the design variables are
also incorporated in this table. The core volume tolerance is
per unit to the number of cores, and the M LT is varied for
each turn of winding. The switching frequency tolerance is
embedded within current, voltage, and core loss tolerances.

Deviations in core loss, turns ratio, M LT, core volume,
and cross-sectional area are due to manufacturing tolerances.

TABLE V
PARAMETER TOLERANCES

Parameter, p Tolerance, Ap

Primary Current, Ip,; +10%
Ambient Temperature, Ty ,p +30°C
Duty Cycle, D -0.08
Primary Voltage, Vpr; +5%
Core Loss, P, +20%
Turns Ratio, Nyqti0 +2%
Length per Turn, M LT +10%
Core Volume, Viore +3.33E-6 m?
Cross-sectional Area, A¢ +1.6E-5 m?




=—6— Primary Current (+10%)

==+ Ambient Temperature (15°C - 60 °C)
3r Duty Cycle (0.9 - 1)

==s— Primary Voltage (+5%)

=== Core Loss (+20%)

2+ Turns Ratio (+2%)
—60— MLT (+10%)
=— Core Volume

1+ | —t— Areac

Change in Power Loss

Nominal
Change in Parameter

Lower Bound Upper Bound

Fig. 15. Sensitivity analysis of MFT.

The latter two are based on the tolerances provided in the
datasheet. The other parameters are based on the system-level
traits. Variation is disclosed by the overall slope of the line of
each between the lower bound and higher bound tolerances.
Straighter horizontal lines depict less variation than ones with
larger changes in power loss. This figure shows that the largest
variations stem from changes in primary current, ambient
temperature, and core loss.

These large sensitivities are intuitive. Copper loss is depen-
dent on the square of the current in the windings. The iterative
nature of temperature and core loss where the ambient temper-
ature is the ground of the thermal resistive network suggests
the necessity to accurately predict the ambient temperature
near the MFT. Lastly, the core losses are a well-known issue.
Variation can occur both in the manufactured products and the
equations used to predict losses. The coefficients used in the
iGSE model are generally based on measurements taken using
sinusoidal waveforms provided by the manufacturer. A typical,
but time-consuming, method to avoid core loss discrepancies
is to self-characterize the core material [52]. However, this
method only reduces one of many points of variability. It does
not do enough to reduce the discrepancy on its own. These
other tolerances also need to be monitored.

C. Statistical Variances and Observations

1) Variances in the Constraints: There are 8 constraints of
concern in this optimization algorithm:

50mT < B,, <200mT and
T = Tam,b + AT < Tmam~

(40)
(41)

where B, is the peak flux density, T is the set of temperatures
of the 6 thermal nodes denoted in Fig. 3, and T4, is 100 °C
for the core and 120 °C for the windings. The active constraints
are the minimum flux density and the winding temperatures. It
should be noted that there is a convoluted relationship between
the matrix AT and B,, through the core loss. Therefore, the
core loss density, pcore, 1S considered a constant parameter

TABLE VI
CONSTRAINT VARIANCE BY INDIVIDUAL PARAMETER

Constraint, g; Parameter, p oy, v
Vri 2.5E-3
Flux Density, By, D 2.46E-3
Ac 2.04E-3

Tamb 18.08

. Ipr; 5.52

Center Limb, T} . 150
Veore 3.7E-10

Tomb 18.08

Upper Yoke, Th P, 5.86
Veore 0.034

Tamb 18.08

Outer Limb, T3 P, 4.85

Veore 2E-9

Tomb 18.08

Lower Yoke, Ty P, 5.72

‘/'COTE 4E—9

Toumbp 18.08

Pe 3.25

Primary Winding, 75 Ipri 2.87

Nratio 1.47

Vcore 2E-9

Tomp 18.08

Secondary Winding, Ts ~ Ipr; 5.97
Nratio 0.138

to avoid interdependence of the constraints in the statistical
analysis. This also aids to identify discrepancies when the core
loss measured is different from the estimated core loss from
the analytical model or from the expected value given by the
manufacturer. Following the method described in Section V-A,
the constraint variations can be calculated at the optimized
design point.

Table VI shows the individual variances for each constraint
in order of magnitude, and Table VII describes the total vari-
ance for each constraint considering all parameter variances.
It can be seen that the variance is equally, and minimally,
influenced by the duty cycle, primary voltage, and cross-
sectional area for the flux density.

The temperature matrix has an average standard deviation
of 18.9°C, an average of 22%. This shows that the highest
potential for infeasibility stems from the thermal require-
ments. The largest variation in the temperature constraint
stems from the ambient temperature. If this is not properly
identified, the design is likely to be infeasible. However,
ambient temperatures can vary widely from initial designs to
final experimental hardware due to nearby heat generation,
additions of enclosures, and seasonal changes.

TABLE VII
TOTAL CONSTRAINT VARIANCES

Constraint, g; Og;

B, 5.23E-03

T 18.97

T> 19.01

K 18.72

Ty 18.97

Ts 18.60

Ts 19.04
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Fig. 16. Normal distribution of potential designs versus (a) efficiency , (b) power loss, (c) power density, and (d) volume. The shaded area depicts 97.725%
of potential designs due to tolerances, and the red star is the experimental result.

For the temperatures at the center limb, the primary wind-
ing, and the secondary winding, the next influential parameter
is the primary current. This is due to the thermal resistive
network connections between the primary winding to the inner
core volume and to the secondary winding. Compared to these
parameters, the core loss density and the core volume are
insignificant in terms of variation. However, the core loss
density is as influential for the rest of the core as the primary
current at the center limb of the E-core.

If the ambient temperature is considered to have smaller
variation, it can reduce the variance in the thermal constraints
greatly until another parameter’s variance becomes larger than
the ambient temperature variance. For example, a tolerance
of 10°C can reduce this to an average standard deviation
of 8.1°C, or the variance at 20 °C is less than 13.5°C. Be-
low 10 °C variation, the primary current variation dominates.
Therefore, it is recommended that the ambient temperature
is within a 10°C estimation, when possible, to reduce the

potential deviations in the design.

2) Variances in the Objectives: By replacing the constraints
with the objective functions, efficiency, 7, and power density,
p, some interesting correlations can be made. Table VIII shows
the individual variance for each parameter as it relates to
efficiency and total power loss, Pj,ss. To simplify the relation-
ships, the total power loss and volume are used as modified
objective functions. It can be seen that the largest variance
stems from core loss density for power loss. Considering
power density, and thus volume, the only variance comes from
the change in core volume. This is assuming that the majority
of the total volume is due to the cores. This is reasonable
since there is a low likelihood of the windings being wound
loosely enough to greatly influence the volume with a shell-
type transformer.

The total objective variances can be seen in Table IX. The
efficiency and power loss are affected more than power density
and volume. This is in accordance with the previous data.



TABLE VIII
OBIECTIVE VARIANCE BY INDIVIDUAL PARAMETER

Objective  Parameter, p op,
k]

P. 0.029

Iprs 0.017
K Veore 2.3E-3
MLT 1.9E-3

P 1.03

Ipri 0.6

Ploss ore 0.08
MLT 0.066

Therefore, the comparison between the nominally optimized
MFT and the deviation in the experimental results can be
made. This is done by allowing 20,, = An, and the change
in 7 is 7 + An for the change in efficiency. The same is
done to power density, p. By plotting the normal distribution
of the efficiency, total loss, power density, and volume in
Fig. 16, the SOA experimental results are within 20 of the
nominal values for all the objectives. This means that the
hardware from Section IV-B is within the design tolerance
predicted. However, this shows that some potential designs
could be infeasible. For example, the peak experimental core
temperature was near 100 °C due to the increased losses. Since
this was an optimization constraint of the core, any design
pushing this bound would be outside the feasible design space.

D. Robust Optimization Results

In summation of the previous results, a robust optimization
algorithm can be implemented for this MFT design. The tem-
perature variation is limited to 10 °C, but all other tolerances
are consistent with Table V. The constraint variation, in (38),
was used to modify the nominal optimization method and
convert the algorithm to a robust optimization.

Using the same design specifications from Section II, the
results of this robust optimization procedure are given in Fig.
17. The highlighted regions maintain 2¢ variation in both ob-
jectives. Assuming that the robustly optimized design is close
to the originally optimized point, the same standard deviation
variations apply to the new design point. This assumption
holds true even though the number of cores has increased by
one as the shift in power density describes. Therefore, the
robustly optimized designs have increased in volume to adjust
for the increased thermal restrictions. The highlighted design
within the robust design region is a 10-turn, 4-core transformer
with a switching frequency of 140.6 kHz.

There exists a trade-off when using robust optimization
versus nominal optimization. With this robust design, the
volume, weight, losses, and costs have increased. However,

TABLE IX
TOTAL OBJECTIVE VARIANCES

Objective OF,
Efficiency, n 0.04
Total Losses, Pjyss 1.2
Power Density, p 8.93E-2
Total Volume, Vit 3.33E-3
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Fig. 17. Results of robust optimization of MFT design.

the number of rejected parts would be reduced in a large
manufacturing setting. This enables high quality control while
optimizing the design as much as possible.

Another key factor of concern is the change in leakage in-
ductance from the nominally optimized MFT. The robustly op-
timized MFT has a calculated leakage inductance of 3.93 uH.
This is a 3.6% difference from the 3.79 uH leakage inductance
of the nominal design and should be well within the bounds
of the acceptable leakage inductance range developed for spe-
cific converter applications. If there is a specific range for the
leakage inductance, it can always be added as constraints to
the method [14]

VI. CONCLUSION

This paper has proposed a unique method to improve the
comparison of transformer optimization and physical imple-
mentation using Aggressive Space Mapping using experimen-
tal results. A State of the Art optimization method is used to
find an optimal transformer design. The data from the SOA
experimental results are used to find a new ASM design that
aligns with the original goals and outcomes of the analytical
model. This design method has been shown to implement an
optimized transformer by estimating the hot spot temperatures
accurately to achieve a reliable, feasible, and realistic MFT.
This outcome occurs with only one redesign, or iteration of
ASM. This method can be used for any MFT turns ratio since
only one winding is considered a design variable.

This work has also shown the influence of parametric
uncertainty on the MFT hardware. This is done by first
understanding from where potential deviations of constant
parameters arise. By using sensitivity analysis, the influence of
each parameter on the objectives was observed and a potential
region for product variation was defined which contained
97.725% of all design variations. As predicted by the design
region, the hardware of this design point has been shown to
fall within 20 of the nominal design. This verifies the need to
quantify the variation in MFT designs and necessitates robust
optimization. Finally, the robust optimization procedure was
evaluated to show the shift from the nominally optimized
design to the updated design region.

ASM and robust optimization are valuable tools for pushing
the boundaries of power density and efficiency for MFT



design in a specific application. As with any tool, it is
vital that these algorithms are used in the method that is
most advantageous for the engineer. Small-scale production is
greatly enhanced by ASM techniques while mass production
receives valuable insight using robust optimization. While this
work was specifically focused on the MFT optimization, future
accommodations will be necessary to build a full converter-
level optimization, including semiconductor requirements.

As future work, more design variables and constraints will
be added to this optimization method. The purpose of this
small-scale study is to display these valuable optimization
methods to the MFT design process. As this research contin-
ues, we expect to add more variables to the process, includ-
ing core structures, core materials, winding sizes and types,
cooling methods, voltage isolation constraints, and physical
winding layouts to provide opportunities for wider application.
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