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Abstract. In a hybrid dynamical system with multiple rigid bodies, the relative
motions of the contact points on two colliding bodies may be classified as sepa-
rating, sticking (moving together), or sliding. Given a physical contact model, the
active contact modes determine the dynamic equations of motion. Analogously,
the set of all possible (valid) contact mode assignments enumerates the set of all
possible dynamical flows of the hybrid dynamical system at a given state. Nat-
urally, queries about the kinematics or dynamics of the system can be framed
as computations over the set of possible contact modes. This paper investigates
efficient ways to compute this set.

To that end, we have developed the first efficient 3D contact mode enumeration
algorithm. The algorithm is exponential in the degrees of freedom of the system
and polynomial in the number of contacts. The exponential term is unavoidable
and an example is provided. Prior work in this area has only demonstrated effi-
cient contact mode enumeration in 2D for a single rigid body. We validated our
algorithm on peg-in-hole, boxes against walls, and a robot hand grasping an el-
lipse. Our experimental results indicate real-time contact mode enumeration is
possible for small to medium sized systems. Finally, this paper concludes with a
discussion of possible related application areas for future work. Ultimately, the
goal of this paper is to provide a novel computational tool for researchers to use to
simulate, analyze, and control robotic systems that make and break contact with
the environment.

Keywords: Contact Mode Enumeration - Combinatorial Geometry - Dynamics
- Kinematics

1 Introduction

When a moving robot contacts its environment, the points of the resulting contact man-
ifold may be sliding, sticking, or separating. Under the Coulomb model of friction, the
frictional force is either opposite to the velocity of a sliding contact point, oriented in
any direction for a sticking contact point, or zero for a separating contact point. As
each individual contact mode imparts complementary dynamic equations, the set of all
(valid) contact mode assignments enumerates the set of all possible flows for the sys-
tem [13]. (Here, by valid we mean kinematically feasible, i.e. there exists a generalized
velocity ¢ that generates the correct mode at each contact point.) Given the one-to-one
mapping between contact modes and dynamics, we advocate that efficient contact mode
enumeration will be a useful tool for the simulation, analysis, and control of robotic sys-
tems that make and break contact with the environment.
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Our main contribution is to report the first efficient algorithm for contact mode enu-
meration in 3D which is exponential in the number of degrees of freedoms of the system
and polynomial in the number of contact points. Letting d and n be those two numbers,
respectively, then our algorithm enumerates all feasible contact modes in O(ndQ/ 2+2.5d)
time. By efficient, we mean the first algorithm that is polynomial in the number of
contact points. The exponent in d is unavoidable (see Section 6 for an example). Our
algorithm can enumerate all of the following:

contact modes that are contacting or separating,

contact modes that are sticking or sliding in some set of directions,
contact modes for linear and nonlinear friction cones,

contact modes involving multiple objects.

In this paper, we address the contact mode enumeration problem as a combinatorial
geometry problem, and the key concern is to compute the combinatorial structure of
convex hulls and hyperplane arrangements. Leveraging the rigid body kinematics, our
method performs faster enumeration by dividing the problem into two steps: contact-
ing/separating enumeration and sliding/sticking enumeration. The results obtained after
the two steps are polyhedral convex cones of valid object motions and their correspond-
ing contact modes.

2 Related Work

This section discusses related work specific to contact mode enumeration and our al-
gorithm (for related work with respect to application areas refer to Section 7). Mason
[17] sketched an algorithm for contact mode enumeration in 2D for a single rigid body
which intersects the positive (negative) rotation centers on the positive (negative) ori-
ented plane and intersects the rotation centers at infinity on the equator. Though Mason
[17] upper-bounded the number of modes at O(n?), by our analysis, the algorithm’s
runtime is actually O(n log n) and the correct number of modes is ©(n). Unfortunately,
the oriented plane technique does not generalize to contact mode enumeration in 3D.
Later, Haas-Heger et al [11] independently published an algorithm for partial contact
mode enumeration in 2D. There, they interpret the feasible modes as the regions of an
arrangement of hyperplanes in 3D. However, Haas-Heger et al [11]’s algorithm is at
least £2(n?) and does not enumerate separating modes. The existence of an efficient
contact mode enumeration algorithm in 2D does not appear to wide-spread knowledge.
For instance, Greenfield et al [10] used the exponential time algorithm for contact mode
enumeration in 2D. Disregarding these issues, Haas-Heger et al [11]’s work inspired us
to investigate hyperplane arrangements in higher dimensions for our algorithm. To the
best of our knowledge, our algorithm is the first method for contact mode enumeration
in 3D.

It is well known that frictional contact problems can be modeled as a complementar-
ity problem or equivalently, a variational inequality [8]. Within that theory, it is known
that the normal manifold (which is a linear hyperplane arrangement) divides the so-
lution space of an affine variational inequality [8]. Not surprisingly, we found related
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papers in other fields containing problems that can be modeled as variational inequal-
ities [9, 21]. For example, in the study of digital controllers and power electronics,
Geyer et al [9] proposed a mode enumeration algorithm for compositional hybrid sys-
tems based on the reverse search technique of Avis and Fukuda [1]. The contribution of
our work (and theirs) is in presenting the theory in an understandable manner for our
field and optimizing the relevant algorithms for our specific problem formulation.

3 Kinematics of Contact

3.1 Rigit Body Transformation

Let se(3) = {(v,w) : v € R®,w € R3} be the twist coordinates of the Euclidean group
SE(3). There is a mapping from £ € se(3) to g € SE(3) given by the exponential map
g = exp &, where the hat operator takes

R v 0 —Ws3 W2
5686(3)—)|:00:|, weRP > | wy 0 —wi|. ¢))

—wy w1 0

Note, the vee operator takes é V€0V — w. Let

Gab = [R(;b pf’] € SE(3), Ad,,, = {Rgb pa*}f“b] € RO¥6 )

be a transformation from frame b to frame a and the adjoint of that transformation,
respectively. We define the instantaneous spatial velocity and body velocity of g4 as

cfb = [gabg;bl]v > Vabb = [g;blgab] Y 3)

respectively, both of which are in se(3). The adjoint of Ad
velocities linearly V5 = Ad,,, V),

9. Telates body and spatial

3.2 Contact Normal Velocity

Let go € SE(3) be the transformation from the contact frame to the object frame.
By convention, we fix the contact normal n € R3, also known as the z-axis of Goc» tO
point in the direction opposite the object’s surface normal at the contact point p,.. Let
Jwo € SE(3) and g,. € SFE(3) be the transformations from the object frame to the
world frame and the contact frame to the object frame, respectively. Given an object
body velocity V,, € se(3), we can compute the body velocity V. € se(3) of the contact

frame using
T _pT 4
ROC ROCpOC:| Vo- (4)

V.=Ad, 'V, = { o R

Let ¢ € R be the contact distance as measured along the contact normal, then from (4)
the separating velocity is

¢ = [n —1poc| V. (5)
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Fig. 1: (a) Hyperplane arrangement # (V') and its associated zonotope Z (V') (the blue
dotted square). Red arrows are the normals of the hyperplanes. Gray shaded areas, black
rays and the origin are the faces of #(V"), correspondingly sharing the same sign vectors
with the vertices, lines and the interior of Z(V). (b) The face lattice of Z(V"), which
has the opposite structure with the face lattice of H(V).

Note that when ¢ is negative, the objects are penetrating. Similarly, Let ¢, € R? and
t, € R3 be the basis of contact tangent plane, the contact tangential velocity V! is

t __ ta: 7txﬁoc
‘/c - |:ty tyﬁoc:| VO' (6)

For a contact between two objects 01 and o2, the contact velocity is the relative velocity
of the contact on one object to the other. Without loss of generality, we have V., =
Ady) Vo, —Ady) Vo,

c

3.3 Contact Tangent Velocity Approximation

In this paper, sliding modes identifies possible contact tangent velocity directions. We
approximate infinite tangent velocity directions by dividing the tangent plane into sec-
tors of equal angles. Let the normals of n; dividing planes be written as T' = [t1, -+, t,,, ]
where t; = [cos %, sin %, ] , contact tangent velocities can be classified into 4n; + 1
contact modes, specified by sign vectors in {+1,0, —1}". Figure 1(b), which serves as
an example of hyperplane arrangement later in Section 4.1, can also be considered as a
tangent plane division with n; = 2.

The dividing planes of contact point p are transformed into the object frame as
[T, —Tﬁ] through Equation 6. With n. contacts, all the dividing planes transformed
into the object frame are a set of ng - n. hyperplanes that intersect at the origin and
divide the space of object velocity in RS. Moreover, this approximation is essential to
applications using linear approximations of the Coulomb friction model [24]. For more
fine grained approximations, we can use a larger n;.
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4 Convex and Combinatorial Geometry

This section briefly introduces convex polytopes and hyperplane arrangements. The
normal velocity and tangent velocity equations define halfspaces which carve R? into
regions of valid object motions. Identifying and labeling these regions are at heart com-
binatorial problems about convex polytopes and hyperplane arrangements, respectively.
Note that this section only gives the reader a minimal review of this rich subject. One
can refer to Ziegler [27] and Edelsbrunner [7] for a comprehensive introduction.

4.1 Convex Polytopes

Let P C R< be a convex set. This work primarily uses the following two classes of
convex sets. The H-polyhedron is an intersection of closed halfspaces H(A,z) =
{z € R?: Az < z}. The V-polytope is the convex hull of a finite point set V(A) =
{r € RY: 2 = At,t > 0,1t = 1}. Let P C R< be a convex polyhedron. Let a face of
P be any set of the form

F={xe€P:cx=cy} @)
where cx < ¢g is true for all x € P. Suppose further that P is an H-polytope. Then the
sign of face F' with respect to a halfspace (a, z) is

+1 if a-z<z2
sgn, (F) = ] (8)
0 if a-z==2
for any x € F. Naturally, the sign vector of a face is given by

sgn, (F) = [sgnal(F)7 . sgnan(F)]. 9)

4.2 Hyperplane Arrangements

A hyperplane through the origin, i.e. a linear hyperplane, is the set H = {x € R? :
h - x = 0} parameterized by the normal vector h € R?. In this work, we will refer to a
linear hyperplane by its normal vector 4. Given a point p € RY, let the sign of the point
relative to a hyperplane h be

+1 if h-p>0

sgn,(p) =¢0 if h-p=0 (10)
~1 if h-p<0
Let a hyperplane arrangement be defined as a set of linear hyperplanes A = [hq, ..., hy]

which dissect R? into connected, polyhedral convex cones of different dimensions. Let
the sign of a point p with respect to the hyperplane arrangement .4 be defined as

sgn 4 (p) = [sgnhl(p), cee, SgNy (p)] . an

The sign vectors of the points in R? define equivalence classes known as the faces of
A. That is, given a sign vector s € {+1,0, —1}*, the associated face is

F={peR%: sgny(p) = s} (12)
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A simple example of a 2D linear hyperplane arrangement is given in Figure 1a, and
the faces are annotated with their corresponding sign vectors: regions have sign vec-
tors (+1,+1), (+1,—1), (—1,+1), (—1, —1); rays have sign vectors (41, 0), (0, +1),
(—1,0), (0, —1); the origin has the sign vector (0, 0).

4.3 Face Lattice

We can define a partial ordering over the sign vectors of polytopes or hyperplane ar-
rangements. The face lattice L(P) of a polytope P (or arrangement .A) is a partially
ordered set over the sign vectors of the faces of P. Define the partial order over the set
of signs {+1,0,—1} to be

0<+1, 0< -1, +1 | —1 (incomparable). (13)

Let v and v be two sign vectors. Then v < v if and only if u; < wv; for all indices.
By convention, every face lattice is equipped with an unique maximal element { P}
(sometimes written {1}) and minimal element { & }. Figure 1b visualizes the face lattice
of the blue square in Figure 1la.

The face lattice L(P) contains d + 1 proper ranks. For k € [0, ..., d], the k-th rank
contains the faces of dimension k. The dimension of a face is defined as the dimension
of its affine hull dim(F) = dim(aff (F)), where aff (F) = {d_ax; c 2 € S, =
1}. The faces of dimensions 0, 1, dim(P) — 2, and dim(P) — 1 are called vertices,
edges, ridges, and facets, respectively.

4.4 Polarity
The polar polytope P* of a polytope P C R? is defined by
P2 ={ceR?: Tz <1,¥Yzre P} CR? (14)

In this definition, we assume that O is in the interior of the polytope P without loss of
generality. Therefore, the polar of a V-polytope V(A) with 0 € int P is the H-polytope
H (A, 1), and vice versa. Polar polytopes are useful because P and P4 share the same
combinatorial structure. Specifically, the face lattice of the polar polytope P~ is the
opposite of the face lattice of P:

L(P%) = L(P)°? (15)
and there is a bijection between the faces

)« P
vertices «— facets
. (16)
edges <— ridges
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4.5 Zonotopes

Zonotopes are a special type of polytope which are combinatorially equivalent to linear
hyperplane arrangements. Recall that the Minkowski sum of sets X and Y is given by
XoY ={zr+y:ze€ X,y €Y} Wecan define a zonotope as the Minkowski sum
of a set of line segments

Z(V)Z [—Ul,Ul]@"'@[—Uk,Uk], (17)

where V' = [v1,...,v;] € R¥* We can map each face F' of a zonotope to an unique
sign vector. Let p = Y A\;v; € int F' (any interior point will do). Then the sign with
respect to v; is
+1 if N =+1
sgn, (F) =40 if —1<)\<1 (18)
-1 if N\ =-1,

and the sign vector is sgn, (F) = [sgn, (F), ..., sgn,, (F)]. From Corollary 7.17 in
Ziegler [27], there is a bijection between the sign vectors of A(V') and Z(V'). We have
the identification of face lattices

L(Z(V)) +— L(Z(V)®) +— L(A(V)). (19)

For example, there is a correspondence between the facets of Z(V), the vertices of
Z(V)?, and the rays (unbounded edges) of .A(V). Figure la shows a 2D hyperplane
arrangement and its associated zonotope.

5 Contact Mode Enumeration in 3D

This section describes our algorithm for contact mode enumeration in 3D. The algo-
rithm is presented in three parts. The first subsection covers contacting/separating mode
enumeration. The second subsection covers sliding/sticking mode enumeration given an
assignment of contacting/separating modes. The algorithm in this subsection constructs
the hyperplane arrangement by incrementally building the associated polar zonotope
using the Minkowski sum. The third subsection covers full mode enumeration by com-
bining the previously stated algorithms.

5.1 Contacting/Separating Mode Enumeration

The contacting/separating mode enumeration algorithm, or CS-Enumerate, takes as in-
put the normal velocity constraint equations A € R™*? (see Section 3) and generates
a list of valid contacting/separating sign vectors of the form m € {0, +1}". The algo-
rithm presented in this subsection is based on taking the convex hull in polar form of
the polytope associated with the normal velocity constraints. The pseudo-code is listed
in Algorithm 1 and we provide explanations for each of the steps below.

Find an interior point: The polar form P# of a polyhedron P is defined only
when 0 € relint(P). However, 0 is on the boundary of the polyhedral cone H(A,0)
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Algorithm 1 C/S Mode Enumeration

Input: Contact points: p1, . . ., px; Contact normals: n1,...,nk
Output: Contacting/Separating Modes: M.,
1: function CS-ENUMERATE(P, N)
2 A < ADD-HYPERPLANES([n;, —n;p;]) for all contacts ¢ € [1,. .., k]
3 r < INTERIOR-POINT(H (A, 0))
4: A, r < PROJECT-TO-NULLSPACE(A, 1)
50 V(AT) « POLAR(H(A,0),7)
6.
7
8

AT+ PROJECT-TO-AFFINE-SUBSPACE(AT)
M + Conv-HuLL(V(AT))
: L <+ FACE-LATTICE(M)
9: Mes, m < @, ||

10: fork € {0,...,d —1} do > The face lattice has d proper ranks.
11: for f € L[k] do > Each face in L[k] as defined by its vertex (= constraint) set.
12: m[f] + 0 > A vertex v € f = sign of normal vel at that contact is 0
13: m[AT\ f]+ 1 > Avertexv ¢ f = sign of normal vel at that contact is +1
14: Moy « M., U {m}

15: return M

defined by our normal velocity constraints. Therefore, our first step is to find a point
r € relint(H(A,0)). This is a classical problem in linear programming, and for our
implementation, it amounts to solving the following linear program

. r
H’]}’lcn [O 71] : [J (20)
st. Ar+¢<0,¢>0 21)
[rlle <1, (22)

where ||7||oo < 1 constrains 7 to be within the hypercube in R?. Note that if the so-
lution to the linear program is 7 = 0, then the only valid mode is all-contacting and
the algorithm can terminate early. The above method was adapted from [22] to handle
cones.

Project to contact planes: If the interior point is on the boundary for a subset of the
normal velocity constraints, then that subset of contact points must always be in contact
(for example, a box sandwiched between two walls). Let A, be the contacting normal
velocity constraints and A, = A/A.. Then we map A, into the nullspace of A, like
so A, = A, - NULL(A,), to reduce the dimension of the problem. We also express the
interior point as coordinates in the null space.

Convert to polar form: Given a strictly interior point r, we translate the origin
to r, resulting in the new H-polyhedron P = H(A, —Ar). Next we normalize the
inequalities so that P = 7(A, 1) and obtain the polar polytope P2 = V(AT).

Project to affine subspace: The affine dimension of the polar polytope dim aff P2
may not necessarily be equal to the dimension of the ambient space R?. In this situation,
we project P4 into its affine subspace aff P2 = {ATv : 1Ty = 1} and further reduce
the dimensionality of convex hull. Recall that an affine space can also be expressed as a
linear space plus a translate, i.e. aff P2 = {Vx + 2} for some V and 2. If 0 ¢ aff pPA,
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then z # 0 and we translate the affine space until it contains the origin. Now that
0 € aff P2, aff P4 is a linear subspace and we project each point (column vector) in
AT to coordinates on the column space of A7

Get facet-vertex incidence matrix: Next, the algorithm constructs the vertex-facet
incidence matrix M of P2 = V(AT) by using a convex-hull algorithm. The vertex-
facet incidence matrix is a matrix M € {0, 1}">*"s, where n, and ny are the number
of vertices and facets, respectively. We associate the vertices and facets with the index
sets [y = {1,...,n,} and Ip = {1,...,ns}, so that m,y = 1 if facet f contains v
and my, = 0 otherwise. The vertex-facet incidence matrix is a standard return value
from convex hull algorithms such as ghull [3].

Build face lattice: Given the facet-vertex incidence matrix M of P2, we can con-
struct the face lattice L(P4) using the algorithm of Kaibel and Pfetsch [14]. Their
method is based on find the closed sets (= faces) with respect to a closure map defined
over vertex sets. Obviously, each face is uniquely represented by its vertex set.

Convert faces to mode strings: Finally, we construct contacting/separating mode
strings using the vertex sets associated with each face f in L(P4). By polarity, each
vertex in f corresponds to the hyperplane {x : axz = 0} defined by a normal velocity
constraint. Therefore, we can read off the mode string by assigning contacting modes
to every vertex in f and separating modes to every vertex not in f.

Theorem 1. For a set of n contacts in a system of colliding bodies with d degrees

of freedom, Algorithm 1 enumerates the possible contacting and separating modes in
O(d - nttt +1(n,d)) time.

Proof. We analyze correctness first before complexity. The proof is simple and relies
on the combinatorial equivalences between

CS-MODES ¢ L(H(A,0)) <+ L(H(Am, 1)) < L(V(AL)). (23)

First, we show that (A, 0) and H (Ajnt, 1) are affinely isomorphic and thus, combina-
torially equivalent [27]. Two polytopes P and @ are affinely isomorphic if there exists
an affine map f : R¢ — R€ that is a bijection between the vertices of the two poly-
topes. By inspection, the operations P N aff(P) and P + r preserve the extremal points
(vertices). Finally, re-scaling the inequalities does not affect the underlying polytope.

For this next paragraph, let us define P = H(Aju, 1) and P2 = V(AL,). Our
aim is to show the first and third bijections in (23). Let F € L(P4) be identified by
its vertex set V(F) = {a : anN F # @,a € vert(P*)} and recall that vert(P4) C
col(AL,) = row(Aint). (That is, each vertex of P4 corresponds to a facet of P, i.e. a
normal velocity constraint.) Then by Corollary 2.13 of Ziegler [27], there is a bijection
L(P4) « L(P) from F to F° such that

F°={z: Az <lyax =1,Ya € V(F)} 24)

is a non-empty face of P. Because face lattice of a polytope is coatomic, we can
uniquely specify its proper elements as meets (intersections) a; A. . . Aay, of its coatoms
(facets). Therefore, for each F' € L(P?4), the vertex set V(F) maps bijectively to
a valid contacting/separating mode string, and L(P“) enumerates the set of all valid
contacting/separating modes.
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Algorithm 2 S/S Mode Enumeration

Input: Contact points: p1,...,pk; Contact normals: ni,...,n; Contact tangent dividing
planes: T4, . .., T); Contact/Separating Mode: m.s
Output: Sliding Modes: M

1: function SS-ENUMERATE(P, N, T, m)

2: H<+— g ‘
H < ADD-HYPERPLANES([n;, —n;p;]) for all separating contacts m,(;? =1
H « ADD-HYPERPLANES ([T}, —T;;]) for all contacting contacts m') = 0
H < PROJECT-TO-NULLSPACE([n;, —n;;]) for all contacting contacts m<) = 0
V, S < GET-ZONOTOPE-VERTICES(H)
L + FACE-LATTICE(V(V))
F « F € L with positive signs {41} for all separating contact hyperplanes

9: M < GET-SIGN-VECTOR(F, S)
10: return M,
11: function GET-ZONOTOPE-VERTICES(H)
12: V, S« [0], @
13: for h € H do

S AR

14: vV, S« [], @

15: forv € V do

16: V' + ADD-POINTS(v + h,v — h)

17: S’ < ADD-SIGN-VECTORS((S(v), 4+1), (S(v), —1))
18: V <+ CONVEX-HULL(V")

19: S« S'(V)

20: return V, S

The normal velocity constraint matrix A can be constructed in O(n - d) time. The
orthonormal basis and null space can be computed in O(min{n-d? n?-d}) using SVD.
An interior point can be computed in time O(I(n, d)), where [(n, d) is the cost of linear
programming. For a balanced problem like this one (every input point is extremal),
quick hull runs in O(fy_1) = O(n%/?). The number of k-faces in L(P) is bound by
O(n%/?). The combinatorial face enumeration algorithm runs in time O(”'ZZ:O 12 =
O(d - n9*1). Therefore, the total runtime is O(d - n®*! + I(n, d)).

5.2 Sticking/Sliding Mode Enumeration

This section describes our sliding/sticking mode enumeration algorithm, which is listed
in Algorithm 2. The inputs to this algorithm are the normal velocity constraints, tangent
velocity hyperplanes (see Section 3.3) and the specified contacting/separating mode.
The algorithm, SS-ENUMERATE, generates a list of sliding/sticking sign vectors of the
form mgss € {—1,0,+1}", where n; is the total number of tangent velocity hyper-
planes. As before we provide explanations for each of the steps below.

Partition the hyperplanes: The goal of our algorithm is to enumerate sliding/ stick-
ing modes for the “contacting” contacts. Given a contacting/separating mode m.s, the
normal velocity constraints on the object velocity x are

Hax =0, Hypr>0 (25)
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where H,,), = [ni, —m@} for all separating contacts mﬁ? =1, H, = [nj, —njﬁj]

for all contacting contacts mgg) = 0. We have hyperplanes Hy, = [Tj7 —Tjﬁj] for all
contacting contacts mgj ) — 0. If we let H, = [Hsep, Hss), all valid sliding/sticking

modes can be written as
Mys = {sgn(H,z) : x € RY Hyopax > 0, How = 0} (26)

Our algorithm computes the combinatorial structure of the hyperplane arrangement H,
to get the sliding/sticking modes M.

Project to contact planes: We project H, into halfspaces on the coordinate of
the null space H. to speed up computation. In Algorithm 2 step 3-5, the projected
hyperplanes are obtained by H = [H,c, - NULL(H..), Hys - NULL(H,)].

Construct the zonotope: From the set of hyperplanes H, we can identify the ver-
tices of its associated zonotope Z(H). From Equation 17, zonotopes can be repre-
sented by the minkowski sum of line segments, which in this case are [h;, —h;] for
h; € H. Algorithm 2 Function GET-ZONOTOPE-VERTICES obtains zonotope vertices
V' through computing the minkowski sum iteratively for every h; € H. We initialize
the vertex set V' = [0], and at the i-th iteration we update V' with the convex hull of
Uvev{v+ h;, v —h;}. We are also able to get the sign vector for every vertex according
to Equation 18: sgn(v + h;) = [sgn(v), +1], sgn(v — h;) = [sgn(v), —1].

Build the face lattice Using the same method as describe in Section 5.1, we con-
struct the face lattice L(V') from the vertices V. Not every F' € L(V') corresponds to a
valid sliding/sticking contact mode. Only the faces that have positive signs 41 with re-
spect to normal velocity constraints for all separating contacts are valid sliding/sticking
contact modes. After building the face lattice L(V'), valid faces F are selected by en-
suring their sign vectors with respect to H.,, are all {+1}s:

F={FeL(lV):sgny (F)=[+1,...,4+1]} 7N

sep
The sign vectors of all faces in F with respect to H represent all valid sliding/sticking
contact modes for the given contact/separating mode.

Theorem 2. For a set of n contacts (modeled with k tangent planes) in a system of
colliding bodies with d deg!ees of freedom, Algorithm 2 enumerates the possible slid-
ing/sticking modes in O(n? / 242d) time for a given contacting/separating mode.

Proof. As before, we first proceed with a proof of correctness. For a given contact-
ing/separating mode string m.s, let H = [hg,, - , hs,, ht,, -+ , by, ] be the input hy-
perplanes to our zonotope construction algorithm, where k is the number of separating
hyperplanes and m is the number of tangent hyperplanes. We incrementally construct
the zonotope by using the fact that the Minkowski sum of two polytopes is the con-
vex hull of the sums of their vertices [6]. By Corollary 7.18 of [27], the face lattice
of the zonotope constructed above is the opposite of the face lattice of the hyperplane
arrangement.

Next we analyze the complexity of our algorithm. The maximum number of hyper-
planes is kn. The number of vertices, i.e. fy, for a d-zonotope that is the projection of
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a p-cube is of the order O(p?~1) [7]. Therefore, our zonotope construction algorithm
takes time

kn kn
o> " H T )= 0) pT) ~ O((kn) 7). (28)

We use Kaibel and Pfetsch [14] to construct the face lattice of the resulting zonotope.
As before, their algorithm runs in

O(kn -d- - (kn)?1) = O(d(kn)??), (29)

where o = kn - (k:n)d*1 in the worst case (when the zonotope is simple) [27]. The full
2
complexity of SS-ENUMERATE is therefore O((kn) dT”d).

5.3 Full Mode Enumeration

Theorem 3. For a set of n contacts (modeled with k tangent planes) in a system of
colliding bodies with d degrees of freedom, Algoriz‘hm2 1 and 2 can be combined to
enumerate the full set of valid contact modes is in O(n® /2+2:59) time,

Proof. From Theorem 1, we can enumerate contacting/separating modes in O(d-n*!+
I(n,d)) and there are at most O(n%?2) such modes. From Theorem 2, given a con-

2
tacting/separating mode, we can enumerate sticking/sliding modes in O((kn) ‘= T24).
Therefore, running the full mode enumeration takes at most

O(d - 0™ 4 U(n, d) +nY? - (kn) 5 +20) ~ O(nd*/2+254) (30)

Note that O(ndQ/ 2+2.5d) 5 the worst-case time complexity of our algorithm, which
only happens when the zonotope is simple [27]. Additionally, if we define sliding and
sticking for nonlinear friction cones as any non-zero tangent velocity or zero tangent
velocity, respectively, then it is clear our algorithm also enumerates modes for non-
linear friction cones.

6 Results

This section collects the results of running our algorithms (cs-mode-enum, ss-mode-
enum, all-modes) on the example scenarios described below. The examples were run
on a computer with an Intel i7-7820x CPU (3.5 MHz, 16 threads).

Box-#: This example simulates a box enclosed by # walls, 1 < # < 5. The face con-
tact between the box and a wall is modeled as four point contacts on the corresponding
vertices of the box. Constrained by one wall (the ground), the box is free to separate
with or move along the wall. As the constraints grow to 6 walls, the box becomes pro-
gressively more constrained. Figure 2 and 3 visualize some of our results.

Peg-in-hole-#: This example consists of a cylindrical peg sitting within a cube with
circular hole. The number # corresponds to the number of contact points generated at
each end of the peg. To demonstrate the generality of our system, we simulate the peg
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cs-modes ss-modes
n d daff Z fk: tlp tconv tlattice Z f]:s tzono tlatlice

box-1 4 6 2 10 2.66e-39.68¢e-51.3%9-4 196 1.77e-2 8.38e-3
box-2 8 6 4 46 3.25¢-3 1.55e-4 1.69¢-3 764 4.18e-2 3.73e-2
box-3 12 6 5 190 3.18e-3 2.72e-4 1.53e-2 2386 1.56e-1 1.17e-1
box-4 16 6 2 10 2.67e-3 8.94e-5 1.34e-4 12 4.20e-2 9.73e-4
box-5 206 1 2 2753 0 0 2 0 0

peg-in-hole-4 8 6 1 1 2.6%-3 0 0 9  4.60e-3 3.66e-4
peg-in-hole-8 16 6 1 1 28%-3 0 0 9 9.80e-3 3.66e-4
box-box-1 8 9 2 10 2.30e-3 8.56e-3 1.29¢-4 9945 1.21e-1 2.22e+1
box-box-2 16 9 6 184 2.32e-3 1.99e-4 1.33e-2 168746 4.43e+0 9.87e+2

hand-ball 12 17 11 4096 4.08e-3 2.23e-4 7.01e-1 — >lhr >1hr
Table 1: Results of contact mode enumeration in 3D

contacting/separating
modes

Fig. 2: Visualization of some contact modes of a box enclosed by 2 walls. Given a con-
tact mode, we sampled object velocity and rendered it in the simulation. Yellow arrows:
velocities of contacting contacts. Purple arrows: velocities of separating contacts.

with 6 degrees of freedom even though its constraints reduce the effective DoF of the
system to 2 (rotating or translating about the main axis).

Box-box-#: This example consists of a box with 6 DoFs sitting on a box with 3
DoFs (translation in « and y and rotation about 2). As before, # is the number of walls.

Hand-ball: This example simulates an anthropomorphic hand grabbing a football
(ellipsoid). The hand has 3 fingers and a thumb, with 3 (2) DoFs per finger (thumb), and
the football has 6 DoFs for a total of 17 DoFs in the system. The football is posititioned
so that when grasped, it contacts every link on the hand, including the palm.

The above examples can be replicated ad infinitum (by adding more boxes or fin-
gers) to generate contact modes which grow exponentially with the system dimension.
Table 1 aggregates the results of running our algorithm on the above examples. Selected
videos of the examples are also provided as supplementary material. From the results,
it is clear that lattice construction takes the most percentage of time. In the future, we
intend to implement methods from Edelsbrunner [7] which have better complexity.

7 Related Applications

Simulation: Friction contact dynamics have been modeled as complementarity prob-
lems by many researchers [2, 24]. Approaches for solving complementarity problems
may be broken into direct methods, such as Lemke’s algorithm, and iterative methods,
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contacting/separating  sliding/sticking modes contacting/separating
modes » modes

i
(S 8
[ N N 3 J

—_

Y

Fig.3: The contacting/separating modes Fig.4: A box in a hand. There are too
and sliding/sticking modes of a box on the many contacting/separating modes so we
table case. only visualize them by layers.

such as Projected Gauss Siedel [20, 5]. The simulation research community has fo-
cused on issues such as proving finite termination [26, 24], satisfying physical realism
[23, 25], and improving convergence speed [15]. By design these algorithms find a sin-
gle solution, when in reality, multiple solutions may exist [24]. Moreover, users are not
aware of this additional source of divergence. However, our algorithm can allow the
user to enumerate all possible solutions. We believe this capability will be important for
robotic systems which use simulation to reason about future actions.

Grasping and Dexterous Manipulation: Most grasping synthesis algorithms [4]
[19] [18] are designed to plan force-closure graspings. However, due to the static inde-
terminacy problem, a force closure grasp does not imply a stable grasp [17]. A typical
way to address this problem is to enumerate all adjacent contact modes and make sure
they don’t have the same solution to the desired contact mode. Our 3D contact enu-
meration method could provide fast computation tools for stable grasps in 3D, which
may help with real-time grasp planning for large scale objects. Similar approach can
also be extended to dexterous manipulation tasks, like pushing [16] and grasping using
environment contacts [12], where certain contact mode is desired during the task.

8 Conclusion

This paper introduced the first known algorithm for efficient contact mode enumeration
in 3D. The algorithm partitions the problem into contacting/separating mode enumera-
tion and sliding/sticking mode enumeration. The algorithms are based on convex hull
and hyperplane arrangements, respectively. This paper also presented results demon-
strating real-time enumeration for small problems. Finally, we highlighted related re-
search areas to show that contact mode enumeration can be a useful tool for the simu-
lation, analysis, and control of robotic systems which make and break contact with the
environment.
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