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Abstract11

This paper presents a fast sweeping method (FSM) to calculate the first-arrival travel-12

times of the qP, qSV, and qSH waves in two-dimensional (2D) transversely isotropic me-13

dia, whose symmetry axis may have an arbitrary orientation (tilted transverse isotropy,14

TTI). The method discretizes the anisotropic eikonal equation with finite difference ap-15

proximations on a rectangular mesh, and solves the discretized system iteratively with16

the Gauss-Seidel iterations along alternating sweeping orderings. At each mesh point,17

a highly nonlinear equation needs to be solved to update the numerical solution until18

its convergence. For solving the nonlinear equation, an interval that contains the solu-19

tions is first determined and partitioned into a few subintervals such that each subin-20

terval contains one solution; then the false position method is applied on these subin-21

tervals to compute the solutions; after that, among all possible solutions for the discretized22

equation, a causality condition is imposed and the minimum solution satisfying the causal-23

ity condition is chosen to update the solution. For problems with a point-source condi-24

tion, the fast sweeping method is extended for solving the anisotropic eikonal equation25

after a factorization technique is applied to resolve the source singularities, which yields26

clean first-order accuracy. When dealing with the triplication of the qSV wave, solutions27

corresponding to the minimal group velocity are chosen such that continuous solutions28

are computed. The accuracy, efficiency, and capability of the proposed method are demon-29

strated with numerical experiments.30

1 Introduction31

The traveltimes of seismic waves are often used to study the interior structure of32

the Earth. Numerical methods for calculating the traveltimes of seismic waves play an33

important role in many seismic techniques, such as raypath backtracking, quality fac-34

tor inversion, formation stress inversion, and Kirchhoff prestack depth migration. Ac-35

curate traveltimes can be calculated by ray-tracing methods and finite difference eikonal36

solvers. The ray-tracing method computes the traveltimes by solving an appropriate ini-37

tial or boundary value problem for a system of ordinary differential equations. It can pro-38

vide high-order accuracy for the traveltime tables (Cerveny, 1972; Shearer & Chapman,39

1988). However, (1) raypaths often diverge from each other, and large spatial gaps of-40

ten exist between two adjacent rays, especially in complicated heterogeneous velocity mod-41

els (Vidale, 1990); (2) traveltimes are only calculated for shot-receiver pairs such that42

they must be interpolated onto a large number of grid nodes when they are used for seis-43

mic migration and tomography (Vinje et al., 1993; Gray & May, 1994; J. Huang & Belle-44

fleur, 2012); (3) the two-point ray-tracing problem can be highly nonlinear such that it45

is difficult to solve efficiently; and (4) it can be difficult or time-consuming to distinguish46

whether the solution is a first or later arrival where triplication occurs. On the contrary,47

the eikonal solvers such as the finite difference traveltime calculation methods have no48

such disadvantages. For the past four decades, many eikonal solvers have been developed49

(Vidale, 1988; Podvin & Lecomte, 1991; Cao & Greenhalgh, 1993; Hole & Zelt, 1995; Sethian50

& Popovici, 1999; Kim, 2002; Zhao, 2005; Fomel et al., 2009; Stovas & Alkhalifah, 2012;51

Lan et al., 2014). Among these eikonal solvers, the fast marching method (FMM) and52

the fast sweeping method (FSM) are the two most popular ones. It is worth noting that53

finite difference eikonal solvers in general can only compute first arrivals, they may re-54

quire well-designed numerical procedures for solving a complicated nonlinear system, and55

the number of iterations is problem-dependent if an iterative scheme is used.56

The kinematic and dynamic features of seismic waves have great differences when57

they propagate in isotropic and anisotropic media. In isotropic media, only compressional58

and shear waves exist. While in anisotropic media, there may have three wavemodes: one59

quasi-compressional wave (qP) and two quasi-shear waves (qS1 and qS2). Each wave-60

mode propagates with its own wavespeed and polarization. The phase and group veloc-61

ities of each wavemode are not only functions of elastic moduli parameters, but also func-62
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tions of the seismic wave direction. Many of the finite difference eikonal solvers have al-63

ready been extended to calculate the traveltimes of seismic waves in anisotropic media64

(Dellinger & Symes, 1997; Eaton, 1993; Lecomte, 1993; Kim & Cook, 1999; Perez & Ban-65

croft, 2001; Qian & Symes, 2002a). But most of them have been developed to deal with66

the tilted elliptically anisotropic (TEA) case only, for example the fast marching method67

for the TEA eikonal equation (Sethian & Vladimirsky, 2003; Cristiani, 2009; Lou, 2006)68

and the fast sweeping method for the TEA eikonal equation (Tsai et al., 2003; Qian et69

al., 2007; Luo & Qian, 2012b). Han et al. (2017) developed a fast sweeping method which70

uses a quartic solver to tackle the quartic equation of the slowness surface with limited71

value range for the possible solutions, and obtained the traveltime of the qP wave. Bouteiller72

et al. (2018) developed a time-dependent discontinuous Galerkin method for comput-73

ing the traveltime of the qP wave in 2D cases by transferring the static quartic anisotropic74

eikonal equation into a time-dependent equation. Waheed et al. (2015) and Waheed and75

Alkhalifah (2017) proposed an iterative fast sweeping method, like the fixed-point iter-76

ation method, to compute the traveltime of the qP wave by solving a sequence of TEA77

eikonal equations, where the slowness field of the TEA eikonal equation is updated it-78

eratively whenever the numerical solution is updated until it converges to the solution79

of the original quartic anisotropic eikonal equation.80

Finite difference eikonal solvers are efficient. However, they all suffer from the source81

singularities due to the non-differentiability of the solution at the point source (Qian &82

Symes, 2002b). The source singularities induce large errors near the source which will83

further spread to the whole computational domain and make the traveltime inaccurate.84

Without any treatments of the source singularities, such methods, even high-order meth-85

ods, have only O(h log h) convergence order with h the mesh size. Moreover, this poses86

a problem to calculate some quantities involving derivatives of the traveltime, such as87

take-off angles and geometric spreading factors (Noble et al., 2014). This also poses a88

problem for iterative eikonal solvers involving derivatives of the traveltime as in Waheed89

et al. (2015). In order to overcome the difficulty caused by the source singularities, a few90

different methods have been proposed. The first method wraps a small region around91

the source, assumes the medium in the region is homogeneous such that the analytical92

solution can be obtained, and carries out the computation only outside of this region (Sethian93

& Popovici, 1999). This method is feasible only when the medium around the source is94

homogeneous. The second method refines the grid around the source in order to com-95

pensate the truncation error, but it involves ad hoc parameters without a clear selection96

criterion (Kim & Cook, 1999; Rawlinson et al., 2008). The third method uses an adap-97

tive grid refinement near the source to control the error, but it incurs an additional heavy98

computational burden (Qian & Symes, 2002b). And the fourth method makes finite dif-99

ference approximations for the eikonal equation on spherical grids centred on the source100

point in order to reduce inaccuracy (Alkhalifah & Fomel, 2001). However, the final re-101

sult has to be interpolated to traveltime tables in Cartesian coordinates, which increases102

the computational cost.103

In order to resolve the source singularities effectively without involving ad hoc pa-104

rameters, a factorization approach has been proposed in Pica (1997), Zhang et al. (2005),105

Fomel et al. (2009), Luo and Qian (2012b), and Waheed and Alkhalifah (2017) for the106

isotropic eikonal equation and anisotropic eikonal equation with weak anisotropy. The107

traveltime is factored into two factors. One factor is a known function that captures the108

singularities around the source, and the other factor is smooth near the source. The smooth109

factor satisfies a modified/factored equation that can be solved efficiently with high ac-110

curacy. Hence, the original traveltime is recovered with high accuracy. Luo and Qian (2011)111

and Luo et al. (2012a) extended this factorization method to higher-order schemes to112

calculate first-arrival traveltimes and amplitudes. Treister and Haber (2016) and Treister113

and Haber (2017) used the first- and second-order finite difference schemes in the fast114

marching method to solve the factored eikonal equation. Luo and Qian (2012b) gave a115

systematic procedure to obtain analytical approximations for the known factor that cap-116
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tures the source singularities, and extended the factorization approach to eikonal equa-117

tion in the TEA media. Following this approach, Waheed et al. (2014), Tavakoli et al.118

(2015), and Waheed and Alkhalifah (2017) proposed an iterative factored eikonal solver119

for computing the first-arrival traveltime of the qP wave in TTI media with a simplified120

formulation of the anisotropic eikonal equation. Bouteiller et al. (2018) extended the fac-121

torization approach to a high-order method in the framework of discontinuous Galerkin122

method by transforming the simplified anisotropic eikonal equation into a time-dependent123

equation.124

In review of the traveltime calculation methods in anisotropic media with the fi-125

nite difference schemes, one finds that most of them are the eikonal solvers for the qP126

wave governed by a weak or simplified anisotropic eikonal equation, because the qSV wave127

involves a triplication phenomenon when several qSV waves can propagate along the same128

raypath (Vavrycuk, 2003a, 2006). This phenomenon is mostly associated with strong anisotropy129

or with directions close to point singularities in anisotropy (Vavrycuk, 2003b). In this130

work, we propose an anisotropic eikonal solver for the qP, qSV and qSH waves, in the131

framework of the fast sweeping method, in 2D TTI media with arbitrary anisotropic strength.132

The method has the following important features: (1) the anisotropic eikonal equation133

is discretized on a mesh covering the computational domain; (2) the coupled system of134

the discretized equations among all grid points is solved iteratively by combining the Gauss-135

Seidel iterations with alternating sweeping orderings; (3) at each grid point, the subin-136

tervals that contain the solutions of the discretized equation are predetermined such that137

each subinterval contains exactly one solution and the false position method can be ap-138

plied to compute the solutions efficiently; (4) among all possible solutions at a grid point,139

a causality condition is imposed to pick the one that corresponds to the first-arrival trav-140

eltime; (5) the scheme is monotone and the numerical solution will converge to the vis-141

cosity solution as the mesh size approaches zero; and (6) the medium can have arbitrary142

anisotropic strength, and the symmetric axis of the anisotropic medium can have arbi-143

trary orientation. These features make the eikonal solver more applicable to general sit-144

uations and can obtain first-arrival traveltimes for the three waves. In order to resolve145

the source singularities for the anisotropic eikonal equation with point-source conditions,146

the factorization approach is applied such that a factored anisotropic eikonal equation147

is derived. The proposed anisotropic eiknoal solver is further extended to solve the fac-148

tored anisotropic eikonal equation following the similar procedures, which results in the149

fast sweeping methods for the factored anisotropic eikonal equation. The proposed meth-150

ods enjoy all the appealing features of the usual fast sweeping method. The number of151

iterations is independent of the mesh size, and the numerical solution will converge to152

the desired weak solution as the mesh size approaches zero.153

The rest of the paper is organized as follows: the general anisotropic eikonal equa-154

tion for TTI media, and the factored anisotropic eikonal equations by use of the mul-155

tiplicative and additive factorization techniques are introduced in Section 2. The numer-156

ical schemes in the framework of the fast sweeping method for solving the general and157

factored anisotropic eikonal equations are presented in Section 3. A few anisotropic mod-158

els are used in the numerical experiments to verify the accuracy and efficiency of the pro-159

posed methods, which is discussed in Section 4. Conclusive remarks are given at the end.160

2 Anisotropic eikonal equation161

The determination of the traveltimes of seismic waves in general anisotropic me-162

dia involves solving a sixth-order partial differential equation, i.e., the Christoffel equa-163

tion (Cerveny, 2001),164

det
∣∣aijklnjnl − v2δik∣∣ = 0, (1)

where aijkl is a rank-4 density normalized stiffness tensor, n is the normal vector of the165

wavefront, v is the phase velocity, and δik is the Kronecker delta function. From the Christof-166
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fel equation, and by introducing the slowness vector p =
n

v
, one can derive the anisotropic167

eikonal equation as168

v|∇T | = 1, (2)

where T is the traveltime and p = ∇T . In 2D cases, equation (2) can be rewritten as169

H(P,Q) ≡ vm
√
P 2 +Q2 − 1 = 0, (m = 1, 2, 3). (3)

where vm(m = 1, 2, 3) is the phase velocity for the qP-, qSV- and qSH-wave, respec-170

tively, and (P,Q) = (Tx, Ty). A general 2D TTI medium can be defined by five elas-171

tic moduli {a11, a13, a33, a44, a66} and the angle of the symmetry axis θ0 (Thomsen, 1986).172

The expressions for vm corresponding to the three wavemodes are given as (Daley & Hron,173

1977; Zhou & Greenhalgh, 2004),174

v1,2 =

√
M ±

√
M2 −N,

v3 =

√
a44 + (a66 − a44) sin2 ϑ, (4)

where M and N are defined as,175

M = 0.5(K1 +K2),

N = K1K2 −K3, (5)

and176

K1 = a44 cos2 ϑ+ a11 sin2 ϑ,

K2 = a33 cos2 ϑ+ a44 sin2 ϑ,

K3 = 0.25(a13 + a44)2 sin2 2ϑ. (6)

Here the angle ϑ is formed by the phase slowness direction and the direction of the sym-177

metry axis of the medium, i.e., ϑ = θ − θ0 with θ the phase slowness angle. The rela-178

tionship of these three angles is illustrated in Figure 1. According to Thomsen (1986),179

the phase slowness angle θ is formed by the wavefront normal and the vertical axis of180

the medium, and it can be computed by181

θ = arccos

(
Q√

P 2 +Q2

)
. (7)

With equations (4) to (7), the phase velocity vm can be computed for an anisotropic182

TTI media, and vm depends on the phase slowness angle θ.183

2.1 Multiplicatively factored anisotropic eikonal equation184

The multiplicative factorization method decomposes the solution of equation (2)185

as a product of two factors: the first factor is calculated analytically or numerically to186

capture the source singularities, and the second factor is a smooth correction near the187

source. Let us consider a multiplicatively factored decomposition,188

T = T0τ , (8)

where T0 is the pre-determined factor to capture the source singularities, and τ is the189

unknown factor that is smooth near the source.190

Substituting equation (8) into equation (2) yields the following multiplicatively fac-191

tored anisotropic eikonal equation for τ ,192

vm |(P1, Q1)| = 1, (m = 1, 2, 3), (9)
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with P1 and Q1 defined as,193

P1 = T0xτ + T0τx,

Q1 = T0yτ + T0τy. (10)

Then, equation (9) can be rewritten as194

H(P1, Q1) ≡ vm
√
P 2
1 +Q2

1 − 1 = 0, (m = 1, 2, 3). (11)

2.2 Additively factored anisotropic eikonal equation195

For the additively factored method, the traveltime T is decomposed as196

T = T0 + τ , (12)

where T0 and τ are defined similarly.197

Substituting equation (12) into equation (2) yields the additively factored anisotropic198

eikonal equation for τ ,199

vm |(P2, Q2)| = 1, (m = 1, 2, 3), (13)

with P2 and Q2 defined as,200

P2 = T0x + τx,

Q2 = T0y + τy. (14)

Then, equation (13) can be rewritten as201

H(P2, Q2) ≡ vm
√
P 2
2 +Q2

2 − 1 = 0, (m = 1, 2, 3). (15)

3 Fast sweeping method202

To compute the first-arrival traveltimes for the three wavemodes, we will solve the203

anisotropic eikonal equation (3) numerically in the sense of viscosity solutions, for which204

the fast sweeping method is presented. For simplicity, we illustrate the scheme on a uni-205

form mesh (nx × ny) covering the rectangular computational domain, with mesh size206

(hx, hy). We take hx = hy = h for notational simplicity.207

3.1 General eikonal equation208

Figure 2 shows an interior grid point C with four neighboring grid points W,E,N, S.209

The anisotropic eikonal equation can be discretized on the four triangles associated with210

point C: ∆CEN , ∆CNW , ∆CWS and ∆CSE. Taking ∆CWS as an example, the dis-211

cretized eikonal equation can be written as212

vm

∣∣∣∣(TC − TWh
,
TC − TS

h

)∣∣∣∣− 1 = 0, (m = 1, 2, 3), (16)

where TW and TS are traveltimes at grid points W and S, respectively.213

Given TW and TS , equation (16) must be solved to find solutions for TC at C. Sim-214

ilarly, the anisotropic eikonal equation (3) is discretized on the remaining three trian-215

gles, and is solved for solutions TC at C with given neighbor values. For each possible216

solution for TC , it is required to satisfy a causality condition such that it becomes a can-217

didate for updating TC at C. The causality condition is related to the characteristic di-218

rection,219

∂H

∂P
=

P√
P 2 +Q2

vm(θ)− Q√
P 2 +Q2

∂vm
∂θ

,

∂H

∂Q
=

Q√
P 2 +Q2

vm(θ) +
P√

P 2 +Q2

∂vm
∂θ

. (17)
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In triangle ∆CWS, it requires
∂H

∂P
≥ 0 and

∂H

∂Q
≥ 0. In general, the causality condition220

requires that (HP , HQ) passes through C and lies in the triangle used in the discretiza-221

tion. Then for all possible candidates for TC from all the four triangles, we pick the min-222

imum one that corresponds to the first-arrival traveltime. If there are no candidates, TC223

will be updated along the edges, for example on triangle ∆CWS,224

TC = min

(
TW +

h

UWC
m

, TC +
h

USCm

)
, (m = 1, 2, 3), (18)

where UWC
m and USCm are group velocities along edges

−→
WC and

−→
SC, respectively.225

The discretized equation (16) at all grid points are coupled together to form a sys-226

tem of nonlinear equations that can be solved using the Gauss-Seidel iteration with al-227

ternating sweeping orderings, which is the fast sweeping method.228

Algorithm Sketch: Fast Sweeping Method for Anisotropic Eikonal Equa-229

tion230

1. Initialization: assigning exact/approximate values at grid points according to given231

boundary conditions, which will be fixed during the iterations, and assigning large232

positive values at all other grid points.233

2. Gauss-Seidel iteration: sweeping the computational domain with four alternating234

orderings iteratively:235

(a) i = 1 : nx, j = 1 : ny, (b) i = 1 : nx, j = ny : 1,

(c) i = nx : 1, j = 1 : ny, (d) i = nx : 1, j = ny : 1,

and at each grid point C, updating TC according to the above numerical proce-236

dure.237

3. Termination: terminating the iteration if the L1-norm difference of the solutions238

between two successive iterations is smaller than the specified accuracy require-239

ment.240

During the Gauss-Seidel iteration of the fast sweeping method, the discretized equa-241

tion (16) must be solved efficiently, and the group velocity along edges needs to be com-242

puted.243

3.2 Multiplicatively factored eikonal equation244

Taking ∆CWS as an example, the discretized equation of the multiplicatively fac-245

tored eikonal equation can be written as246

vm |(P1, Q1)| − 1 = 0, (m = 1, 2, 3), (19)

where P1 and Q1 are defined as,247

P1 = T0xτC + T0
τC − τW

h
,

Q1 = T0yτC + T0
τC − τS

h
. (20)

Given τW and τS , this equation can be solved to find solutions for τC at C. Sim-248

ilarly, each possible solution for τC should satisfy a causality condition such that it be-249

comes a candidate for updating τC at C. The causality condition is similar as above with250

the characteristic direction given by,251

∂H

∂P1
=

P1√
P 2
1 +Q2

1

vm(θ)− Q1√
P 2
1 +Q2

1

∂vm
∂θ

,

–7–
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∂H

∂Q1
=

Q1√
P 2
1 +Q2

1

vm(θ) +
P1√

P 2
1 +Q2

1

∂vm
∂θ

. (21)

In triangle ∆CWS, it requires
∂H

∂P1
≥ 0 and

∂H

∂Q1
≥ 0. Similarly, the factored anisotropic252

eikonal equation must be discretized and solved on the remaining three triangles. And253

from all possible candidates for τC that satisfy the causality condition, we pick the min-254

imum one corresponding to the first-arrival traveltime. If there are no candidates, we will255

update τC along the edges in the following way as in Fomel et al. (2009) and Luo and256

Qian (2012b).257

The characteristic equations of the multiplicatively factored eikonal equation are258

given as259 (
dx

dt
,
dy

dt

)
=

(
∂H

∂p
,
∂H

∂q

)
= T0

(
∂H

∂P1
,
∂H

∂Q1

)
,

dτ

dt
= (p, q)

(
∂H

∂p
,
∂H

∂q

)T
= 1−

(
T0x

∂H

∂P1
+ T0y

∂H

∂Q1

)
τ, (22)

where (p, q) = (τx, τy) are derivatives of τ with respect to x and y, respectively. Ac-260

cording to the first equation, we have261 (
dx

dt

)2

+

(
dy

dt

)2

= T 2
0U

2
m, (m = 1, 2, 3), (23)

where Um is the group velocity that will be defined in equation (34). Using the method262

of characteristics, we can approximate τC at C along the edge
−→
WC (or

−→
SC) by impos-263

ing that the ray falls on
−→
WC (or

−→
SC). Let us take the edge

−→
WC= (δx, δy) as an exam-264

ple. According to equation (23), we have265

δt =

√
δx2 + δy2

T0Um
, (m = 1, 2, 3). (24)

Then from the second equation of the characteristic equations, the approximation for266

τC , denoted as τWC , can be computed by,267

τWC =
τW + δt

1 + T0x
δx
T0

+ T0y
δy
T0

. (25)

Similarly, τC can also be calculated along
−→
SC, denoted as τSC . And we will pick268

the minimal one by min {τWC , τSC} to update τC at C.269

The discretized equation (19) at all grid points are coupled together to form a sys-270

tem of nonlinear equations. This set of nonlinear equations can be solved similarly us-271

ing the fast sweeping method. The algorithmic sketch of the fast sweeping method for272

the multiplicatively factored eikonal equation is similar to that of the general eikonal equa-273

tion. However, the latter one involves three extra parameters T0, T0x and T0y.274

3.3 Additively factored eikonal equation275

Similarly, taking ∆CWS as an example, the discretized equation of the additively276

factored eikonal equation can be written as277

vm |(P2, Q2)| − 1 = 0, (m = 1, 2, 3), (26)

where P2 and Q2 are defined as,278

P2 = T0x +
τC − τW

h
,

Q2 = T0y +
τC − τS

h
. (27)

–8–
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Given τW and τS , this equation can also be solved to find solutions for τC at C.279

A similar causality condition is imposed on the solution such that it becomes a candi-280

date for updating τC at C. The characteristic direction for the additively factored eikonal281

equation is given as,282

∂H

∂P2
=

P2√
P 2
2 +Q2

2

vm(θ)− Q2√
P 2
2 +Q2

2

∂vm
∂θ

,

∂H

∂Q2
=

Q2√
P 2
2 +Q2

2

vm(θ) +
P2√

P 2
2 +Q2

2

∂vm
∂θ

. (28)

In triangle ∆CWS, it requires
∂H

∂P2
≥ 0 and

∂H

∂Q2
≥ 0. Similarly, from all possi-283

ble candidates that satisfy the causality condition, the minimum one is chosen to update284

τC at C. If there are no candidates, τC will be calculated along the two edges
−→
WC and285

−→
SC, respectively.286

The characteristic equations of the additively factored eikonal equation are given287

as288 (
dx

dt
,
dy

dt

)
=

(
∂H

∂p
,
∂H

∂q

)
=

(
∂H

∂P2
,
∂H

∂Q2

)
,

dτ

dt
= (p, q)

(
∂H

∂p
,
∂H

∂q

)T
= 1−

(
T0x

∂H

∂P2
+ T0y

∂H

∂Q2

)
. (29)

According to the first equation, we have289 (
dx

dt

)2

+

(
dy

dt

)2

= U2
m, (m = 1, 2, 3). (30)

Using the method of characteristics, we can compute τC at C along the edge
−→
WC (or290

−→
SC) by imposing that the ray falls on

−→
WC (or

−→
SC). Let us take the edge

−→
WC= (δx, δy)291

as an example. According to equation (30), we have292

δt =

√
δx2 + δy2

Um
, (m = 1, 2, 3). (31)

According to the second equation of the characteristic equations, the approximation for293

τC , denoted as τWC , can be computed as,294

τWC = τW + δt−
(
T0xδx+ T0yδy

)
. (32)

Similarly, τC can also be calculated along
−→
SC, denoted as τSC . And the minimum295

one, min {τWC , τSC}, is chosen to update τC at C.296

The algorithmic sketch of the fast sweeping method for the additively factored eikonal297

equation is also similar to that of the general eikonal equation. And it also involves three298

extra parameters T0, T0x and T0y.299

3.4 Calculation of traveltime T0300

For the two factorization techniques, T0 should be computed for a homogeneous301

anisotropic model, where the medium parameters are assigned as those of the orginal model302

at the source point. T0 can be computed as303

Tm0 (x) =
|x− x0|
Um (θ)

, (m = 1, 2, 3), (33)

–9–
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where x0 is the source position, and x is a position in the model domain. Um (θ) is the304

group velocity along the ray direction x− x0.305

The expression of the group velocity can be found in previous work (Berryman, 1979),306

U2
m = v2m +

(
∂vm
∂ϑ

)2

, (m = 1, 2, 3), (34)

where307

∂v1,2
∂ϑ

=
1

2v1,2

[
∂M

∂ϑ
±
M ∂M

∂ϑ − 0.5∂N∂ϑ√
M2 −N

]
,

∂v3
∂ϑ

=
(a66 − a44)

2v3
sin 2ϑ, (35)

and308

∂M

∂ϑ
= 0.5(a11 − a33) sin 2ϑ,

∂N

∂ϑ
= [K1(a44 − a33) +K2(a11 − a44)] sin 2ϑ− 0.5(a44 + a13)2 sin 4ϑ. (36)

The phase slowness angle θ, as well as the angle ϑ, are defined implicitly in that they309

depend on the solution T . We will present a numerical procedure to compute the group310

velocity and phase velocity along a ray direction in Section 3.8.311

3.5 Solving the discretized equation (16)312

At grid point C, the discretized equation (16) must be solved among all the four313

triangles. The equation is highly nonlinear in TC , and it may have multiple solutions for314

TC . Therefore, solving equation (16) for TC is challenging. We present our numerical pro-315

cedures for solving the equation: (1) determine an interval that contains all possible so-316

lutions, (2) partition the interval into subintervals such that each subinterval contains317

exactly one solution, and (3) apply false position method to find the solution in each subin-318

terval (Press et al., 1992). We elaborate the numerical procedures by taking ∆CWS as319

an example.320

According to the Fermat’s principle, the interval that contains all possible values321

for TC is322

IWS ≡
[
min(TW , TS),min

(
TW +

h

UWC
m

, TS +
h

USCm

)]
, (m = 1, 2, 3). (37)

In order to determine subintervals that contain exactly one solution, we need to323

locate the extrema of H as a function of TC , and use the extreme points to partition the324

interval into a few subintervals (see Figure 6). We can determine the extreme points by325

calculating the critical points through326

∂H

∂TC
=
∂H

∂P

∂P

∂TC
+
∂H

∂Q

∂Q

∂TC
= 0, (38)

which is an equation of the angle θ after algebraic manipulation, i.e.,327

F (θ) ≡
(

sin θvm(θ)− cos θ
∂vm
∂θ

+ cos θvm(θ) + sin θ
∂vm
∂θ

)
1

h
= 0. (39)

Therefore, we can solve equation (39) for all possible solutions θi, and then find cor-328

responding extreme points for H as a function of TC through329

T iC =
sin θiTS − cos θiTW

sin θi − cos θi
, (i = 1, 2, 3, · · ·). (40)

–10–
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We note that the solutions for F (θ) can be precomputed and saved. Then during330

the Gauss-Seidel iteration, T iC are computed through formula (40) to partition the in-331

terval IWS into subintervals. Once the subintervals are determined, we can simply ap-332

ply the false position method to find the solution in each subinterval, hence we can find333

all solutions in the interval IWS .334

3.6 Solving the discretized equation (19)335

Similarly, at grid point C, the discretized equation (19) needs to be solved in all336

the four triangles. The equation is also highly nonlinear in τC , and it may have multi-337

ple solutions for τC . In order to introduce the procedures conveniently, we also take ∆CWS338

as an example.339

According to the Fermat’s principle, the interval that contains all possible values340

for τC is341

IWS ≡
[
min

(
τWT0W
T0C

,
τST0S
T0C

)
,min (τWC , τSC)

]
, (41)

where τWC and τSC can be calculated by the method of characteristics along two edges342
−→
WC and

−→
SC, respectively.343

In order to partition the interval IWS into a few subintervals such that each subin-344

terval contains exactly one solution, we can locate the extreme points of H as a func-345

tion of τC , and use the extreme points as the partitioning points. We can determine the346

extreme points by calculating the critical points through347

∂H

∂τC
=
∂H

∂P1

∂P1

∂τC
+
∂H

∂Q1

∂Q1

∂τC
= 0, (42)

which is an equation of the angle θ after algebraic manipulation, i.e.,348

F (θ) ≡
(

sin θvm(θ)− cos θ
∂vm
∂θ

)
L1 +

(
cos θvm(θ) + sin θ

∂vm
∂θ

)
L2 = 0, (43)

with349

L1 = T0x +
T0
h
,

L2 = T0y +
T0
h
. (44)

From the solutions of equation (43), denoted as θi, (i = 1, 2, 3, · · ·), the extreme350

points of H as a function of τC can be computed by,351

τ iC =
sin θiT0τS − cos θiT0τW

sin θiT0yh+ sin θiT0 − cos θiT0xh− cos θiT0
, (i = 1, 2, 3, · · ·). (45)

The solutions of F (θ) can be pre-computed and saved for repeated use during the352

Gauss-Seidel iterations. In the local solver, τ iC can be calculated using formula (45) to353

partition the interval IWS into a few subintervals. And then the false position method354

is applied to find the solution in each subinterval, hence all solutions in the interval can355

be found.356

3.7 Solving the discretized equation (26)357

Similarly, at grid point C, the discretized equation (26) needs to be solved for τC358

in all the four triangles. We also take ∆CWS as an example to demonstrate the pro-359

cedures.360

–11–
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According to the Fermat’s principle, the interval that contains all possible values361

for τC is362

IWS ≡ [min (T0W − T0C + τW , T0S − T0C + τS) ,min (τWC , τSC)] . (46)

The interval IWS is also partitioned into a few subintervals such that each each subin-363

terval contains exactly one solution. The partitioning points are also the extreme points364

of H as a function of τC , and they can be determined by calculating the critical points365

through,366

∂H

∂τC
=
∂H

∂P2

∂P2

∂τC
+
∂H

∂Q2

∂Q2

∂τC
= 0, (47)

which is also an equation of the angle θ after algebraic manipulation, i.e.,367

F (θ) ≡
(

sin θvm(θ)− cos θ
∂vm
∂θ

+ cos θvm(θ) + sin θ
∂vm
∂θ

)
1

h
= 0, (48)

Similarly, from the solutions of equation (48), denoted as θi, (i = 1, 2, 3, · · ·), we368

can compute the extreme points of H as a function of τC by,369

τ iC =
cos θiT0xh− sin θiT0yh− cos θiτW + sin θiτS

sin θi − cos θi
, (i = 1, 2, 3, · · ·). (49)

The solutions of F (θ) can be pre-computed and saved for repeated use during the370

Gauss-Seidel iterations. In the local solver, these critical points, associated with each grid371

point, can be used to partition the interval IWS into a few subintervals. After that, we372

can use the false position method to find the solution in each subinterval, hence all so-373

lutions in the interval can be found.374

3.8 Group velocity Um along ray direction375

When calculating T0, τWC and τSC , the group velocity Um along a given ray di-376

rection must be determined. For example, Um along edges is used in the local solver for377

a given grid point C. However, the group velocity is a function of the phase slowness di-378

rection, but not a function of the ray direction. If the phase slowness direction for a given379

ray direction can be determined, then the group velocity along the ray direction can be380

computed. Previous work (Vavrycuk, 2006, 2008; Zhang & Zhou, 2018) has investigated381

how to calculate the slowness vector for a given ray direction.382

If the phase slowness direction n = (sin θ, cos θ) and the phase velocity vm are given,383

the slowness vector pm can be written as384

pm =
n

vm
, (m = 1, 2, 3). (50)

According to Cerveny (2001), the phase slowness vector pm and the group veloc-385

ity vector Um should satisfy the following equation,386

pm ·Um = 1. (51)

The phase slowness direction n and the ray direction N are given as387

n =
pm

|pm|
, N =

Um

|Um|
. (52)

By dividing equation (51) with |pm| |Um|, one can derive the following equation,388

n ·N− vm
Um

= 0. (53)
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For a given ray direction, denoted as N = (N1, N2), equation (53) provides a way389

to calculate the phase slowness angle θ, as well as the phase velocity vm and the group390

velocity Um, i.e., by solving the following equation,391

G(θ) ≡ N1 sin θ +N2 cos θ − vm(θ)

Um(θ)
= 0. (54)

From equation (54), we can see that the only unknown is θ. If the phase slowness392

angle θ is computed, then group velocity Um and the phase velocity vm along the ray393

direction N can be calculated.394

Equation (54) can be pre-solved for θ, as well as for vm and Um, along a set of ray395

directions. For example, on ∆CWS, this equation can be pre-solved for the two ray di-396

rections along two edges
−→
WC and

−→
SC, respectively, and hence the group velocity along397

these two directions can be saved for repeated use during the Gauss-Seidel iterations.398

3.9 Discussion of the methods399

The proposed method is developed in the framework of the fast sweeping method.400

Therefore, it has all the desired properties of the fast sweeping method, such as consis-401

tency, monotonicity and convergence (Zhao, 2005; Qian et al., 2007; Luo & Zhao, 2016).402

The scheme is consistent with the first-order finite difference approximations, i.e., the403

discretized equation will converge to the original equation as the mesh size approaches404

zero. The causality condition implies that the scheme is monotone, i.e., at each grid point405

C, the numerical Hamiltonian H is non-decreasing with respect to the solution at C, and406

non-increasing with respect to the solutions at neighbor points. The consistency and mono-407

tonicity assure the stability of the scheme such that the numerical solution will converge408

to the viscosity solution (Barles & Souganidis, 1991; Zhao, 2005; Qian et al., 2007; Luo409

& Zhao, 2016) which corresponds to the first-arrival traveltime (Lions, 1982).410

Similarly as in the usual fast sweeping method, the number of iterations depends411

on the problems and the desired accuracy requirement. However, for a given problem412

with a prescribed accuracy requirement, it is independent of the mesh size as the mesh413

size approaches zero (Zhao, 2005; Qian et al., 2007; Luo & Zhao, 2016).414

In the local solver for solving the highly nonlinear equations to compute all pos-415

sible updates at each grid point, necessary ingredients can be pre-determined prior to416

the Gauss-Seidel iterations. That is, equations (39), (43), (48) and (54) can be pre-solved417

with any appropriate root-finding methods, and their solutions can be saved for repeated418

use during the Gauss-Seidel iterations. Moreover, their solutions can be computed ef-419

ficiently in parallel.420

4 Numerical examples421

We present several numerical experiments to demonstrate the efficiency and accu-422

racy of the developed methods. In the numerical implementations, we denote one iter-423

ation as four sweeps over all grid points. Numerical errors at all grid points in L1-norm424

are recorded. The stopping criterion is 10−9. Wherever applicable, the solutions com-425

puted by the shortest path method (SPM) on densely sampled meshes are used as the426

reference solutions (Zhou & Greenhalgh, 2006; G. Huang et al., 2014).427

4.1 Homogeneous anisotropic model428

We first use a homogeneous anisotropic model to test the effectiveness and feasi-429

bility of the proposed methods, along with demonstration of the necessary ingredients430

in the methods. The moduli parameters are a11 = 5.2, a13 = 0.93, a33 = 4.0, a44 =431
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1.0, a66 = 1.0, and the inclination angle θ0 is set to 0o (VTI), 45o (TTI), or 90o (HTI).432

The computational domain is a 5×2.5 km rectangular domain, with a point source lo-433

cated at x = 2.5 km, y = 0 km.434

For computing the group velocity along a given ray direction, equation (54), i.e.,435

G(θ) = 0, needs to be solved. Figure 3 shows an example of the function G(θ) with θ0 =436

0o for the three wavemodes. From Figure 3, one can see that at least one root of G(θ)437

exists for each of the three wavemodes. If more than one root exist, for example in the438

case of triplication for the qSV wave (Vavrycuk, 2003a, 2003b, 2006), the one correspond-439

ing to the minimal group velocity is chosen. Figure 4 shows an example of the triplica-440

tion for the qSV wave.441

For solving the discretized equation on a triangle at a given grid point, the roots442

of F (θ) are used to partition the solution interval into subintervals (see Figure 5). Fig-443

ure 6 shows an example of the function F (θ) that has about 2-6 roots for the three wave-444

modes. These roots correspond to the extreme points of H in the solution interval.445

Traveltime tables of the qP, qSV and qSH-wave computed by the proposed meth-446

ods are compared with the reference solutions in Figures 7-9. The number of iterations,447

L1-norm errors, CPU times and convergence orders are listed in Table 1. We observe the448

expected order of convergence O(h log(h)) that is normal for the fast sweeping method.449

For the two factored methods, the machine error is dominant. For example with θ0 =450

0o: for the qP wave, the maximal relative error of the original method is 0.14, and the451

maximal relative errors of the two factored methods are close to 2.75×10−5; for the qSV452

wave, the maximal relative error of the original method is 0.33, and the maximal rela-453

tive errors of the two factored methods are close to 8.5× 10−6; for the qSH wave, the454

maximal relative error of the original method is 0.21, and the maximal relative errors455

of the two factored methods are close to 1.7× 10−5.456

4.2 Overthrust TTI model457

We further test the proposed methods on the overthrust TTI model, with the model458

parameters shown in Figure 10. The computational domain is a 6×4 km rectangular459

domain with a point source located at x = 3 km, y = 0 km. The reference solution is460

computed by the irregular grid shortest path method (SPM) (Zhou & Greenhalgh, 2006;461

G. Huang et al., 2014) on a 601×401 mesh, with 5 secondary nodes added to each cell462

boundary in the computation. The number of iterations, L1-norm errors, convergence463

orders and CPU times are listed in Tables 2-4, where we observe a clean first-order con-464

vergence for the two factored methods. The numerical plots are presented in Figures 11-465

13, where we can see that the solutions match very well, and the solutions computed by466

the two factored methods have better resolutions than those computed by the original467

FSM.468

5 Conclusions469

We present an efficient fast sweeping method (FSM) for calculating first-arrival trav-470

eltimes of the three wavemodes (qP, qSV, and qSH) in 2D heterogeneous, transversely471

isotropic media with arbitrary dipping symmetry axes. No weak anisotropy is assumed,472

and no simplification is made to the phase and group velocities. The proposed methods473

enjoy all the appealing features as in the fast sweeping method for the isotropic eikonal474

equation (Zhao, 2005), i.e., consistency, monotonicity and convergence.475

For problems with a point-source condition, a factorization approach is applied to476

resolve the source singularities such that clear first-order convergence is obtained. Nu-477

merical experiments, including a homogeneous model, a three-layered model (Supple-478
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mentary Section) and the Overthrust TTI model, verify the effectiveness of the proposed479

methods.480

Extension of the proposed methods to 3D anisotropic eikonal equation in TTI me-481

dia is underway. The formulations of the methods are similar as those in 2D cases. The482

main difference is in equations (39), (43) and (48) for pre-computing the partitioning points483

and equation (54) for computing the group velocity along a given ray direction. For 3D484

cases, these equations will depend on two unknown angles (just like the spherical coor-485

dinate system in 3D versus the polar coordinate system in 2D), which is more challeng-486

ing than 2D cases where these equations depend on one unknown angle. Solving a non-487

linear equation of two unknowns is non-trivial. An extra condition/equation is required,488

which can be provided through the relation among the slowness vector, the ray vector489

and the symmetric axis. The resulting system of two equations will be solved to deter-490

mine the two unknown angles, and the solutions can be saved and repeated used to com-491

pute the partitioning points in the Gauss-Seidel iterations, similarly as in 2D cases. We492

will report the results once the work is completed.493
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Figure 1. Definition of three different angles: (a) ϑ is the angle between the phase slowness

direction and the symmetry axis direction. (b) θ is the angle between the phase slowness direc-

tion and the vertical y-axis. (c) θ0 is the angle between the symmetry axis direction and the

vertical y-axis.
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Figure 2. Rectangular mesh in the 2D case. Four triangles (∆CEN , ∆CNW , ∆CWS and

∆CSE) are used to calculate traveltime candidates for the center grid point C.
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Figure 3. Function G(θ) for three wavemodes (qP-, qSV- and qSH-wave) in the homogeneous

anisotropic model with the inclination angle θ0 = 0o.
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Figure 4. Group velocities of the qSV wavemode for three different orientations of the sym-

metry axis (θ0 = 0o, 45o and 90o). The group velocity is plotted against the ray angle from −π/2
to π/2.
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Figure 5. Extreme points of the eikonal equation partition the solution interval IWS into

subintervals. LB and UB are the lower and upper bounds of the solution interval, respectively.

The blue solid circles represent the extreme points in the solution interval, while the blue hollow

circles represent the extreme points outside of the solution interval.
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Figure 6. Curves of the critical point function F (θ) for the three wavemodes in homogeneous

anisotropic model.
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Figure 7. Traveltime comparison for the three wavemodes between the reference and numer-

ical solutions in the homogeneous anisotropic model with θ0 = 0o. Black contour line stands

for the reference solution; Red contour line stands for the numerical solution calculated by the

FSM method; Blue and magenta contour lines represent the numerical solutions calculated by the

additively and multiplicatively factored FSM methods respectively.
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Figure 8. Traveltime comparison for the three wavemodes between the reference and numer-

ical solutions in the homogeneous anisotropic model with θ0 = 45o. Black contour line stands

for the reference solution; Red contour line stands for the numerical solution calculated by the

FSM method; Blue and magenta contour lines represent the numerical solutions calculated by the

additively and multiplicatively factored FSM methods respectively.
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Figure 9. Traveltime comparison for the three wavemodes between the reference and numer-

ical solutions in the homogeneous anisotropic model with θ0 = 90o. Black contour line stands

for the reference solution; Red contour line stands for the numerical solution calculated by the

FSM method; Blue and magenta contour lines represent the numerical solutions calculated by the

additively and multiplicatively factored FSM methods respectively.
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Figure 10. Anisotropic parameters of the overthrust TTI model. (a) a11 model, (b) a13

model, (c) a33 model, (d) a44 model, (e) a66 model, (f) θ0 model.

–28–

©2020 American Geophysical Union. All rights reserved.



manuscript submitted to JGR: Solid Earth

Figure 11. Traveltime comparison for the qP wave between the reference and numerical so-

lutions in the overthrust TTI model. (a) Black contour line stands for the reference solution, red

contour line stands for the numerical solution calculated by the FSM method, blue and magenta

contour lines represent the numerical solutions generated by the additively and multiplicatively

factored FSM methods respectively. (b) Zoom-in map of the square area as shown in (a), from

which we can see traveltimes solved by the factored methods have better accuracy.

–29–

©2020 American Geophysical Union. All rights reserved.



manuscript submitted to JGR: Solid Earth

Figure 12. Traveltime comparison for the qSV wave between the reference and numerical so-

lutions in the overthrust TTI model. (a) Black contour line stands for the reference solution, red

contour line stands for the numerical solution calculated by the FSM method, blue and magenta

contour lines represent the numerical solutions generated by the additively and multiplicatively

factored FSM methods respectively. (b) Zoom-in map of the square area as shown in (a), from

which we can see traveltimes solved by the factored methods have better accuracy.
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Figure 13. Traveltime comparison for the qSH wave between the reference and numerical so-

lutions in the overthrust TTI model. (a) Black contour line stands for the reference solution, red

contour line stands for the numerical solution calculated by the FSM method, blue and magenta

contour lines represent the numerical solutions generated by the additively and multiplicatively

factored FSM methods respectively. (b) Zoom-in map of the square area as shown in (a), from

which we can see traveltimes solved by the factored methods have better accuracy.
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Table 1. Accuracy of the first-order FSM method in the homogeneous anisotropic model.

qP wavemode

Mesh Iteration L1 error Convergence order Time cost (seconds)

101× 51 1 0.0138 - 0.7

201× 101 1 0.0082 0.7510 1.0

401× 201 1 0.0047 0.8030 4.0

801× 401 1 0.0027 0.8090 20.0

qSV wavemode

Mesh Iteration L1 error Convergence order Time cost (seconds)

101× 51 1 0.0272 - 1.0

201× 101 1 0.0153 0.8301 2.0

401× 201 1 0.0084 0.8651 8.0

801× 401 1 0.0046 0.8789 29.0

qSH wavemode

Mesh Iteration L1 error Convergence order Time cost (seconds)

101× 51 1 0.0369 - 1.0

201× 101 1 0.0221 0.7396 1.0

401× 201 1 0.0129 0.7767 6.0

801× 401 1 0.0074 0.8111 25.0
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Table 2. Accuracy of the first-order FSM method in the overthrust TTI model.

qP wavemode

Mesh Iteration L1 error Convergence order Time cost (seconds)

76× 51 1 0.0181 - 1.0

151× 101 2 0.0101 0.8416 2.0

301× 201 2 0.0061 0.7275 10.0

qSV wavemode

Mesh Iteration L1 error Convergence order Time cost (seconds)

76× 51 1 0.0298 - 0.8

151× 101 2 0.0173 0.7845 2.0

301× 201 2 0.0106 0.7067 9.0

qSH wavemode

Mesh Iteration L1 error Convergence order Time cost (seconds)

76× 51 1 0.0283 - 1.0

151× 101 2 0.0161 0.8137 2.0

301× 201 2 0.0099 0.7016 10.0
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Table 3. Accuracy of the first-order additively factored FSM method in the overthrust TTI

model.

qP wavemode

Mesh Iteration L1 error Convergence order Time cost (seconds)

76× 51 1 0.0058 - 1.0

151× 101 1 0.0030 0.9511 2.0

301× 201 2 0.0015 1.0000 11.0

qSV wavemode

Mesh Iteration L1 error Convergence order Time cost (seconds)

76× 51 1 0.0103 - 2.0

151× 101 2 0.0053 0.9586 5.0

301× 201 2 0.0026 1.0275 25.0

qSH wavemode

Mesh Iteration L1 error Convergence order Time cost (seconds)

76× 51 1 0.0093 - 2.0

151× 101 2 0.0051 0.8667 8.0

301× 201 2 0.0025 1.0286 23.0
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Table 4. Accuracy of the first-order multiplicatively factored FSM method in the overthrust

TTI model.

qP wavemode

Mesh Iteration L1 error Convergence order Time cost (seconds)

76× 51 1 0.0034 - 0.8

151× 101 1 0.0014 1.2801 3.0

301× 201 2 5.6251e-04 1.3155 11.0

qSV wavemode

Mesh Iteration L1 error Convergence order Time cost (seconds)

76× 51 1 0.0045 - 1.0

151× 101 2 0.0020 1.1699 3.0

301× 201 2 7.5947e-04 1.3969 13.0

qSH wavemode

Mesh Iteration L1 error Convergence order Time cost (seconds)

76× 51 1 0.0054 - 1.0

151× 101 2 0.0022 1.2955 4.0

301× 201 2 9.6072e-04 1.1953 15.0
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