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Abstract

This paper presents a fast sweeping method (FSM) to calculate the first-arrival travel-
times of the qP, qSV, and qSH waves in two-dimensional (2D) transversely isotropic me-
dia, whose symmetry axis may have an arbitrary orientation (tilted transverse isotropy,
TTI). The method discretizes the anisotropic eikonal equation with finite difference ap-
proximations on a rectangular mesh, and solves the discretized system iteratively with

the Gauss-Seidel iterations along alternating sweeping orderings. At each mesh point,

a highly nonlinear equation needs to be solved to update the numerical solution until

its convergence. For solving the nonlinear equation, an interval that contains the solu-
tions is first determined and partitioned into a few subintervals such that each subin-
terval contains one solution; then the false position method is applied on these subin-
tervals to compute the solutions; after that, among all possible solutions for the discretized
equation, a causality condition is imposed and the minimum solution satisfying the causal-
ity condition is chosen to update the solution. For problems with a point-source condi-
tion, the fast sweeping method is extended for solving the anisotropic eikonal equation
after a factorization technique is applied to resolve the source singularities, which yields
clean first-order accuracy. When dealing with the triplication of the qSV wave, solutions
corresponding to the minimal group velocity are chosen such that continuous solutions

are computed. The accuracy, efficiency, and capability of the proposed method are demon-
strated with numerical experiments.

1 Introduction

The traveltimes of seismic waves are often used to study the interior structure of
the Earth. Numerical methods for calculating the traveltimes of seismic waves play an
important role in many seismic techniques, such as raypath backtracking, quality fac-
tor inversion, formation stress inversion, and Kirchhoff prestack depth migration. Ac-
curate traveltimes can be calculated by ray-tracing methods and finite difference eikonal
solvers. The ray-tracing method computes the traveltimes by solving an appropriate ini-
tial or boundary value problem for a system of ordinary differential equations. It can pro-
vide high-order accuracy for the traveltime tables (Cerveny, 1972; Shearer & Chapman,
1988). However, (1) raypaths often diverge from each other, and large spatial gaps of-
ten exist between two adjacent rays, especially in complicated heterogeneous velocity mod-
els (Vidale, 1990); (2) traveltimes are only calculated for shot-receiver pairs such that
they must be interpolated onto a large number of grid nodes when they are used for seis-
mic migration and tomography (Vinje et al., 1993; Gray & May, 1994; J. Huang & Belle-
fleur, 2012); (3) the two-point ray-tracing problem can be highly nonlinear such that it
is difficult to solve efficiently; and (4) it can be difficult or time-consuming to distinguish
whether the solution is a first or later arrival where triplication occurs. On the contrary,
the eikonal solvers such as the finite difference traveltime calculation methods have no
such disadvantages. For the past four decades, many eikonal solvers have been developed
(Vidale, 1988; Podvin & Lecomte, 1991; Cao & Greenhalgh, 1993; Hole & Zelt, 1995; Sethian
& Popovici, 1999; Kim, 2002; Zhao, 2005; Fomel et al., 2009; Stovas & Alkhalifah, 2012;
Lan et al., 2014). Among these eikonal solvers, the fast marching method (FMM) and
the fast sweeping method (FSM) are the two most popular ones. It is worth noting that
finite difference eikonal solvers in general can only compute first arrivals, they may re-
quire well-designed numerical procedures for solving a complicated nonlinear system, and
the number of iterations is problem-dependent if an iterative scheme is used.

The kinematic and dynamic features of seismic waves have great differences when
they propagate in isotropic and anisotropic media. In isotropic media, only compressional
and shear waves exist. While in anisotropic media, there may have three wavemodes: one
quasi-compressional wave (qP) and two quasi-shear waves (qS1 and ¢qS2). Each wave-
mode propagates with its own wavespeed and polarization. The phase and group veloc-
ities of each wavemode are not only functions of elastic moduli parameters, but also func-
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tions of the seismic wave direction. Many efthe finite difference eikonal solvers have al-
ready been extended to calculate the traveltimes of seismic waves in anisotropic media
(Dellinger & Symes, 1997; Eaton, 1993; Lecomte, 1993; Kim & Cook, 1999; Perez & Ban-
croft, 2001; Qian & Symes, 2002a). But most of them have been developed to deal with
the tilted elliptically anisotropic (TEA) case only, for example the fast marching method
for the TEA eikonal equation (Sethian & Vladimirsky, 2003; Cristiani, 2009; Lou, 2006)
and the fast sweeping method for the TEA eikonal equation (Tsai et al., 2003; Qian et

al., 2007; Luo & Qian, 2012b). Han et al. (2017) developed a fast sweeping method which
uses a quartic solver to tackle the quartic equation of the slowness surface with limited
value range for the possible solutions, and obtained the traveltime of the P wave. Bouteiller
et al. (2018) developed a time-dependent discontinuous Galerkin method for comput-

ing the traveltime of the qP wave in 2D cases by transferring the static quartic anisotropic
eikonal equation into a time-dependent equation. Waheed et al. (2015) and Waheed and
Alkhalifah (2017) proposed an iterative fast sweeping method, like the fixed-point iter-
ation method, to compute the traveltime of the qP wave by solving a sequence of TEA
eikonal equations, where the slowness field of the TEA eikonal equation is updated it-
eratively whenever the numerical solution is updated until it converges to the solution

of the original quartic anisotropic eikonal equation.

Finite difference eikonal solvers are efficient. However, they all suffer from the source
singularities due to the non-differentiability of the solution at the point source (Qian &
Symes, 2002b). The source singularities induce large errors near the source which will
further spread to the whole computational domain and make the traveltime inaccurate.
Without any treatments of the source singularities, such methods, even high-order meth-
ods, have only O(hlogh) convergence order with h the mesh size. Moreover, this poses
a problem to calculate some quantities involving derivatives of the traveltime, such as
take-off angles and geometric spreading factors (Noble et al., 2014). This also poses a
problem for iterative eikonal solvers involving derivatives of the traveltime as in Waheed
et al. (2015). In order to overcome the difficulty caused by the source singularities, a few
different methods have been proposed. The first method wraps a small region around
the source, assumes the medium in the region is homogeneous such that the analytical
solution can be obtained, and carries out the computation only outside of this region (Sethian
& Popovici, 1999). This method is feasible only when the medium around the source is
homogeneous. The second method refines the grid around the source in order to com-
pensate the truncation error, but it involves ad hoc parameters without a clear selection
criterion (Kim & Cook, 1999; Rawlinson et al., 2008). The third method uses an adap-
tive grid refinement near the source to control the error, but it incurs an additional heavy
computational burden (Qian & Symes, 2002b). And the fourth method makes finite dif-
ference approximations for the eikonal equation on spherical grids centred on the source
point in order to reduce inaccuracy (Alkhalifah & Fomel, 2001). However, the final re-
sult has to be interpolated to traveltime tables in Cartesian coordinates, which increases
the computational cost.

In order to resolve the source singularities effectively without involving ad hoc pa-
rameters, a factorization approach has been proposed in Pica (1997), Zhang et al. (2005),
Fomel et al. (2009), Luo and Qian (2012b), and Waheed and Alkhalifah (2017) for the
isotropic eikonal equation and anisotropic eikonal equation with weak anisotropy. The
traveltime is factored into two factors. One factor is a known function that captures the
singularities around the source, and the other factor is smooth near the source. The smooth
factor satisfies a modified/factored equation that can be solved efficiently with high ac-
curacy. Hence, the original traveltime is recovered with high accuracy. Luo and Qian (2011)
and Luo et al. (2012a) extended this factorization method to higher-order schemes to
calculate first-arrival traveltimes and amplitudes. Treister and Haber (2016) and Treister
and Haber (2017) used the first- and second-order finite difference schemes in the fast
marching method to solve the factored eikonal equation. Luo and Qian (2012b) gave a
systematic procedure to obtain analytical approximations for the known factor that cap-
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tures the source singularities, and extended the factorization approach to eikonal equa-
tion in the TEA media. Following this approach, Waheed et al. (2014), Tavakoli et al.
(2015), and Waheed and Alkhalifah (2017) proposed an iterative factored eikonal solver
for computing the first-arrival traveltime of the qP wave in TTI media with a simplified
formulation of the anisotropic eikonal equation. Bouteiller et al. (2018) extended the fac-
torization approach to a high-order method in the framework of discontinuous Galerkin
method by transforming the simplified anisotropic eikonal equation into a time-dependent
equation.

In review of the traveltime calculation methods in anisotropic media with the fi-
nite difference schemes, one finds that most of them are the eikonal solvers for the qP
wave governed by a weak or simplified anisotropic eikonal equation, because the qSV wave
involves a triplication phenomenon when several qSV waves can propagate along the same

raypath (Vavrycuk, 2003a, 2006). This phenomenon is mostly associated with strong anisotropy

or with directions close to point singularities in anisotropy (Vavrycuk, 2003b). In this
work, we propose an anisotropic eikonal solver for the qP, qSV and qSH waves, in the

framework of the fast sweeping method, in 2D TTI media with arbitrary anisotropic strength.

The method has the following important features: (1) the anisotropic eikonal equation
is discretized on a mesh covering the computational domain; (2) the coupled system of
the discretized equations among all grid points is solved iteratively by combining the Gauss-
Seidel iterations with alternating sweeping orderings; (3) at each grid point, the subin-
tervals that contain the solutions of the discretized equation are predetermined such that
each subinterval contains exactly one solution and the false position method can be ap-
plied to compute the solutions efficiently; (4) among all possible solutions at a grid point,
a causality condition is imposed to pick the one that corresponds to the first-arrival trav-
eltime; (5) the scheme is monotone and the numerical solution will converge to the vis-
cosity solution as the mesh size approaches zero; and (6) the medium can have arbitrary
anisotropic strength, and the symmetric axis of the anisotropic medium can have arbi-
trary orientation. These features make the eikonal solver more applicable to general sit-
uations and can obtain first-arrival traveltimes for the three waves. In order to resolve
the source singularities for the anisotropic eikonal equation with point-source conditions,
the factorization approach is applied such that a factored anisotropic eikonal equation

is derived. The proposed anisotropic eiknoal solver is further extended to solve the fac-
tored anisotropic eikonal equation following the similar procedures, which results in the
fast sweeping methods for the factored anisotropic eikonal equation. The proposed meth-
ods enjoy all the appealing features of the usual fast sweeping method. The number of
iterations is independent of the mesh size, and the numerical solution will converge to
the desired weak solution as the mesh size approaches zero.

The rest of the paper is organized as follows: the general anisotropic eikonal equa-
tion for T'TT media, and the factored anisotropic eikonal equations by use of the mul-
tiplicative and additive factorization techniques are introduced in Section 2. The numer-
ical schemes in the framework of the fast sweeping method for solving the general and
factored anisotropic eikonal equations are presented in Section 3. A few anisotropic mod-
els are used in the numerical experiments to verify the accuracy and efficiency of the pro-
posed methods, which is discussed in Section 4. Conclusive remarks are given at the end.

2 Anisotropic eikonal equation

The determination of the traveltimes of seismic waves in general anisotropic me-
dia involves solving a sixth-order partial differential equation, i.e., the Christoffel equa-
tion (Cerveny, 2001),

det ’aijkmjnl — ’UZ(SZ‘]C‘ =0, (1)

where a;;1; is a rank-4 density normalized stiffness tensor, n is the normal vector of the

wavefront, v is the phase velocity, and J; is the Kronecker delta function. From the Christof-
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fel equation, and by introducing the slowness vector p = —, one can derive the anisotropic
v
eikonal equation as
v|VT| =1, (2)

where T is the traveltime and p = V7. In 2D cases, equation (2) can be rewritten as

H(P,Q)=vmVP2+Q*-1=0, (m=1,2,3). (3)

where v,,,(m = 1,2,3) is the phase velocity for the qP-, gSV- and qSH-wave, respec-
tively, and (P, Q) = (T,Ty). A general 2D TTI medium can be defined by five elas-

tic moduli {a11, a13, ass, asq, ags} and the angle of the symmetry axis 6y (Thomsen, 1986).
The expressions for v, corresponding to the three wavemodes are given as (Daley & Hron,
1977; Zhou & Greenhalgh, 2004),

V1,2 = M+ M2 — N,
vy = \/a44 + (ags — aa) sin® v, (4)
where M and N are defined as,
M = 05(K;+ K»),
N = K K>-Ks, (5)
and
Ki = agcos’V+ ajqsin’ 9,
Ky = asscos’?+ aqsin? 9,
Kz = 0.25(a13 + asq)?sin’ 29. (6)

Here the angle ¢ is formed by the phase slowness direction and the direction of the sym-
metry axis of the medium, i.e., ¥ = 0 — 6y with 0 the phase slowness angle. The rela-
tionship of these three angles is illustrated in Figure 1. According to Thomsen (1986),
the phase slowness angle 6 is formed by the wavefront normal and the vertical axis of
the medium, and it can be computed by

= arccos 9
6 = arcco (\/W) (7)

With equations (4) to (7), the phase velocity v, can be computed for an anisotropic
TTI media, and v, depends on the phase slowness angle 6.

2.1 Multiplicatively factored anisotropic eikonal equation

The multiplicative factorization method decomposes the solution of equation (2)
as a product of two factors: the first factor is calculated analytically or numerically to
capture the source singularities, and the second factor is a smooth correction near the
source. Let us consider a multiplicatively factored decomposition,

T = Tyr, (8)

where Ty is the pre-determined factor to capture the source singularities, and 7 is the
unknown factor that is smooth near the source.

Substituting equation (8) into equation (2) yields the following multiplicatively fac-
tored anisotropic eikonal equation for 7,

U77L|(P17Q1)| =1, (m:1a273)7 (9)
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with P; and @, defined as,
P = To,7+ Tot,
Q1 TOyT + T()Ty. (10)

Then, equation (9) can be rewritten as

H(P,Q1) =vp\/PE+Q2—1=0, (m=1,23). (11)

2.2 Additively factored anisotropic eikonal equation

For the additively factored method, the traveltime T' is decomposed as
T=T+T, (12)
where Ty and 7 are defined similarly.

Substituting equation (12) into equation (2) yields the additively factored anisotropic
eikonal equation for 7,

'Um|(P2,Q2)| = 17 (m: 13273)7 (13)
with P, and ) defined as,
PQ = TOx + Txy
Qg = Toy + Ty- (14)

Then, equation (13) can be rewritten as

H(PQaQQ)EU7n\/P22+Q%_1:03 (m:1a2a3) (15)

3 Fast sweeping method

To compute the first-arrival traveltimes for the three wavemodes, we will solve the
anisotropic eikonal equation (3) numerically in the sense of viscosity solutions, for which
the fast sweeping method is presented. For simplicity, we illustrate the scheme on a uni-
form mesh (n, X n,) covering the rectangular computational domain, with mesh size
(hs, hy). We take hy = hy = h for notational simplicity.

3.1 General eikonal equation

Figure 2 shows an interior grid point C' with four neighboring grid points W, E, N, S.
The anisotropic eikonal equation can be discretized on the four triangles associated with
point C: ACEN, ACNW , ACWS and ACSE. Taking ACW S as an example, the dis-
cretized eikonal equation can be written as

Tc —Tw Tc —T.
va —, S)‘l—a (m=1,2,3), (16)

where Ty and T are traveltimes at grid points W and S, respectively.

Given Ty and T, equation (16) must be solved to find solutions for T at C. Sim-
ilarly, the anisotropic eikonal equation (3) is discretized on the remaining three trian-
gles, and is solved for solutions T¢ at C' with given neighbor values. For each possible
solution for T, it is required to satisfy a causality condition such that it becomes a can-
didate for updating T at C'. The causality condition is related to the characteristic di-
rection,

a£ — LU (0) Q Ovm
op P2y q2 "

VPR QZ 99
P

OH ov

Q m
w -~ et Eg e
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OH H
220 In triangle ACW S, it requires 2P >0 and 20 > 0. In general, the causality condition

221 requires that (Hp, Hg) passes through C and lies in the triangle used in the discretiza-
22 tion. Then for all possible candidates for T from all the four triangles, we pick the min-
23 imum one that corresponds to the first-arrival traveltime. If there are no candidates, T
24 will be updated along the edges, for example on triangle ACW S,

h h
Tc = min | Tw + ,To + , (m=1,2,3), 18
C ( w U};IL/C C U;?lc) ( ) ( )
— —
25 where UV and USC are group velocities along edges WC' and SC, respectively.
226 The discretized equation (16) at all grid points are coupled together to form a sys-
27 tem of nonlinear equations that can be solved using the Gauss-Seidel iteration with al-
208 ternating sweeping orderings, which is the fast sweeping method.
229 Algorithm Sketch: Fast Sweeping Method for Anisotropic Eikonal Equa-
230 tion
231 1. Initialization: assigning exact/approximate values at grid points according to given
232 boundary conditions, which will be fixed during the iterations, and assigning large
233 positive values at all other grid points.
234 2. Gauss-Seidel iteration: sweeping the computational domain with four alternating
235 orderings iteratively:
(@) i=1:ny,5=1:n,, () i=1:ny,j=mny:1,
(c)i=mng:1,j=1:n,, (d)i=ngy:1,j=mny:1,
236 and at each grid point C, updating T¢ according to the above numerical proce-
237 dure.
238 3. Termination: terminating the iteration if the L;-norm difference of the solutions
239 between two successive iterations is smaller than the specified accuracy require-
240 ment.
241 During the Gauss-Seidel iteration of the fast sweeping method, the discretized equa-
212 tion (16) must be solved efficiently, and the group velocity along edges needs to be com-
243 puted.
204 3.2 Multiplicatively factored eikonal equation
25 Taking ACW S as an example, the discretized equation of the multiplicatively fac-
246 tored eikonal equation can be written as
Um|(P1aQ1)‘_1:03 (m:1a2a3)7 (19)
27 where P; and (1 are defined as,
To—T
P = Toytc+ To%y
TC — TS
Q1 = Toytc+ TOT~ (20)
28 Given Ty and Tg, this equation can be solved to find solutions for 7o at C. Sim-
249 ilarly, each possible solution for 7¢ should satisfy a causality condition such that it be-
250 comes a candidate for updating 7¢ at C. The causality condition is similar as above with
251 the characteristic direction given by,
OH P Q1 OV,

o - SN LT
o Pt Q) NITE R
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6H _ Q1 P 6’0

SE L L (0) T
9Q1 VP +QF VPE+Q7 99

0OH H
In triangle ACW S, it requires P >0 and 20 > 0. Similarly, the factored anisotropic

(21)

eikonal equation must be discretizéd and solved én the remaining three triangles. And
from all possible candidates for 7¢ that satisfy the causality condition, we pick the min-
imum one corresponding to the first-arrival traveltime. If there are no candidates, we will
update 7¢ along the edges in the following way as in Fomel et al. (2009) and Luo and
Qian (2012b).

The characteristic equations of the multiplicatively factored eikonal equation are

given as
de dy\ _ (OH OHY _ . (0H on
dt’dt) — \ap ag) °\oP’aQ,)’
dr OH OH\" OH OH
Al — ) =1—-|(Toe—+To,— | 7, 22
5= 0o () <1 (Tegh + g ) )
where (p,q) = (74, 7,) are derivatives of 7 with respect to  and y, respectively. Ac-
cording to the first equation, we have
dr\? dy 2
<dt> +<dt> =ToU2, (m=1,2,3), (23)

where U, is the group velocity that will be defined in equation (34). Using the method
— —
of characteristics, we can approximate 7¢ at C along the edge WC' (or SC) by impos-
— — —

ing that the ray falls on WC (or SC). Let us take the edge WC'= (dz, dy) as an exam-
ple. According to equation (23), we have

/022 4 5y? B

Then from the second equation of the characteristic equations, the approximation for
7c, denoted as Ty ¢, can be computed by,

_ Tw + 0t
1+ Top 32 + To, 3

ade] (25)

—
Similarly, 7o can also be calculated along SC, denoted as T7s¢. And we will pick
the minimal one by min {Tw¢, 7sc} to update 7« at C.

The discretized equation (19) at all grid points are coupled together to form a sys-
tem of nonlinear equations. This set of nonlinear equations can be solved similarly us-
ing the fast sweeping method. The algorithmic sketch of the fast sweeping method for
the multiplicatively factored eikonal equation is similar to that of the general eikonal equa-
tion. However, the latter one involves three extra parameters Ty, To, and Tp,,.

3.3 Additively factored eikonal equation

Similarly, taking ACW S as an example, the discretized equation of the additively
factored eikonal equation can be written as

Um |(P2,Q2)|—1=0, (m=1,2,3), (26)
where P, and Q2 are defined as,
P, = Ty, + w’
TC— T
Q = To,+ Ch 5 (27)

©2020 American Geophysical Union. All rights reserved.
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Given Ty and Tg, this equation can also be solved to find solutions for 7¢ at C.
A similar causality condition is imposed on the solution such that it becomes a candi-
date for updating 7 at C. The characteristic direction for the additively factored eikonal
equation is given as,

om B gy @ Om
or PR3 VP Q3 007
oH Q2 P ov

() +

2 m
— ——Un —_—.
0~ VEmig " R o

OH H
In triangle ACW S, it requires P >0 and % > 0. Similarly, from all possi-
2 2
ble candidates that satisfy the causality condition, the minimum one is chosen tg) update
TC, at C. If there are no candidates, 7¢ will be calculated along the two edges WC' and

SC, respectively.

The characteristic equations of the additively factored eikonal equation are given

as
de dy\ _ (0H OHY _(0H oH
dt’dt)  \op 9dq¢) \oP 0Qy)’
dr oH OH\" OH OH
- (p,q) <8p’ 8q> =1- (TO‘TBPZ +TOy&QQ) . (29)

According to the first equation, we have

.
Using the method of characteristics, we can compute 7¢ at C' along the edge WC' (or

— — — —
SC). by imposing that the ray falls on WC (or SC). Let us take the edge WC'= (dx, dy)
as an example. According to equation (30), we have

2 2
5t — \0x? + 0y

i , (m=1,2,3). (31)

According to the second equation of the characteristic equations, the approximation for
7¢c, denoted as Ty ¢, can be computed as,

we = Tw + 0t — (T()z(;x + Toyéy) (32)

—
Similarly, 7¢ can also be calculated along SC, denoted as 7sc. And the minimum
one, min {Tyw ¢, 7sc}, is chosen to update 7¢ at C.

The algorithmic sketch of the fast sweeping method for the additively factored eikonal
equation is also similar to that of the general eikonal equation. And it also involves three
extra parameters Ty, To, and Tp,.

3.4 Calculation of traveltime Tj

For the two factorization techniques, Ty should be computed for a homogeneous
anisotropic model, where the medium parameters are assigned as those of the orginal model
at the source point. Ty can be computed as

_|x —xo]

T(;n (X) - mv (m - 17273)ﬂ (33)

©2020 American Geophysical Union. All rights reserved.
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where xg is the source position, and x is a position in the model domain. U,, (#) is the
group velocity along the ray direction x — xg.

The expression of the group velocity can be found in previous work (Berryman, 1979),

2
U2 =22 + (6(;’1;”) . (m=1,2,3), (34)
where
81)1,2 _ 1 aiM + M% — 05%7]1\9,
o 2u19 | OY M2 - N ’
% — 7(%62_ 0a4) sin 299, (35)
U3
and
oM .
% = 0.5(0,11 - (133) Sln2’l9,
ON ) .
55 = [K1(ass — as3) + Ka(ay, — agq)]sin 20 — 0.5(agq + ay3)? sin 49, (36)

The phase slowness angle 6, as well as the angle ¢, are defined implicitly in that they
depend on the solution 7. We will present a numerical procedure to compute the group
velocity and phase velocity along a ray direction in Section 3.8.

3.5 Solving the discretized equation (16)

At grid point C, the discretized equation (16) must be solved among all the four
triangles. The equation is highly nonlinear in T, and it may have multiple solutions for
Te. Therefore, solving equation (16) for T¢ is challenging. We present our numerical pro-
cedures for solving the equation: (1) determine an interval that contains all possible so-
lutions, (2) partition the interval into subintervals such that each subinterval contains
exactly one solution, and (3) apply false position method to find the solution in each subin-
terval (Press et al., 1992). We elaborate the numerical procedures by taking ACW S as
an example.

According to the Fermat’s principle, the interval that contains all possible values
for T is

. . h h
Iws = |min(Tw,Ts), min (TW + W’TS + USC>} , (m=1,2,3). (37)

In order to determine subintervals that contain exactly one solution, we need to
locate the extrema of H as a function of T, and use the extreme points to partition the
interval into a few subintervals (see Figure 6). We can determine the extreme points by
calculating the critical points through

OH OH 0P  OH 0Q

o1c = op a1 T a0 o1p =" (38)
which is an equation of the angle 6 after algebraic manipulation, i.e.,
. OV, .0\ 1
F9) = (sm Ov, (0) — cos QW + cos 0v,, (0) + sin 980) 7= 0. (39)

Therefore, we can solve equation (39) for all possible solutions 6;, and then find cor-
responding extreme points for H as a function of T¢ through
sin 0;Ts — cos 0; Ty

Ti, — = 1,2,3,-.4). 40
¢ sinf; —cos@; ' (i=123) (40)
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We note that the solutions for F'(6) can be precomputed and saved. Then during
the Gauss-Seidel iteration, T{, are computed through formula (40) to partition the in-
terval Iy s into subintervals. Once the subintervals are determined, we can simply ap-
ply the false position method to find the solution in each subinterval, hence we can find
all solutions in the interval Iy g.

3.6 Solving the discretized equation (19)

Similarly, at grid point C, the discretized equation (19) needs to be solved in all
the four triangles. The equation is also highly nonlinear in 7¢, and it may have multi-
ple solutions for 7¢. In order to introduce the procedures conveniently, we also take ACW S
as an example.

According to the Fermat’s principle, the interval that contains all possible values

for 7¢ is

T T

Iws = [min (TW OW, s OS) ,min (Twe, Tsc) | (41)
Toc Toc

where TWC ¢ and 7g¢ can be calculated by the method of characteristics along two edges
WC’ and SC respectively.

In order to partition the interval Iy s into a few subintervals such that each subin-
terval contains exactly one solution, we can locate the extreme points of H as a func-
tion of 7¢, and use the extreme points as the partitioning points. We can determine the
extreme points by calculating the critical points through

OH _OH 0P, | OH 0Q,

I el i L - 42
87‘0 (’)Pl 67(; 8@1 870 0’ ( )

which is an equation of the angle 6 after algebraic manipulation, i.e.,

F(0) = <sin0vm(0) 00508) Ly + (cos o) +smoa> Ly=0,  (43)

00 00
with
T,
L = Tot 3,
T,
Ly = T0y+f0. (44)

From the solutions of equation (43), denoted as 6;, (i = 1,2,3,---), the extreme
points of H as a function of 7¢ can be computed by,
sin 0;Totg — cos 0; Ty

L= i =1,2,3,---). 45
C sin Q,Toyh + sin QZTQ — COS GiTOxh — COS GiT()’ (Z L ) ( )

The solutions of F(f) can be pre-computed and saved for repeated use during the
Gauss-Seidel iterations. In the local solver, 7/, can be calculated using formula (45) to
partition the interval Iy s into a few subintervals. And then the false position method
is applied to find the solution in each subinterval, hence all solutions in the interval can
be found.

3.7 Solving the discretized equation (26)

Similarly, at grid point C, the discretized equation (26) needs to be solved for 7¢
in all the four triangles. We also take ACW S as an example to demonstrate the pro-
cedures.

—11-
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361 According to the Fermat’s principle, the interval that contains all possible values
362 for TC is

Iyws = [min (TOW —Toc + ™w,Tos — Toc + TS) ,min (TWC, TSC’)} . (46)
363 The interval Iy g is also partitioned into a few subintervals such that each each subin-
364 terval contains exactly one solution. The partitioning points are also the extreme points
365 of H as a function of 7¢, and they can be determined by calculating the critical points

366 through,
OH  O0H 0P, = O0H 0Q-

— S 2=, 47
aTC 3P2 aTc 8@2 (97’0 ( )
367 which is also an equation of the angle € after algebraic manipulation, i.e.,
. ov . Ov 1
F0) = <sm 0., (0) — cos Qa—gl + cos 0vy, (0) + sin 08:9%) » = 0, (48)
368 Similarly, from the solutions of equation (48), denoted as 0;, (i = 1,2,3,---), we
369 can compute the extreme points of H as a function of 7o by,
cos 8; Ty h — sin 0, Ty, h — cos 0; 7y + sin 6; 7,
i = e Oy v 22 (i=1,2,3,--1). (49)
sin @; — cos 6;
370 The solutions of F() can be pre-computed and saved for repeated use during the
3 Gauss-Seidel iterations. In the local solver, these critical points, associated with each grid
372 point, can be used to partition the interval Iy g into a few subintervals. After that, we
373 can use the false position method to find the solution in each subinterval, hence all so-
374 lutions in the interval can be found.
375 3.8 Group velocity U,, along ray direction
376 When calculating Ty, Twe and 7s¢, the group velocity U, along a given ray di-
377 rection must be determined. For example, U,, along edges is used in the local solver for
378 a given grid point C. However, the group velocity is a function of the phase slowness di-
379 rection, but not a function of the ray direction. If the phase slowness direction for a given
380 ray direction can be determined, then the group velocity along the ray direction can be
381 computed. Previous work (Vavrycuk, 2006, 2008; Zhang & Zhou, 2018) has investigated
382 how to calculate the slowness vector for a given ray direction.
383 If the phase slowness direction n = (sin 6, cos#) and the phase velocity v, are given,
384 the slowness vector pn, can be written as
n
Pm=—, (m=12,3). (50)
Um
385 According to Cerveny (2001), the phase slowness vector py, and the group veloc-
386 ity vector Uy, should satisfy the following equation,
Pm - Um =1 (51)
387 The phase slowness direction n and the ray direction N are given as
Pm Um
n=_—— = —. (52)
|Pm| ’ |Um|
388 By dividing equation (51) with |pm||Um|, one can derive the following equation,
Um
n-N—-——=0. 53
i (53)
7127
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389 For a given ray direction, denoted as N = (N7, N3), equation (53) provides a way

390 to calculate the phase slowness angle 6, as well as the phase velocity v, and the group
301 velocity U,,, i.e., by solving the following equation,
0
G(#) = Nysin€ + Ny cosb — U (0) =0. (54)
Un (0)
392 From equation (54), we can see that the only unknown is 0. If the phase slowness
303 angle 0 is computed, then group velocity U, and the phase velocity v,, along the ray
304 direction N can be calculated.
305 Equation (54) can be pre-solved for 6, as well as for v, and U,,, along a set of ray
39 directions. For example, on AC’VVS_,> this equation can be pre-solved for the two ray di-
307 rections along two edges WC and SC, respectively, and hence the group velocity along
308 these two directions can be saved for repeated use during the Gauss-Seidel iterations.
390 3.9 Discussion of the methods
400 The proposed method is developed in the framework of the fast sweeping method.
401 Therefore, it has all the desired properties of the fast sweeping method, such as consis-
402 tency, monotonicity and convergence (Zhao, 2005; Qian et al., 2007; Luo & Zhao, 2016).
403 The scheme is consistent with the first-order finite difference approximations, i.e., the
404 discretized equation will converge to the original equation as the mesh size approaches
405 zero. The causality condition implies that the scheme is monotone, i.e., at each grid point
206 C, the numerical Hamiltonian H is non-decreasing with respect to the solution at C', and
a07 non-increasing with respect to the solutions at neighbor points. The consistency and mono-
408 tonicity assure the stability of the scheme such that the numerical solution will converge

400 to the viscosity solution (Barles & Souganidis, 1991; Zhao, 2005; Qian et al., 2007; Luo
410 & Zhao, 2016) which corresponds to the first-arrival traveltime (Lions, 1982).

a1 Similarly as in the usual fast sweeping method, the number of iterations depends
a2 on the problems and the desired accuracy requirement. However, for a given problem
a13 with a prescribed accuracy requirement, it is independent of the mesh size as the mesh

a14 size approaches zero (Zhao, 2005; Qian et al., 2007; Luo & Zhao, 2016).

a1s In the local solver for solving the highly nonlinear equations to compute all pos-

416 sible updates at each grid point, necessary ingredients can be pre-determined prior to

a7 the Gauss-Seidel iterations. That is, equations (39), (43), (48) and (54) can be pre-solved
a1 with any appropriate root-finding methods, and their solutions can be saved for repeated
410 use during the Gauss-Seidel iterations. Moreover, their solutions can be computed ef-

20 ficiently in parallel.

a1 4 Numerical examples

e We present several numerical experiments to demonstrate the efficiency and accu-
3 racy of the developed methods. In the numerical implementations, we denote one iter-

a2 ation as four sweeps over all grid points. Numerical errors at all grid points in L;-norm
425 are recorded. The stopping criterion is 10~°. Wherever applicable, the solutions com-

26 puted by the shortest path method (SPM) on densely sampled meshes are used as the
a7 reference solutions (Zhou & Greenhalgh, 2006; G. Huang et al., 2014).

228 4.1 Homogeneous anisotropic model

429 We first use a homogeneous anisotropic model to test the effectiveness and feasi-

430 bility of the proposed methods, along with demonstration of the necessary ingredients

431 in the methods. The moduli parameters are a1; = 5.2, a1z = 0.93, azz = 4.0, ayq =
7137
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1.0, ags = 1.0, and the inclination angle 6y is set to 0° (VTI), 45° (TTI), or 90° (HTI).
The computational domain is a 5x2.5 km rectangular domain, with a point source lo-
cated at z = 2.5 km, y = 0 km.

For computing the group velocity along a given ray direction, equation (54), i.e.,
G(0) = 0, needs to be solved. Figure 3 shows an example of the function G(6) with 6y =
0° for the three wavemodes. From Figure 3, one can see that at least one root of G(9)
exists for each of the three wavemodes. If more than one root exist, for example in the
case of triplication for the qSV wave (Vavrycuk, 2003a, 2003b, 2006), the one correspond-
ing to the minimal group velocity is chosen. Figure 4 shows an example of the triplica-
tion for the qSV wave.

For solving the discretized equation on a triangle at a given grid point, the roots
of F'(0) are used to partition the solution interval into subintervals (see Figure 5). Fig-
ure 6 shows an example of the function F(#) that has about 2-6 roots for the three wave-
modes. These roots correspond to the extreme points of H in the solution interval.

Traveltime tables of the qP, ¢SV and qSH-wave computed by the proposed meth-
ods are compared with the reference solutions in Figures 7-9. The number of iterations,
Lq-norm errors, CPU times and convergence orders are listed in Table 1. We observe the
expected order of convergence O(hlog(h)) that is normal for the fast sweeping method.
For the two factored methods, the machine error is dominant. For example with 6y =
0°: for the qP wave, the maximal relative error of the original method is 0.14, and the
maximal relative errors of the two factored methods are close to 2.75x107?; for the qSV
wave, the maximal relative error of the original method is 0.33, and the maximal rela-
tive errors of the two factored methods are close to 8.5 x 1075; for the qSH wave, the
maximal relative error of the original method is 0.21, and the maximal relative errors
of the two factored methods are close to 1.7 x 1075,

4.2 Overthrust TTI model

We further test the proposed methods on the overthrust TTI model, with the model
parameters shown in Figure 10. The computational domain is a 6 x 4 km rectangular
domain with a point source located at = 3 km, y = 0 km. The reference solution is
computed by the irregular grid shortest path method (SPM) (Zhou & Greenhalgh, 2006;
G. Huang et al., 2014) on a 601x401 mesh, with 5 secondary nodes added to each cell
boundary in the computation. The number of iterations, L;-norm errors, convergence
orders and CPU times are listed in Tables 2-4, where we observe a clean first-order con-
vergence for the two factored methods. The numerical plots are presented in Figures 11-
13, where we can see that the solutions match very well, and the solutions computed by
the two factored methods have better resolutions than those computed by the original
FSM.

5 Conclusions

We present an efficient fast sweeping method (FSM) for calculating first-arrival trav-
eltimes of the three wavemodes (qP, ¢SV, and qSH) in 2D heterogeneous, transversely
isotropic media with arbitrary dipping symmetry axes. No weak anisotropy is assumed,
and mo simplification is made to the phase and group velocities. The proposed methods
enjoy all the appealing features as in the fast sweeping method for the isotropic eikonal
equation (Zhao, 2005), i.e., consistency, monotonicity and convergence.

For problems with a point-source condition, a factorization approach is applied to
resolve the source singularities such that clear first-order convergence is obtained. Nu-
merical experiments, including a homogeneous model, a three-layered model (Supple-
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mentary Section) and the Overthrust TTI model, verify the effectiveness of the proposed
methods.

Extension of the proposed methods to 3D anisotropic eikonal equation in TTI me-
dia is underway. The formulations of the methods are similar as those in 2D cases. The
main difference is in equations (39), (43) and (48) for pre-computing the partitioning points
and equation (54) for computing the group velocity along a given ray direction. For 3D
cases, these equations will depend on two unknown angles (just like the spherical coor-
dinate system in 3D versus the polar coordinate system in 2D), which is more challeng-
ing than 2D cases where these equations depend on one unknown angle. Solving a non-
linear equation of two unknowns is non-trivial. An extra condition/equation is required,
which can be provided through the relation among the slowness vector, the ray vector
and the symmetric axis. The resulting system of two equations will be solved to deter-
mine the two unknown angles, and the solutions can be saved and repeated used to com-
pute the partitioning points in the Gauss-Seidel iterations, similarly as in 2D cases. We
will report the results once the work is completed.
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Phase slowness direction

Slowness surface symmetry axis direction

v
Y

Figure 1. Definition of three different angles: (a) ¢ is the angle between the phase slowness
direction and the symmetry axis direction. (b) 6 is the angle between the phase slowness direc-
tion and the vertical y-axis. (c) 6o is the angle between the symmetry axis direction and the

vertical y-axis.
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Figure 2. Rectangular mesh in the 2D case. Four triangles (ACEN, ACNW, ACW S and
ACSE) are used to calculate traveltime candidates for the center grid point C'.
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Figure 3. Function G(0) for three wavemodes (qP-, gSV- and qSH-wave) in the homogeneous

anisotropic model with the inclination angle 6y = 0°.
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Figure 4. Group velocities of the qSV wavemode for three different orientations of the sym-
metry axis (6o = 0°, 45° and 90°). The group velocity is plotted against the ray angle from —m /2
to m/2.
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Figure 5. FExtreme points of the eikonal equation partition the solution interval Iy g into
subintervals. LB and UB are the lower and upper bounds of the solution interval, respectively.
The blue solid circles represent the extreme points in the solution interval, while the blue hollow

circles represent the extreme points outside of the solution interval.
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Figure 6. Curves of the critical point function F(0) for the three wavemodes in homogeneous

anisotropic model.
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Figure 7. Traveltime comparison for the three wavemodes between the reference and numer-
ical solutions in the homogeneous anisotropic model with 6, = 0°. Black contour line stands
for the reference solution; Red contour line stands for the numerical solution calculated by the
FSM method; Blue and magenta contour lines represent the numerical solutions calculated by the

additively and multiplicatively factored FSM methods respectively.
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Figure 8. Traveltime comparison for the three wavemodes between the reference and numer-
ical solutions in the homogeneous anisotropic model with 6, = 45°. Black contour line stands
for the reference solution; Red contour line stands for the numerical solution calculated by the
FSM method; Blue and magenta contour lines represent the numerical solutions calculated by the

additively and multiplicatively factored FSM methods respectively.
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Figure 9. Traveltime comparison for the three wavemodes between the reference and numer-
ical solutions in the homogeneous anisotropic model with 6, = 90°. Black contour line stands
for the reference solution; Red contour line stands for the numerical solution calculated by the
FSM method; Blue and magenta contour lines represent the numerical solutions calculated by the

additively and multiplicatively factored FSM methods respectively.
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Anisotropic parameters of the overthrust TTI model. (a) ai1 model, (b) ais
model, (¢) aszz model, (d) ass model, (e) ags model, (f) Oy model.
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Figure 11. Traveltime comparison for the qP wave between the reference and numerical so-
lutions in the overthrust TTI model. (a) Black contour line stands for the reference solution, red
contour line stands for the numerical solution calculated by the FSM method, blue and magenta
contour lines represent the numerical solutions generated by the additively and multiplicatively
factored FSM methods respectively. (b) Zoom-in map of the square area as shown in (a), from

which we can see traveltimes solved by the factored methods have better accuracy.
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Figure 12. Traveltime comparison for the gSV wave between the reference and numerical so-

lutions in the overthrust TTI model. (a) Black contour line stands for the reference solution, red

contour line stands for the numerical solution calculated by the FSM method, blue and magenta

contour lines represent the numerical solutions generated by the additively and multiplicatively

factored FSM methods respectively. (b) Zoom-in map of the square area as shown in (a), from

which we can see traveltimes solved by the factored methods have better accuracy.
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Figure 13. Traveltime comparison for the qSH wave between the reference and numerical so-

lutions in the overthrust TTI model. (a) Black contour line stands for the reference solution, red

contour line stands for the numerical solution calculated by the FSM method, blue and magenta

contour lines represent the numerical solutions generated by the additively and multiplicatively

factored FSM methods respectively. (b) Zoom-in map of the square area as shown in (a), from

which we can see traveltimes solved by the factored methods have better accuracy.
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Table 1. Accuracy of the first-order FSM method in the homogeneous anisotropic model.

qP wavemode

Mesh Iteration L error Convergence order Time cost (seconds)
101 x 51 1 0.0138 - 0.7
201 x 101 1 0.0082 0.7510 1.0
401 x 201 1 0.0047 0.8030 4.0
801 x 401 1 0.0027 0.8090 20.0

qSV wavemode

Mesh Iteration Lj error  Convergence order Time cost (seconds)
101 x 51 1 0.0272 - 1.0
201 x 101 1 0.0153 0.8301 2.0
401 x 201 1 0.0084 0.8651 8.0
801 x 401 1 0.0046 0.8789 29.0

gSH wavemode

Mesh Iteration L; error Convergence order Time cost (seconds)
101 x 51 1 0.0369 - 1.0
201 x 101 1 0.0221 0.7396 1.0
401 x 201 1 0.0129 0.7767 6.0
801 x 401 1 0.0074 0.8111 25.0
_39-
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Table 2. Accuracy of the first-order FSM method in the overthrust TTI model.
qP wavemode
Mesh Iteration L error Convergence order Time cost (seconds)
76 x 51 1 0.0181 - 1.0
151 x 101 2 0.0101 0.8416 2.0
301 x 201 2 0.0061 0.7275 10.0
qSV wavemode
Mesh Iteration L; error Convergence order Time cost (seconds)
76 x 51 1 0.0298 - 0.8
151 x 101 2 0.0173 0.7845 2.0
301 x 201 2 0.0106 0.7067 9.0
gSH wavemode
Mesh Iteration L; error Convergence order Time cost (seconds)
76 x 51 1 0.0283 - 1.0
151 x 101 2 0.0161 0.8137 2.0
301 x 201 2 0.0099 0.7016 10.0
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Table 3. Accuracy of the first-order additively factored FSM method in the overthrust TTI
model.
qP wavemode
Mesh Iteration L; error Convergence order Time cost (seconds)
76 x 51 1 0.0058 - 1.0
151 x 101 1 0.0030 0.9511 2.0
301 x 201 2 0.0015 1.0000 11.0
qSV wavemode
Mesh Iteration L;j error Convergence order Time cost (seconds)
76 x 51 1 0.0103 - 2.0
151 x 101 2 0.0053 0.9586 5.0
301 x 201 2 0.0026 1.0275 25.0
gSH wavemode
Mesh Iteration Lj error Convergence order Time cost (seconds)
76 x 51 1 0.0093 - 2.0
151 x 101 2 0.0051 0.8667 8.0
301 x 201 2 0.0025 1.0286 23.0
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Table 4. Accuracy of the first-order multiplicatively factored FSM method in the overthrust
TTI model.

qP wavemode

Mesh Iteration L error  Convergence order Time cost (seconds)
76 x 51 1 0.0034 - 0.8
151 x 101 1 0.0014 1.2801 3.0
301 x 201 2 5.6251e-04 1.3155 11.0

qSV wavemode

Mesh Iteration ~ Lj error  Convergence order Time cost (seconds)
76 x 51 1 0.0045 - 1.0
151 x 101 2 0.0020 1.1699 3.0
301 x 201 2 7.5947e-04 1.3969 13.0

gSH wavemode

Mesh Iteration = L error  Convergence order Time cost (seconds)
76 x 51 1 0.0054 - 1.0
151 x 101 2 0.0022 1.2955 4.0
301 x 201 2 9.6072e-04 1.1953 15.0
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