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Abstract
Wepresent hybrid fast sweepingmethods for computing first-arrival traveltime of the qP, qSV
and qSH waves in two-dimensional tilted transversely isotropic media, based on solving the
anisotropic eikonal equation. A factorization approach is applied to resolve the source sin-
gularity near the point source, which leads to a factored anisotropic eikonal equation whose
solutions can be computedwith high accuracy. The proposedmethods solve the factored equa-
tion in a neighborhood of the point source with the size of the neighborhood independent of
the mesh, and solve the original equation outside the neighborhood. The methods enjoy all
the appealing features, such as efficiency, accuracy and convergence, of the usual fast sweep-
ing method. Furthermore, the “super-convergence” property of the first-order fast sweeping
method, i.e., both its numerical solution and gradient are first-order accurate, allows us to
design a second-order fast sweeping method based on a linear discontinuous Galerkin for-
mulation. As a post-processing procedure of the first-order method, the second-order method
reduces the local degrees of freedom from three to one in the linear discontinuous Galerkin
formulation, which implies a simple local updating formula, hence an efficient second-order
scheme. Numerical experiments are presented to demonstrate the proposed methods.
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1 Introduction

Anisotropy has beenwidely observed and investigated by geophysicists in the crust, the upper
mantle and the inner core of the Earth [40,60,62]. For example, the inner core is a complex
asymmetric structure with strongly anisotropic property [18], and the anisotropic strength of
rock in the upper mantle depends on the percentage of different minerals. The kinematic and
dynamic features of the seismic wave are very different when it propagates in isotropic and
anisotropic media. In isotropic media, there are only compressional wave and shear wave.
The phase velocity is equal to the group velocity for compressional and shear waves. While
in anisotropic media, which according to the orientational angle of the symmetric axis can be
divided into vertical transversely isotropic (VTI), horizontal transversely isotropic (HTI) and
tilted transversely isotropic (TTI) media, there are three different kinds of wavemodes, i.e.,
one quasi-compressional wave (qP wave) and two quasi-shear waves (qSV and qSH waves).
Each wavemode propagates with its own wavespeed and polarization direction. Unlike in
isotropic media, the phase and group velocities of each wavemode are not equivalent to each
other anymore. And both velocities depend on not only the elastic moduli parameters, but
also the seismic wave direction [12].

The anisotropy makes it challenging to compute the first-arrival traveltime of the seismic
wave efficiently. Many Eulerian eikonal solvers have been developed to compute the first-
arrival traveltime. Theywere first introduced to compute the traveltime in isotropicmedia; for
instance see [8,24,31,43,50,53,54,57,68,69]. And some of them were extended to deal with
the eikonal equation in anisotropic media; for instance see [1,16,20,30,32,48,49]. Among all
the Eulerianmethods, the fast marchingmethod (FMM) and the fast sweepingmethod (FSM)
are two appealing Eulerian eikonal solvers; see [7,15,17,28,29,31,37,46,47,50,52,54,56–
59,65–67,74–76] and references therein. These methods have been applied in various
applications due to their efficiency. Both methods use upwinding finite difference approx-
imation to discretize the eikonal equation and enforce a causality condition to pick the
correct solution from all possible solutions of the discretized equation that corresponds to the
first-arrival traveltime. The FMM advances the wavefront step by step and uses a heap-sort
algorithm to update the solution for points in the wavefront until there are no more points to
update. The FSM uses Gauss–Seidel iteration with alternating sweeping orderings to solve
the coupled system of nonlinear equations until convergence. In general, the FMM has com-
plexity O(N log N ) and the FSM has complexity O(N ), with N the number of simulation
points. However, they may surfer from the source singularity due to the non-differentiability
of the solution at point sources [45]. The source singularity induces large errors at the source
which will further spread to the whole domain and make the traveltime inaccurate. With-
out any treatment of the source singularity, such methods, even high-order methods, has
only O(h log h) order of convergence with h the mesh size, which poses a problem to cal-
culate some quantities involving derivatives of the traveltime, such as take-off angles and
geometric spreading factors [5]. Different techniques have been proposed to treat the source
singularity [21,23,31,42,44,51,57,71,72]. Among them, the factorization approach proposed
in [21,36,37,39,42,72] is the most promising technique that can treat the source singularity
efficiently.

The factorization approach was first proposed for the isotropic eikonal equation and
anisotropic eikonal equation with weak anisotropy [21,26,36,37,39,42,72]. The eikonal is
factored into two factors. One factor is a known function that captures the singularity around
the source such that the other factor is smooth near the source. The smooth factor satisfies
a modified/factored equation that can be solved efficiently with high accuracy. Hence the
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eikonal is recovered with high accuracy. The factorization technique has been successfully
applied in solving the isotropic eikonal equation, the eikonal equation in the tilted elliptic
anisotropic (TEA) media, and the anisotropic eikonal equation for the qP wave in TTI media
based on a simplified formulation, with point-source conditions. For example, Luo et al. [35–
37,39] extended this factorization method to higher-order schemes to calculate first-arrival
traveltimes and amplitudes; Treister andHaber [63,64] used the first- and second-order finite-
difference schemes in the fast marching method to solve the factored eikonal equation; Luo
and Qian [37,38] gave a systematic procedure to obtain analytical approximations for the
known factor that captures the source singularity, and extended the factorization approach
to eikonal equation in the TEA media; following this approach, Waheed et al. [6], Tavakoli
et al. [61], and Waheed and Alkhalifah [5] proposed an iterative factored eikonal solver for
computing the first-arrival traveltime of the qP wave in TTI media with a simplified formula-
tion of the anisotropic eikonal equation; and Bouteiller et al. [70] extended the factorization
approach to a high-order method in the framework of discontinuous Galerkin method by
transforming the simplified anisotropic eikonal equation into a time-dependent equation.

In thiswork, in order to compute thefirst-arrival traveltime for all the threewavemodes, i.e.,
the qP, qSV and qSH waves, in general TTI media, we intend to solve the anisotropic eikonal
equation in themediawithout simplification.We further investigate the fast sweepingmethods
for the anisotropic eikonal equation in two-dimensional (2-D) TTI media. The factorization
approach will be applied to resolve the source singularity near the source, where a factored
anisotropic eikonal equation will be solved in a neighborhood of the source point. The size
of this neighborhood is independent of the mesh size, and outside this neighborhood the
original anisotropic eikonal equation will be solved. This hybrid approach was first proposed
in [38] for solving the isotropic eikonal equation, aiming to improve the efficiency compared
to solving only the factored equation in the whole domain. Here we extend it to solve the
anisotropic eikonal equation in general TTI media, which aims to improve the efficiency of
the fast sweeping method recently developed for solving the equation [25]. The local solver
of the fast sweeping method at each grid point requires solving a highly nonlinear equation
for updating the traveltime, for which we design a systematic way to find the solutions [25].
Firstly, the interval that contains all possible solutions of the nonlinear equation is determined
based on Fermat’s principle. Secondly, this interval is partitioned into subintervals such that
each subinterval contains exactly one solution, and the partitioning points for this interval
can be pre-determined such that its information can be repeatedly used in the iterations.
Thirdly, efficient root-finding algorithms, such as the improved Illinois algorithms [22],
are applied to find the solution from each subinterval. And finally, a causality condition is
enforced to determine whether a solution is a valid candidate to update the traveltime, and
the minimum of all candidates will be chosen to update the traveltime. The proposed method
will enjoy all the desired properties of the usual fast sweeping method [25,75], such as the
efficiency, accuracy and convergence due to its monotonicity. Moreover, we observe that
the numerical solution will enjoy the so-called “super-convergence” property that has been
observed in cases with isotropic eikonal equation and TEA eikonal equation [3,34,35], i.e.,
both the numerical solution and its numerical gradient are first-order accurate if the solution is
smooth. This property allows us to design a second-order fast sweeping method that is based
on a discontinuous Galerkin (DG) formulation for the anisotropic eikonal equation. The DG
formulation was first used in [11,33,35,73] to design fast sweeping methods for the isotropic
eikonal equation. We will extend it to the anisotropic eikonal equation in general 2-D TTI
media, where the DG formulation based on linear polynomial approximation will be derived
for the factored anisotropic eikonal equation in the fixed neighborhood of the point source,
and for the original anisotropic eikonal equation outside of this neighborhood. The linear DG
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formulation has three local degrees of freedom to determine the solution and its gradient,
which requires to solve a system of three nonlinear equations. And a sophisticated local solver
has to be designed to solve this nonlinear system to obtain a proper solution that corresponds
to the first-arrival traveltime. With the “super-convergence” property, we can reduce the
degrees of freedom to one by fixing the gradient of the solution with that computed by the
first-order method. Consequently, the only degree of freedom is the solution, which can be
computed through a simple local updating formula. With the “super-convergence” property,
the complexity of the method is significantly reduced compared to the original linear DG
formulation [33,73]. The resulting method will be a second-order accurate fast sweeping
method.

The rest of the paper is organized as follows. The anisotropic eikonal equation for general
TTI media, the factorization techniques, and the factored anisotropic eikonal equation are
introduced in Sect. 2. The numerical schemes in the framework of the fast sweeping method
for computing the first-arrival traveltime of the three wavemodes are presented in Sect. 3.
A few anisotropic models, including benchmark models from geophysics, are used in the
numerical experiments to verify the accuracy and efficiency of the proposed methods, which
is summarized in Sect. 4. Conclusive remarks will be given at the end.

2 Anisotropic Eikonal Equation

According to Hooke’s law, stress σi j is related to strain ekl by a stiffness tensor Ci jkl ,

σi j =
∑

kl

Ci jklekl .

By the symmetry of the stiffness tensor, the elastic wave equation without body force is

ρ
∂2Uj

∂t2
=

∑

i,k.l

∂

∂xi

(
Ci jkl

∂Uk

∂xl

)
,

where ρ is the mass density and U = {Ui } is the displacement vector. High-frequency
approximation to the elastic wave equation leads to the Christoffel equation [9,10],

⎛

⎝
∑

i,l

ai jkl pi pl − δ jk

⎞

⎠Uk = 0, (1)

where ai jkl = Ci jkl/ρ are the density-normalized parameters, δ jk is the Kronecker delta,
p = {pi } = ∇T is the slowness vector, and T is the traveltime or the phase of the mode. The
Christoffel equation implies the eikonal equation for the phase T ,

det

⎛

⎝
∑

i,l

ai jkl pi pl − δ jk

⎞

⎠ = 0. (2)

By introducing p = n/v, where n is the unit normal vector to the wavefront and v is the
normal or phase velocity of the wavefront, one can derive the anisotropic eikonal equation,

v|∇T | = 1,

det

⎛

⎝
∑

i,l

ai jklni nl − v2δ jk

⎞

⎠ = 0.
(3)
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A general tilted transversely isotropic (TTI) medium can be defined by five elastic moduli
parameters (by using Voigt’s notation) {C11(x),C13(x),C33(x),C44(x),C66(x)}, the mass
density ρ(x), and the orientational angle θ0(x) of the symmetric axis of the medium [9,
10,77]. θ0 is formed by the vertical axis and the symmetric axis of the medium. For the
three wavemodes in the medium, i.e., qP, qSV and qSH waves, by introducing vm = vρ

(m = 1, 2, 3) that correspond to the three wavemodes, the anisotropic eikonal equation can
be recast as

vm |∇T | = ρ, (m = 1, 2, 3), (4)

where vm (m = 1, 2, 3) are defined as [4,14,77],

v1,2 =
√
M ±

√
M2 − N ,

v3 =
√
C44 + (C66 − C44) sin2 ζ ,

(5)

with

M = Q1 + Q2

2
,

N = Q1Q2 − Q3,

Q1 = C44 cos
2 ζ + C11 sin

2 ζ,

Q2 = C33 cos
2 ζ + C44 sin

2 ζ,

Q3 = (C13 + C44)
2 sin2 2ζ

4
.

Here, the angle ζ is formed by the phase slowness direction n and the symmetric axis of the
medium, with ζ = θ − θ0 and θ the orientational angle of n from the vertical axis.

We intend to solve the anisotropic eikonal equation (4) in 2-D TTI media, in the sense of
viscosity solution [13], as wewant to compute first-arrival traveltime of the threewavemodes.
In 2-D, θ is defined as

θ = cos−1

⎛

⎝ Tz√
T 2
x + T 2

z

⎞

⎠ ,

with (Tx , Tz) ≡ ∇T . Clearly, vm (m = 1, 2, 3) are functions of ∇T , i.e., vm = vm(Tx , Tz),
and can also be viewed as functions of θ , i.e., vm = vm(θ).

One of the main difficulties for solving the anisotropic eikonal equation (4) with a point-
source condition is the source singularity if high accuracy is required [44]. The source
singularity induces large errors for any Eulerian eikonal solvers, including high-order meth-
ods, near the source, and the error will spread to the whole domain. As a result, the numerical
solution exhibits O(h log h) order of convergence with h the mesh size. In order to resolve
this issue, we use the factorization approach [21,36,37,39,42,72]. We assume the traveltime
T is decomposed as

T = T0 + τ, (6)

where T0 is a known factor that captures the source singularity, and τ is a smooth factor near
the source that serves as the smooth correction. τ satisfies the factored anisotropic eikonal
equation

vm |∇T0 + ∇τ | = ρ, (m = 1, 2, 3), (7)
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Fig. 1 Local mesh of an interior
point C with four neighboring
points E,W , N , and S

where vm is defined in (5) with

θ = cos−1

(
T0z + τz√

(T0x + τx )2 + (T0z + τz)2

)
,

with (T0x , T0z) ≡ ∇T0 and (τx , τz) ≡ ∇τ . Since τ is smooth near the source, the factored
Eq. (7) can be solved efficiently for τ with high accuracy. Hence T can be recovered with
high accuracy through (6).

For numerically solving Eqs. (4) and (7), we present the hybrid fast sweeping methods.

3 Hybrid Fast SweepingMethods

We first present the method for Eqs. (4) and (7) with first-order accuracy, and then extend it
to second-order accuracy with linear discontinuous Galerkin formulations. We assume the
domain is Ω = [xmin, xmax] × [zmin, zmax], which is covered by a uniform mesh (xi , z j )
with xi = xmin + iΔx , (i = 0, 1, 2, . . . , Nx ), z j = zmin + jΔz, ( j = 0, 1, 2, . . . , Nz),
Δx = (xmax − xmin)/Nx , and Δz = (zmax − zmin)/Nz . And we denote fi j ≡ f (xi , z j ) for
any function f .

3.1 First-Order Hybrid FSM

The local solver of the FSMat each grid point requires to discretize the equationwith upwind-
ing finite difference approximations and a causality condition to choose valid candidates for
updating the value at the grid point.

Figure 1 shows an interior grid point C with four neighboring points W , E, N and S.
The anisotropic eikonal equation (4) needs to be discretized on the four triangles: ΔCEN ,
ΔCNW , ΔCWS and ΔCSE . For example on ΔCWS, it is discretized as

H(P, Q) ≡ vm(P, Q)|(P, Q)| − ρ(C) = 0, (8)

with

P = Tx (C) ≈ T (C) − T (W )

Δx
, Q = Tz(C) ≈ T (C) − T (S)

Δz
.

This discretized equation (8) must be solved for T (C), given the two neighboring values
T (W ) and T (S), and it may have multiple or no solutions for T (C):
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– If there are solutions for T (C), each of them is required to satisfy a causality condition,
i.e., the characteristics/ray passing throughC falls inΔCWS (Fig. 1). If a solution satisfies
the causality condition, it become a candidate for updating T (C). The characteristics/ray
is defined as (HP , HQ) with

HP ≡ ∂H

∂P
= P√

P2 + Q2
vm − Q√

P2 + Q2

dvm

dθ
,

HQ ≡ ∂H

∂Q
= Q√

P2 + Q2
vm + P√

P2 + Q2

dvm

dθ
,

where P, Q, θ and vm are computed with the solution T (C). For ΔCWS, the causality
condition requires HP ≥ 0 and HQ ≥ 0.
Among all candidates that satisfy the causality condition, we choose the minimum one as
the possible update for T (C) from ΔCWS, corresponding to the first-arrival traveltime.

– If there are no solutions for T (C) or no solutions for T (C) that satisfy the causality
condition, we assume the characteristics/ray falls on either the edgeWC or the edge SC ,
and the possible update for T (C) from ΔCWS is given as

min

{
T (W ) + Δx

UWC
m /ρ(C)

, T (S) + Δz

U SC
m /ρ(C)

}
,

whereUWC
m /ρ(C) andUSC

m /ρ(C) (m = 1, 2, 3) are the group velocity of the wave along
edge WC and SC , respectively. The definition and computation of UWC

m and USC
m will

be discussed in Sect. 3.1.2.

This process is repeated along all the four triangles. Each of the triangles will provide a
possible update for T (C), and the minimum one from the four triangles is chosen to update
T (C), which corresponds to the first-arrival traveltime.

In the local solver, there are two key issues: (i) the discretized equation (8), which is highly
nonlinear in T (C), needs to be solved; and (ii) Um along a given edge or characteristics/ray,
such as UWC

m and USC
m , is required.

3.1.1 Solving Discretized Equation (8)

This discretized equation (8) is highly nonlinear in T (C), and it may have multiple solutions.
For finding its roots, we proceed as follows [25]:

– Determine the interval that contains all possible solutions,
– Partition the interval into subintervals such that each subinterval contains at most one

solution,
– Apply efficient root-finding algorithms, such as the improved Illinois algorithms [22],

on each subinterval to find the solution in it, hence all the solutions in the interval.

The interval that contains all possible solutions for T (C), for example forΔCWS, is given
as

I CW S =
[
min{T (W ), T (S)},min

{
T (W ) + Δx

UWC
m /ρ(C)

, T (S) + Δz

U SC
m /ρ(C)

}]
,

following the Fermat’s principle.
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Fig. 2 Demonstration of partitioning ICW S into subintervals with extreme points of H(T (C)): interval
between two vertical dashed lines is ICW S , red dots are extreme points of H(T (C)), and black diamonds are
zeros of H(T (C)) (Color figure online)

For partitioning I CW S , we treat H in (8) as a function of T (C),

H(T (C)) ≡ H

(
T (C) − T (W )

Δx
,
T (C) − T (S)

Δz

)

= vm

(
T (C) − T (W )

Δx
,
T (C) − T (S)

Δz

) √(
T (C) − T (W )

Δx

)2
+

(
T (C) − T (S)

Δz

)2
− ρ(C).

In order to find zeros T (C) of H(T (C)) on I CW S , wewill use the extreme points of H(T (C))

to partition I CW S into subintervals such that each subinterval contains at most one zero,
referring to Fig. 2. One can find its extreme points by solving

dH

dT (C)
= ∂H

∂P

∂P

∂T (C)
+ ∂H

∂Q

∂Q

∂T (C)
= 0,

for critical points, which leads to
(

P√
P2 + Q2

vm − Q√
P2 + Q2

dvm

dθ

)
1

Δx
+

(
Q√

P2 + Q2
vm + P√

P2 + Q2

dvm

dθ

)
1

Δz
= 0.

With the definition of θ , the above equation can be recast as
(
sin(θ)vm(θ) − cos(θ)

dvm(θ)

dθ

)
1

Δx
+

(
cos(θ)vm(θ) + sin(θ)

dvm(θ)

dθ

)
1

Δz
= 0. (9)

Note that it can be viewed as an equation in θ , i.e., F(θ) = 0, with F(θ) the left-hand side
of (9). We can first apply a root-finding algorithm, such as the false position method and its
variants, to compute its roots, without loss of generality, denoted as θk for k = 1, . . . , K , and
then use {θk} to find extreme points of H , denoted as {Tk}, through the following relation
based on the definition of θ ,

tan(θk) = (Tk − T (W ))/Δx

(Tk − T (S))/Δz
, k = 1, . . . , K .

Moreover, the roots {θk} of (9) can be pre-determined, and repeatedly used to locate {Tk}
during the iterations in the local solver. Once the partitioning points are determined and the
interval I CW S is partitioned into subintervals (Fig. 2), we can apply appropriate root-finding
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algorithms to find zeros of H(T (C)) subinterval by subinterval, for example, the improved
Illinois algorithms [22] are used. Hence, we find possible candidates for updating T (C) at
point C , and this process is repeated for all the four triangles related to C .

Remark 1 For each pointC , we can save the roots of Eq. (9) for all the four triangles associated
with C . Then for all the points on the mesh, we have a table of θk’s, which is the reference
table that is repeatedly read and used to compute the partitioning points Tk’s in the local
solver.

3.1.2 Computing Um along a Characteristic/Ray Direction

Um (m = 1, 2, 3) are in general defined by [4,14,77],

Um =
√

v2m +
(
dvm

dθ

)2

, m = 1, 2, 3, (10)

with

dv1,2

dθ
= 1

2v1,2

(
dM
dθ

± M dM
dθ

− 1
2
dN
dθ√

M2 − N 2

)
,

dv3

dθ
= C66 − C44

2v3
sin 2ζ,

dM
dθ

= C11 − C33

sin 2ζ
,

dN
dθ

= [Q1(C44 − C33) + Q2(C11 − C44)] sin 2ζ − (C44 + C13)
2

2
sin 4ζ.

Clearly, Um (m = 1, 2, 3) are functions of θ that is the orientational angle of the slowness
vector instead of the orientational angle of the characteristics/ray. Therefore, in order to find
Um along a given characteristics/ray, such as UWC

m and USC
m , we will need to find θ along

the characteristic/ray direction first, and then compute it with (10). To achieve the goal, we
follow the procedure in [10] for computing Um with a given characteristic/ray direction.

According to Cerveny [10], the slowness vector pm ≡ n/v = ρ/vm(sin θ, cos θ) and the
group velocity vector Um ≡ Um/ρ(N1, N3) satisfy the following relation,

pm · Um = 1,

where (N1, N3) is the characteristic/ray direction. This relation implies the following equa-
tion,

G(θ) ≡ sin(θ)N1 + cos(θ)N3 − vm(θ)

Um(θ)
= 0, (11)

which will be used to compute Um as well as vm along a given characteristic/ray direction
(N1, N3). It is also an equation in θ , for which we can apply a root-finding algorithm, such as
the false position method and its variants, to compute its roots, and use the roots to compute
Um and vm . And among all possible roots, we will choose the one that gives the minimum
Um . Moreover, its roots can be pre-determined and repeatedly used in the local solver.

Remark 2 For each point C , the roots of Eq. (11) are pre-computed along the four edges
connecting C , as well as the corresponding vm and Um . For all the points on the mesh, we
have a reference table that consists of vm,Um and associated θ along four edges of each
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point. This table is repeatedly read and used in the local solver if the update of the numerical
solution must follow one of the edges.

The discretized equation (8) at all the grid points are coupled together as a system of
nonlinear equations. This system can be solved by Gauss–Seidel iterations with alternative
orderings, where the local solver at each point is described as above. This is the fast sweeping
method [75].

We can apply the same procedure to the factored anisotropic eikonal equation (7). On
ΔCWS, the factored equation is discretized as

H̄(p, q) ≡ vm(T0x (C) + p, T0z(C) + q)|(T0x (C) + p, T0z(C) + q)| − ρ(C) = 0, (12)

with

p = τx (C) ≈ τ(C) − τ(W )

Δx
, q = τz(C) ≈ τ(C) − τ(S)

Δz
.

This equation must be solved for τ(C), given the two neighboring values τ(W ) and τ(S):

– If there are solutions for τ(C), each of them is also required to satisfy the causality
condition with the characteristics/ray defined as (H̄p, H̄q),

H̄p ≡ ∂ H̄

∂ p
= T0x + p√

(T0x + p)2 + (T0z + q)2
vm − T0z + q√

(T0x + p)2 + (T0z + q)2

dvm

dθ
,

H̄q ≡ ∂ H̄

∂q
= T0z + q√

(T0x + p)2 + (T0z + q)2
vm + T0x + p√

(T0x + p)2 + (T0z + q)2

dvm

dθ
.

On ΔCWS, the causality condition is equivalent to H̄p ≥ 0 and H̄q ≥ 0.
Among all candidates that satisfy the causality condition, we choose the minimum one as
the possible update for τ(C) from ΔCWS, corresponding to the first-arrival traveltime.

– If there are no solutions for τ(C) or no solutions for τ(C) that satisfy the causality
condition, we assume the characteristics/ray falls on either the edgeWC or the edge SC ,
and the possible update for τ(C) from ΔCWS is given as

min

{
τ(W ) + Δx

UWC
m /ρ(C)

− (T0x (C)Δx), τ (S) + Δz

U SC
m /ρ(C)

− (T0z(C)Δz)

}
.

This process is repeated along all the four triangles. Each of the triangles will provide a
possible update for τ(C), and the minimum one from the four triangles is chosen to update
τ(C), which corresponds to the first-arrival traveltime.

In the local solver, Um along a given edge or characteristics/ray, such as UWC
m and USC

m ,
will be computed exactly as in Sect. 3.1.2, and the discretized equation (12) will be solved
following the procedure in Sect. 3.1.1. Furthermore, T0, T0x and T0z are needed in the local
solver, for which we present the algorithm in Sect. 3.1.4.

3.1.3 Solving Discretized Equation (12)

The interval that contains all possible solutions for τ(C) in (12), for example on ΔCWS, is
given as

JCWS = [min{T0(W ) + τ(W ), T0(S) + τ(S)} − T0(C),

min

{
τ(W ) + Δx

UWC
m /ρ(C)

− (T0x (C)Δx), τ (S) + Δz

U SC
m /ρ(C)

− (T0z(C)Δz)

}]
,
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following the Fermat’s principle.
For partitioning JCWS , we treat H̄ in (12) as a function of τ(C) and find its extreme points

by solving

d H̄

dτ(C)
= ∂ H̄

∂ p

∂ p

∂τ(C)
+ ∂ H̄

∂q

∂q

∂τ(C)
= 0,

for critical points, which leads to
(

T0x + p√
(T0x + p)2 + (T0z + q)2

vm − T0z + q√
(T0x + p)2 + (T0z + q)2

dvm

dθ

)
1

Δx

+
(

T0z + q√
(T0x + p)2 + (T0z + q)2

vm + T0x + p√
(T0x + p)2 + (T0z + q)2

dvm

dθ

)
1

Δz
= 0,

and can be recast as Eq. (9). Therefore, its solutions, θk for k = 1, . . . , K , can be used to
find extreme points of H̄ , denoted as τk for k = 1, . . . , K , through the following relation,

tan(θk) = (τk − τ(W ))/Δx + T0x (C)

(τk − τ(S))/Δz + T0z(C)
.

Once the partitioning points are determined, we can apply efficient root-finding algo-
rithms, such as the improved Illinois algorithms [22], to find the roots of (12) subinterval by
subinterval.

3.1.4 Computing T0, T0x and T0z

We will choose T0 to be the solution of the anisotropic eikonal equation (4) with constant
coefficients. Assume the point source is x0, we choose T0 to satisfy

vm |∇T0(x)| = ρ(x0), (13)

where the elastic moduli parameters are given by {C11(x0),C13(x0),C33(x0),C44(x0),
C66(x0)}, and the tilted angle is θ0(x0). Then we have

T0(x) = |x − x0|
Um/ρ(x0)

,

whereUm/ρ(x0) is the group velocity along the characteristic/ray direction (x−x0)/|x−x0|.
Um can be computed as in Sect. 3.1.2, as well as vm , hence T0 can be computed.

Furthermore, from Eq. (13), we have

T0x = ρ(x0)
vm

T0x√
T 2
0x + T 2

0z

= ρ(x0)
vm

sin(θ),

T0z = ρ(x0)
vm

T0z√
T 2
0x + T 2

0z

= ρ(x0)
vm

cos(θ).

Hence we have T0x and T0z .
With the local solvers described above, we can solve the factored anisotropic eikonal

equation (7) in a neighborhood of the source x0, denoted as Ω0, and solve the original
anisotropic eikonal equation (4) outside this neighborhood, denoted as Ωc

0 ≡ Ω − Ω0. The
size of Ω0 is chosen to be independent of the mesh as the mesh size approaches zero.

The first-order hybrid fast sweeping method is summarized as follows.
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Algorithm 1 (First-Order Hybrid FSM)

1. Initialization: assign exact/approximate values at grid points according to given bound-
ary condition, which will be fixed during iterations, and assign large positive values for
all other grid points.

2. Gauss–Seidel iteration: sweep the mesh with four alternating orderings iteratively:

(1) i = 0 : Nx , j = 0 : Nz, (2) i = 0 : Nx , j = Nz : 0,
(3) i = Nx : 0, j = 0 : Nz, (4) i = Nx : 0, j = Nz : 0.

At each grid point (xi , z j ),

– if it is in Ω0, use the local solver for the factored anisotropic eikonal equation (7) to
compute τ(C), and T (C) = τ(C) + T0(C).

– if it is in Ωc
0 , use the local solver for the anisotropic eikonal equation (4) to compute

T (C), and τ(C) = T (C) − T0(C) if necessary.

3. Termination: if the l1 norm difference of the solutions between two successive iterations
is smaller than the specified accuracy requirement or the number of iterations exceeds
the prescribed maximum number of iterations, terminate the iteration.

In Algorithm 1, the source singularity is resolved with the factorization approach. Con-
sequently, the method will have clean first-order accuracy, which will be demonstrated in
Sect. 4. And since the causality condition is imposed, the method is monotone [38,46,47,75]
such that its numerical solution will converge to the desired viscosity solution corresponding
to the first-arrival traveltime [2].

Furthermore, the numerical solution has the so-called “super-convergence” property that
has been observed previously for isotropic eikonal equation, i.e., its numerical gradient is
first-order accurate too. This property can be used to design an efficient second-order fast
sweeping method based on a linear DG formulation [11,33,35,73]. We will apply the similar
DG formulation to design a second-order FSM for the anisotropic eikonal equation.

3.2 Second-Order Hybrid FSM

For each grid point (xi , z j ), the cell associated with it as the cell center is {Ii j } ≡ Ii × I j
with Ii = [xi−1/2, xi+1/2] and I j = [z j−1/2, z j+1/2]. And we define the piecewise linear
polynomial approximation space as

V 1
h = {v : v|Ii j ∈ P1(Ii j ), ∀i, j},

where P1(Ii j ) denotes linear polynomials on Ii j .

3.2.1 Linear DG Formulation for (4)

Following the formulation in [11,33,35,73], a numerical scheme based on theDG formulation
for (4) is: finding Th ∈ V 1

h such that ∀wh ∈ V 1
h ,
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∫

Ii j
vm |∇Th |wh(x, z)dxdz

+ αei j

∫

I j
[Th](xi+1/2, z)wh(x

−
i+1/2, z)dz + αwi j

∫

I j
[Th](xi−1/2, z)wh(x

+
i−1/2, z)dz

+ αni j

∫

Ii
[Th](x, z j+1/2)wh(x, z

−
j+1/2)dx + αsi j

∫

Ii
[Th](x, z j−1/2)wh(x, z

+
j−1/2)dx

=
∫

Ii j
ρ(x, z)wh(x, z)dxdz.

(14)

[Th] denotes the jump of Th across the cell boundary, and

wh(x
−
i+1/2, z) = lim

x→x−
i+1/2

wh(x, z), wh(x
+
i−1/2, z) = lim

x→x+
i−1/2

wh(x, z),

wh(x, z
−
j+1/2) = lim

z→z−j+1/2

wh(x, z), wh(x, z
+
j−1/2) = lim

z→z+j−1/2

wh(x, z).

{αei j , αwi j } are local constants that approximate ∂H/∂Tx , and {αni j , αsi j } are local constants
that approximate ∂H/∂Tz . The local constants must be chosen wisely such that the causality
is enforced correctly.

The linear polynomial Th is represented as Th |Ii j = T̄i j + ξi j Xi + ηi j Z j with Xi =
(x − xi )/Δx and Z j = (z − z j )/Δz. The unknowns on Ii j are T̄i j , ξi j , and ηi j , which are
approximations of T ,ΔxTx , and ΔzTz at (xi , z j ), respectively.

In order to enforce the causality properly [11,33,35,73], we choose the local constants as

αei j = min

⎧
⎨

⎩0,
Pi j√

P2
i j + Q2

i j

vm − Qi j√
P2
i j + Q2

i j

dvm

dθ

⎫
⎬

⎭ ,

αwi j = max

⎧
⎨

⎩0,
Pi j√

P2
i j + Q2

i j

vm − Qi j√
P2
i j + Q2

i j

dvm

dθ

⎫
⎬

⎭ ,

αni j = min

⎧
⎨

⎩0,
Qi j√

P2
i j + Q2

i j

vm + Pi j√
P2
i j + Q2

i j

dvm

dθ

⎫
⎬

⎭ ,

αsi j = max

⎧
⎨

⎩0,
Qi j√

P2
i j + Q2

i j

vm + Pi j√
P2
i j + Q2

i j

dvm

dθ

⎫
⎬

⎭ ,

(15)

with Pi j = ξi j/Δx, Qi j = ηi j/Δz, and

{
vm,

dvm

dθ

}
computed with (Pi j , Qi j ).

Given cell Ii j , by choosing wh = 1, and approximating the integrals in (14) simply by
mid-point rule, we can derive a nonlinear equation on {T̄i j , ξi j , ηi j },

vm

√
(ξi j/Δx)2 + (ηi j/Δz)2ΔxΔz + γi j T̄i j + βi jξi j + λi jηi j = Ri j , (16)
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where

γi j = (αwi j − αei j )Δz + (αsi j − αni j )Δx,

βi j = − (αwi j + αei j )Δz

2
,

λi j = − (αsi j + αni j )Δx

2
,

Ri j = ρi jΔxΔz − αei j (T̄i+1, j − ξi+1, j/2)Δz + αwi j (T̄i−1, j + ξi−1, j/2)Δz

− αni j (T̄i, j+1 − ηi, j+1/2)Δx + αsi j (T̄i, j−1 + ηi, j−1/2)Δx .

We may further choose wh = Xi and Z j to derive two more equations on {T̄i j , ξi j , ηi j } such
that a system of three nonlinear equations on {T̄i j , ξi j , ηi j } can be solved to determine them.
Here, we utilize the “super-convergence” property [3,34,35]. If the solution T is smooth,
the numerical solutions obtained by Algorithm 1, denoted as {T 1, T 1

x , T 1
z }, are first-order

accurate both in its value and gradient, i.e.,

|T 1 − T | = O(Δx,Δz), |T 1
x − Tx | = O(Δx,Δz), |T 1

z − Tz | = O(Δx,Δz).

With this property, we can fix ξi j and ηi j in (16) as

ξi j = T 1
xi jΔx, ηi j = T 1

zi jΔz,

which implies a simple updating formula for T̄i j ,

T̄i j =
Ri j − vm

√
(ξi j/Δx)2 + (ηi j/Δz)2ΔxΔz − βi jξi j − λi jηi j

γi j
. (17)

3.2.2 Linear DG Formulation for (7)

The same linear DG formulation can be applied for (7): finding τh ∈ V 1
h such that ∀wh ∈ V 1

h ,
∫

Ii j
vm |∇τh + ∇T0|wh(x, z)dxdz

+ αei j

∫

I j
[τh](xi+1/2, z)wh(x

−
i+1/2, z)dz + αwi j

∫

I j
[τh](xi−1/2, z)wh(x

+
i−1/2, z)dz

+ αni j

∫

Ii
[τh](x, z j+1/2)wh(x, z

−
j+1/2)dx + αsi j

∫

Ii
[τh](x, z j−1/2)wh(x, z

+
j−1/2)dx

=
∫

Ii j
ρ(x, z)wh(x, z)dxdz.

(18)

The linear polynomial τh is represented as τh |Ii j = τ̄i j + μi j Xi + νi j Z j . The unknowns
on Ii j are τ̄i j , μi j , and νi j , which are approximations of τ,Δxτx , and Δzτz at (xi , z j ),
respectively.

In order to enforce the causality properly, we choose the local constants as in (15) with

Pi j = μi j/Δx + T0xi j , Qi j = νi j/Δz + T0zi j .

Given cell Ii j , by choosing wh = 1, and approximating the integrals in (18) simply by
mid-point rule, we can derive a nonlinear equation on {τ̄i j , μi j , νi j },
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vm

√
(μi j/Δx + T0xi j )2 + (νi j/Δz + T0zi j )2ΔxΔz + γi j τ̄i j + βi jμi j + λi jνi j = Ri j ,

(19)

where

γi j = (αwi j − αei j )Δz + (αsi j − αni j )Δx,

βi j = − (αwi j + αei j )Δz

2
,

λi j = − (αsi j + αni j )Δx

2
,

Ri j = ρi jΔxΔz − αei j (τ̄i+1, j − μi+1, j/2)Δz + αwi j (τ̄i−1, j + μi−1, j/2)Δz

− αni j (τ̄i, j+1 − νi, j+1/2)Δx + αsi j (τ̄i, j−1 + νi, j−1/2)Δx .

Wemay further choose wh = Xi and Z j to derive two more equations on {τ̄i j , μi j , νi j } such
that a system of three nonlinear equations on {τ̄i j , μi j , νi j } can be solved to determine them.
Instead, we utilize the same “super-convergence” property. If the solution τ is smooth, the
numerical solutions obtained by Algorithm 1, denoted as {τ 1, τ 1x , τ 1z }, are first-order accurate
both in its value and gradient, i.e.,

|τ 1 − τ | = O(Δx,Δz), |τ 1x − τx | = O(Δx,Δz), |τ 1z − τz | = O(Δx,Δz).

With this property, we can fix μi j and νi j in (19) as

μi j = τ 1xi jΔx, νi j = τ 1zi jΔz,

which implies a simple updating formula for τ̄i j ,

τ̄i j =
Ri j − vm

√
(μi j/Δx + T0xi j )2 + (νi j/Δz + T0zi j )2ΔxΔz − βi jμi j − λi jνi j

γi j
.

(20)

With the linear DG formulation, the “super-convergence” property, and the updating for-
mulas (17) and (20), we have a second-order hybrid fast sweeping method as follows.

Algorithm 2 (Second-Order Hybrid FSM)

1. Initialization: assign exact/approximate values at grid points according to given bound-
ary condition, which will be fixed during iterations, and assign large positive values for
all other grid points.

2. Preprocessing: Algorithm 1 is performed to obtain {T 1, T 1
x , T 1

z } and {τ 1, τ 1x , τ 1z }.
3. Gauss–Seidel iteration: sweep the mesh with four alternating orderings iteratively:

(1) i = 0 : Nx , j = 0 : Nz, (2) i = 0 : Nx , j = Nz : 0,
(3) i = Nx : 0, j = 0 : Nz, (4) i = Nx : 0, j = Nz : 0.

At each grid point (xi , z j ),

– if it is in Ω0, use the updating formula (20) to compute τi j , and Ti j = τi j + T0i j .
– if it is in Ωc

0 , use the updating formula (17) to compute Ti j , and τi j = Ti j − T0i j if
necessary.

4. Termination: if the l1 norm difference of the solutions between two successive iterations
is smaller than the specified accuracy requirement or the number of iterations exceeds
the prescribed maximum number of iterations, terminate the iteration.
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Algorithm 2 serves as a post-processing procedure for Algorithm 1.With a minimum amount
of extra work, Algorithm 2 achieves second-order accuracy.

Both Algorithms 1 and 2 are efficient in a sense that the complexity is O(N ) with N the
number of grid points. And the iteration number in the Gauss–Seidel iterations is independent
of the mesh size as it approaches zero. In both algorithms, the solutions of the two Eqs. (9)
and (11) can be pre-determined (with parallelization if necessary), and repeatedly used in the
iterations.

To demonstrate Algorithms 1 and 2, numerical experiments are presented in Sect. 4.

4 Numerical Examples

We present several numerical experiments to demonstrate Algorithms 1 and 2. To show
comparisons, we also present numerical solutions computed by the Lax–Friedrichs (LxF)
fast sweeping methods for Hamilton–Jacobi type equations [28,38], which are described in
“Appendix” as Algorithm 3 with central finite difference approximations and Algorithm 4
with high-order essentially nonoscillatory (ENO) finite difference approximations [41] or
weighted ENO (WENO) approximations [27,74]. For notational simplicity, we denote the
traveltimes computed by Algorithms 1, 2, 3 and 4 as T 1, T 2, T 3 and T 4, respectively. The
numerical experiments are performed with Matlab on a Laptop with Mac OSX.

Example 1 We test the accuracy of the proposed methods using the following Sinusoidal
velocity model:

– ρ is given as

ρ(x, z) = 1

(1 + 0.2 sin(0.5π z) sin(3π(x + 0.05)))
,

– the elastic moduli parameters are given by

[C11,C13,C33,C44,C66] ≡ [9.08, 2.98, 7.54, 2.27, 3.84],
– the computational domain is [−0.5, 0.5] × [0, 1],
– the tilted angle θ0 of the symmetric axis is chosen from {0, π/3, π/2},
– the source point is (x0, y0) = (0, 0.35).
– Ω0 is centered at the source with size 0.15.

Tables 1, 3 and 5 show the l1 errors for T 1
x , T 1

z , T 1, T 2 and T 4 of all the three wavemodes.
For T 4, the LxF scheme with second-order ENO approximations is used, where τ is assigned
to be zeros in a neighborhood of the source point of size 2max{Δx,Δz}. The reference
solutions are obtained by Algorithm 2 on a refined mesh 1281×1281. We observe first-order
accuracy for T 1

x , T 1
z , and T 1, and second-order accuracy for T 2 and T 4. For the numerical

experiments, both Algorithms 1 and 2 take 5 iterations to converge to the desired tolerance
10−6 as the mesh size decreases. Tables 2, 4 and 6 show the comparisons in terms of CPU
times for Algorithms 1, 2, and 4. For Algorithm 2, we record the CPU time as it serves as
the post-processing of Algorithm 1.

Example 2 We apply the methods to compute the first-arrival traveltime of the three wave-
modes with the benchmark Hess VTI model [55]. A window of the model from grid point
1 to grid point 1811 with spacing (0.03, 0.03) (km) is chosen as the numerical experiment.
Figure 3 shows the five elastic moduli parameters and mass density ρ. The tilted angle is
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Table 1 Sinusoidal velocity model: l1 errors for qP wave are recorded. θ0 = 0, π/3, π/2

Mesh 41 × 41 81 × 81 161 × 161 321 × 321 641 × 641

qP wave

Tilted angle θ0 ≡ 0; VTI

T 1
x l1 error 3.300E−3 1.655E−3 8.066E−4 3.548E−4 1.202E−4

conv. order – 0.995 1.036 1.184 1.561

T 1
z l1 error 2.850E−3 1.539E−3 7.639E−4 3.419E−4 1.176E−4

conv. order – 0.888 1.010 1.159 1.539

T 1 l1 error 1.437E−3 8.309E−4 4.444E−4 2.295E−4 1.166E−4

conv. order – 0.790 0.902 0.953 0.976

T 2 l1 error 1.294E−4 4.184E−5 1.239E−5 3.414E−6 8.008E−7

conv. order – 1.628 1.755 1.859 2.091

T 4 l1 error 9.894E−4 2.493E−4 6.182E−5 1.617E−5

conv. order – 1.988 2.011 1.934

Tilted angle θ0 ≡ π/3; TTI

T 1
x l1 error 3.230E−3 1.542E−3 7.323E−4 3.196E−4 1.083E−4

conv. order – 1.066 1.074 1.196 1.561

T 1
z l1 error 2.618E−3 1.283E−3 6.194E−4 2.771E−4 9.542E−5

conv. order – 1.028 1.050 1.160 1.538

T 1 l1 error 1.686E−3 9.672E−4 5.155E−4 2.658E−4 1.349E−4

conv. order – 0.801 0.907 0.955 0.978

T 2 l1 error 1.038E−4 3.602E−5 1.159E−5 3.551E−6 9.923E−7

conv. order – 1.526 1.635 1.706 1.839

T 4 l1 error 9.050E−4 2.171E−4 5.413E−5 1.426E−5

conv. order – 2.059 2.003 1.924

Tilted angle θ0 ≡ π/2; HTI

T 1
x l1 error 3.312E−3 1.648E−3 7.956E−4 3.496E−4 1.184E−4

conv. order – 1.006 1.050 1.186 1.562

T 1
z l1 error 2.561E−3 1.324E−3 6.589E−4 2.960E−4 1.017E−4

conv. order – 0.951 1.006 1.154 1.541

T 1 l1 error 1.535E−3 8.803E−4 4.687E−4 2.415E−4 1.226E−4

conv. order – 0.802 0.909 0.956 0.978

T 2 l1 error 1.278E−4 4.119E−5 1.221E−5 3.421E−6 8.856E−7

conv. order – 1.633 1.754 1.835 1.949

T 4 l1 error 9.894E−4 2.493E−4 6.182E−5 1.617E−5

conv. order – 1.988 2.011 1.934

θ0 ≡ 0. Figure 4 shows the contour plots for all the three wavemodes computed by the
proposed methods. For T 4, the LxF scheme with third-order WENO approximations is used,
where τ is assigned to be zeros in a neighborhood of the source point of size 2max{Δx,Δz}.
Ω0 is centered at the source with size 4.

123



   32 Page 18 of 30 Journal of Scientific Computing            (2020) 84:32 

Table 2 Sinusoidal velocity
model: CPU time (in seconds) of
Algorithm 1, 2 and 4 for qP wave
are recorded. θ0 = 0, π/3, π/2

CPU time/mesh 41 × 41 81 × 81 161 × 161 321 × 321

qP wave

Tilted angle θ0 ≡ 0; VTI

Alg. 1 5.818 1.513E1 4.607E1 1.683E2

Alg. 2 0.088 0.141 0.289 0.730

Alg. 4 7.590 1.883E1 6.306E1 4.013E2

Tilted angle θ0 ≡ π/3; TTI

Alg. 1 5.113 1.298E1 4.252E1 1.611E2

Alg. 2 0.060 0.135 0.282 0.684

Alg. 4 2.122 1.818E1 6.133E1 4.100E2

Tilted angle θ0 ≡ π/2; HTI

Alg. 1 5.818 1.513E1 4.607E1 1.683E2

Alg. 2 0.088 0.141 0.289 0.730

Alg. 4 7.590 1.883E1 6.306E1 4.013E2

Fig. 3 A window from Hess VTI model: a–f C11, C13, C33, C44, C66, and ρ. Mesh: 363 × 261 with
(Δx, Δz) = (0.03, 0.03) (km) (Color figure online)

Example 3 we apply the methods to compute the first-arrival traveltime of the three wave-
modes with the benchmark BP TTI model [19]. The five elastic moduli parameters and the
tilted angle θ0 are given as in Fig. 5, and the mass density is ρ ≡ 1. The size of the model is
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Table 3 Sinusoidal velocity model: l1 errors for qSV wave are recorded. θ0 = 0, π/3, π/2

Mesh 41 × 41 81 × 81 161 × 161 321 × 321 641 × 641

qSV wave

Tilted angle θ0 ≡ 0; VTI

T 1
x l1 error 1.047E−2 5.524E−3 2.764E−3 1.250E−3 4.330E−4

conv. order – 0.922 0.998 1.144 1.529

T 1
z l1 error 9.692E−3 5.079E−3 2.531E−3 1.141E−3 3.943E−4

conv. order – 0.932 1.004 1.149 1.532

T 1 l1 error 3.526E−3 2.092E−3 1.140E−3 5.967E−4 3.054E−4

conv. order – 0.753 0.875 0.933 0.966

T 2 l1 error 2.721E−4 1.302E−4 5.332E−5 1.880E−5 5.131E−6

conv. order – 1.063 1.287 1.503 1.873

T 4 l1 error 1.475E−3 3.823E−4 1.045E−4 2.954E−5

conv. order – 1.947 1.871 1.822

Tilted angle θ0 ≡ π/3; TTI

T 1
x l1 error 9.341E−3 4.756E−3 2.323E−3 1.028E−3 3.502E−4

conv. order – 0.973 1.033 1.176 1.553

T 1
z l1 error 8.445E−3 4.342E−3 2.136E−3 9.539E−4 3.267E−4

conv. order – 0.959 1.023 1.163 1.545

T 1 l1 error 2.738E−3 1.601E−3 8.615E−4 4.460E−4 2.269E−4

conv. order – 0.774 0.894 0.949 0.974

T 2 l1 error 3.138E−4 1.111E−4 3.549E−5 1.043E−5 2.497E−6

conv. order – 1.497 1.646 1.766 2.062

T 4 l1 error 2.247E−3 6.729E−4 1.912E−4 5.375E−5

conv. order – 1.739 1.815 1.830

Tilted angle θ0 ≡ π/2; HTI

T 1
x l1 error 1.023E−2 5.374E−3 2.689E−3 1.217E−3 4.217E−4

conv. order – 0.928 0.998 1.143 1.529

T 1
z l1 error 9.675E−3 5.131E−3 2.591E−3 1.180E−3 4.111E−4

conv. order – 0.915 0.985 1.134 1.521

T 1 l1 error 3.435E−3 2.047E−3 1.119E−3 5.862E−4 3.001E−4

conv. order – 0.746 0.871 0.932 0.965

T 2 l1 error 2.339E−4 1.078E−4 4.326E−5 1.532E−5 4.309E−6

conv. order – 1.117 1.317 1.497 1.829

T 4 l1 error 1.427E−3 3.769E−4 1.061E−4 3.057E−5

conv. order – 1.920 1.828 1.795

1801×12596 with spacing (0.00625, 0.01) (km). We choose three windows from the model
as three numerical experiments (indicated by solid lines in Fig. 5):

– window 1: from grid point 501 to grid point 2201,
– window 2: from grid point 4501 to grid point 6001,
– window 3: from grid point 7251 to grid point 8751.
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Table 4 Sinusoidal velocity
model: CPU time (in seconds) of
Algorithm 1, 2 and 4 for qSV
wave are recorded.
θ0 = 0, π/3, π/2

CPU time/mesh 41 × 41 81 × 81 161 × 161 321 × 321

qSV wave

Tilted angle θ0 ≡ 0; VTI

Alg. 1 6.339 1.389E1 4.970E1 1.638E2

Alg. 2 0.096 0.098 0.303 0.780

Alg. 4 1.807 8.801 6.509E1 4.056E2

Tilted angle θ0 ≡ π/3; TTI

Alg. 1 6.044 1.543E1 4.607E1 1.624E2

Alg. 2 0.107 0.090 0.279 0.739

Alg. 4 7.953 8.449 6.726E1 4.073E2

Tilted angle θ0 ≡ π/2; HTI

Alg. 1 5.489 1.508E1 4.652E1 1.755E2

Alg. 2 0.110 0.140 0.273 0.787

Alg. 4 8.017 1.895E1 5.581E1 4.121E2

For each window, a subset of the data is chosen in the numerical experiments with
(Δx,Δz) = (0.05, 0.05) (km). Figures 6, 7 and 8 show the contour plots for all the three
wavemodes computed by the proposed methods. For T 4, the LxF scheme with third-order
WENO approximations is used, where τ is assigned to be zeros in a neighborhood of the
source point of size 2max{Δx,Δz}. Ω0 is centered at the source with size 4.

4.1 Discussion of Numerical Experiments

Example 1 verifies the accuracy and efficiency of the proposed methods. Examples 2 and
3 with benchmark models from geophysics verify the feasibility for computing first-arrival
traveltime of the three wavemodes in general 2-D TTI media. In the local solvers of Algo-
rithms 1 and 2, the partitioning points (i.e., {θk}), the group velocities along edges of the
mesh, and {T0,∇T0} can be pre-computed easily in parallel. And they can be repeatedly used
during the iterations of the methods.

For the factorization approach to resolve the source singularities, besides the additive
decomposition (6),we can also adopt themultiplicative decomposition [21,36,37,39,42,72] as
T = τT0. For simplicity,we choose the additive decomposition in current application because
the equations in θ for determining the partitioning points (i.e., {θk}) are the same for the
anisotropic eikonal equation and factored anisotropic eikonal equation. If the multiplicative
decomposition is used, a different equation in θ for determining the partitioning points (i.e.,
{θk}) must be solved for the factored anisotropic eikonal equation [25].

5 Conclusion

We present both first-order and second-order hybrid fast sweeping methods for comput-
ing the first-arrival traveltime of the qP, qSV and qSH waves in the two-dimensional tilted
transversely isotropic media, based on solving the anisotropic eikonal equation numerically.
The methods solve a factored anisotropic eikonal equation after applying a factorization
approach to resolve the source singularity near the source in a neighborhood of the source,
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Table 5 Sinusoidal velocity model: l1 errors for qSH wave are recorded. θ0 = 0, π/3, π/2

Mesh 41 × 41 81 × 81 161 × 161 321 × 321 641 × 641

qSH wave

Tilted angle θ0 ≡ 0; VTI

T 1
x l1 error 5.753E−3 2.928E−3 1.415E−3 6.224E−4 2.112E−4

conv. order – 0.974 1.049 1.184 1.559

T 1
z l1 error 5.460E−3 2.888E−3 1.419E−3 6.321E−4 2.168E−4

conv. order – 0.918 1.025 1.166 1.543

T 1 l1 error 2.361E−3 1.387E−3 7.484E−4 3.882E−4 1.977E−4

conv. order – 0.767 0.890 0.947 0.973

T 2 l1 error 2.107E−4 6.947E−5 2.108E−5 5.974E−6 1.411E−6

conv. order – 1.600 1.720 1.819 2.081

T 4 l1 error 1.465E−3 3.618E−4 9.002E−5 2.444E−5

conv. order – 2.017 2.006 1.881

Tilted angle θ0 ≡ π/3; TTI

T 1
x l1 error 6.037E−3 2.893E−3 1.353E−3 5.839E−4 1.965E−4

conv. order – 1.061 1.096 1.212 1.571

T 1
z l1 error 4.935E−3 2.340E−3 1.120E−3 4.936E−4 1.689E−4

conv. order – 1.076 1.063 1.182 1.547

T 1 l1 error 2.946E−3 1.681E−3 8.940E−4 4.605E−4 2.336E−4

conv. order – 0.809 0.910 0.957 0.979

T 2 l1 error 1.723E−4 5.857E−5 1.878E−5 5.805E−6 1.664E−6

conv. order – 1.556 1.640 1.693 1.802

T 4 l1 error 1.667E−3 4.038E−4 9.809E−5 2.728E−5

conv. order – 2.045 2.041 1.846

Tilted angle θ0 ≡ π/2; HTI

T 1
x l1 error 6.064E−3 2.917E−3 1.361E−3 5.898E−4 1.989E−4

conv. order – 1.055 1.099 1.206 1.568

T 1
z l1 error 4.550E−3 2.219E−3 1.054E−3 4.623E−4 1.573E−4

conv. order – 1.035 1.074 1.188 1.555

T 1 l1 error 2.853E−3 1.632E−3 8.682E−4 4.470E−4 2.268E−4

conv. order – 0.805 0.910 0.957 0.978

T 2 l1 error 1.932E−4 6.392E−5 1.992E−5 6.442E−6 2.111E−6

conv. order – 1.595 1.682 1.628 1.609

T 4 l1 error 1.715E−3 4.110E−4 1.004E−4 2.629E−5

conv. order – 2.060 2.033 1.933

and solve the original anisotropic eikonal equation outside of the neighborhood of the
source. Consequently, the traveltime computed by the first-order method has clean first-order
accuracy. Furthermore, its gradient is also first-order accurate, which is the so-called “super-
convergence” property and is utilized to design a second-order fast sweepingmethod based on
a linear discontinuousGalerkin formulation. For thefirst-ordermethod, a systematic approach
is designed to solve the nonlinear discretized equation in the local solver at each grid point.
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Table 6 Sinusoidal velocity
model: CPU time (in seconds) of
Algorithm 1, 2 and 4 for qSH
wave are recorded.
θ0 = 0, π/3, π/2

CPU time/mesh 41 × 41 81 × 81 161 × 161 321 × 321

qSH wave

Tilted angle θ0 ≡ 0; VTI

Alg. 1 5.825 1.454E1 5.131E1 1.691E2

Alg. 2 0.105 0.132 0.261 0.740

Alg. 4 7.837 1.949E1 6.479E1 4.184E2

Tilted angle θ0 ≡ π/3; TTI

Alg. 1 5.591 1.475E1 4.540E1 1.665E2

Alg. 2 0.110 0.151 0.225 0.784

Alg. 4 7.537 1.951E1 6.731E1 4.258E2

Tilted angle θ0 ≡ π/2; HTI

Alg. 1 5.930 1.548E1 4.557E1 1.591E2

Alg. 2 0.087 0.142 0.277 0.721

Alg. 4 7.786 1.937E1 6.614E1 4.273E2

With the appropriate enforcement of the causality condition, themethod enjoys all the desired
properties of the usual fast sweeping method, i.e., efficiency, accuracy and convergence
guaranteed by monotonicity. The second-order method, which serves as a post-processing
procedure of the first-order method, is also efficient and accurate. Moreover, necessary ingre-
dients in both methods, such as the group velocities along given characteristic/ray directions
and the extreme points of the discretized Hamiltonian, can be pre-determined and repeat-
edly used in the local solver. Numerical experiments verify the efficiency of the proposed
methods. As future work, the techniques will be extended to three-dimensional cases, where
we will investigate how to design a similar systematic procedure for solving the nonlinear
equation of the local solver efficiently. Moreover, the Lax–Friedrichs scheme presented in
“Appendix” will be extended to higher-order schemes.

The datasets during and/or analysed during the current study are available from the cor-
responding author on reasonable request.

Appendix: Lax–Friedrichs Fast SweepingMethod

Following [28,38], the Lax–Friedrichs (LxF) scheme for the anisotropic eikonal equation (4)
at each grid point (xi , z j ) is

HLF (Pi j , Qi j ) ≡ vm(Pi j , Qi j )

√
P2
i j + Q2

i j − ρi j

− αx
Ti+1, j − 2Ti j + Ti−1, j

2Δx
− αz

Ti, j+1 − 2Ti j + Ti, j−1

2Δz
= 0,

(21)

with Pi j = (Ti+1, j−Ti−1, j )/(2Δx) and Qi j = (Ti, j+1−Ti, j−1)/(2Δz), whereαx andαz are
constants chosen to satisfy ∂HLF/∂Ti j ≥ 0, and ∂HLF/∂{Ti−1, j , Ti+1, j , Ti, j−1, Ti, j+1} ≤
0.

From (21), we can derive the local updating formula for Ti j as

Ti j =
ρi j − vm(Pi j , Qi j )

√
P2
i j + Q2

i j + αx
Ti+1, j+Ti−1, j

2Δx + αz
Ti, j+1+Ti, j−1

2Δz

αx/Δz + αz/Δz
. (22)
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Fig. 4 Contour plots for the Hess VTI model: Top–Middle–Bottom: qP, qSV, and qSH waves. Left figure
shows a zoom-in region of Right figure. Red-curve: Algorithm 2; Blue-dashed: Algorithm 1; and Green-
dotted: Algorithm 4 (Color figure online)

Similarly, the LxF scheme for the factored anisotropic eikonal equation at (xi , z j ) is

H̄ LF (pi j , qi j ) ≡
vm(pi j + T0xi j , qi j + T0zi j )

√
(pi j + T0xi j )2 + (qi j + T0zi j )2 − ρi j

− αx
τi+1, j − 2τi j + τi−1, j

2Δx
− αz

τi, j+1 − 2τi j + τi, j−1

2Δz
= 0,

(23)

with pi j = (τi+1, j −τi−1, j )/(2Δx) and qi j = (τi, j+1 −τi, j−1)/(2Δz), where αx and αz are
constants chosen to satisfy ∂ H̄ LF/∂τi j ≥ 0, and ∂ H̄ LF/∂{τi−1, j , τi+1, j , τi, j−1, τi, j+1} ≤ 0.
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Fig. 5 BP TTI model: a–f C11, C13, C33, C44, C66, and θ0. Three windows (indicated by solid vertical lines)
are chosen as numerical experiments. Mesh: 341 × 226 (window 1), 301 × 226 (window 2), and 301 × 226
(window 3), with (Δx, Δz) = (0.05, 0.05) (km)

From (23), we can derive the local updating formula for τi j as

τi j =
ρi j − vm(pi j + T0xi j , qi j + T0zi j )

√
(pi j + T0xi j )2 + (qi j + T0zi j )2 + αx

τi+1, j+τi−1, j
2Δx + αz

τi, j+1+τi, j−1
2Δz

αx/Δz + αz/Δz

(24)

With the LxF schemes and the local updating formulas, we summarize the first-order
hybrid LxF fast sweeping method.

Algorithm 3 (First-Order LxF FSM)

1. Initialization: assign exact/approximate values at grid points according to given bound-
ary condition, which will be fixed during iterations, and assign large positive values for
all other grid points.

2. Gauss–Seidel iteration: sweep the mesh with four alternating orderings iteratively:

(1) i = 0 : Nx , j = 0 : Nz, (2) i = 0 : Nx , j = Nz : 0,
(3) i = Nx : 0, j = 0 : Nz, (4) i = Nx : 0, j = Nz : 0.

At each grid point (xi , z j ),

– if it is in Ω0, use the updating formula (24) to compute τi j , and Ti j = τi j + T0i j .

123



Journal of Scientific Computing            (2020) 84:32 Page 25 of 30    32 

Fig. 6 Contour plots for window 1 of the BP TTI model: Top–Middle–Bottom: qP, qSV, and qSH waves.
Left figure shows a zoom-in region of Right figure. Red-curve: Algorithm 2; Blue-dashed: Algorithm 1; and
Green-dotted: Algorithm 4 (Color figure online)

– if it is in Ωc
0 , use the updating formula (22) to compute Ti j , and τi j = Ti j − T0i j if

necessary.

3. Termination: if the l1 norm difference of the solutions between two successive iterations
is smaller than the specified accuracy requirement or the number of iterations exceeds
the prescribed maximum number of iterations, terminate the iteration.

We can improve the accuracy using high-order approximations of the derivatives, such
as the high-order essentially nonoscillatory (ENO) finite difference approximations [41], or
high-order Weighted ENO (WENO) finite difference approximations [27,74].
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Fig. 7 Contour plots for window 2 of the BP TTI model: Top–Middle–Bottom: qP, qSV, and qSH waves.
Left figure shows a zoom-in region of Right figure. Red-curve: Algorithm 2; Blue-dashed: Algorithm 1; and
Green-dotted: Algorithm 4 (Color figure online)

We replace Ti±1, j , Ti, j±1 in (22) with

Ti±1, j = Ti j ± ΔxT±
xi j , Ti, j±1 = Ti j ± ΔzT±

zi j ,

where T±
xi j (and T±

zi j ) are high-order ENO or WENO approximations of the right and left
derivative of T in the x (and z) direction at (xi , z j ), respectively. Then we have the local
updating formula for Ti j ,
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Fig. 8 Contour plots for window 3 of the BP TTI model: Top–Middle–Bottom: qP, qSV, and qSH waves.
Left figure shows a zoom-in region of Right figure. Red-curve: Algorithm 2; Blue-dashed: Algorithm 1; and
Green-dotted: Algorithm 4 (Color figure online)

T new
i j =

ρi j − vm(Pi j , Qi j )
√
P2
i j + Q2

i j + αx
2T old

i j +Δx(T+
xi j−T−

xi j )

2Δx + αz
2T old

i j +Δz(T+
zi j−T−

zi j )

2Δz

αx/Δz + αz/Δz
,

(25)

with Pi j = T+
xi j+T−

xi j
2 and Qi j = T+

zi j+T−
zi j

2 . Here T old
i j and T new

i j are the current old value and
newly updated value at (xi , z j ), respectively.

Similarly, we replace τi±1, j , τi, j±1 in (24) with

τi±1, j = τi j ± Δxτ±
xi j , τi, j±1 = τi j ± Δzτ±

zi j ,
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where τ±
xi j (and τ±

zi j ) are high-order ENO or WENO approximations of the right and left
derivative of τ in the x (and z) direction at (xi , z j ), respectively. Then we have the local
updating formula for τi j ,

τ newi j =

ρi j − vm(pi j + T0xi j , qi j + T0zi j )
√

(pi j + T0xi j )2 + (qi j + T0zi j )2

+ αx
2τ oldi j + Δx(τ+

xi j − τ−
xi j )

2Δx
+ αz

2τ oldi j + Δz(τ+
zi j − τ−

zi j )

2Δz
αx/Δz + αz/Δz

, (26)

with pi j = τ+
xi j+τ−

xi j
2 and qi j = τ+

zi j+τ−
zi j

2 . Here τ oldi j and τ newi j are the current old value and
newly updated value at (xi , z j ), respectively.

With the high-order ENO or WENO approximations, we have a high-order hybrid LxF
fast sweeping method, which is the same as Algorithm 3, except that at each grid (xi , z j ), we
use the new local updating formulas (25) and (26). We refer to the high-order LxF method
with high-order ENO or WENO approximations as Algorithm 4, and demonstrate it with
second-order ENO approximations and third-order WENO approximations in the numerical
experiments.
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