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Abstract

What kind of basic research ideas are more
likely to get applied in practice? There is a
long line of research investigating patterns of
knowledge transfer, but it generally focuses on
documents as the unit of analysis and follow
their transfer into practice for a specific sci-
entific domain. Here we study translational
research at the level of scientific concepts for
all scientific fields. We do this through text
mining and predictive modeling using three
corpora: 38.6 million paper abstracts, 4 mil-
lion patent documents, and 0.28 million clini-
cal trials. We extract scientific concepts (i.e.,
phrases) from corpora as instantiations of “re-
search ideas", create concept-level features
as motivated by literature, and then follow
the trajectories of over 450,000 new concepts
(emerged from 1995-2014) to identify factors
that lead only a small proportion of these ideas
to be used in inventions and drug trials. Re-
sults from our analysis suggest several mech-
anisms that distinguish which scientific con-
cept will be adopted in practice, and which
will not. We also demonstrate that our de-
rived features can be used to explain and pre-
dict knowledge transfer with high accuracy.
Our work provides greater understanding of
knowledge transfer for researchers, practition-
ers, and government agencies interested in en-
couraging translational research.

1 Introduction

Science generates a myriad of new ideas, only
some of which find value in practical uses (Backer,
1991; Lane and Bertuzzi, 2011). Large government
agencies (e.g., NSF, NIH) pour billions of dollars
into basic research in the hopes that it will span
the research-practice divide so as to generate pri-
vate sector advances in technologies (Narin and
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Figure 1: An illustration of scientific concept’s “knowl-
edge transfer' from basic research to practice use: we
analyze individual concept’s time-varying features (e.g., pop-
ularity) and relative positions with other concepts (i.e., co-
occurrence) to understand the key mechanisms behind knowl-
edge transfer, using Web of Science research papers, USPTO
patents and clinical trial documents.

Noma, 1985), social policies (McDonald and Mair,
2010), and pharmaceuticals (Berwick, 2003). To
this end, these agencies increasingly seek to nurture
“translational research" that succeeds at extending,
bridging and transforming basic research so it finds
greater applied value (Li et al., 2017). Surround-
ing this effort has arisen a line of research that
tries to identify when, where, and how academic
research influences science and technological in-
vention (Backer, 1991; Li et al., 2017).

However, prior research efforts are limited in
their ability to understand and facilitate the trans-
lation of research ideas. This is partially due to
a shortage of data, a biased focus on successful
examples, and specialized modeling paradigms. In
practice, only a small proportion of knowledge
outputs are successfully translated into inventive
outputs (~ 2.7% concepts from WoS to patent,
and ~ 11.3% concepts from WoS to clinical trials,
according to our data analysis). Previous studies
conduct post-hoc analyses of successful scientific-
technological linkages, but are unable to explain
why the majority of scientific innovations do not
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Figure 2: Concepts’ knowledge transfer over time

transfer into technological inventions. Additionally,
prior work mostly look at document-level linkages
across research and applied domains, i.e., citations
from patents into research papers or shared inven-
tors across them, rather than diving into the docu-
ment content where ideas are discussed (Narin and
Noma, 1985; Ahmadpoor and Jones, 2017). Docu-
ments entail many ideas, and linkages across them
loosely capture which intellectual innovation is in
focus and being transferred.

By contrast, we conceptualize knowledge trans-
fer in terms of scientific concepts, rather than doc-
uments associated to particular desirable outcomes,
and demonstrate the importance of our derived fea-
tures in knowledge transfer through machine learn-
ing model in a large-scale original dataset.

In this paper, we focus on studying patterns be-
hind knowledge transfer from academia to research.
We use “knowledge transfer from academia to re-
search” in our study to mean a “‘concept’s transfer
from research papers to patent documents/clinical
trials”, or a concept that first appear in academia
later get used a non-trivial frequency (decided by a
pre-defined threshold) in practical outlets (patents,
clinical trials). ! In scientific writing, a scientific
concept is a term or set of terms that have semanti-
cally coherent usage and reflect scientific entities
— e.g., curricula, tools, programs, ideas, theories,
substances, methods, processes, and propositions,
which are argued to be the basic units of scientific
discovery and advance (Toulmin). We use the titles
and abstracts of 38.6 million academic publications
from the Web of Science (WoS) to identify 0.45
million new scientific concepts emerging between
1995 to 2014 through state of the art phrase mining
techniques (AutoPhrase), and follow their trajec-
tories in 4 million patent documents of the United
States Patent and Trademark Office (USPTO), and
0.28 million clinical trials from U.S. National Li-
brary of Medicine.

In our analysis, we compare the properties of

"We use knowledge transfer, concept transfer and idea
transfer interchangeably throughout the paper

Table 1: Examples of extracted scientific concepts

Transferred Concepts Non-transferred Concepts

Internet, world wide web,
interactive visualization, web server,
gpu, recombinant protein production,

heci engine, cloud service,

artificial magnetic conductor
multifunctional enzym,
tissue remodeling,
single photon detector

ethnographic exploration,
immersive virtual reality,
european maize,
institutional demand,
automatic imitation,
network reorganization,
human capital,
amercian theatre

new scientific concepts that successfully transfer
into patents with those that did not. We find that
(a) the intrinsic properties of ideas and their tempo-
ral behavior, and (b) relative position of the ideas
are the two mechanisms that determine whether an
idea could transfer successfully. In particular, we
find new engineering-focused scientific concepts
situated in emotionally positive contexts are more
likely to transfer than other concepts. Furthermore,
increased scientific hype and adoption across sci-
entists, as well as usage in interdisciplinary venues
over time, are early signs of impending knowledge
transfer into technological inventions. Finally, we
find that new concepts positioned close to concepts
that already transferred into patents are far more
likely to transfer than their counterparts. Based on
the derived features, we further built model to pre-
dict the likelihood of knowledge transfer from pa-
pers to patents/clinical trials at individual concept
level, and demonstrated our derived feature can
achieve great performance, indicating that our pro-
posed features can explain majority of the knowl-
edge transfer cases.

Contributions Our main contributions are summa-
rized as follows: (1) To the best of our knowledge,
we present the first ever research that aims at under-
standing knowledge transfer at a large scale, using
multiple corpora. (2) We are the first to leverage
text mining techniques to understand transfer on
scientific concept level, rather than document level.
(3) We systematically analyzed the differences be-
tween transferable and non-transferable concepts,
and identified the key mechanisms behind knowl-
edge transfer. We showed our derived insights can
help explain and predict knowledge transfer with
high accuracy.

2 Data Preparation and Processing

In this section we introduce the dataset used in our
study (Sec. 2.1), and present the concept extraction
process (Sec. 2.2).



2.1 Collection of Text Corpora

Research Papers from WoS. We used scientific
concepts extracted from Web of Science (WoS)
as representation of knowledge in academia. We
use the complete corpus from WoS (1900-2017)
totaling 38,578,016 papers.

Patent Documents from USPTO. We used
concepts extracted from 4,721,590 patents in
the United States Patent and Trademark Office
(USPTO) from 1976 to 2014 to represent general
knowledge in the application domain.

Clinical Trials. We used concepts extracted from
279,195 clinical trials from U.S. National Library
of Medicine? (1900 to 2018) to represent bio &
health sciences knowledge used in practice.

More details of the leveraged datasets are fur-
ther elaborated in Appendix A. Note that our study
inevitably suffer from data bias. For instance, not
all practitioners will patent their idea, or file clini-
cal trials, and that some clinical trails and patents
are unused, thus there will be some false positives
and negatives of ‘transferred’ labels through our
approach. Yet so far patent and clinical trial have
been demonstrated to be the best proxy to study
translational science from research to practice (Ah-
madpoor and Jones, 2017). Moreover, we have
tried our best to mitigate such bias by investigating
transfer patterns in both patent-heavy and patent-
light fields, where we found very similar patterns
emerge.

2.2 Scientific Concept Extraction

Using titles and abstracts of articles, patents and
clinical trials, we employ phrase detection tech-
nique AutoPhrase (Shang et al., 2018), to identify
key concepts in the two corpora and trace their
emergence and transfer across domains over time.
Phrase detection identifies 1,471,168 concepts for
research papers, 316,442 concepts for patents, and
112,389 concepts for clinical trials. Some samples
of transferred concepts and non-transferred con-
cepts extracted from WoS and USPTO by phrase
detection are shown in Table. 1. We observe that
phrase detection results in high-quality concepts
(92% are labelled as high quality through our eval-
uations) that are suitable to investigate knowledge
transfer across domains. Details of the phrase de-
tection techniques, cleaning and evaluations are
further discussed in Appendix B.

Retrieved from clinicaltrials.gov

New Concept Identification. The focus of this
study is on new concepts and their careers. How-
ever, our sample of 1.5 million distinct concepts
occur at any time in the corpus, some of which
emerged long ago and others more recent. To avoid
left-censoring issue (certain concepts appear before
the start time of the recorded data thus we do not
fully observe their behaviors) and identify ‘real’
new concepts, we aggregate (or “‘burn in”) the set
of concepts over time, and count the number of
new concepts that arrive each year. Early papers
(starting 1900) identify many new concepts, but
this quickly decelerates by around 1995 and then
assumes a linear growth in vocabulary afterwards
(see Fig. 2(a)). To identify that point, we aggregate
the set of concepts every year with prior years until
the rate of new concepts’ introduction is approx-
imately linear and stable. The point occurs after
1995, when 0.45 million scientific concepts are left.
Then we follow knowledge transfer via these new
scientific concepts, and find only ~2.7% of all con-
cepts get transferred to patent, and only ~11.3%
of bio & health concepts get transferred to clinical
trials across years. The number of transferred con-
cepts each year from WoS to USPTO is illustrated
in Fig. 2(b).

3 Feature Creation and Analysis

Based on the concepts extracted from research pa-
pers, patent and clinical trial documents, we first
create concept level features as motivated by prior
literature on knowledge diffusion, and present a
large-scale data analysis on transferred and non-
transferred concepts to better understand properties
facilitating the knowledge transfer process. Here
we present transfer patterns from research paper to
patent and omit clinical trial due to page limit 3.

3.1 Intrinsic Properties of Concepts

Motivated by previous works on knowledge dif-
fusion and transfer, we extracted intrinsic concept
features that would most likely facilitate a scientific
idea’s transfer into technological inventions, which
can be classified into four categories: 1) hype fea-
tures (Latour, 1987; Rossiter, 1993), 2) bridge posi-
tioning features (Shi et al., 2010; Kim et al., 2017),
3) ideational conditions (Berger and Heath, 2005),
and 4) technological resonance (Narin and Noma,

3We find very similar transfer patterns emerge from re-
search paper to clinical trial.



1985)*. The four sets of features represent the char-
acteristic of individual concept from diverse angles,
and as we will show signify the differences between
transferred and non-transferred concepts, both in
mean value (Appendix E) and temporal behavior.
To illustrate concepts’ temporal behavior over
time, we plot the feature curves of transferred and
non-transferred concepts over concept age. Details
could be found in Figs. 3-8.
Hype. This group of features draws on prior work
concerning concept hype (Latour, 1987; Acharya
et al., 2014; Lariviere et al., 2014). We include two
features: the adopter size using the concept, and the
degree to which authors repeatedly use the concept.
We measure adopter size as the total number of
authors who employ a concept in a particular year,
and author repeated usage as the total number of
previous authors continuing to use the concept.
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Figure 3: Hype features.

We found that transferred concepts generally
demonstrate higher numbers of adopters and re-
peated usage. Furthermore, transferred concepts
attract adopters at a faster rate than non-transferred
concepts. We also found that transferred concepts
are repeatedly used much more often by the pre-
vious authors when controlling for concept age.
What’s more, we observe an increasing gap with
regard to ‘hype’ features between transferred and
non-transferred concepts over time, possibly due to
the preferential attachment effect (Newman, 2001).

Bridge Positioning. This group of features iden-
tify the disciplinary placement of concepts. Pre-
vious works argue that knowledge transfer is fa-
cilitated when ideas are placed at the boundary
of fields and in fields especially relevant to tech-
nological invention ((Shi et al., 2010)). Here we
include two features: discipline diversity and en-
gineering relation in this group. Discipline diver-
sity is computed as a concept’s average entropy
across NRC discipline subject codes (sociology,
math, economics, etc.), and engineering relation is

“While these features are not exhaustive, to the best of
our knowledge they are the key factors most salient to the
knowledge diffusion as discussed in literature

computed as the proportion of engineering fields
among all the fields using the concept.

We found transferred concepts are more likely to
be used in interdisciplinary and engineering venues.
Moreover, transferred concepts gained greater inter-
disciplinary attention over time compared to non-
transferred concepts, as shown in Fig. 4. The
finding is consistent with the assumption that trans-
ferred concepts are likely to achieve a more diverse
audience than non-transferred concepts. Engineer-
ing focused concepts also achieved a higher knowl-
edge transfer rate, which supports our hypothesis
that knowledge transfer is facilitated when ideas
are placed at the boundary of fields especially rel-
evant to technological invention like engineering
(e.g. mechanical engineering). Once again, we
observed the difference of ‘bridge positioning’ fea-
ture values between transferred and non-transferred
concepts increase over time.
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Figure 4: Bridge positioning features.

Ideational Conditions. This group of features rep-
resents the semantic context and expression of a
concept. How the concept is related to other con-
cepts and the style with which the concept is ex-
pressed can both influence the diffusion and trans-
fer process (Hamilton et al., 2016). Here we select
emotionality, and accessibility in this group, and
calculated them through LIWC and Dale Chall met-
ric (details in Appendix C).

We found transferred concepts are embedded in
more emotional context, and described in more dif-
ficult language, compared to non-transferred coun-
terparts. In a similar way, we plot ideational con-
dition features over time for transferred concepts
and non-transferred concepts in Fig. 5. We found
that transferred concepts were consistently placed
in increasingly positive contexts and conveyed in
more difficult language over time, compared to non-
transferred concepts, although the accessibility gap
decreases over time.
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Technological Resonance. This group of features
quantifies the extent to which a concept is estab-
lished within an environment conducive to link
scientific publications with patents and other out-
comes (Narin and Noma, 1985; Tijssen, 2001).
We measure this as journal linkage and university-
industry relationship in our study. journal linkage
is computed as the percentage of journals where the
concept is situated that have been cited by patents
before. university-industry relationship is calcu-
lated as the proportion of industry-affiliated authors
out of all the authors employing the term each year.
Should a scientific concept be in a high bridging
space like these, they will more likely transfer.

Transferred concepts are more likely to be men-
tioned in journals that have been cited by patents,
and this relationship strengthens over time. We
also find that if a concept is associated with more
industry-affiliated authors, the concept has a higher
potential to transfer. While the industry-affiliate
author percentage between transferred and non-
transferred concepts remain relatively stable, the
gap between them with regard to journal linkage
gets greater over time.

3.2 Relative Position in Concept
Co-occurrence Graph

In addition to the above features, we investigate the
same data with a relational approach (Hofstra et al.,
2019). Intuitively, how a concept get positioned/co-
used with other concepts may be associated with
knowledge transfer.

As a motivating example, we plot the local co-
occurrence network of concept search engine in
Fig. 7. The central grey circle is search en-
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Figure 7: Nllustration of the dynamic graphs that capture
interactions between search engine and its co-occurrence
concepts. The orange circles denote transferred concepts
while the blue denotes non-transferred ones; the circle size
represents the node degree.

2 4 6

8 10 12 14 : 2 4 6
concept age

8 10 12 14
concept age

(a) Weighted Degree (b) Weighted Percentage
Figure 8: Graph features.

gine, and the orange nodes denote the transferred
neighbor concepts while the blue denotes the non-
transferred one. Search engine first emerged in
WoS in 1992 and entered USPTO in 1998. Coinci-
dentally, the percentage of its transferred neighbors
increased rapidly right before 1998, which indi-
cates the neighboring concepts that get co-used
with a concept may embed useful signals that ex-
plain concept transfer. The consistency between
co-occurrence network and transfer status is also
common in other concepts.

To facilitate analysis, we construct a dynamic
graph G for concept co-occurrence. Each node in
graph denotes a concept which has occurred in the
corpus. Each edge between two nodes indicates the
two concepts co-occur in at least one document in
the corpus, and we define the edge weight as the
number of documents the two concepts co-occur.
We sort all documents by year and construct a graph
at each time-stamp, then we will get a set of graphs
{G} = {GW,....GW} as dynamic concept co-
occurrence graph. This set of graphs reflects the
dynamic succession of concepts’ neighbors and
provides us with extra temporal information on lo-
cal graph structures. Based on dynamic concept
co-occurrence network, we derived two graph fea-
tures: weighted degree and weighted percentage of
transferred neighbors as specified in Appendix D.

The curves of the two features over time are
shown in Fig. 8(a) and Fig. 8(b). We find that
transferred concepts indeeed have higher weighted
degrees and weighted percentages compared to
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fer prediction task and the partition of training/test sets.
The green lines denote historical input while the red lines
denote prediction window. The prediction intervals of training
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non-transferred ones, which indicates the impor-
tance of utilizing concept co-occurrence for knowl-
edge transfer prediction.

Field Comparison & Feature Correlation We
further carried out analysis on feature correlation,
and comparison across fields, which is discussed
in detail in Appendix F and Appendix G.

Summary. Results of our data analysis support
the conclusion that knowledge transfer is not by
chance but follows specific patterns. Whether a
concept will transfer from research to practice in
the immediate future depends largely on their (a)
individual properties over time, and (b) relative
positions with respect to other concepts.

4 Predictive Analysis of Features

So far we have systematically analyzed the poten-
tial factors that reflect the process of knowledge
transfer from research to practice. But how well
can these features explain and predict knowledge
transfer in practice? In this section, we seek to shed
light on this question through predictive analysis.

4.1 Prediction Task Formulation

Will a scientific concept transfer from academic
papers to patent documents in the next X years?
Here we consider the predictive task which aims to
predict concept transfer status given all observed
historical data. As there can be only two potential
outcomes — either the concept transfers or not —
the proposed prediction task is essentially a binary
classification problem. We label a concept as trans-
ferred if it first originates in research papers and
later get used at least 5 times in practical outlets
(patents, clinical trials) within X years after the
concept’s birth in research papers.

We denote all IV concepts’ time-series attributes
at one particular time-stamp as X € RN*Ne,
where NV, is the dimension of attributes.

As shown in Fig. 9, the goal of the transfer
prediction problem is to construct a function f(-)

mapping historical time-series attributes to the fu-
ture transfer probability of concept,

Fe| (7)o () o P (=1 )

where x; = X;. denotes the attribute vector of
(t)

concept ¢, P (yl ‘ ) is the conditional probability
and k is input history length. y; denotes transfer
status of concept ¢ in next 1 years, i.e., the ground
truth label of ygt) is 1 ifittransfersint ~t+7T —1
else 0, and T" denotes prediction window length.
Particularly, we note t as cutoff year and our model
inputs the attributes previous to this time-stamp and

predicts future transfer probability. For simplicity,
we denote P (ygt) = 1’ ) as p(t)

5
Accordingly, if the true transfer status is ygt), the
loss function for cutoff year ¢ is

L=— Z [ygt) logpgt) + (1 — yz(t)> log (1 — pl(.t))]

2

4.2 Prediction Models

Feature based Model. We use logistic regression
(LR) as an interpretable model. To better validate
our finding, we also run a mixed effects logistic re-
gression detailed in Appendix I, a form of General-
ized Linear Mixed Model (GLMM), to help explain
variance both within-concept and across-concept.
The results from the mixed effects logistic regres-
sion are nearly identical with our findings from the
vanilla logistic regression, except for slight changes
in the magnitude of coefficients, so we only report
performance of LR in our analysis.

Deep Sequence Model. To model a concept’s tem-
poral features, i.e. time-series attributes, we fur-
ther propose RNN sequence models. According
to Sec.3, some time-series features are strongly
related to potential transfer; therefore, we adopt
Recurrent Neural Network (RNN) models (e.g.,
LSTM and GRU) which are built to capture tempo-
ral dependencies (Details in Appendix H).

5 Experiments

Experiment Set-up. We apply Z-score normaliza-
tion on time-series attributes and divide dataset into
training/test sets as Fig. 9 shows. Given test cut-
off year ¢, we first ensure the prediction intervals
(red line in Fig. 9) of training and test set have
no overlap to avoid data leakage, and then use the
latest three cutoff years as train cutoff years. For



Table 2: Performances (mean AUC) of next-3-year trans-
fer prediction for cutoff year 2008 from Web of Science to
patent, and from Web of Science (Biology & Health Sci-
ences papers) to clinical trial. All results are generated by
3-run experiments.

Patent Clinical Trial
Method / History length 3 years 5years 3years 5 years
LR w. graph features 0.792 0.792 0.656 0.661
LR w. all features 0.794 0.800 0.675 0.677
RNN w. graph features 0.793 0.797 0.706 0.726
RNN w. all features 0.803 0.809 0.715 0.734

instance, if test cutoff year is 2008 and prediction
window is 5 years long, the latest training predic-
tion interval should be 2003~2007 and thus we
use 2001, 2002, 2003 as training cutoff years. As
concept transfer status is irreversible, we exclude
all transferred concepts from test set but still use
them to train.

Details of model training and hyperparameter
settings are discussed in Appendix J. Here we pri-
marily report experimental results on knowledge
transfer prediction from WoS to USPTO, while
using clinical trial as a robustness check.

Evaluation Metric.

We adopt area-under-curve (AUC) as evaluation
metric, which is not affected by data imbalance in
test set.

5.1 Results

We first compared the performances of all afore-
mentioned models for cutoff year 2008 on datasets:
from WoS to patent, and from WoS bio & health
science papers to clinical trials®. For each cutoff
year, we ran two sets of experiments with train-
ing history lengths of 3 and 5 years and repeated
3 times for each experiment. The performances
(mean AUC) are summarized in Table. 2.

Patent vs. Clinical Trial As a robustness check,
we tested our model on both knowledge transfer
from WoS to patent, and to clinical trial. We ob-
tained consistent main attribute importance results
based upon clinical trial data.

As can be observed from Table. 2, our derived
features achieve good result, i.e. AUC 0.80, in pre-
dicting knowledge transfer, demonstrating knowl-
edge transfer can be largely explained by our pro-
posed mechanisms.

Study of Feature Importance.
In Fig. 10, we further plot the standardized
coefficients of each temporal feature from the lo-

Note that for knowledge transfer to clinical trial, we ex-
cluded bridge positioning features since we focused on bio &
health science only.
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Figure 10: Feature Importance Study

gistic regression to understand how a specific at-
tribute contributes to the knowledge transfer. We
observed that author repeated usage, adopter size,
and weighted graph degree are the three most im-
portant factors in influencing knowledge transfer.

Next, we studied feature importance in our pro-
posed models, where we ran both models with dif-
ferent sets of features on knowledge transfer from
WoS to patent. The result is summarized in Ta-
ble. 3. As reflected by experiment results with
RNN model, graph features achieve best prediction
results compared to other feature sets, followed
by “bridge positioning" features, “ideational con-
ditions”, and “hype” features, suggesting that the
relative position position of the concept in the se-
mantics network is the single most useful feature
set that explains concept transfer.

Study on Field Difference We studied the predic-
tion performance of the proposed model in differ-
ent fields. We partitioned the concepts used in
Web of Science based on their field, trained and
tested models separately using 5-year historical
data as training inputs with train cutoff year 2003
and tested cutoff year 2008 for next 3-year pre-
diction. We observed that it is easiest to predict
knowledge transfer from academia to practice in
humanity (AUC 0.973), followed by physical &
math science (AUC 0.791), bio & health science
(AUC 0.783), engineering (AUC 0.782), social sci-
ence (AUC 0.706) and agriculture (AUC 0.633),
which indicates our proposed mechanism can ex-
plain knowledge transfer quite well in most fields
other than agriculture.

5.2 Sensitivity Analysis

Finally, we tested our proposed models under dif-
ferent settings on WoS to patent. We investigated
whether our proposed transfer model is influenced
as a result of 1) varying length of historical obser-
vations, 2) varying prediction time window, and 3)



Table 3: Performance with different feature groups.

Method AUC
LR w. “hype" features 0.629
LR w. “bridge positioning" features 0.681
LR w. “ideational conditions" features 0.662
LR w. “sci-tech linkage" features 0.670
LR w. graph features 0.792
LR w. all features 0.800
RNN w. “hype" features 0.641
RNN w. “bridge positioning" features 0.708
RNN w. “ideational conditions" features  0.686
RNN w. “sci-tech linkage" features 0.676
RNN w. graph features 0.797
RNN w. all features 0.809

B LR w. all features
s RNN w. all features

0.806 0809 0810 °87
0.80 0.794 0.800

: 0.781
0771
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Performances of next-3-year knowledge
transfer prediction with cutoff year 2008. We use differ-
ent length of historical data as training data.

Figure 11:

varying cutoff year.

1. Length of Observation History. Fig. 11
demonstrates the effects of historical observation
length on performance, where we selected 1 year,
2 years, 3 years, 5 years and 7 years of observa-
tion before cutoff year 2008 as training sets. We
found that the longer the observation data, the bet-
ter prediction result we will get for the transfer
prediction, which can be explained by the fact that
longer observation better captures knowledge trans-
fer patterns. We also note that performance starts
to plateau when observation length gets larger, in-
dicating that longer training sets only provide lim-
ited additional signal. All this indicates knowledge
transfer is most influenced by behavior of concepts
in the recent few years.

2. Length of Prediction Time Window. Fig. 12
further illustrates the knowledge transfer predic-
tion performance with prediction window of 1 year,
3 years and 5 years, representing the case when
predicting whether a concept will transfer in next
1 year, 3 years or 5 years, respectively. To com-
pare them fairly, we fix both training and testing
cutoff years to keep time interval from training
set to test set unchanged, which is different from
the setting in previous experiments. As can be ob-
served, prediction performance is consistently best
when prediction window is 1 year, indicating the

0.84 W= LR w. all features
== RNN w. all features
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0.808
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AUC
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Figure 12: Performances under different lengths of pre-
diction time windows. 5-year historical data was used for
training with train cutoff year 2003 and test cutoft year 2008.

increasing difficulty in capturing long-term tempo-
ral pattern of knowledge transfer of our proposed
mechanisms.

3. Cutoff Year. We also tested our model with
different cutoff years (i.e., 2008, 2009 and 2010),
representing knowledge transfer prediction with
different training and testing sets. As illustrated
by Fig. 13, Our model achieves consistent results,
which further verifies the generalizability of our
proposed knowledge transfer mechanism.

6 Related Work

Knowledge Diffusion and Transfer. Extensive
studies have been dedicated to study the diffusion
of knowledge (Kuhn, 1962; Rogers Everett, 1995;
Hallett et al., 2019), and the transfer of knowledge
from science to more applicable domains like tech-
nology (Narin and Noma, 1985; Tijssen, 2001).
The majority of these studies focus on identifying
contributing factors to knowledge diffusion and
transfer (Rossiter, 1993; Azoulay et al., 2010; Shi
etal., 2010; Kim et al., 2017). However, this line
of work falls short in that (a) they focus primarily
on successful / post-hoc knowledge diffusion and
transfer, and little comparison of successful with
unsuccessful transfer are presented, and (b) poorly
specify what idea is being transferred because it
focuses entirely at the document / invention level.
In contrast, we contribute by empirically investi-
gating properties of knowledge transfer through
large-scale data analysis at the concept-level by us-
ing text mining approaches, through which we not
only verified existing findings, but also revealed
the significance of knowledge co-occurrence and
ideational context in shaping knowledge transfer.

Temporal Sequence Modelling. As one funda-
mental task in behavior modelling and NLP, numer-
ous techniques for modelling and predicting tempo-
ral sequence have been proposed (Kurashima et al.,
2018; Pierson et al., 2018). In recent years, leverag-
ing recurrent neural network (RNN) (Mikolov et al.,
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Figure 13: Performances of next-3-year transfer predic-
tion under different cutoff years. We use 5-year historical
data as training inputs.

2010) and its variants (e.g. LSTM, GRU) (Chung
et al., 2014) for sequence modelling has been es-
pecially popular due to the structure’s expressive
power of temporal dynamics, and has been widely
used in time series modelling (Lai et al., 2018).

7 Conclusion

In this paper, we systematically studied the process
and properties of knowledge transfer from research
to practice. Specifically, we used a sample of 38.6
million research papers, 4 million patents and 280
thousand clinical trials, where we leveraged Au-
toPhrase to extract concepts from text and focus
on the applicable career of nearly 450,000 new
scientific concepts that emerged from 1995-2014.
Through extensive analysis, we found that ‘trans-
ferable’ ideas distinguish themselves from ‘non-
transferable’ ideas by their (a) intrinsic properties
and their temporal behavior, and (b) their relative
position to other concepts. Through predictive anal-
ysis, we showed our proposed features can explain
majority of transfer cases. Our research not only
provides significant implications for researchers,
practitioners, and government agencies as a whole,
but also introduces a novel research question of
real world impact for computer scientists.
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A Details of Corpora Data

Research Papers from WoS. The corpus covers
both STEM - bio & health sciences (16,252,065
papers), physical & math sciences (8,390,777 pa-
pers), engineering (5,000,172 papers) and agricul-
ture (2,568,702 papers) and non-STEM subjects
- humanity (3,219,403 papers) and social science
(3,146,897 papers). The WoS dataset also includes
meta-data for each paper, i.e., author name, in-
stitution, subjects, publication year and citations,
which help construct measures concerning different
knowledge transfer mechanisms.

Patent Documents from USPTQO. We include
4,721,590 granted patents from the main USPTO
corpus (1976-2014) covering both STEM (science,
technology, engineering and mathematics) and non-
STEM subjects. Furthermore, the USPTO dataset
also includes meta-data for each patent, i.e., in-
ventor name, institution, award year and citations,
which help construct several science-technology
linkage measures in the knowledge transfer pro-
cess.

Clinical Trials from U.S. National Library of
Medicine. The clinical trial dataset includes
279,195 government registered clinical trials rang-
ing from 1900 to 2018. The corpus include the
clinical trial title, their brief summary.

B Phrase Detection Techniques, and
Evaluations

The phrase detection technique we adopted is
AutoPhrase (Shang et al., 2018), a widely-used
method that extracts frequent and meaningful
phrases through weak supervision. AutoPhrase first
extracts single-word and multi-word expressions
(i.e. phrases) from the text corpus as candidate
concepts, and then applies salient concept selection
functions to pick the most representative concepts
for each document. Given a word sequence (e.g., a
sentence in an abstract), phrase segmentation can
partition the word sequence into non-overlapping
segments, each representing a cohesive semantic
unit as illustrated in the first step in. We used
default parameters as suggested by (Shang et al.,
2018) in our study.

We further conducted data cleaning on the out-
put of AutoPhrase to ensure the quality of the ana-
lyzed concepts. Specifically, we filtered out general
phrases used for scientific writing (e.g. ’signifi-
cantly important’) and publisher name (e.g., *Else-

vier’).

To quantitatively evaluate AutoPhrase for con-
cept extraction, we randomly sampled 200 outputs
and asked three experts to manually label whether
they are good-quality concepts or not, where 184
(92%) are labelled as good-quality by all three ex-
perts.

C Calculations of Emotionality and
Accessibility

Emotionality is computed as the percentage of
words that were classified as either positive or neg-
ative where a concept is used. The number of posi-
tive and negative words in each article is counted by
the Linguistic Inquiry and Word Count computer
program (LIWC), which adopts a list of words clas-
sified as positive or negative by human readers
beforehand (Pennebaker et al., 2015). We quan-
tify accessibility through a variation of Dale Chall
readability (Powers et al., 1958) by substituting
the ‘easy term list’ with college student vocabulary.
This widely used index variable essentially mea-
sures the difficulty or appropriateness of the writ-
ing for each article. We then weighted the average
Dale Chall readability score of all the documents
associated with a concept.

D Calculations of Graph Features

Given co-occurrence graph G = {V,&,s, W} de-
fined in subsection 3.2, the weighted degree d; and
weighted percentage of transferred neighbors p;
are calculated as follows.

> jeNs=1 Wi
d; = Z Wi pi = —> ;J :
JEN; !

Different from unweighted features, weighted de-
gree and weighted percentage use co-occurrence
weights to stress the influence of high-frequency
correlations. The edge weights is necessary espe-
cially when central concept co-occurs with a large
amount of non-transferred concepts.

E Characteristic Difference between
Transferred and Non-transferred via
t-test

Table 4 illustrates the mean value for each at-
tribute with regard to transferred concepts and non-
transferred concepts, where we observe a statisti-
cally significant gap between the two groups.



Table 4: Mean attribute value for transferred and non-
transferred concepts. The two groups demonstrate statistically
significant difference through t-test. p<0.001: **%*,

Concept attribute Transferred Non-transferred
Adopter size *** 89.6 14.9
Repeat usage *** 10.6 1.2
Discipline diversity *** 0.68 0.32
Engineering relation *** 0.15 0.04
Emotionality *** 0.31 0.20
Accessibility *** 4.88 4.82
Journal Linkage *** 0.28 0.15
Univ.-Industry relation *** 0.33 0.24
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Figure 14: Correlations between different features.

F Field Comparison.

We studied transfer patterns in different fields. We
identified the field of each concept as one of the
six disciplines — biology & health sciences, physi-
cal & math sciences, the humanities, engineering,
agriculture, and the social sciences, based on the
maximum TF-IDF value component of its field
use frequency distribution. While different fields
demonstrate distinct transfer rates from research to
patent — engineering 7.5%, physical & math sci-
ences 1.9%, the social sciences 1.1%, bio & health
sciences 0.96% (11.3% concepts in bio & health
sciences transferred to clinical trial), agriculture
0.83% and the humanities 0.39% — we found that
the aforementioned features show consistent pat-
terns in different fields.

G Feature Correlation

We further studied the correlation between the ex-
tracted features. As illustrated in Fig.14, within
concept individual level features, apart from hype
features, and journal linkage/engineering focus,
most features are rather independent. Meanwhile,
graph feature ‘edge weight’ highly correlates with
hype feature. In comparison, graph feature ‘trans-
lated neighbor rate’ brings signal not covered else-
where, thus we conclude that modelling through
both intrinsic values and graph is important.

H Details of Temporal Feature Model

The RNN model is given as
h) = RNN (n{'; V%) ()

where h,, is the hidden states of attributes. Suppose
the concept transfer status is Markovian, then the
model should be

P (y® B0, ) = P (57 0EY) = g (nV)

Here we adopt GRU as RNN and one fully con-
nected layer with sigmoid activation as classifier

9(-)-

I Details on Mixed Effect Logistic
Regression

We ran a mixed effects logistic regression as a ro-
bustness check of logistic regression. Mixed ef-
fect logistic regression is a form of Generalized
Linear Mixed Model (GLMM). Mixed effects lo-
gistic regression accounts for both within-concept
variation (how concept use changes) and between-
concept variation (how concept use differs on aver-
age), while a single measure of residual variance
from the vanilla logistic regression can’t account
for both.

J Model Training and Hyperparameters.

To deal with the data imbalance problem — the
positive samples (concepts which will transfer in
the future) are much less than the negative, we
over-sample positive samples to make their amount
equal to negative ones in training set while keeping
the original distribution in test set.

The hidden state size in RNN is set as 32. We ex-
perimented on different state sizes, and 32 achieved
best performance on testing set.



