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Abstract

We show how to learn a neural topic model with discrete random variables—one
that explicitly models each word’s assigned topic—using neural variational in-
ference that does not rely on stochastic backpropagation to handle the discrete
variables. The model we utilize combines the expressive power of neural methods
for representing sequences of text with the topic model’s ability to capture global,
thematic coherence. Using neural variational inference, we show improved perplex-
ity and document understanding across multiple corpora. We examine the effect of
prior parameters both on the model and variational parameters, and demonstrate
how our approach can compete and surpass a popular topic model implementation
on an automatic measure of topic quality.

1 Introduction

With the successes of deep learning models, neural variational inference (NVI) [27]—also called
variational autoencoders (VAE)—has emerged as an important tool for neural-based, probabilistic
modeling [19, 40, 37]. NVI is relatively straight-forward when dealing with continuous random
variables, but necessitates more complicated approaches for discrete random variables.

The above can pose problems when we use discrete variables to model data, such as capturing both
syntactic and semantic/thematic word dynamics in natural language processing (NLP). Short-term
memory architectures have enabled Recurrent Neural Networks (RNNs) to capture local, syntactically-
driven lexical dependencies, but they can still struggle to capture longer-range, thematic dependencies
[44, 29, 5, 20]. Topic modeling, with its ability to effectively cluster words into thematically-similar
groups, has a rich history in NLP and semantics-oriented applications [4, 3, 50, 6, 46, 35, i.a.].
However, they can struggle to capture shorter-range dependencies among the words in a document
[8]. This suggests these problems are naturally complementary [42, 53, 45, 41, 27, 15, 8, 48, 51, 22].

NVI has allowed the above recurrent topic modeling approaches to be studied, but with two primary
modifications: the discrete variables can be reparametrized and then sampled, or each word’s topic
assignment can be analytically marginalized out, prior to performing any learning. However, previous
work has shown that topic models that preserve explicit topics yield higher quality topics than similar
models that do not [25], and recent work has shown that topic models that have relatively consistent
word-level topic assignments are preferred by end-users [24]. Together, these suggest that there are
benefits to preserving these assignments that are absent from standard RNN-based language models.
Specifically, preservation of word-level topics within a recurrent neural language model may both
improve language prediction as well as yield higher quality topics.

To illustrate this idea of thematic vs. syntactic importance, consider the sentence “She received
bachelor’s and master’s degrees in electrical engineering from Anytown University.” While a topic
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model can easily learn to group these “education” words together, an RNN is designed explicitly to
capture the sequential dependencies, and thereby predict coordination (“and”), metaphorical (“in”)
and transactional (“from”) concepts given the previous thematically-driven tokens.

In this paper we reconsider core modeling decisions made by a previous recurrent topic model [8],
and demonstrate how the discrete topic assignments can be maintained in both learning and inference
without resorting to reparametrizing them. In this reconsideration, we present a simple yet efficient
mechanism to learn the dynamics between thematic and non-thematic (e.g., syntactic) words. We
also argue the design of the model’s priors still provides a key tool for language understanding, even
when using neural methods. The main contributions of this work are:

1. We provide a recurrent topic model and NVI algorithm that (a) explicitly considers the surface
dynamics of modeling with thematic and non-thematic words and (b) maintains word-level, discrete
topic assignments without relying on reparametrizing or otherwise approximating them.

2. We analyze this model, both theoretically and empirically, to understand the benefits the above
modeling decisions yield. This yields a deeper understanding of certain limiting behavior of this
model and inference algorithm, especially as it relates to past efforts.

3. We show that careful consideration of priors and the probabilistic model still matter when using
neural methods, as they can provide greater control over the learned values/distributions. Specifi-
cally, we find that a Dirichlet prior for a document’s topic proportions provides fine-grained control
over the statistical structure of the learned variational parameters vs. using a Gaussian distribution.

Our code, scripts, and models are available at https://github.com/mmrezaee/VRTM.

2 Background

Latent Dirichlet Allocation [4, LDA] defines an admixture model over the words in documents. Each
word wd,t in a document d is stochastically drawn from one of K topics—discrete distributions over
V vocabulary words. We use the discrete variable zd,t to represent the topic that the tth word is
generated from. We formally define the well-known generative story as drawing document-topic
proportions θd ∼ Dir(α), then drawing individual topic-word assignments zd,t ∼ Cat(θd), and
finally generating each word wd,t ∼ Cat(βzt), based on the topics (βk,v is the conditional probability
of word v given topic k).

Two common ways of learning an LDA model are either through Monte Carlo sampling techniques,
that iteratively sample states for the latent random variables in the model, or variational/EM-based
methods, which minimize the distribution distance between the posterior p(θ, z|w) and an approxi-
mation q(θ, z; γ, φ) to that posterior that is controlled by learnable parameters γ and φ. Commonly,
this means minimizing the negative KL divergence, −KL(q(θ, z; γ, φ)‖p(θ, z|w)) with respect to γ
and φ. We focus on variational inference as it cleanly allows neural components to be used.

Supported by work that has studied VAEs for a variety of distributions [12, 33], the use of deep
learning models in the VAE framework for topic modeling has received recent attention [42, 53, 45,
41, 27, 15]. This complements other work that focused on extending the concept of topic modeling
using undirected graphical models [43, 17, 21, 31].

Traditionally, stop words have been a nuisance when trying to learn topic models. Many existing
algorithms ignore stop-words in initial pre-processing steps, though there have been efforts that
try to alleviate this problem. Wallach et al. [47] suggested using an asymmetric Dirichlet prior
distribution to include stop-words in some isolated topics. Eisenstein et al. [9] introduced a constant
background factor derived from log-frequency of words to avoid the need for latent switching, and
Paul [36] studied structured residual models that took into consideration the use of stop words. These
approaches do not address syntactic language modeling concerns.

A recurrent neural network (RNN) can address those concerns. A basic RNN cell aims to predict
each word wt given previously seen words w<t = {w0, w1, . . . , wt−1}. Words are represented with
embedding vectors and the model iteratively computes a new representation ht = f(w<t, ht−1),
where f is generally a non-linear function.

There have been a number of attempts at leveraging the combination of RNNs and topic models
to capture local and global semantic dependencies [8, 48, 51, 22, 39]). Dieng et al. [8] passed the
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(a) Graphical structure underlying the VRTM model.
The shaded gray circles depict observed words. red
nodes denotes non-thematic indicators (lt = 0) and
blue nodes show a thematic indicators (lt = 1).

1. Draw a document topic vector θ ∼ Dir(α).
2. For each of the T observed words (t = 1 . . . T ):
• Compute the recurrent representation ht =
f(xt, ht−1), where xt = wt−1.
• Draw lt ∼ Bern (ρ), indicating whether word
t is thematically relevant.
• Draw a topic zt ∼ p(zt|lt, θ).
• Draw the word wt ∼ p(wt|zt, lt;ht, β) using

eq. 2.

(b) The generative story of the model we study. The
story largely follows Dieng et al. [8], though we redefine
the prior on θ and the decoder p(wt|zt, lt;ht, β). Be-
yond these, the core differences lie in how we approach
learning the model.

Figure 1: An unrolled graphical model (Fig. 1a) for the corresponding generative story (Fig. 1b). To-
kens are fed to a recurrent neural network (RNN) cell, which computes a word-specific representation
ht. With this representation, the thematic word indicator lt, and inferred topic proportions θ shared
across the document, we assign the topics zt, which allows us to generate each word wt. Based on
our decoding model (eq. 2), the thematic indicators lt topic assignments help trade-off between the
recurrent representations and the (stochastically) assigned topics zt.

topics to the output of RNN cells through an additive procedure while Lau et al. [22] proposed using
convolutional filters to generate document-level features and then exploited the obtained topic vectors
in a gating unit. Wang et al. [48] provided an analysis of incorporating topic information inside a
Long Short-Term Memory (LSTM) cell, followed by a topic diversity regularizer to make a complete
compositional neural language model. Nallapati et al. [34] introduced sentence-level topics as a way
to better guide text generation: from a document’s topic proportions, a topic for a sentence would
be selected and then used to generate the words in the sentence. The generated topics are shared
among the words in a sentence and conditioned on the assigned topic. Li et al. [23] followed the same
strategy, but modeled a document as a sequence of sentences, such that recurrent attention windows
capture dependencies between successive sentences. Wang et al. [49] recently proposed using a
normal distribution for document-level topics and a Gaussian mixture model (GMM) for word topics
assignments. While they incorporate both the information from the previous words and their topics to
generate a sentence, their model is based on a mixture of experts, with word-level topics neglected.
To cover both short and long sentences, Gupta et al. [14] introduced an architecture that combines the
LSTM hidden layers and the pre-trained word embeddings with a neural auto-regressive topic model.
One difference between our model and theirs is that their focus is on predicting the words within a
context, while our aim is to generate words given a particular topic without marginalizing.

3 Method

We first formalize the problem and propose our variationally-learned recurrent neural topic model
(VRTM) that accounts for each word’s generating topic. We discuss how we learn this model and
the theoretical benefits of our approach. Subsequently we demonstrate the empirical benefits of our
approach (Sec. 4).

3.1 Generative Model

Fig. 1 provides both an unrolled graphical model and the full generative story. We define each
document as a sequence of T words wd = {wd,t}Tt=1. For simplicity we omit the document index
d when possible. Each word has a corresponding generating topic zt, drawn from the document’s
topic proportion distribution θ. As in standard LDA, we assume there are K topics, each represented
as a V-dimensional vector βk where βk,v is the probability of word v given topic k. However, we
sequentially model each word via an RNN. The RNN computes ht for each token, where ht is
designed to consider the previous t− 1 words observed in sequence. During training, we define a
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sequence of observed semantic indicators (one per word) l = {lt}Tt=1, where lt = 1 if that token
is thematic (and 0 if not); a sequence of latent topic assignments z = {zt}Tt=1; and a sequence of
computed RNN states h = {ht}Tt=1. We draw each word’s topic from an assignment distribution
p(zt|lt, θ), and generate each word from a decoding/generating distribution p(wt|zt, lt;ht, β).
The joint model can be decomposed as

p(w, l, z, θ;β,h) = p(θ;α)

T∏
t=1

p(wt|zt, lt;ht, β)p(zt|lt, θ)p(lt;ht), (1)

where α is a vector of positive parameters governing what topics are likely in a document (θ). The
corresponding graphical model is shown in Fig. 1a. Our decoder is

p(wt = v|zt = k;ht, lt, β) ∝ exp
(
p>v ht + ltβk,v

)
, (2)

where pv stands for the learned projection vector from the hidden space to output. When the model
faces a non-thematic word it just uses the output of the RNN and otherwise it uses a mixture of LDA
and RNN predictions. As will be discussed in Sec. 3.2.2, separating ht and zt = k in this way allows
us to marginalize out zt during inference without reparametrizing it.

A similar type of decoder has been applied by both Dieng et al. [8] and Wen and Luong [51] to
combine the outputs of the RNN and LDA. However, as they marginalize out the topic assignments
their decoders do not condition on the topic assignment zt. Mathematically, their decoders compute
β>v θ instead of βk,v, and compute p(wt = v|θ;ht, lt, β) ∝ exp

(
p>v ht + ltβ

ᵀ
v θ
)
. This new decoder

structure helps us preserve the word-level topic information which is neglected in other models. This
seemingly small change has out-sized empirical benefits (Tables 1b and 2).1

Note that we explicitly allow the model to trade off between thematic and non-thematic words. This
is very much similar to Dieng et al. [8]. We assume during training these indicators are observable,
though their occurrence is controlled via the output of a neural factor: ρ = σ

(
g(ht)

)
(σ is the sigmoid

function). Using the recurrent network’s representations, we allow the model to learn the presence of
thematic words to be learned via—a long recognized area of interest [11, 26, 52, 16].

For a K-topic VRTM, we formalize this intuition by defining p(zt = k|lt, θ) = 1
K , if lt = 0 and θk

otherwise. The rationale behind this assumption is that in our model the RNN is sufficient to draw
non-thematic words and considering a particular topic for these words makes the model unnecessarily
complicated. Maximizing the data likelihood p(w, l) in this setting is intractable due to the integral
over θ. Thus, we rely on amortized variational inference as an alternative approach. While classical
approaches to variational inference have relied on statistical conjugacy and other approximations
to make inference efficiently computable, the use of neural factors complicates such strategies. A
notable difference between our model and previous methods is that we take care to account for each
word and its assignment in both our model and variational approximation.

3.2 Neural Variational Inference

We use a mean field assumption to define the variational distribution q(θ, z|w, l) as

q(θ, z|w, l) = q(θ|w, l; γ)
T∏
t=1

q(zt|wt, lt;φt), (3)

where q(θ|w, l, γ) is a Dirichlet distribution parameterized by γ and we define q(zt) similarly to
p(zt): q(zt = k|wt, lt;φt) = 1

K if lt = 0 and the neural parametrized output φkt otherwise. In
Sec. 3.2.1 we define γ and φt in terms of the output of neural factors. These allow us to “encode” the
input into our latent variables, and then “decode” them, or “reconstruct” what we observe.

Variational inference optimizes the evidence lower bound (ELBO). For a single document (subscript
omitted for clarity), we write the ELBO as:

L = Eq(θ,z|w,l)

[
T∑
t=1

log p(wt|zt, lt;ht, β) + log
p(zt|lt, θ)
q(zt|wt, lt)

+ log p(lt;ht) + log
p(θ)

q(θ|w, l)

]
.

(4)
1Since the model drives learning and inference, this model’s similarities and adherence to both founda-

tional [4] and recent neural topic models [8] are intentional. We argue, and show empirically, that this adherence
yields language modeling performance and allows more exact marginalization during learning.
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“and”

Figure 2: Our encoder and decoder architectures. Word embeddings, learned from scratch, are both
provided to a left-to-right recurrent network and used to create bag-of-words masked embeddings
(masking non-thematic words, i.e., lt = 0, by 0). These masked embeddings are used to compute γ
and φ—the variational parameters—while the recurrent component computes ht (which is used to
compute the thematic predictor and reconstructed words, as shown in Fig. 1). For clarity, we have
omitted the connection from ht to wt (these are shown in Fig. 1a).

This objective can be decomposed into separate loss functions and written as L = Lw + Lz +
Lφ + Ll + Lθ, where, using 〈·〉 = Eq(θ,z|w,l) [·], we have Lw = 〈

∑
t log p(wt|zt, lt;ht, β)〉, Lz =

〈
∑
t log p(zt|lt, θ)〉, Lφ = 〈

∑
t log q(zt|wt, lt)〉, Ll = 〈

∑
t log p(lt;ht)〉, and Lθ = 〈log p(θ)

q(θ|w,l) 〉.

The algorithmic complexity, both time and space, will depend on the exact neural cells used. The for-
ward pass complexity for each of the separate summands follows classic variational LDA complexity.

In Fig. 2 we provide a system overview of our approach, which can broadly be viewed as an encoder
(the word embedding, bag-of-words, masked word embeddings, and RNN components) and a decoder
(everything else). Within this structure, our aim is to maximize L to find the best variational and
model parameters. To shed light onto what the ELBO is showing, we describe each term below.

3.2.1 Encoder

Our encoder structure maps the documents into variational parameters. Previous methods posit that
while an RNN can adequately perform language modeling (LM) using word embeddings for all
vocabulary words, a modified, bag-of-words-based embedding representation is an effective approach
for capturing thematic associations [8, 48, 22]. We note however that more complex embedding
methods can be studied in the future [38, 7, 2].

To avoid “representation degeneration” [13], care must be taken to preserve the implicit semantic
relationships captured in word embeddings.2 Let V be the overall vocabulary size. For RNN language
modeling [LM], we represent each word v in the vocabulary with an E-dimensional real-valued
vector ev ∈ RE . As a result of our model definition, the topic modeling [TM] component of
VRTM effectively operates with a reduced vocabulary; let V ′ be the vocabulary size excluding
non-thematic words (V ′ ≤ V). Each document is represented by a V ′-dimensional integer vector
c = 〈c1, c2, · · · , cV′〉, recording how often each thematic word appeared in the document.

In contrast to a leading approach [49], we use the entire ev vocabulary embeddings for LM and mask
out the non-thematic words to compute the variational parameters for TM as eTM

v = ev � cTM
v , where

� denotes element-wise multiplication and cTM
v = cv if v is thematic (0 otherwise). We refer to

eTM
v as the masked embedding representation. This motivates the model to learn the word meaning

2“Representation degeneration” happens when after training the model, the word embeddings are not well
separated in the embedding space and all of them are highly correlated [13].
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and importance of word counts jointly. The token representations are gathered into eTM
w ∈ RT×E ,

which is fed to a feedforward network with one hidden layer to infer word-topics φ. Similarly, we
use tensordot to produce the γ parameters for each document defined as γ = softplus(eTM

w ⊗Wγ),
where Wγ ∈ RT×E×K is the weight tensor and the summation is over the common axes.

3.2.2 Decoder/Reconstruction Terms

The first term in the objective, Lw, is the reconstruction part, which simplifies to

Lw = Eq(θ,z|w,l)

[
T∑
t=1

log p(wt|zt, lt;ht, β)

]
=

T∑
t=1

[
Eq(zt|wt,lt;φt)log p(wt|zt, lt;ht, β)

]
. (5)

For each word wt, if lt = 0, then the word is not thematically relevant. Because of this, we
just use ht. Otherwise (lt = 1) we let the model benefit from both the globally semantically
coherent topics β and the locally fluent recurrent states ht. With our definition of p(zt|θ), Lw
simplifies to Lw =

∑
t:lt=1

∑K
k=1 φ

k
t log p(wt|zt;ht, β) +

∑
t:lt=0 log p(wt;ht). Finally, note that

there is an additive separation between ht and ltβzt,v in the word reconstruction model (eq. 2). The
marginalization that occurs per-word can be computed as pᵀvht+ lt〈βzt,v〉zt−〈logZ(zt, lt;ht, β)〉zt ,
where Z(zt, lt;ht, β) represents the per-word normalization factor. This means that the discrete z
can be marginalized out and do not need to be sampled or approximated.

Given the general encoding architecture used to compute q(θ), computing Lz =

Eq(θ,z|w,l)
[∑T

t=1 log p(zt|lt, θ)
]

requires computing two expectations. We can exactly compute the
expectation over z, but we approximate the expectation over θ with S Monte Carlo samples from the
learned variational approximation, with θ(s) ∼ q(θ). Imposing the basic assumptions from p(z) and

q(z), we have Lz ≈
1

S

∑S
s=1

∑
t:lt=1

∑K
k=1 φ

k
t log θ

(s)
k − C logK, where C is the number of the

non-thematic words in the document and θ(j)k is the output of Monte Carlo sampling. Similarly, we
have Lφ = −Eq(z|w,l;φ) [log q(z|w, l;φ)] = −

∑
t:lt=1

∑K
k=1 φ

k
t log φ

k
t + C logK.

Modeling which words are thematic or not can be seen as a negative binary cross-entropy loss:
Ll = Eq(θ,z|w,l) [log p(lt;ht)] =

∑T
t=1 log p(lt;ht). This term is a classifier for lt that motivates

the output of the RNN to discriminate between thematic and non-thematic words. Finally, as a
KL-divergence between distributions of the same type, Lθ can be calculated in closed form [18].

We conclude with a theorem, which shows VRTM is an extension of RNN under specific assumptions.
This demonstrates the flexibility of our proposed model and demonstrates why, in addition to natural
language processing considerations, the renewed accounting mechanisms for thematic vs. non-
thematic words in both the model and inference is a key idea and contribution. For the proof, please
see the appendix. The central idea is to show that all the terms related to TM either vanish or are
constants; it follows intuitively from the ELBO and eq. 2.
Theorem 1. If in the generative story ρ = 0, and we have a uniform distribution for the prior and
variational topic posterior approximation

(
p(θ) = q(θ|w, l) = 1/K

)
, then VRTM reduces to a

Recurrent Neural Network to just reconstruct the words given previous words.

4 Experimental Results

Datasets We test the performance of our algorithm on the APNEWS, IMDB and BNC datasets
that are publicly available.3 Roughly, there are between 7.7k and 9.8k vocab words in each corpus,
with between 15M and 20M training tokens each; Table A1 in the appendix details the statistics of
these datasets. APNEWS contains 54k newswire articles, IMDB contains 100k movie reviews, and
BNC contains 17k assorted texts, such as journals, books excerpts, and newswire. These are the
same datasets including the train, validation and test splits, as used by prior work, where additional
details can be found [48]. We use the publicly provided tokenization and following past work we
lowercase all text and map infrequent words (those in the bottom 0.01% of frequency) to a special
<unk> token. Following previous work [8], to avoid overfitting on the BNC dataset we grouped 10
documents in the training set into a new pseudo-document.

3https://github.com/jhlau/topically-driven-language-model
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Setup Following Dieng et al. [8], we find that, for basic language modeling and core topic modeling,
identifying which words are/are not stopwords is a sufficient indicator of thematic relevance. We
define lt = 0 if wt is within a standard English stopword list, and 1 otherwise.4 We use the softplus
function as the activation function and batch normalization is employed to normalize the inputs of
variational parameters. We use a single-layer recurrent cell; while some may be surprised at the
relative straightforwardness of this choice, we argue that this choice is a benefit. Our models are
intentionally trained using only the provided text in the corpora so as to remain comparable with
previous work and limit confounding factors; we are not using pre-trained models. While transformer
methods are powerful, there are good reasons to research non-transformer approaches, e.g., the data &
computational requirements of transformers. We demonstrate the benefits of separating the “semantic”
vs. “syntactic” aspects of LM, and could provide the blueprint for future work into transformer-based
TM. For additional implementation details, please see appendix C.

Language Modeling Baselines In our experiments, we compare against the following methods:

• basic-LSTM: A single-layer LSTM with the same number of units like our method imple-
mentation but without any topic modeling, i.e. lt = 0 for all tokens.

• LDA+LSTM [22]: Topics, from a trained LDA model, are extracted for each word and
concatenated with the output of an LSTM to predict next words.

• Topic-RNN [8]: This work is the most similar to ours. They use the similar decoder strategy
(Eq. 2) but marginalize topic assignments prior to learning.
• TDLM [22]: A convolutional filter is applied over the word embeddings to capture long

range dependencies in a document and the extracted features are fed to the LSTM gates in
the reconstruction phase.

• TCNLM [48]: A Gaussian vector defines document topics, then a set of expert networks
are defined inside an LSTM cell to cover the language model. The distance between topics
is maximized as a regularizer to have diverse topics.

• TGVAE [49]: The structure is like TCNLM, but with a Gaussian mixture model to define
each sentence as a mixture of topics. The model inference is done by using K householder
flows to increase the flexibility of variational distributions.

4.1 Evaluations and Analysis

Perplexity For an RNN, we used a single-layer LSTM with 600 units in the hidden layer, set the
size of embedding to be 400, and had a fixed/maximum sequence length of 45. We also present
experiments demonstrating the performance characteristics of using basic RNN, GRU and LSTM
cells in Table 1a. Note that although our embedding size is higher we do not use pretrained word
embeddings, but instead learn them from scratch via end-to-end training.5 The perplexity values of
the baselines and our VRTM across our three heldout evaluation sets are shown in Table 1b. We
note that TGVAE [49] also compared against, and outperformed, all the baselines in this work. In
surpassing TGVAE, we are also surpassing them. We find that our proposed method achieves lower
perplexity than LSTM. This is consistent with Theorem 1. We observe that increasing the number of
topics yields better overall perplexity scores. Moreover, as we see VRTM outperforms other baselines
across all the benchmark datasets.

Topic Switch Percent Automatically evaluating the quality of learned topics is notoriously difficult.
While “coherence” [30] has been a popular automated metric, it can have peculiar failure points
especially regarding very common words [36]. To counter this, Lund et al. [24] recently introduced
switch percent (SwitchP). SwitchP makes the very intuitive yet simple assumption that “good”
topics will exhibit a type of inertia: one would not expect adjacent words to use many different
topics. It aims to show the consistency of the adjacent word-level topics by computing the number
of times the same topic was used between adjacent words: (Td − 1)

−1∑Td−1
t=1 δ(zt, zt+1), where

zt = argmaxk{φ1t , φ2t , . . . , φKt }, and Td is the length of document after removing the stop-words.

4Unlike Asymmetric Latent Dirichlet Allocation (ALDA) [47], which assigns a specific topic for stop words,
we assume that stop words do not belong to any specific topic.

5Perplexity degraded slightly with pretrained embeddings, e.g., with T = 300, VRTM-LSTM on APNEWS
went from 51.35 (from scratch) to 52.31 (word2vec).
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Model APNEWS IMDB
300 400 300 400

RNN (T = 10) 66.21 61.48 69.48 79.94
RNN (T = 30) 60.03 61.21 80.65 76.04
RNN (T = 50) 59.24 60.64 66.45 66.42
GRU (T = 10) 61.57 58.82 75.21 67.31
GRU (T = 30) 63.40 58.59 84.27 67.61
GRU (T = 50) 59.09 57.91 84.45 63.59
LSTM (T = 10) 55.19 54.31 60.14 59.82
LSTM (T = 30) 53.76 51.47 58.27 54.36
LSTM (T = 50) 51.35 47.78 57.70 51.08

(a) Test perplexity for different RNN cells and
embedding sizes (300 vs. 400). T denotes the
number of topics.

Methods APNEWS IMDB BNC
basic-LSTM 62.79 70.38 100.07
LDA+LSTM (T = 50) 57.05 69.58 96.42
Topic-RNN (T = 50) 56.77 68.74 94.66
TDLM (T = 50) 53.00 63.67 91.42
TCNLM (T = 50) 52.75 63.98 87.98
TGVAE (T = 10) ≤55.77 ≤62.22 ≤91.19
TGVAE (T = 30) ≤51.27 ≤59.45 ≤88.34
TGVAE (T = 50) ≤48.73 ≤57.11 ≤87.86
VRTM-LSTM (T = 10) ≤54.31 ≤59.82 ≤92.89
VRTM-LSTM (T = 30) ≤51.47 ≤54.36 ≤89.26
VRTM-LSTM (T = 50) ≤ 47.78 ≤ 51.08 ≤ 86.33

(b) Test perplexity, as reported in previous works.6 T
denotes the number of topics. Consistent with Wang
et al. [49] we report the maximum of three VRTM runs.

Table 1: Test set perplexity (lower is better) of VRTM demonstrates the effectiveness of our approach
at learning a topic-based language model. In 1a we demonstrate the stability of VRTM using different
recurrent cells. In 1b, we demonstrate our VRTM-LSTM model outperforms prior neural topic
models. We do not use pretrained word embeddings.

Topics APNEWS IMDB BNC
LDA VRTM LDA VRTM LDA VRTM

5 0.26 0.59 0.24 0.52 0.24 0.51
10 0.18 0.43 0.14 0.35 0.15 0.40
15 0.14 0.33 0.12 0.31 0.13 0.35
30 0.10 0.31 0.09 0.28 0.10 0.23
50 0.08 0.20 0.07 0.26 0.07 0.20

(a) SwitchP (higher is better) for VRTM vs LDA VB [4]
averaged across three runs. Comparisons are valid within
a corpus and for the same number of topics.

Topics APNEWS IMDB BNC
LDA VRTM LDA VRTM LDA VRTM

5 1.61 0.91 1.60 0.96 1.61 1.26
10 2.29 1.65 2.29 1.56 2.30 1.76
15 2.70 1.69 2.71 2.10 2.71 1.77
30 3.39 2.23 3.39 2.54 3.39 2.22
50 3.90 2.63 3.90 2.74 3.90 2.64

(b) Average document-level topic θ entropy, across
three runs, on the test sets. Lower entropy means a
document prefers using fewer topics.

Table 2: We provide both SwitchP [24] results and entropy analysis of the model. These results
support the idea that if topic models capture semantic dependencies, then they should capture the
topics well, explain the topic assignment for each word, and provide an overall level of thematic
consistency across the document (lower θ entropy).

SwitchP is bounded between 0 (more switching) and 1 (less switching), where higher is better.
Despite this simplicity, SwitchP was shown to correlate significantly better with human judgments
of “good” topics than coherence (e.g., a coefficient of determination of 0.91 for SwitchP vs 0.49
for coherence). Against a number of other potential methods, SwitchP was consistent in having
high, positive correlation with human judgments. For this reason, we use SwitchP. However, like
other evaluations that measure some aspect of meaning (e.g., BLEU attempting to measure meaning-
preserving translations) comparisons can only be made in like-settings.

In Table 2a we compare SwitchP for our proposed algorithm against a variational Bayes imple-
mentation of LDA [4]. We compare to this classic method, which we call LDA VB, since both
it and VRTM use variational inference: this lessens the impact of the learning algorithm, which
can be substantial [25, 10], and allows us to focus on the models themselves.7 We note that it is
difficult to compare to many recent methods: our other baselines do not explicitly track each word’s
assigned topic, and evaluating them with SwitchP would necessitate non-trivial, core changes to those
methods.8 We push VRTM to associate select words with topics, by (stochastically) assigning topics.
Because standard LDA VB does not handle stopwords well, we remove them for LDA VB, and to
ensure a fair comparison, we mask all stopwords from VRTM. First, notice that LDA VB switches

7Given its prominence in the topic modeling community, we initially examined Mallet. It uses Collapsed
Gibbs Sampling, rather than variational inference, to learn the parameters—a large difference that confounds
comparisons. Still, VRTM’s SwitchP was often competitive with, and in some cases surpassed, Mallet’s.

8For example, evaluating the effect of a recurrent component in a model like LDA+LSTM [22] is difficult,
since the LDA and LSTM models are trained separately. While the LSTM model does include inferred document-
topic proportions θ, these values are concatenated to the computed LSTM hidden state. The LDA model is
frozen, so there is no propagation back to the LDA model: the results would be the same as vanilla LDA.
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Dataset #1 #2 #3 #4 #5 #6 #7 #8 #9

APNEWS

dead washington soldiers fund police state car republican city
killed american officers million death voted road u.s. residents

hunting california army bill killed voters line president st.
deaths texas weapons finance accusing democrats rail campaign downtown

kill residents blaze billion trial case trail candidates visitors

Table 3: Nine random topics extracted from a 50 topic VRTM learned on the APNEWS corpus. See
Table A2 in the Appendix for topics from IMBD and BNC.

Data Generated Sentences

APNEWS

• a damaged car and body <unk> were taken to the county medical center from dinner with one driver.
• the house now has released the <unk> of $ 100,000 to former <unk> freedom u.s. postal service and $ <unk> to the federal government.
• another agency will investigate possible abuse of violations to the police facility .
• not even if it represents everyone under control . we are getting working with other items .
• the oklahoma supreme court also faces a maximum amount of money for a local counties.
• the money had been provided by local workers over how much <unk> was seen in the spring.
• he did n’t offer any evidence and they say he was taken from a home in front of a vehicle.

IMDB

• the film is very funny and entertaining . while just not cool and all ; the worst one can be expected.
• if you must view this movie , then i ’d watch it again again and enjoy it .this movie surprised me .
• they definitely are living with characters and can be described as vast <unk> in their parts .
• while obviously not used as a good movie , compared to this ; in terms of performances .
• i love animated shorts , and once again this is the most moving show series i ’ve ever seen.
• i remember about half the movie as a movie . when it came out on dvd , it did so hard to be particularly silly .
• this flick was kind of convincing . john <unk> ’s character better could n’t be ok because he was famous as his sidekick.

BNC

• she drew into her eyes . she stared at me . molly thought of the young lady , there was lack of same feelings of herself.
• these conditions are needed for understanding better performance and ability and entire response .
• it was interesting to give decisions order if it does not depend on your society , measured for specific thoughts , sometimes at least .
• not a conservative leading male of his life under waste worth many a few months to conform with how it was available .
• their economics , the brothers began its $ <unk> wealth by potential shareholders to mixed them by tomorrow .
• should they happen in the north by his words , as it is a hero of the heart , then without demand .
• we will remember the same kind of the importance of information or involving agents what we found this time.

Table 4: Seven randomly generated sentences from a VRTM model learned on the three corpora.

approximately twice as often. Second, as intuition may suggest, we see that with larger number of
topics both methods’ SwitchP decreases—though VRTM still switches less often. Third, we note
sharp decreases in LDA VB in going from 5 to 10 topics, with a more gradual decline for VRTM. As
Lund et al. [24] argue, these results demonstrate that our model and learning approach yield more
“consistent” topic models; this suggests that our approach effectively summarizes thematic words
consistently in a way that allows the overall document to be modeled.

Inferred Document Topic Entropy To better demonstrate characteristics of our learned model,
we report the average document topics entropy with α = 0.5 . Table 2b presents the results of our
approach, along with LDA VB. These results show that the sparsity of relevant/likely topics are much
more selective about which topics to use in a document. Together with the SwitchP and perplexity
results, this suggests VRTM can provide consistent topic analyses.

Topics & Sentences To demonstrate the effectiveness of our proposed masked embedding repre-
sentation, we report nine random topics in Table 3 (see Table A2 in the appendix for more examples),
and seven randomly generated sentences in Table 4. During the training we observed that the topic-
word distribution matrix (β) includes stop words at the beginning and then the probability of stop
words given topics gradually decreases. This observation is consistent with our hypothesis that the
stop-words do not belong to any specific topic. The reasons for this observation can be attributed to
the uniform distributions defined for variational parameters, and to controlling the updates of β matrix
while facing the stop and non-stop words. A rigorous, quantitative examination of the generation
capacity deserves its own study and is beyond the scope of this work. We provide these so readers
may make their own qualitative assessments on the strengths and limitations of our methods.

5 CONCLUSION

We incorporated discrete variables into neural variational without analytically integrating them out or
reparametrizing and running stochastic backpropagation on them. Applied to a recurrent, neural topic
model, our approach maintains the discrete topic assignments, yielding a simple yet effective way to
learn thematic vs. non-thematic (e.g., syntactic) word dynamics. Our approach outperforms previous
approaches on language understanding and other topic modeling measures.
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Broader Impact

The model used in this paper is fundamentally an associative-based language model. While NVI
does provide some degree of regularization, a significant component of the training criteria is still
a cross-entropy loss. Further, this paper’s model does not examine adjusting this cross-entropy
component. As such, the text the model is trained on can influence the types of implicit biases that are
transmitted to the learned syntactic component (the RNN/representations ht), the learned thematic
component (the topic matrix β and topic modeling variables θ and zt), and the tradeoff(s) between
these two dynamics (lt and ρ). For comparability, this work used available datasets that have been
previously published on. Based upon this work’s goals, there was not an in-depth exploration into
any biases within those datasets. Note however that the thematic vs. non-thematic aspect of this work
provides a potential avenue for examining this. While we treated lt as a binary indicator, future work
could involve a more nuanced, gradient view.

Direct interpretability of the individual components of the model is mixed. While the topic weights
can clearly be inspected and analyzed directly, the same is not as easy for the RNN component. While
lacking a direct way to inspect the overall decoding model, our approach does provide insight into
the thematic component.

We view the model as capturing thematic vs. non-thematic dynamics, though in keeping with previous
work, for evaluation we approximated this with non-stopword vs. stopword dynamics. Within topic
modeling stop-word handling is generally considered simply a preprocessing problem (or obviated
by neural networks), we believe that preprocessing is an important element of a downstream user’s
workflow that is not captured when preprocessing is treated as a stand-alone, perhaps boring step. We
argue that future work can examine how different elements of a user’s workflow, such as preprocessing,
can be handled with our approach.
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Supplementary Material

A Proof of Theorm 1

Theorem 1 states: If in the generative story ρ = 0, and we have a uniform distribution for the prior
and variational topic posterior approximation

(
p(θ) = q(θ|w, l) = 1/K

)
, then VRTM reduces to a

Recurrent Neural Network to just reconstruct the words given previous words.

Following is the proof.

Proof. If ρ = 0 then for every token t, lt = 0. Therefore, the reconstruction term simplifies to Lw =∑T
t=1 log p(wt;ht). We proceed to analyze the other remaining terms as following. The first terms

on the right-hand side of Lz and Lφ are over thematic word, and simply we have Lz +Lφ = 0. Since
all the tokens are forced to have the same label, the classifier term is Ll =

∑T
t=1 log p(lt;ht) = 0.

Also Lθ = 0, since it is the KL divergence between two equal distributions. Overall, L reduces to∑T
t=1 log p(wt;ht), indicating that the model is just maximizing the log-model evidence based on

the RNN output.

B Dataset Details

Table A1 provides details on the different datasets we use. Note that these are the same datasets as
have been used by others [49].

C Implementation Details

For an RNN we used a single-layer LSTM with 600 units in the hidden layer, set the size of
embedding to be 400, and had a fixed/maximum sequence length of 45. We also present experiments
demonstrating the performance of basic RNN and GRU cells in Table 1a. Note that although our
embedding size is higher, we are use an end-to-end training manner without using pre-trained word
embeddings. However, as shown in Table 1a, we also examined the impact of using lower dimension
embeddings and found our results to be fairly consistent. We found that using pretrained word
embeddings such as word2vec could result in slight degradations in perplexity, and so we opted to
learn the embeddings from scratch. We used a single Monte Carlo sample of θ per document and
epoch. We used a dropout rate of 0.4. In all experiments, α is fixed to 0.5 based on the validation set
metrics. We optimized our parameters using the Adam optimizer with initial learning rate 10−3 and
early stopping (lack of validation performance improvement for three iterations). We implemented
the VRTM with Tensorflow v1.13 and CUDA v8.0. Models were trained using a single Titan GPU.
With a batch size of 200 documents, full training and evaluation runs typically took between 3 and 5
hours (depending on the number of topics).

D Perplexity Calculation

Following previous efforts we calculate perplexity across D documents with N tokens total as

perplexity = exp

(
−
∑D
d=1 log p(wd)

N

)
, (6)

Dataset Vocab Training Development Testing
# Docs # Sents # Tokens # Docs # Sents # Tokens # Docs # Sents # Tokens

APNEWS 7, 788 50K 0.7M 15M 2K 27.4K 0.6M 2K 26.3K 0.6M

IMDB 8, 734 75K 0.9M 20M 12.5K 0.2M 0.3M 12.5K 0.2M 0.3M

BNC 9, 769 15K 0.8M 18M 1K 44K 1M 1K 52K 1M

Table A1: A summary of the datasets used in our experiments. We use the same datasets and splits as
in previous work [49].
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where log p(wd) factorizes according to eq. 1. We approximate the marginal probability of each
token p(wt;β, ht) within d as

p(wt;β, ht) =

∫
p(θ)

K∑
k=1

1∑
lt=0

p(wt|zt = k, lt;ht, β)p(zt|lt, θ)p(lt;ht) dθ.

≈ 1

S

S∑
s=1

K∑
k=1

1∑
lt=0

p(wt|zt = k, lt;ht, β)p(zt = k|lt, θ(s))p(lt;ht)

=
1

S

S∑
s=1

K∑
k=1

θ
(s)
k p(wt|zt = k;ht, β)p(lt = 1;ht) + p(wt;ht)p(lt = 0;ht), (7)

Each θ(s) ∼ q(θ|w1:T , γ) is sampled from the computed posterior approximation, and we draw S
samples per document.

E Text Generation

The overall generating document procedure is illustrated in Algorithm 1. We use <SEP> as a special
symbol that we silently prepend to sentences during training.

Algorithm 1 Generating Text

Input: sequence length (l)
Output: generated sentence
i← 0
w0 ← <SEP>
w← [w0]
repeat
i← i+ 1
θ(s) ∼ q(θ|w)
wi ∼ p(wi|w)
w← [w, wi]

until i < l
return w

We limit the concatenation step (w← [w, wi]) to the previous 30 words.

F Generated Topics

See Table A2 for additional, randomly sampling topics from VRTM models learned on APNEWS,
IMDB, and BNC (50 topics).

G Generated Sentences

In this part we provide some sample, generated output explain how we can generate text using VRTM.
To this end, we begin with the start word and then we proceed to predict the next word given all the
previous words. It is worth mentioning that for this task, the labels of stop and non-stop words are
marginalized out and the model is predicting these labels best on RNN hidden states. This conditional
probability is

p(wt|w1:t−1) =

∫
p(θ)

K∑
k=1

1∑
lt=0

p(wt|zt, lt;ht, β)

p(zt|lt, θ)p(lt;ht) dθ. (8)

Computing Eq. 8 exactly is intractable in our context. We apply Monte Carlo sampling θ(s) ∼
q(θ|w1:T , α). It is too expensive to recompute θ with each word generated. To alleviate this problem,
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Dataset #1 #2 #3 #4 #5 #6 #7 #8 #9

APNEWS

dead washington soldiers fund police state car republican city
killed american officers million death voted road u.s. residents

hunting california army bill killed voters line president st.
deaths texas weapons finance accusing democrats rail campaign downtown

kill residents blaze billion trial case trail candidates visitors

IMDB

films horror pretty friends script comedy funny hate writing
directed murder beautiful series line starring jim cold wrote

story strange masterpiece dvd point fun amazed sad fan
imdb killing intense channel describe talking naked monster question

spoilers crazy feeling shown attention talk laughing dawn terribly

BNC

king house research today letter system married financial children
london st published ago page data live price played

northern street report life books bit love poor class
conservative town reported years bible runs gentleman thousands 12

prince club title earlier writing supply dance commission age

Table A2: Nine random topics extracted from a 50 topic VRTM learned on the APNEWS, IMDB and
BNC corpora.
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Figure A1: We examine the impact α has on the induced variational approximations q from a 10 topic
VRTM (selected due to dev perplexity performance). Left: effect of α on H(θ) , Right: Appropriate
choice of α also reduces H(φ).

we can use a “sliding window” of previous words rather than the whole sequence to periodically
resample θ [28, 8]. In this, we maintain a buffer of generated words and resample θ when the buffer
is full (at which point we empty it and continue generating). We found that splitting each training
document into blocks of 10 sentences generated more coherent sentence. Table 4 illustrates the
quality of some generated sentences.

G.1 The Effect of Hyperparameters on Topic Selectivity

Following previous work in language modeling that take the sparsity into consideration [1, 32],
we sought for a selective token topic assignment with low entropy. First, we slightly overload the
notation of entropy to define an average of non stop word-topics entropy and similarly document

entropy: H(φ) = − 1

Tn

∑
t:lt=1

∑K
k=1 φ

k
t log φ

k
t , and H(θ) = − 1

Td

∑K
k=1 θ

k log θk, where Tn and

Td are the total number of non-stop words in the document and the total number of documents,
respectively. Second, the Dirichlet distribution can easily be parameterized to generate sparse
samples. Now we provide some intuitive explanation. In our setting, the equality Lz + Lφ =

1

S

∑S
s=1

∑
t:lt=1

∑K
k=1 φ

k
t log

θ
(s)
k

φkt
holds, which is the (negative) KL-divergence between φ and θ

parameters. Moreover, on the Lθ side, θ(s) samples are controlled by the prior distribution. Overall,
selectivity of φ strongly depends on the choice of prior parameters. As shown in Fig. A1, not only we
can control the value of H(θ), but also we can reduce H(φ) by tuning the prior parameters without
the need of any other regularizer.
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