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Abstract. Insects monitor the forces on their legs via sensory organs called cam-
paniform sensilla (CS) that detect cuticular strain. The afferent signals from the 
CS produce highly dynamic, adaptive responses to even “simple” stimuli. To bet-
ter understand the advantageous properties of the system, we constructed a dy-
namical model that describes some of these adaptive responses. We tuned the 
model parameters to reproduce the response time-courses from experimental 
data, and found that the model could describe a variety of additional responses 
with these same parameter values, suggesting that the model replicates the un-
derlying dynamics of CS afferents without overfitting to the data. In addition, our 
model captures several gross characteristics of CS responses: 1) Responses en-
code the magnitude of the applied force; 2) The peak response reflects the rate at 
which the force is applied; 3) The response adapts to constant applied forces; and 
4) The response shows hysteresis under cyclic loading. Improved replication of 
CS responses to applied forces will enable a more thorough understanding of how 
the nervous system detects forces and controls walking, and will lead to the de-
velopment of more robust, self-calibrating strain sensors for robots. 
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1 Introduction 

Campaniform sensilla (CS) are sensory organs embedded in the insect cuticle that 
measure strain [1]. Since stress and strain are related, CS effectively measure the forces 
acting on the leg. However, CS are not simple sensors. While the sensory discharge 
(i.e. total afferent nerve firing frequency) does reflect the static level of a constant ap-
plied force, the overall response is dominated by sensitivity to force dynamics (e.g. 
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) [2, 3]. CS might best be thought of as dynamic sensors whose discharges reflect 
both force and the rate of force [4] and exhibit hysteresis [2]. CS are also known to be 
sensitive to the orientation of forces applied to the leg [5, 6]. 

Sense organs that detect forces are critical for animals to generate adaptive walking 
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[7], and similar sensors may also help robots walk. One prominent role that such organs 
serve for insects is to indicate when a leg is in contact with the substrate by registering 
forces due to supporting and propelling the body (i.e. during the “stance phase”). This 
is particularly true for CS on the proximal leg segments [8, 9]. For this reason, we have 
assembled legged robots in the past that include strain sensors on proximal leg segments 
that return analog feedback regarding the forces acting on the leg [10, 11]. The robots’ 
neural controllers incorporate this information to assist the transition between the stance 
phase and swing phase of stepping [12]. Related robots have similar sensor suites [13]. 
However, the performance of such a controller is sensitive to the precise tuning and 
calibration of the strain sensors, making them impractical for real-world robotic use. 
We believe that one reason insects are such adept walkers is that their CS are highly 
dynamic and adaptive, effectively comparing measurements to their “history” in order 
to accentuate their sensitivity to changing forces and cancel constant offsets. By more 
thoroughly understanding CS responses with a dynamic model, we anticipate that we 
can make our robot sensing more detailed and robust, which may lead to more effective 
walking control in the future. 

The goal of this manuscript is to construct a dynamic model that captures the re-
sponse of a group of CS when strained in its preferred direction [5, 6]. Previous exper-
imental and modeling work has shown that the CS response is dominated by nonlinear 
effects, including a transient response that exhibits power law decay instead of expo-
nential decay [14] and frequency-independent phase locking with periodic inputs [15]. 
These features preclude a linear systems description of CS responses, motivating the 
nonlinear systems description presented in this manuscript.  

Our model’s goal is to capture the following features of CS responses: Encode the 
amplitude of the applied force; reflect the rate of the applied force; adapt to constant 
applied forces; and exhibit hysteresis to cyclic applied forces. We hypothesize that such 
features will emerge from a simple dynamic model wherein the sensory response is the 
sum of three terms: One proportional to the instantaneous input; one that adapts to the 
current force level via a nonlinear low-pass filter; and a constant offset.  
 In this manuscript, we describe the collection of CS responses from animal experi-
ments (i.e. “animal data”) and the formulation and tuning of our dynamic model of CS 
responses. We use animal data to select values for our model parameters. We show that 
the model successfully describes animal data not used in the tuning process, supporting 
that our model is capturing the fundamental properties of the system. We show that the 
model can capture several gross features of CS responses, including responses that re-
flect both the level of force and the rate of force, as well as hysteresis in the response 
to cyclic loading. Finally, we discuss possible sources for these dynamics, possible im-
plications for how the nervous system must process load, and what advantages these 
dynamics may offer robots in the future. 

2 Methods 

2.1 Animal Experimental Methods 

Recordings were taken from the tibial CS of the American cockroach (Periplaneta 
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americana). Activities of axons of the receptors were monitored extracellularly and 
identified by action potential amplitude and mechanical stimulation/ablation of the cu-
ticular caps [2]. Force waveforms were generated by an analog to digital interface 
(Spike 2, Cambridge Electronics), applied to the tibia via a probe linked to a DC motor 
and monitored by strain gauges in the probe [4].  

To aid in generating this model, we wished to test CS responses to ramp-and-hold 
stimuli with different ramp rates but the same hold amplitude. For all stimuli, the hold 
amplitude was 1.66 mN. The ramp durations tested were 0.125s, 0.224s, 0.456s, and 
0.915s. Each ramp-and-hold stimulus was applied to the tibia 11 times. For each stim-
ulus, the duration of the ramp phase was split into 20 bins. The number of spikes that 
occurred in each bin was counted and used to calculate the mean afferent firing fre-
quency over that bin. Therefore, each “dataset” consisted of a single stimulus described 
by 20 time points and 20 frequency samples averaged from 11 repetitions of the stim-
ulus. To test the model response to naturalistic stimuli like the animal might experience 
during walking, force waveforms obtained from freely walking insects were also ap-
plied [16]. 

2.2 Modeling Methods 

Modeling Campaniform Sensilla Discharges. We wish to construct a dynamical 
model that predicts the discharge (i.e. instantaneous firing frequency) of an afferent 
nerve from a population of campaniform sensilla (CS) given a load stimulus applied in 
that population’s preferred direction [5, 6]. The sensory discharge of such nerves is 
known to reflect both the amplitude and rate of a load stimulus [2]. In addition, the 
sensory discharge adapts as a constant force is applied. Therefore, we choose to model 
the sensory discharge as the sum of three terms: One proportional to the load stimulus; 
one that adapts to the load over time; and a constant offset. We expect that rate-sensi-
tivity and hysteresis will emerge naturally from adaptation to stimuli.  

We are not attempting to model the separate contribution of individual features in 
the system, for example, the mechanical response of the CS to limb bending, the intrin-
sic properties of the sensory or afferent neurons, or the processing performed by indi-
vidual afferents in the nerve. At this stage, we wish to understand the phenomenological 
relationship between the force applied to an insect’s leg and the rate-coded information 
carried by the afferent nerves from the CS to the rest of the nervous system. We will 
refer to these elements collectively as “the system.” Possible contributions of each com-
ponent of the system to the response are considered in the Discussion. 

Conceptually, an adaptive response can be thought of as subtracting the long-term 
history of the input from the input value itself. Thus, the response will reflect the input’s 
rapid changes relative to its history, but will eventually return to zero if the input stops 
changing and the history can “catch up”. Under certain assumptions, it can be shown 
that such a system directly approximates the rate of change of the input [17]. But how 
should the long-term history of the input be calculated? In the following, we demon-
strate how the properties of a low-pass filter inform the correlation between the total 
response and the rate of change of the input. Then, we show that a power law low-pass 
filter matches the response of CS. 
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Let the instantaneous firing frequency of a CS afferent, 𝑦𝑦, be the difference between 
the applied force, 𝑢𝑢, and a low-pass filtered version of the applied force, 𝑥𝑥, scaled by a 
constant, 𝑎𝑎:  

 𝑦𝑦 = a ⋅ (𝑢𝑢 − 𝑥𝑥). (1) 

Let 𝑥𝑥 be a low-pass filtered copy of 𝑢𝑢 with time constant 𝜏𝜏, 

  𝜏𝜏 ⋅ 𝑥̇𝑥 = 𝑓𝑓(𝑢𝑢 − 𝑥𝑥),  (2) 

where 𝑓𝑓(𝑧𝑧) is a function such that 𝑓𝑓(0) = 0 and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≥ 0 ∀𝑧𝑧. This implies that 𝑓𝑓(𝑧𝑧) < 0 

if 𝑧𝑧 < 0, and that 𝑓𝑓(𝑧𝑧) > 0 if 𝑧𝑧 > 0. These conditions ensure that the only equilibrium 
state is 𝑥𝑥 = 𝑢𝑢 and that the inverse function 𝑓𝑓−1(𝑧𝑧) exists [18]. 

We seek to understand how 𝑦𝑦 reflects 𝑢̇𝑢, the time-rate of change of 𝑢𝑢. If 𝑥𝑥(𝑡𝑡) =
𝑢𝑢(𝑡𝑡 − Δ𝑡𝑡), then Eq. (1) would mimic a finite difference equation and 𝑦𝑦 would be pro-
portional to 𝑢̇𝑢. How do we enforce that 𝑥𝑥(𝑡𝑡) = 𝑢𝑢(𝑡𝑡 − Δ𝑡𝑡), and how do we determine 
Δ𝑡𝑡? Let us consider the case where 𝑢𝑢 is a ramp function of the form 𝑢𝑢 = 𝐴𝐴

𝑇𝑇
⋅ 𝑡𝑡. We 

assume that the particular solution to Eq. (2) is the same as 𝑢𝑢, but delayed in time [17]. 
This implies that 𝑥̇𝑥 = 𝑢̇𝑢 = 𝐴𝐴

𝑇𝑇
. Plugging this assumption into Eq. (2),  

 𝜏𝜏 ⋅ 𝐴𝐴
𝑇𝑇

= 𝑓𝑓 �𝐴𝐴
𝑇𝑇
⋅ 𝑡𝑡 − 𝑥𝑥(𝑡𝑡)�. (3) 

We can solve Eq. (3) for the particular solution of 𝑥𝑥, 

 𝑥𝑥(𝑡𝑡) = 𝐴𝐴
𝑇𝑇
⋅ �𝑡𝑡 − 𝑇𝑇

𝐴𝐴
⋅ 𝑓𝑓−1 �𝜏𝜏 ⋅ 𝐴𝐴

𝑇𝑇
��. (4) 

If we define 

 Δ𝑡𝑡 = 𝑇𝑇
𝐴𝐴
⋅ 𝑓𝑓−1 �𝜏𝜏 ⋅ 𝐴𝐴

𝑇𝑇
�. (5) 

Then, 𝑥𝑥 lags 𝑢𝑢 by Δ𝑡𝑡, where 

 𝑥𝑥(𝑡𝑡) = 𝑢𝑢(𝑡𝑡 − Δ𝑡𝑡). (6) 

In the special case that 𝑓𝑓(𝑧𝑧) = 𝑧𝑧, 𝑓𝑓−1(𝑧𝑧) = 𝑧𝑧 such that the solution to Eq. (4) be-
comes Δ𝑡𝑡 = 𝜏𝜏 and 𝑥𝑥 = 𝐴𝐴

𝑇𝑇
⋅ (𝑡𝑡 − 𝜏𝜏), such that 𝑥𝑥 lags 𝑢𝑢 by a constant amount independent 

of the value of 𝑢̇𝑢 [17]. However, we are not limited to this particular case. To understand 
how 𝑓𝑓(𝑧𝑧) impacts 𝑦𝑦, let us write the finite difference approximation of 𝑢̇𝑢: 

  Δ𝑡𝑡 ⋅ 𝑢̇𝑢 ≈ 𝑢𝑢(𝑡𝑡) − 𝑢𝑢(𝑡𝑡 − Δ𝑡𝑡). (7) 

Substituting Eqs. (5) and (6) into Eq. (7), 

 𝑇𝑇
𝐴𝐴
⋅ 𝑓𝑓−1 �𝜏𝜏 ⋅ 𝐴𝐴

𝑇𝑇
� ⋅ 𝑢̇𝑢 = 𝑢𝑢(𝑡𝑡)− 𝑥𝑥(𝑡𝑡). (8) 
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Substituting Eq. (8) into Eq. (1), we find that 𝑦𝑦 is proportional to 𝑢̇𝑢 in steady state: 

 𝑦𝑦 = 𝑎𝑎 ⋅ (𝑢𝑢 − 𝑥𝑥) = 𝑎𝑎 ⋅ 𝑇𝑇
𝐴𝐴
⋅ 𝑓𝑓−1 �𝜏𝜏 ⋅ 𝐴𝐴

𝑇𝑇
� ⋅ 𝑢̇𝑢. (9) 

Equation (9) simplifies when we recall that for this example, 𝑢̇𝑢 = 𝐴𝐴
𝑇𝑇
: 

 𝑦𝑦 = 𝑎𝑎 ⋅ 𝑓𝑓−1(𝜏𝜏 ⋅ 𝑢̇𝑢). (10) 

Therefore, 𝑢̇𝑢 maps to 𝑦𝑦 according to the inverse function of the low-pass filter func-
tion, 𝑓𝑓(𝑧𝑧). For example, if a system’s output follows a logarithmic encoding of the 
input’s rate of change, then 𝑓𝑓(𝑧𝑧) should be an exponential function. The sensory dis-
charge of CS reflect the rate of force according to a power law relationship [2, 3]. 
Therefore, our model’s 𝑓𝑓(𝑧𝑧) should also be a power law with the reciprocal exponent 
of the power law correlation between 𝑢̇𝑢 and 𝑦𝑦. However, if the response were modeled 
only by 𝑓𝑓(𝑧𝑧), then the model could not capture the observed component of the response 
that is proportional to and offset from the tonic applied force [2]. Thus, we add two 
such terms. 

The model used in this manuscript is as follows: 

 𝑦𝑦 = max (0,𝑎𝑎 ⋅ (𝑢𝑢 − 𝑥𝑥) + 𝑏𝑏 ⋅ 𝑢𝑢 + 𝑐𝑐), (11) 

 𝜏𝜏 ⋅ 𝑥̇𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢 − 𝑥𝑥) ⋅ |𝑢𝑢 − 𝑥𝑥|𝑑𝑑, (12) 

where 𝑦𝑦 is the instantaneous firing frequency (Hz) of afferent nerves from a population 
of CS; 𝑢𝑢 is the instantaneous loading (mN) of the limb segment in the CS population’s 
preferred orientation; 𝑥𝑥 is a low-pass filtered copy of 𝑢𝑢; 𝑎𝑎 scales the adaptation term 
𝑢𝑢 − 𝑥𝑥; b is the proportionality constant between 𝑢𝑢 and 𝑦𝑦; 𝑐𝑐 is a constant offset; 𝑑𝑑 is the 
power law exponent that describes the low-pass filter function 𝑓𝑓(𝑧𝑧); and 𝜏𝜏 is a time 
scaling factor for 𝑥̇𝑥. To avoid the introduction of imaginary numbers, Eq. (12) raises 
the absolute value of the argument, 𝑢𝑢 − 𝑥𝑥, to the power of 𝑑𝑑, and then multiplies by the 
sign of the argument. In total, this model requires that five numerical parameters be 
tuned (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, and 𝜏𝜏). 

Tuning Model Parameters. Model parameters were tuned via optimization. Gradient-
based optimization (fmincon, Matlab, The Mathworks, Natick, MA) set the model pa-
rameter values to minimize the difference between the model’s response time-course 
and the smoothed CS firing frequency response time-course given the same applied 
force. For each parameter value configuration tested, an applied force was specified 
and the model’s response was simulated. The root-mean-squared error between the sim-
ulation output and the corresponding CS firing frequency response was returned as the 
objective to minimize. To test that the model could capture the underlying dynamics of 
the system and generalize to other cases, only two experimental time-courses (the fast-
est and the slowest) were used to tune the system. By selecting the most extreme stim-
uli, we test our model’s ability to interpolate the dynamic response of the CS in response 
to intermediate stimuli. 
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3 Results 

3.1 Model Tuning and Generalization 

To avoid overfitting model parameters, we used two experimental datasets to tune 
model parameters, and then observed the goodness of fit to additional experimental 
datasets. Figure 1 shows four plots, each depicting the force input, the response from 
the corresponding animal dataset, and the response from the model. The two trials on 
the left were used to tune the parameter values, which are listed in Table 1. The two 
trials on the right show animal and model responses to additional stimuli, but these 
trials were not used to tune the parameters. Remarkably, the model responses on the 
right capture the dynamic nature of the animal responses despite not being tuned to do 
so. This suggests that the model captures the underlying dynamics of the system. 

Recent studies on stick insects have demonstrated that CS responses to force stimuli 
like those the animal would generate during locomotion are more dynamic and adapt 
less quickly than responses to conventional stimuli (i.e. ramp-and-hold stimuli) [4]. We 

 

Figure 1 – Animal data were used to tune the constant parameters of the model. Left: Two 
datasets were used to select values for the parameters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, and 𝜏𝜏 that reduced the mean-
squared-error between the animal response and the model response, given the same input 
force. Right: The model captures these other animal responses remarkably well, despite not 
explicitly being tuned to match. 
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wished to see if the model could capture the same characteristics without retuning the 
model parameters. Figure 2 shows the model’s response to both a ramp-and-hold stim-
ulus and to a naturalistic stimulus. Figure 2A shows that the responses to the ramp-and-
hold stimulus share several key characteristics: Both responses initially leap up to a 
high value; both responses then continue to grow, but at a reduced and apparently con-
stant rate; both responses quickly adapt during the hold portion of the stimulus; both 
responses are quickly eliminated during the downward ramp. The peak response of the 
experimentally measured CS response is 25-30 Hz higher than that of the model. How-
ever, the shape of both the rising phase and the relaxation phase qualitatively match, 
suggesting that the model is capturing the underlying dynamics of the system. In addi-
tion, the adaptation phases largely overlap, despite the model being tuned without any 
data from the relaxation phase.  

Figure 2B also shows that the responses to the naturalistic stimulus largely match 
between the model and the animal, despite the dynamic nature of the stimulus and not 
retuning the parameter values. The responses share several key characteristics: Both 
responses are sensitive to the initial increase in the force; both responses are largely 
constant between 10% and 40% of the stimulus duration, despite the dynamic nature of 
the force’s rise; both responses slowly adapt, and then are silenced when the force no-
ticeably decreases at around 80% of the stimulus.  

Figure 2C compares the model’s response to the two stimuli. As seen in the experi-
mentally measured CS responses, the response to the ramp-and-hold stimulus increases 
more rapidly, reaches a higher response frequency, and adapts more quickly than the 
response to the naturalistic stimulus. The response to the naturalistic stimulus is persis-
tent despite the dynamic nature of both the force stimulus and the model. These data 
suggest that the CS are tuned to detect relevant sensory features during walking [4]. 

3.2 Emergent Properties of the Model 

Our model reproduces the linear encoding of tonic force levels as well as the power law 
reflection of the rate of force seen in insect CS [2]. Figure 3 shows data summarizing 
simulation experiments in which the model was subjected to a ramp-and-hold stimulus 
with a height 𝐴𝐴 and a rise time 𝑇𝑇 (i.e. 𝑢𝑢(𝑡𝑡) = min(𝐴𝐴 ⋅ 𝑡𝑡/𝑇𝑇,𝐴𝐴)). Figure 3A shows that 
as in the animal, the sensory discharge long after the hold phase begins (in our experi-
ments, 9.5 seconds in accordance with [2]) is linearly correlated with the amplitude of 
the force, 𝐴𝐴. 

Table 1 – Model parameter descriptions and values. 

Parameter Description Value 
𝑎𝑎 Adaptation term scale  1088 
𝑏𝑏 Proportional term scale 40.45 
𝑐𝑐 Constant offset -52.84 
𝑑𝑑 Exponent in low-pass filter function, i.e. 𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑑𝑑 2.369 
𝜏𝜏 Time constant for 𝑥̇𝑥 2.668 × 103 
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Our model response reflects the rate of force despite no explicit dependence on it. 
Figure 3B shows that as in the animal, the maximum sensory discharge reflects the rate 

 
Figure 2 – The differences between the model’s response to ramp-and-hold and naturalistic 
stimuli reflect those seen in the animal. A) Using the original model tuning, the model captures 
the animal response to both the ramp and hold portions of the stimulus. The model has not 
been tuned to capture the hold phase data. B) The model response to an animal-like force 
waveform resembles the animal response to the same stimulus, despite not being tuned to do 
so. C. As seen in the animal data, the model response to the ramp-and-hold stimulus peaks 
higher and adapts more quickly than the response to the naturalistic stimulus. This suggests a 
fundamental similarity between the model and the animal.  
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of loading, 𝐴𝐴/𝑇𝑇. Note that both the horizontal and vertical axes are logarithmically 
scaled, such that this apparently linear correlation is actually a power law correlation. 
The calculated slope is precisely in agreement with previous characterizations of cock-
roach proximal tibia CS, and is also roughly what would be expected based on our 
model tuning (i.e. 𝑑𝑑−1 = 0.422, compare to values in Table 1 in [2]). Also note that the 
response to the rate of loading is substantially higher than the response to the amplitude 
of the load. This is consistent with CS being fundamentally dynamic sensors [4]. 

Our model response exhibits hysteresis in response to loading and unloading as seen 
in insect CS [2]. Figure 4 shows data from a simulation experiment in which the model 
was subjected to a “staircase” stimulus, in which the applied force was stepped up and 
then stepped down at the same levels. The response in Figure 4A shows large fluctua-
tions due to adaptation, in which the response is strongly biased in the direction of the 
change in force. Figure 4B shows the form of the “staircase” stimulus. Figure 4C plots 
the mean sensory response during the tonic segments of the staircase. The color coding 
matches that in Figure 4A, to impress a sense of time. The model’s response to a given 
force depends on the history of the sensory input, that is, whether the force was in-
creased or decreased to that level. 

 
Figure 3 – The model shares the same gross response properties as animal CS. A) The model 
response linearly encodes the applied force amplitude 𝐴𝐴, 10 seconds after the stimulus is ap-
plied (ramp duration of 0.5 seconds). B) The model’s peak response reflects the rate of loading 
𝐴𝐴
𝑇𝑇
 via a power law relationship. Note the logarithmic axes. The slope of the line of best fit 

represents the exponent of the power law relationship. A value of 0.35 is consistent with pre-
vious characterizations of cockroach proximal tibial CS responses [2]. 
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4 Discussion 

In this manuscript, we assembled a dynamic model of the sensory discharges observed 
from afferent nerves from insect campaniform sensilla (CS). CS discharges are propor-
tional to the bending forces applied to the leg, but also demonstrate strong adaptive 
responses and hysteresis. Additionally, such adaptation does not match the output of a 
linear model [14], so we derived a method for designing a nonlinear low-pass filter that 
can replicate the response properties of CS afferent nerves. We then subjected this 
model to stimuli like those applied to insect legs and used some experimental data to 
tune the constants in the model. Once complete, the model could capture the results of 
experiments whose data were not used to tune the model, including the response to 
highly dynamic inputs. In addition, the model exhibited the same gross responses seen 
in the animal: Linear encoding of the applied force level; power law reflection of the 
rate of the applied force; and hysteresis in response to cyclic loading. 

The model we developed is only a phenomenological model, but may have benefits 
for experimental neuroscience and robotics. With a phenomenological description of 
CS response to a given force input, experimental stimuli can be derived that may pro-
duce more natural CS responses. For example, previous studies have shown that the 

 
Figure 4 – As observed in the animal, the model response exhibits hysteresis. A) The response 
to a “staircase” stimulus shows the strong history dependence of the response; specifically, 
the response is biased in the direction of the rate of change of the force. B) The “staircase” 
stimulus. C) The mean model responses during the hold phases of the “staircase” reveal a 
clear hysteresis loop upon cyclic loading. The points are calculated as the mean response 𝑦𝑦 
while 𝑢𝑢 is not changing. The color coding relates to the traces in A). 
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history of loading has discrete effects upon CS encoding, specifically, that pre-loading 
the leg resets the amplitude sensitivity, while dynamic properties (e.g. encoding the rate 
of change of force) are not altered by history [2]. Conversely, the model could be in-
verted to infer the instantaneous force acting on a leg given the CS recording during 
motion. Using animal kinematic and force measurements to build a model of insect 
walking has already led to a better understanding of the types of forces these sensors 
are subjected to as the animal walks freely [16]. Better understanding the responses to 
these forces will elucidate what information the nervous system has available to it re-
garding forces applied to its legs. 

This model will also benefit robotics. To better understand how the insect nervous 
system uses CS feedback in the control of walking, we have built such strain sensors 
into the legs of our robots [10, 11]. Such sensors are particularly useful for detecting 
when a leg is in the “stance phase,” during which it supports and propels the body, 
versus when it is in the “swing phase.” In the past, these sensors have provided our 
stepping controllers with non-adapting feedback proportional to the force on the leg. 
However, calibrating such sensors to eliminate constant offsets while maintaining max-
imal sensitivity is critical for proper function; if the offset is too high, the sensors return 
false-positive information about leg loading; if the offset is too low, the sensors return 
false-negative information. We believe that our CS response model could be imple-
mented to run in real-time onboard robots, enabling their sensors to self-calibrate. Such 
an algorithm would adapt to cancel out offsets, but remain sensitive to sudden changes 
in the force level (e.g. from a leg transitioning from the swing phase to the stance 
phase). Such self-calibration may increase the reliability of large arrays of analog sen-
sors onboard robots that provide feedback regarding support and contact forces, envi-
ronmental fluid currents (e.g. via hairs), and other body-wide conditions. 

What specific structures might give rise to the dynamics we describe in this manu-
script? Experimental data and computational modeling of spider mechanoreceptors 
suggest that adaptation arises due to adaptive ion channels present in receptor cells [19]. 
The viscoelastic hysteresis of the exoskeleton and the CS themselves is also known to 
contribute to sensory adaptation [20]. Future experiments may reveal additional sources 
of adaptation. Better understanding such sources may suggest new sensor designs or 
processing algorithms that would endow walking robots with animal-like mobility. 
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