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Abstract. Insects monitor the forces on their legs via sensory organs called cam-
paniform sensilla (CS) that detect cuticular strain. The afferent signals from the
CS produce highly dynamic, adaptive responses to even “simple” stimuli. To bet-
ter understand the advantageous properties of the system, we constructed a dy-
namical model that describes some of these adaptive responses. We tuned the
model parameters to reproduce the response time-courses from experimental
data, and found that the model could describe a variety of additional responses
with these same parameter values, suggesting that the model replicates the un-
derlying dynamics of CS afferents without overfitting to the data. In addition, our
model captures several gross characteristics of CS responses: 1) Responses en-
code the magnitude of the applied force; 2) The peak response reflects the rate at
which the force is applied; 3) The response adapts to constant applied forces; and
4) The response shows hysteresis under cyclic loading. Improved replication of
CS responses to applied forces will enable a more thorough understanding of how
the nervous system detects forces and controls walking, and will lead to the de-
velopment of more robust, self-calibrating strain sensors for robots.
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1 Introduction

Campaniform sensilla (CS) are sensory organs embedded in the insect cuticle that
measure strain [1]. Since stress and strain are related, CS effectively measure the forces
acting on the leg. However, CS are not simple sensors. While the sensory discharge
(i.e. total afferent nerve firing frequency) does reflect the static level of a constant ap-
plied force, the overall response is dominated by sensitivity to force dynamics (e.g.
dF /dt) 2, 3]. CS might best be thought of as dynamic sensors whose discharges reflect
both force and the rate of force [4] and exhibit hysteresis [2]. CS are also known to be
sensitive to the orientation of forces applied to the leg [5, 6].

Sense organs that detect forces are critical for animals to generate adaptive walking
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[7], and similar sensors may also help robots walk. One prominent role that such organs
serve for insects is to indicate when a leg is in contact with the substrate by registering
forces due to supporting and propelling the body (i.e. during the “stance phase”). This
is particularly true for CS on the proximal leg segments [8, 9]. For this reason, we have
assembled legged robots in the past that include strain sensors on proximal leg segments
that return analog feedback regarding the forces acting on the leg [10, 11]. The robots’
neural controllers incorporate this information to assist the transition between the stance
phase and swing phase of stepping [12]. Related robots have similar sensor suites [13].
However, the performance of such a controller is sensitive to the precise tuning and
calibration of the strain sensors, making them impractical for real-world robotic use.
We believe that one reason insects are such adept walkers is that their CS are highly
dynamic and adaptive, effectively comparing measurements to their “history” in order
to accentuate their sensitivity to changing forces and cancel constant offsets. By more
thoroughly understanding CS responses with a dynamic model, we anticipate that we
can make our robot sensing more detailed and robust, which may lead to more effective
walking control in the future.

The goal of this manuscript is to construct a dynamic model that captures the re-
sponse of a group of CS when strained in its preferred direction [5, 6]. Previous exper-
imental and modeling work has shown that the CS response is dominated by nonlinear
effects, including a transient response that exhibits power law decay instead of expo-
nential decay [14] and frequency-independent phase locking with periodic inputs [15].
These features preclude a linear systems description of CS responses, motivating the
nonlinear systems description presented in this manuscript.

Our model’s goal is to capture the following features of CS responses: Encode the
amplitude of the applied force; reflect the rate of the applied force; adapt to constant
applied forces; and exhibit hysteresis to cyclic applied forces. We hypothesize that such
features will emerge from a simple dynamic model wherein the sensory response is the
sum of three terms: One proportional to the instantaneous input; one that adapts to the
current force level via a nonlinear low-pass filter; and a constant offset.

In this manuscript, we describe the collection of CS responses from animal experi-
ments (i.e. “animal data”) and the formulation and tuning of our dynamic model of CS
responses. We use animal data to select values for our model parameters. We show that
the model successfully describes animal data not used in the tuning process, supporting
that our model is capturing the fundamental properties of the system. We show that the
model can capture several gross features of CS responses, including responses that re-
flect both the level of force and the rate of force, as well as hysteresis in the response
to cyclic loading. Finally, we discuss possible sources for these dynamics, possible im-
plications for how the nervous system must process load, and what advantages these
dynamics may offer robots in the future.

2 Methods

2.1  Animal Experimental Methods

Recordings were taken from the tibial CS of the American cockroach (Periplaneta



americana). Activities of axons of the receptors were monitored extracellularly and
identified by action potential amplitude and mechanical stimulation/ablation of the cu-
ticular caps [2]. Force waveforms were generated by an analog to digital interface
(Spike 2, Cambridge Electronics), applied to the tibia via a probe linked to a DC motor
and monitored by strain gauges in the probe [4].

To aid in generating this model, we wished to test CS responses to ramp-and-hold
stimuli with different ramp rates but the same hold amplitude. For all stimuli, the hold
amplitude was 1.66 mN. The ramp durations tested were 0.125s, 0.224s, 0.456s, and
0.915s. Each ramp-and-hold stimulus was applied to the tibia 11 times. For each stim-
ulus, the duration of the ramp phase was split into 20 bins. The number of spikes that
occurred in each bin was counted and used to calculate the mean afferent firing fre-
quency over that bin. Therefore, each “dataset” consisted of a single stimulus described
by 20 time points and 20 frequency samples averaged from 11 repetitions of the stim-
ulus. To test the model response to naturalistic stimuli like the animal might experience
during walking, force waveforms obtained from freely walking insects were also ap-
plied [16].

2.2  Modeling Methods

Modeling Campaniform Sensilla Discharges. We wish to construct a dynamical
model that predicts the discharge (i.e. instantaneous firing frequency) of an afferent
nerve from a population of campaniform sensilla (CS) given a load stimulus applied in
that population’s preferred direction [5, 6]. The sensory discharge of such nerves is
known to reflect both the amplitude and rate of a load stimulus [2]. In addition, the
sensory discharge adapts as a constant force is applied. Therefore, we choose to model
the sensory discharge as the sum of three terms: One proportional to the load stimulus;
one that adapts to the load over time; and a constant offset. We expect that rate-sensi-
tivity and hysteresis will emerge naturally from adaptation to stimuli.

We are not attempting to model the separate contribution of individual features in
the system, for example, the mechanical response of the CS to limb bending, the intrin-
sic properties of the sensory or afferent neurons, or the processing performed by indi-
vidual afferents in the nerve. At this stage, we wish to understand the phenomenological
relationship between the force applied to an insect’s leg and the rate-coded information
carried by the afferent nerves from the CS to the rest of the nervous system. We will
refer to these elements collectively as “the system.” Possible contributions of each com-
ponent of the system to the response are considered in the Discussion.

Conceptually, an adaptive response can be thought of as subtracting the long-term
history of the input from the input value itself. Thus, the response will reflect the input’s
rapid changes relative to its history, but will eventually return to zero if the input stops
changing and the history can “catch up”. Under certain assumptions, it can be shown
that such a system directly approximates the rate of change of the input [17]. But how
should the long-term history of the input be calculated? In the following, we demon-
strate how the properties of a low-pass filter inform the correlation between the total
response and the rate of change of the input. Then, we show that a power law low-pass
filter matches the response of CS.



Let the instantaneous firing frequency of a CS afferent, y, be the difference between
the applied force, u, and a low-pass filtered version of the applied force, x, scaled by a
constant, a:

y=a-(u—x). (1
Let x be a low-pass filtered copy of u with time constant t,

7%= f(u—x), (2)

where f(z) is a function such that £ (0) = 0 and % = 0 Vz. This implies that f(z) < 0

if z < 0, and that f(z) > 0 if z > 0. These conditions ensure that the only equilibrium
state is x = u and that the inverse function f~1(z) exists [18].

We seek to understand how y reflects w, the time-rate of change of u. If x(¢) =
u(t — At), then Eq. (1) would mimic a finite difference equation and y would be pro-
portional to . How do we enforce that x(t) = u(t — At), and how do we determine

At? Let us consider the case where u is a ramp function of the form u = % -t. We
assume that the particular solution to Eq. (2) is the same as u, but delayed in time [17].
This implies that x = u = ?. Plugging this assumption into Eq. (2),

r-4=f (3 t-x(). 3)
We can solve Eq. (3) for the particular solution of x,
x(t) =2 (t ~Lof (e %‘)) 4)
If we define
At=1.f1 (r : ;) (5)

Then, x lags u by At, where
x(t) = u(t — At). (6)
In the special case that f(z) = z, f~1(z) = z such that the solution to Eq. (4) be-

comes At =Ttand x = % - (t — 1), such that x lags u by a constant amount independent

of'the value of 11 [17]. However, we are not limited to this particular case. To understand
how f(z) impacts y, let us write the finite difference approximation of :

At -u = u(t) —u(t — Ab). (N
Substituting Eqs. (5) and (6) into Eq. (7),

Lop (‘r - g) = u(e) — x(t). ®)



Substituting Eq. (8) into Eq. (1), we find that y is proportional to u in steady state:
T A
y=a‘(u—x)=a-z-f1(r~;)-u. )
Equation (9) simplifies when we recall that for this example, 1t = ;:
y=a- f(z-w). (10)

Therefore, 12 maps to y according to the inverse function of the low-pass filter func-
tion, f(z). For example, if a system’s output follows a logarithmic encoding of the
input’s rate of change, then f(z) should be an exponential function. The sensory dis-
charge of CS reflect the rate of force according to a power law relationship [2, 3].
Therefore, our model’s f(z) should also be a power law with the reciprocal exponent
of the power law correlation between 1 and y. However, if the response were modeled
only by f(z), then the model could not capture the observed component of the response
that is proportional to and offset from the tonic applied force [2]. Thus, we add two
such terms.

The model used in this manuscript is as follows:

y=max(0,a- (u—x)+b-u+c), (1D
7% = sign(u—x) - |lu—x|% (12)

where y is the instantaneous firing frequency (Hz) of afferent nerves from a population
of CS; u is the instantaneous loading (mN) of the limb segment in the CS population’s
preferred orientation; x is a low-pass filtered copy of u; a scales the adaptation term
u — x; b is the proportionality constant between u and y; c is a constant offset; d is the
power law exponent that describes the low-pass filter function f(z); and 7 is a time
scaling factor for x. To avoid the introduction of imaginary numbers, Eq. (12) raises
the absolute value of the argument, u — x, to the power of d, and then multiplies by the
sign of the argument. In total, this model requires that five numerical parameters be
tuned (a, b, ¢, d, and 7).

Tuning Model Parameters. Model parameters were tuned via optimization. Gradient-
based optimization (fmincon, Matlab, The Mathworks, Natick, MA) set the model pa-
rameter values to minimize the difference between the model’s response time-course
and the smoothed CS firing frequency response time-course given the same applied
force. For each parameter value configuration tested, an applied force was specified
and the model’s response was simulated. The root-mean-squared error between the sim-
ulation output and the corresponding CS firing frequency response was returned as the
objective to minimize. To test that the model could capture the underlying dynamics of
the system and generalize to other cases, only two experimental time-courses (the fast-
est and the slowest) were used to tune the system. By selecting the most extreme stim-
uli, we test our model’s ability to interpolate the dynamic response of the CS in response
to intermediate stimuli.



3 Results

3.1 Model Tuning and Generalization

To avoid overfitting model parameters, we used two experimental datasets to tune
model parameters, and then observed the goodness of fit to additional experimental
datasets. Figure 1 shows four plots, each depicting the force input, the response from
the corresponding animal dataset, and the response from the model. The two trials on
the left were used to tune the parameter values, which are listed in Table /. The two
trials on the right show animal and model responses to additional stimuli, but these
trials were not used to tune the parameters. Remarkably, the model responses on the
right capture the dynamic nature of the animal responses despite not being tuned to do
so. This suggests that the model captures the underlying dynamics of the system.
Recent studies on stick insects have demonstrated that CS responses to force stimuli
like those the animal would generate during locomotion are more dynamic and adapt
less quickly than responses to conventional stimuli (i.e. ramp-and-hold stimuli) [4]. We

Model Parameters Tuned to Capture Response to
Ramp-and-Hold Stimulus
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Figure 1 — Animal data were used to tune the constant parameters of the model. Left: Two
datasets were used to select values for the parameters a, b, ¢, d, and 7 that reduced the mean-
squared-error between the animal response and the model response, given the same input
force. Right: The model captures these other animal responses remarkably well, despite not
explicitly being tuned to match.



Table 1 — Model parameter descriptions and values.

Parameter Description Value

a Adaptation term scale 1088

b Proportional term scale 40.45

c Constant offset -52.84

d Exponent in low-pass filter function, i.e. f(z) = z¢ 2.369

T Time constant for x 2.668 x 103

wished to see if the model could capture the same characteristics without retuning the
model parameters. Figure 2 shows the model’s response to both a ramp-and-hold stim-
ulus and to a naturalistic stimulus. Figure 2A shows that the responses to the ramp-and-
hold stimulus share several key characteristics: Both responses initially leap up to a
high value; both responses then continue to grow, but at a reduced and apparently con-
stant rate; both responses quickly adapt during the hold portion of the stimulus; both
responses are quickly eliminated during the downward ramp. The peak response of the
experimentally measured CS response is 25-30 Hz higher than that of the model. How-
ever, the shape of both the rising phase and the relaxation phase qualitatively match,
suggesting that the model is capturing the underlying dynamics of the system. In addi-
tion, the adaptation phases largely overlap, despite the model being tuned without any
data from the relaxation phase.

Figure 2B also shows that the responses to the naturalistic stimulus largely match
between the model and the animal, despite the dynamic nature of the stimulus and not
retuning the parameter values. The responses share several key characteristics: Both
responses are sensitive to the initial increase in the force; both responses are largely
constant between 10% and 40% of the stimulus duration, despite the dynamic nature of
the force’s rise; both responses slowly adapt, and then are silenced when the force no-
ticeably decreases at around 80% of the stimulus.

Figure 2C compares the model’s response to the two stimuli. As seen in the experi-
mentally measured CS responses, the response to the ramp-and-hold stimulus increases
more rapidly, reaches a higher response frequency, and adapts more quickly than the
response to the naturalistic stimulus. The response to the naturalistic stimulus is persis-
tent despite the dynamic nature of both the force stimulus and the model. These data
suggest that the CS are tuned to detect relevant sensory features during walking [4].

3.2 Emergent Properties of the Model

Our model reproduces the linear encoding of tonic force levels as well as the power law
reflection of the rate of force seen in insect CS [2]. Figure 3 shows data summarizing
simulation experiments in which the model was subjected to a ramp-and-hold stimulus
with a height A and a rise time T (i.e. u(t) = min(A4 - t/T, A)). Figure 3A shows that
as in the animal, the sensory discharge long after the hold phase begins (in our experi-
ments, 9.5 seconds in accordance with [2]) is linearly correlated with the amplitude of
the force, A.



Without Retuning the Model Can Capture
Key Features of Animal Responses
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Figure 2 — The differences between the model’s response to ramp-and-hold and naturalistic
stimuli reflect those seen in the animal. A) Using the original model tuning, the model captures
the animal response to both the ramp and hold portions of the stimulus. The model has not
been tuned to capture the hold phase data. B) The model response to an animal-like force
waveform resembles the animal response to the same stimulus, despite not being tuned to do
so. C. As seen in the animal data, the model response to the ramp-and-hold stimulus peaks
higher and adapts more quickly than the response to the naturalistic stimulus. This suggests a
fundamental similarity between the model and the animal.

o

Our model response reflects the rate of force despite no explicit dependence on it.
Figure 3B shows that as in the animal, the maximum sensory discharge reflects the rate



Model Reflects Gross Response Properties of CS
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Figure 3 — The model shares the same gross response properties as animal CS. A) The model
response linearly encodes the applied force amplitude A, 10 seconds after the stimulus is ap-
plied (ramp duration of 0.5 seconds). B) The model’s peak response reflects the rate of loading
? via a power law relationship. Note the logarithmic axes. The slope of the line of best fit
represents the exponent of the power law relationship. A value of 0.35 is consistent with pre-
vious characterizations of cockroach proximal tibial CS responses [2].

of loading, A/T. Note that both the horizontal and vertical axes are logarithmically
scaled, such that this apparently linear correlation is actually a power law correlation.
The calculated slope is precisely in agreement with previous characterizations of cock-
roach proximal tibia CS, and is also roughly what would be expected based on our
model tuning (i.e. d~1 = 0.422, compare to values in Table 1 in [2]). Also note that the
response to the rate of loading is substantially higher than the response to the amplitude
of the load. This is consistent with CS being fundamentally dynamic sensors [4].

Our model response exhibits hysteresis in response to loading and unloading as seen
in insect CS [2]. Figure 4 shows data from a simulation experiment in which the model
was subjected to a “staircase” stimulus, in which the applied force was stepped up and
then stepped down at the same levels. The response in Figure 4A shows large fluctua-
tions due to adaptation, in which the response is strongly biased in the direction of the
change in force. Figure 4B shows the form of the “staircase” stimulus. Figure 4C plots
the mean sensory response during the tonic segments of the staircase. The color coding
matches that in Figure 4A, to impress a sense of time. The model’s response to a given
force depends on the history of the sensory input, that is, whether the force was in-
creased or decreased to that level.
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4 Discussion

In this manuscript, we assembled a dynamic model of the sensory discharges observed
from afferent nerves from insect campaniform sensilla (CS). CS discharges are propor-
tional to the bending forces applied to the leg, but also demonstrate strong adaptive
responses and hysteresis. Additionally, such adaptation does not match the output of a
linear model [14], so we derived a method for designing a nonlinear low-pass filter that
can replicate the response properties of CS afferent nerves. We then subjected this
model to stimuli like those applied to insect legs and used some experimental data to
tune the constants in the model. Once complete, the model could capture the results of
experiments whose data were not used to tune the model, including the response to
highly dynamic inputs. In addition, the model exhibited the same gross responses seen
in the animal: Linear encoding of the applied force level; power law reflection of the
rate of the applied force; and hysteresis in response to cyclic loading.

The model we developed is only a phenomenological model, but may have benefits
for experimental neuroscience and robotics. With a phenomenological description of
CS response to a given force input, experimental stimuli can be derived that may pro-
duce more natural CS responses. For example, previous studies have shown that the

Model Response to "Staircase" Stimulus Exhibits Hysteresis
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Figure 4 — As observed in the animal, the model response exhibits hysteresis. A) The response
to a “staircase” stimulus shows the strong history dependence of the response; specifically,
the response is biased in the direction of the rate of change of the force. B) The “staircase”
stimulus. C) The mean model responses during the hold phases of the “staircase” reveal a
clear hysteresis loop upon cyclic loading. The points are calculated as the mean response y
while u is not changing. The color coding relates to the traces in A).



11

history of loading has discrete effects upon CS encoding, specifically, that pre-loading
the leg resets the amplitude sensitivity, while dynamic properties (e.g. encoding the rate
of change of force) are not altered by history [2]. Conversely, the model could be in-
verted to infer the instantaneous force acting on a leg given the CS recording during
motion. Using animal kinematic and force measurements to build a model of insect
walking has already led to a better understanding of the types of forces these sensors
are subjected to as the animal walks freely [16]. Better understanding the responses to
these forces will elucidate what information the nervous system has available to it re-
garding forces applied to its legs.

This model will also benefit robotics. To better understand how the insect nervous
system uses CS feedback in the control of walking, we have built such strain sensors
into the legs of our robots [10, 11]. Such sensors are particularly useful for detecting
when a leg is in the “stance phase,” during which it supports and propels the body,
versus when it is in the “swing phase.” In the past, these sensors have provided our
stepping controllers with non-adapting feedback proportional to the force on the leg.
However, calibrating such sensors to eliminate constant offsets while maintaining max-
imal sensitivity is critical for proper function; if the offset is too high, the sensors return
false-positive information about leg loading; if the offset is too low, the sensors return
false-negative information. We believe that our CS response model could be imple-
mented to run in real-time onboard robots, enabling their sensors to self-calibrate. Such
an algorithm would adapt to cancel out offsets, but remain sensitive to sudden changes
in the force level (e.g. from a leg transitioning from the swing phase to the stance
phase). Such self-calibration may increase the reliability of large arrays of analog sen-
sors onboard robots that provide feedback regarding support and contact forces, envi-
ronmental fluid currents (e.g. via hairs), and other body-wide conditions.

What specific structures might give rise to the dynamics we describe in this manu-
script? Experimental data and computational modeling of spider mechanoreceptors
suggest that adaptation arises due to adaptive ion channels present in receptor cells [19].
The viscoelastic hysteresis of the exoskeleton and the CS themselves is also known to
contribute to sensory adaptation [20]. Future experiments may reveal additional sources
of adaptation. Better understanding such sources may suggest new sensor designs or
processing algorithms that would endow walking robots with animal-like mobility.
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