
Scheduling Precedence-Constrained Jobs on Related Machines
with Communication Delay

Biswaroop Maiti∗, Rajmohan Rajaraman∗, David Stalfa∗, Zoya Svitkina† and Aravindan Vijayaraghavan‡
∗Northeastern University, Boston, Massachusetts

m.biswaroop@gmail.com, {r.rajaraman,stalfa.d}@northeastern.edu
†Google Research, Mountain View, California

zoya@google.com
‡Northwestern University, Evanston, Illinois

aravindv@northwestern.edu

Abstract—We consider the problem of scheduling
precedence-constrained jobs on uniformly-related machines
in the presence of an arbitrary, fixed communication delay.
Communication delay is the amount of time that must
pass between the completion of a job on one machine
and the start of any successor of that job on a different
machine. We consider a model that allows job duplication,
i.e. processing of the same job on multiple machines, which,
as we show, can reduce the length of a schedule (i.e., its
makespan) by a logarithmic factor. Our main result is an
approximation algorithm for makespan with approximation
ratio polylogarithmic in the number of machines and the
length of the communication delay, assuming the minimum
makespan is at least the delay. Our algorithm is based on
rounding a linear programming relaxation for the problem,
which includes carefully designed constraints capturing
the interaction among communication delay, precedence
requirements, varying speeds, and job duplication. To derive
a schedule from a solution to the linear program, we balance
the benefits of duplication in satisfying precedence constraints
early against its drawbacks in increasing overall system load.
Our result builds on two previous lines of work, one with
communication delay but identical machines (Lepere, Rapine
2002), and the other with uniformly-related machines but no
communication delay (Chudak, Shmoys 1999).

We next show that the integrality gap of our mathematical
program is polylogarithmic in the communication delay. Our
gap construction employs expander graphs and exploits a
property of robust expansion and its generalization to paths
of longer length, which may be of independent interest.
Finally, we quantify the advantage of duplication in scheduling
with communication delay. We show that the best schedule
without duplication can have a larger makespan than the
optimal with duplication by a logarithmic factor. Nevertheless,
we present a polynomial time algorithm to transform any
schedule to a schedule without duplication at the cost of an
increase in makespan polylogarithmic in the number of jobs
and machines. Together with our makespan approximation
algorithm for schedules allowing duplication, this also yields a
polylogarithmic-approximation algorithm for the setting where
duplication is not allowed.

Keywords-scheduling; approximation algorithms; linear pro-
gramming; communication delay; duplication

I. INTRODUCTION

As computational workloads get larger and more complex,
it becomes necessary to distribute tasks across multiple het-
erogenous processors. For example, the process of training
and evaluating neural network models is often distributed
over diverse devices such as CPUs, GPUs, or other spe-
cialized hardware; this process, commonly referred to as
device placement has gained significant interest [1], [2], [3].
This gives rise to a multiprocessor scheduling problem of
optimizing both the assignment of tasks to processors and
the order of their execution. We address this problem, taking
into account several complications that such a distributed
setting presents, including job dependencies, heterogeneous
machine speeds, and a communication delay between them.

The jobs comprising a workload can have data dependen-
cies between them, where the output of one job serves as
the input to another. As is common in scheduling literature,
we model these dependencies using a directed acyclic graph
(DAG), where a directed edge uv represents that job u
must be scheduled before v. However, if these two jobs are
executed on different machines, additional time is needed to
transfer the data from one machine to the other. We model
this time as a communication delay: this delay is zero if the
two jobs run on the same machine, and is equal to some
value ρ if they run on different machines. Considering that
the communication delay can be substantial, another aspect
of the problem comes into play. Instead of a machine waiting
for the result of some computation to be communicated from
another machine, it may be advantageous for it to perform
this computation itself, thus duplicating work in order to
obtain the result sooner (as highlighted in early work [4]).
Indeed, the technique of duplication to hide latency has been
incorporated in schedulers proposed for grid computing and
cloud environments [5], [6], [7], [8]. In addition, jobs may
have different processing sizes and the devices may run
at different speeds, representing either different types (e.g.
CPU, GPU, or TPU), or differences in machine model.

Optimization problems associated with scheduling under

communication delays have been studied over the last three
decades, but provably good approximation bounds are few
and several challenging open problems remain [9], [10],
[11], [12], [13], [14], [15], [16], [4], [17], [18]. It is known
that scheduling a DAG of uniform size jobs on identical
machines with a communication delay is NP-hard, even
when the number of machines is infinite [18], [17]. Several
inapproximability results have also been derived [10], [12].
However, these results are very limited and the approxima-
bility status of scheduling under communication delay is
listed as one of the top ten open problems in scheduling
surveys [19], [20]. For the special case of uniform speeds
and unit jobs, a logarithmic-approximation algorithm is pre-
sented in [13]. In recent work [21], a quasi-polynomial time
approximation scheme is developed for the problem when
the number of machines is O(1), communication delays are
O(1), and the machines are identical. Our focus in this paper
is on deriving approximation algorithms for scheduling a
DAG with non-uniform size jobs on an arbitrary number
of related machines (arbitrary speeds) and an arbitrary
communication delay.

A. Our results and techniques

We study the problem of scheduling a DAG with n jobs
of arbitrary sizes on m related machines, connected by a
network with a fixed communication delay. In the related
machines model, machine i has a speed si, and the time
taken to complete a job v of size pv on i is given by
pv/si. We represent the network communication delay as ρ
times the processing time of the smallest job on the fastest
machine.

Approximation algorithm for makespan. We focus on the
makespan objective, which is defined as the time taken by a
given schedule to complete the given DAG on the machines.
We consider scheduling policies that allow duplication of
jobs, which, as we discuss below, can reduce makespan when
compared to schedules that do not allow duplication.

Theorem 1 (Makespan approximation). There is
a polynomial time algorithm that, given an in-
stance of DAG scheduling with fixed communica-
tion delay, computes a schedule whose makespan is
O(logm log ρ/ log log ρ)(OPT + ρ), where OPT is
the optimal makespan for the given instance.

We thus obtain an O(logm log ρ/ log log ρ)-approximation
algorithm as long as OPT ≥ ρ, which is a natural re-
quirement since it takes ρ time to distribute the jobs to
the machines at the start of the schedule as well as to
synchronize termination at the end of the schedule. We note
that the logm factor in our approximation corresponds to
an upper bound on the number of geometrically separated
speed groups. This entails that, for the special case of
uniform speeds, our algorithm constructs a schedule with

makespan upper bounded by O(log ρ/ log log ρ)(OPT +ρ),
thus extending the result of [13] to non-uniform job sizes.

A central component of our algorithm is a linear pro-
gramming relaxation. A significant challenge in this regard
is to capture the precedence requirement in the presence of
communication delays: we would like to determine where
and when to schedule individual jobs while, at the same
time, adjusting the start time of each job to account for
communication delays in relation to all its predecessors.
In the full version of our paper [22], we consider several
related LPs and their natural extensions and show that these
approaches are inadequate for our algorithm. To overcome
these challenges, we introduce a set of variables that indicate
whether a job and its predecessor are scheduled within ρ
time of each other, and incorporate these variables into
two new sets of constraints. The first enforces the delay
requirement on jobs that do not start within ρ time of each
other, and the second upper bounds the total size of all
predecessors that can be executed within ρ time of their
successor. The addition of these constraints exponentially
reduces the integrality gap of the program.

Our rounding algorithm has two components. First, we
process a fractional solution to our linear relaxation to
determine a tentative assignment of jobs to groups of
machines, along the lines of [23]. Next, we convert the
group assignment to an actual schedule. Unlike in the
case of related machines with no communication delay, we
cannot invoke a list scheduling type of policy. Furthermore,
our algorithm needs to duplicate jobs judiciously so as to
hide the communication latency and achieve the desired
approximation ratio. The main challenge in this regard is
that, in order to make sufficient progress on the LP solution,
we must duplicate some jobs on machines much slower than
their assigned machine. We overcome this obstacle by upper
bounding the total size of any duplicated jobs and structuring
the machines such that those with slower speed have, as a
whole, higher capacity. Section III gives an overview of our
makespan results and full proofs are given in [22].

Integrality gap. We next study the integrality gap of the
linear program underlying our approximation algorithm, and
its dependence on the communication delay ρ. Previous
work of [23] on scheduling on related machines implies
an integrality gap of Ω(logm/ log logm) for non-uniform
speeds and non-uniform job sizes, but it does not consider
communication delays and hence does not yield any gap in
terms of ρ.

Theorem 2 (Integrality gap). There is a family of
instances with uniform speeds and uniform job sizes
such that for any ρ that is at least some sufficiently
large constant, our linear programming relaxation has
a gap of at least Ω(

√
log ρ).

This integrality gap gives the first evidence that constant

factor approximations may not be tractable or may be out of
reach of existing techniques when the communication delay
ρ is super-constant, even with uniform job sizes and identical
machines. The integrality gap also extends to variants of
time-indexed linear programs and, we suspect, to a wider
class of mathematical programming relaxations. Given that
without communication delay, the unit speed and unit job
size case has an integrality gap of at most 2 by Graham’s
list scheduling [24], our result suggests a separation in
the approximability between the variants of precedence-
constrained scheduling with and without communication
delays.

Our gap construction consists of a layered DAG with
L = ω(1) layers, where the dependency graph between
successive layers corresponds to a random graph. The main
technical challenge is to argue that Ω(L) phases (a phase
here corresponds to roughly ρ time units) are needed in
order to schedule all the jobs for the optimal integral
solution. The expansion of the random graph implies that
at most o(1) fraction of the jobs can be scheduled in the
first phase. However, in the next phase, the jobs that were
completed previously are now available on all the machines;
moreover, the remaining graph (on the unscheduled jobs) in
subsequent phases is not random any longer! To overcome
this technical hurdle, we identify and exploit a property of
“robust expansion” and its generalization to paths of longer
length, which may be of independent interest. Section IV
provides an overview of our integrality gap result.

Bounding the duplication advantage. Given the potential
of duplication to effectively hide communication latency, a
natural question arises: how much smaller can the makespan
of a schedule with duplications be, when compared to a no-
duplication schedule, i.e., a schedule in which each job is
processed exactly once? Our final set of results formally
quantifies the duplication advantage.

Theorem 3 (Bounding the duplication advantage).
Upper bound: Given any instance with n jobs, m
machines, communication delay ρ, and a schedule with
makespan C∗ ≥ ρ, there exists a polynomial-time
computable no-duplication schedule with makespan
O(C∗ · log2 n logm). Lower bound: There exists an
instance with n/2 = m = 2ρ for which any no-
duplication schedule has makespan at least ρ/ log ρ
times the optimal makespan.

Together with our makespan algorithm for general schedules,
the algorithm of Theorem 3 yields the following corol-
lary [22].

Corollary 3.1. There is a polynomial time algorithm that,
given an instance of DAG scheduling with fixed commu-
nication delay, computes a no-duplication schedule whose
makespan is O(polylog(n,m, ρ)) ·OPT , where OPT is the

makespan achieved by an optimal no-duplication schedule.

Note that the approximation ratio of Corollary 3.1 holds even
when the makespan of an optimal no-duplication schedule
is less than ρ, since that case can be detected and solved
within an O(1) factor without any communication. We also
note that, since both our LP rounding and the algorithm
of Theorem 3 are combinatorial, our results also yield
a combinatorial approximation algorithm for the uniform
speed case, i.e. P | prec, c | maxCj . Section V gives an
overview of our algorithm that transforms a general schedule
to a no-duplication schedule, and [22] contains the full
proofs for bounding the duplication advantage.

B. Related work

Scheduling theory has a rich history and there is exten-
sive work on scheduling jobs with precedence constraints
dating back over three decades. In the following, we review
scheduling work most closely related to this paper: schedul-
ing DAGs on related machines, and scheduling DAGs under
communication delays.

Scheduling DAGs on related machines. The problem of
scheduling DAGs on related machines (with no communi-
cation delays) to minimize weighted completion time was
first studied by Jaffe, who gave an O(

√
m) approximation

algorithm [25]. This was significantly improved by Chudak
and Shmoys who first derived an O(logm) asymptotic
approximation ratio for minimizing makespan [23] and then
invoked a general framework due to Hall et al [26] and
Queyranne and Sviridenko [27] to convert an approximation
algorithm for makespan to an approximation algorithm for
weighted completion time. The Chudak-Shmoys algorithm
for makespan minimization first solves an LP relaxation
for the problem, and then assigns each job to a group
of machines whose speeds are within a factor of two of
one another. Using Graham’s list scheduling [24], they then
schedule the jobs within each group of machines. The
O(logm) factor arises due to the number of machine groups.
In subsequent work, Chekuri and Bender derived the same
O(logm) approximation via a combinatorial algorithm [28].
In recent work, Shi Li improved the approximation ratio to
O(logm/ log logm) by a more careful tradeoff between the
factor lost for organizing the machines into groups and the
factor lost while assigning jobs to machine groups [29].

With regard to hardness, it is known that the problem is
hard to approximate to within a constant factor even for
the special case of identical machines, where the particular
constant depends on underlying complexity theory assump-
tions [30], [31], [32]. Recent work has also shown that
the problem is hard to approximate to within any constant
assuming the hardness of a particular optimization problem
on k-partite graphs [33].

Scheduling under communication delays. As discussed
above, optimization problems associated with scheduling

under communication delays have been studied for three
decades since the early work of [18], [4], [34], but provably
good approximation bounds are few. All previous work
assumes uniform machines and either uniform job sizes or
special cases such as O(1) machines and O(1) communi-
cation delay. For instance, in the special case of unit-size
jobs, identical machines, and unit communication delay, a
7/3-approximation is presented in [15], while [12] shows
that it is NP-hard to approximate better than a factor of
5/4. Hardness results are also shown in [10], [17], [18]. To
the best of our knowledge, our work is among the first to
develop algorithms for scheduling non-uniform jobs with
precedence constraints on related machines connected by an
arbitrary communication network with fixed delay.

Several recent results have shed some light on these
scheduling problems. The work of [21] presents a novel
quasi-polynomial time approximation scheme, based on the
Sherali-Adams hierarchy framework, for the problem with
O(1) identical machines, non-uniform job sizes, and O(1)
variable communication delays. In recent independent work,
[35] proves an O(log ρ · logm)-approximation for the prob-
lem of minimizing makespan on identical machines with
fixed, arbitrary communication delay. This approach also
uses a Sherali-Adams hierarchy and a clustering of the
resulting semimetric.

Another line of work [36], [37] uses a more general
model of communication delay which assigns to each pair
of jobs an amount of data that must be transferred if they are
executed on different machines, and assigns to each pair of
machines a speed at which that data can be transferred. Early
work by Hwang et al. [36] focus on the case of identical
machines and develop an Earliest Time First heuristic for
which they provide bounds on the resulting makespan. Su et
al. [37] generalize this result for the case of related machines
using a generalization of the Earliest Time First heuristic.
However, since neither provides a true approximation, their
results do not entail any results for our problem.

The natural idea of duplication to hide communication
latency was first studied by Papadimitriou and Yannakakis,
who proposed a 2-approximation algorithm for scheduling
DAGs on an unbounded number of identical machines with a
fixed communication delay [4]. Improved bounds for infinite
machines have been given in [9], [11], [38], [16]. For the
case of a bounded number of machines, [14], [15] give
approximation algorithms under some special cases of either
very small or very large communication delay or with the
DAG restricted to be a tree-precedence graph. With duplica-
tion, the only provable guarantee for a bounded number of
machines with an arbitrary communication delay parameter
is due to Lepere and Rapine, who present an algorithm for
scheduling a DAG of unit-size jobs on identical machines
with communication delay of ρ units, which achieves a
makespan O((OPT + ρ) log ρ/ log log ρ) [13].

II. PROBLEM FORMULATION AND NOTATION

An instance of precedence constrained scheduling with
fixed communication delay is a triple (G,M, ρ) where G is
a directed acyclic graph, M is a set of machines, and ρ is the
communication delay. In the graph G = (V,E), the n nodes
of V represent jobs and the edges of E represent precedence
constraints. Each job v has a size pv > 0 and for any subset
U ⊆ V , we define p(U) =

∑
u∈U pu. In the set of machines

M = {1, . . . ,m}, each machine i ∈ M has a speed si.
We order the machines such that s1 ≤ s2 ≤ . . . ≤ sm.
Processing a job v on a machine i takes pv/si units of time.
We normalize these values so that the shortest job has size 1
and the fastest machine has speed 1, in which case one time
unit is defined as the time needed to process the shortest
job on the fastest machine. Each job may be duplicated, i.e.
copies of it processed on different machines. Preemption is
not allowed, and at most one job can run on a machine at
any given time.

m num. of machines n num. of jobs
i, j machines v, u jobs
si machine i’s speed pv size of job v
ρ comm. delay Av predecessors of v

We say that u is a predecessor of v, denoted u ≺ v, if
there is some (non-zero length) directed path from u to v in
G. We denote the set of all predecessors of v by Av (note
that v 6∈ Av). The parameter ρ specifies the time needed to
communicate the result of a job computed on one machine
to a different machine. So if u ≺ v and v starts on machine
i at time t, then there must be a copy of u that completes
either on machine i by time t or on a different machine by
time t− ρ.

We represent a schedule as a function σ : V × M →
R ∪ {∞} mapping pair (v, i) to the start time of v on i, or
to∞ if v is not scheduled on i. We say that σ is a schedule
of (G,M, ρ) if all jobs in G have a finite start time on some
machine in M subject to the constraints listed above. The
objective is to find a σ with minimum makespan, which is
the maximum (finite) completion time in σ of any copy of
any job. Since this objective is trivial if there is only one job
or one machine, we assume n,m ≥ 2. In the three field no-
tation, this problem is denoted Q|duplication, prec, c|Cmax

where c indicates uniform communication delay.

III. APPROXIMATION ALGORITHM FOR MAKESPAN

At a high level, our algorithm finds a fractional solution
to the scheduling problem and then, through a series of re-
finements, constructs a final schedule for the given instance.
The various components of the algorithm are highlighted in
Figure 1. The first step is a standard preprocessing of the
instance, in which we eliminate machines that are slower
than the fastest machine by a factor of m or more, while
incurring at most a constant factor increase in makespan.
We refer the reader to our full paper [22] for details.

Use the group
assignments to
build a phase-
structured
schedule

Instance
(G,M, ρ)

Schedule of
(G,M, ρ)

Solve Linear
Relaxation

Preprocess
Instance

Assign Jobs
to Groups

Compute
Schedule

Remove every
machine with
speed less than
1/m times the
max speed

Compute LP
solution that
lower bounds
the optimal
makespan

Use fractional
LP values to
assign each job
to a set of ma-
chines

Figure 1. A high level view of our algorithm.

Approaches based on previous related work. We briefly
review natural approaches to the problem of scheduling
on related machines with communication delay, based on
previous related work and indicate the ways in which these
approaches are inadequate for our setting.

One approach is that taken in [13], which uses a combina-
torial algorithm for the case with unit-speed machines, unit-
size jobs, communication delay ρ, and duplication allowed.
The crux of the algorithm is to repeatedly find jobs that
can be completed in ρ steps and schedule them (duplicating
their uncompleted predecessors, if necessary) until all such
jobs have at least half their remaining predecessors already
scheduled. At this point the algorithm introduces a delay on
all machines, removes all previously scheduled jobs, and
repeats. While this approach may work for arbitrary job
sizes, accounting for variable speeds is more difficult. In
[22] we show that a natural extension of this combinatorial
algorithm fails.

A more effective approach is to develop a suitable LP
relaxation. We consider natural variants of two relaxations
developed in related work. The first captures precedence
constraints and communication delays by relating job-
machine assignment variables to job start and completion
time variables. In this way, precedence constraints can be
addressed effectively, as has been shown by [23], [29],
but communication delays are much more challenging to
capture. One natural approach is to add same-machine
indicator variables δu,v,i. Intuitively δu,v,i = 1 if u and v
are both scheduled on machine i, otherwise δu,v,i = 0. We
could then add the following constraint, where Sv and Cv
represent the start and completion times of job v.

Sv ≥ Cu + ρ
(

1−
∑
i

δu,v,i

)
∀u, v, i : u ≺ v

We can think of the constraint as stating that any job v must
begin at least ρ steps after any of its predecessors u, if v and
u are not executed on the same machine. Unfortunately, a
simple instance with a fractional solution that spreads each
job among all the machines and sets the δ values to 1/m
leads to an integrality gap as large as a polynomial in ρ, m,
and n. See [22] for details.

A different strategy for constructing a linear relaxation is
to use time-indexed job-machine assignment variables xv,i,t

to indicate the completion time t of job v on machine i. In-
deed, such a program capturing both precedence constraints
and communication delays is used in [21] to obtain a quasi-
polynomial time approximation scheme when the number of
machines m is O(1), the communication delays are O(1),
and all machines are identical. Unlike [21], however, we are
working with an arbitrary number of machines of arbitrary
speeds, and an arbitrarily large communication delay. In this
case, the time-indexed relaxation has an integrality gap as
large as a polynomial in ρ, m, and n. See [22].

Developing our relaxation. To overcome the challenges
mentioned above, we introduce two new sets of constraints
– delay constraints and phase constraints – in addition to the
usual related machines scheduling constraints of [23], [29],
where a phase is any interval of ρ time in a schedule. To
build intuition, we introduce these constraints in the setting
with unit speeds and unit job sizes. We then provide a natural
(but weak) generalization of these constraints to the setting
with arbitrary speeds and job sizes which, unfortunately,
has a large integrality gap. Finally, we refine the constraints
yielding our linear relaxation.

For unit speeds and unit job sizes, the phase constraints
require that if a job v is scheduled to start at time t on
machine i, then the total number of v’s predecessors that are
scheduled to start in the interval [t−ρ, t) is at most ρ because
they must all be scheduled on the same machine. To capture
this property, we introduce same-phase variables yu,v for
each pair of jobs u, v such that u ≺ v. We can view yu,v
as indicating whether some copy of u is scheduled within
ρ steps of the start of v. We can then give the following
constraints.

Sv ≥ Su + ρ(1− yu,v) ∀u, v : u ≺ v

ρ ≥
∑
u≺v

yu,v ∀v

The first is the delay constraint and states that the difference
in start times for v and u is at least ρ if some copy of u is
not scheduled within ρ of the start time of v. The second
is the phase constraint and states that the total number of
copies of v’s predecessors that are scheduled to start within
ρ time of v is at most ρ. While this relaxation has a small
integrality gap in the unit case, adapting it to non-unit speeds
and job sizes is not straightforward.

In the case with arbitrary speeds and job sizes, we would
like to capture the property analogous to the one used in the
unit case: if a job v is scheduled to start at time t on machine
i then the set of all v’s predecessors that are scheduled to
start in the interval [t− ρ, t) should have total size at most
ρsi. The following relaxation uses a natural extension of the
phase constraint to capture this property. It retains the same-
phase variables and delay constraint of the unit relaxation,
and incorporates xv,i variables to indicate whether job v is
exectued on machine i.

ρ
∑
i

sixv,i ≥
∑
u≺v

puyu,v ∀v

Unfortunately, this constraint has a flaw. If, say, a small
fraction of v is placed on the fastest machine and the rest
on the slowest, then the left-hand term would allow too many
predecessors to be scheduled in the same phase. As shown
in [22], this leads to an integrality gap as large as ρ or
polynomial in m and n.

A key idea in our linear relaxation is the introduction
of machine-dependent same-phase variables, which tie the
notion of a phase to the speed of a particular machine.
Using these variables, we introduce new phase and delay
constraints which rely crucially on our ordering of machines
by increasing speed. Our linear relaxation LP minimizes C
subject to the following constraints.

C ≥ Sv + pv
∑
i

xv,i/si ∀v (1)

Sv ≥ Su + pu
∑
i

xu,i/si ∀u, v : u ≺ v (2)

Sv ≥ Su + ρ
(∑
j≤i

xv,j − zu,v,i
)
∀u, v, i : u ≺ v (3)∑

j≤i

xv,j ≥
∑
u≺v

puzu,v,i/ρsi ∀v, i (4)

Csi ≥
∑
v

pvxv,i ∀i (5)∑
i

xv,i = 1 ∀v (6)

Sv ≥ 0 ∀v (7)
xv,i ∈ (0, 1) ∀v, i (8)
zu,v,i ∈ (0, 1) ∀u, v, i (9)

We provide some intuition behind the variables and
constraints. We interpret the variables xv,i as giving the
“primary” placement of v and Sv as the corresponding start
time of v. Then, for any jobs u and v such that u ≺ v and
for any machine i, we can understand the variable zu,v,i as
indicating, first, whether v is executed on a machine indexed
i or lower, and second, whether the start time of u is within
ρ of the start time of v. The significance of this indication
is that, if these conditions are met, then some copy of u
must execute on the same machine as v within ρ time of v

and, therefore, only predecessors of total size at most ρsi
can meet these conditions. We can then think of zu,v,i as
giving a “secondary” placement of u in order to finish v as
quickly as possible. The remaining variable C captures the
makespan of the resulting schedule.

The delay constraint (3) states that if v is scheduled on
a machine slower than i, then v should start at least ρ
time after any predecessor u unless u is scheduled in the
same phase as v. The phase constraint (4) states that if
v is scheduled on a machine slower than i, then the total
size of v’s predecessors scheduled in the same phase is
at most ρsi. The remaining constraints ensure that no job
completion time exceeds the makespan (1), that jobs are
executed completely and in order (2, 6), and that the total
load on any machine does not exceed the makespan (5).

Group assignment. The fractional solution we obtain for
LP gives us a fractional assignment of jobs to machines, as
well as lower bounds on start times of jobs. The objective
function is the maximum over all job completion times as
well as over all machine loads, and so it lower bounds the
optimal makespan. The next step is to convert this solution
into an assignment κ of each job to some set of machines.
This assignment will guide our final construction of the
schedule. We partition the set of machines into K ≤ logm
groups Γ1, . . . ,ΓK of increasing speed and define a job’s
“median” machine group as the lowest (slowest) one such
that the job’s total fractional assignment to this and slower
groups is at least 1/2. Our group assignment follows an
approach similar to [23], [29]: we assign each job to the
highest capacity group that is at least as fast as its median
group. Note that, if there are jobs assigned to groups Γk and
Γk′ , with k < k′, then the minimum speed in group Γk is
less than that in group Γk′ , but the capacity of Γk is at least
that of Γk′ , since the jobs assigned to Γk could have been
assigned to group Γk′ but were not.

Computing the schedule. Our scheduling algorithm (Al-
gorithm 1) takes the group assignment κ and produces a
schedule, with possible duplications, for all jobs. The main
challenge in constructing the schedule is balancing two
conflicting incentives. On one hand, the more we allow a
set of jobs to be duplicated, the faster we can finish any
jobs preceded by jobs in this set. On the other hand, if we
duplicate too often, then we risk overloading machines with
too many jobs to execute. Specifically, we want to avoid
scheduling too much load assigned to higher capacity groups
on lower capacity (faster speed) groups, even when doing so
would allow us to complete some jobs earlier. We strike this
balance by allowing a job to be duplicated only in groups
with capacity higher than its assigned group. Furthermore,
similar to [13], when the scheduler places a set of jobs on a
machine, we require that at least a 1/η fraction of the total
size of that set be from jobs that have not yet been placed
on any machine, where η will be set later. The algorithim

also uses sk to denote the speed of the slowest machine in
group Γk.

Algorithm 1: Group-Based Scheduling with Dupli-
cation and Communication Delay

Data: instance (G,M, ρ), assignment κ of jobs to
groups, and overlap parameter η ≥ 1

Result: a schedule σ of G on M
1 Initialize: T ← 0; Placed← ∅; ∀j : Tj ← 0;
∀v, i : σ(v, i)←∞

2 while Placed 6= V do
3 forall machine groups k = 1, . . . ,K do
4 forall jobs v : κ(v) = k do
5 i← arg minj∈Γk

{Tj}
6 A← (Av ∪ {v}) \ {u : σ(u, i) + pu/si ≤ Ti

or ∃ j, σ(u, j) + pu/sj ≤ Ti − ρ}
7 if (a) p(A \ {v}) ≤ 8ρsk and

(b) p(A \ Placed) ≥ p(A)/η and
(c) A ⊆ {u : κ(u) ≥ k} then

8 forall u ∈ A in topological order do
9 σ(u, i)← Ti

10 Ti ← Ti + pu/si

11 Placed← Placed ∪A

12 T ← min{t : t > T and either t = σ(v, i) +
pv/si or t = ρ+ σ(v, i) + pv/si for some v, i}

13 ∀j : Tj ← max{T, Tj}

The scheduling algorithm proceeds in a series of rounds.
In each round, the algorithm iterates through each machine
group Γk and considers each job v with κ(v) = k that
has not yet been scheduled. On a machine i ∈ Γk the
algorithm schedules v and its predecessors that have not
been completed in earlier phases if the following three
conditions are satisfied: (a) v’s incomplete predecessors
can be completed on i in time O(ρ); (b) the total size
of v and its predecessors not already scheduled (on any
machine) is at least a 1/η fraction of the total size of
its uncompleted predecessors; and (c) all of v’s remaining
predecessors have been assigned to higher indexed groups.
Condition (c) ensures that we duplicate jobs only from lower
capacity groups to higher capacity groups. Condition (a)
ensures that any jobs we duplicate from lower capacity,
higher speed groups won’t take too long on the lower speed
group. Condition (b) ensures that the resulting schedule has
two properties. First, it ensures that the total increase in load
from duplication is no more than η. Second it ensures that,
when large gaps are introduced in the schedule, all jobs that
could have been scheduled in that gap have the size of their
predecessor set reduced by a factor of η. The usefulness
of these conditions is made more explicit in the analysis
section.

Overview of the analysis. For the purposes of analysis,
we divide our schedule into phases of length ρ and partition
these phases into three types. We then bound the makespan
of our schedule by bounding the total number of phases of
each type. Our analysis combines elements of the analysis
in [23] and [13].

The three types of phases are chain phases, load phases,
and height phases. We define a chain of jobs C such that
each element in C precedes the next, and each element
has an instance which takes a sufficiently long time in the
schedule. Chain phases are those phases in which some
machine spends most of its time working on some chain
element. All non-chain phases are divided into load and
height phases. Load phases are non-chain phases in which
every machine of some group is working on jobs for most
of the phase. The remaining phases are height phases. We
can think of the three categories more intuitively as follows.
Chain phases primarily reduce the remaining execution time
of the chain. Load phases primarily reduce the remaining
execution time of the set of all jobs. Height phases primarily
reduce the amount of time before the next chain phase (or
the end of the schedule if the chain has been completed).
Figure 2 depicts the relationship between the chain and the
sets of jobs on which height phases make progress.

The main lemmas of this section upper bound the number
of phases of each type. We present those lemmas and give
overviews of their proofs below.

Lemma III.1. There are at most O(OPT/ρ) chain phases.

Since chain jobs take a long time in the schedule, con-
dition (a) of our algorithm ensures that every chain job is
scheduled only on machines in its assigned group. Since
we derived the group assignments from LP, the time spent
executing jobs in the chain is at most O(OPT), so the total
number of chain phases is at most O(OPT/ρ).

Lemma III.2. There are at most O(OPT · Kη/ρ) load
phases.

Condition (c) guarantees that the set of jobs scheduled on
groups Γk, . . . ,ΓK is a subset of the jobs assigned to these
groups by κ. So, by condition (b), we have that for any k,
the total load on groups Γk, . . . ,ΓK is at most an η factor
above the total load assigned to those groups by κ. Using a
lemma from [23], this entails that the total number of load
phases is no more than O(OPT ·Kη/ρ).

Lemma III.3. There are at most O(K(OPT + ρ) ·
logη(ρ)/ρ) height phases.

Bounding the number of height phases is more involved as
it requires a closer analysis of the linear program as well as
a more detailed understanding of the step-by-step operation
of the scheduling algorithm. We first partition the jobs into
bands B1, B2, . . . according to their start times as given by
LP. We show that, for each job v in a band, the total size

1

2

3

4

5

time →

m
a
ch
in
es

Figure 2. Machines are shown vertically on the left and time increases from left to right. The chain is shown as dark gray boxes. Each light gray,
borderless area represents the set of jobs that precede the chain job to its right (if it exists) and complete after the chain job to its left (if it exists).

of v’s predecessors in the same band is small enough to be
completed in O(ρ) time on v’s assigned group. Then, for
each height phase τ , we consider the lowest band Br with
some job scheduled after phase τ and the slowest group Γk
with a job in that band. Let v be some unscheduled job in Br
assigned to group Γk. We consider a series of height phases
separated by at most O(1) height phases. We show, for each
height phase in this series, that there is some iteration of
our scheduling algorithm in which the algorithm considers
placing v with its remaining predecessors on some machine
in Γk and in which all of v’s predecessors that started in
the previous height phase in the series have completed with
enough time to communicate the results to all machines.
Due to our choice of v, we can then infer that, if the
algorithm does not place v in this iteration, it is because
v’s uncompleted predecessor set violates condition (b). This
entails that by the next height phase in the series, the size
of v’s remaining predecessor set is reduced by a factor of η.
Since v’s predecessors within the band can be completed in
O(ρ) time on any machine in group Γk, we have that after
O(logη ρ) height phases v’s predecessor set is empty. This
entails that v is scheduled before (or during) the next height
phase in the series. Letting r∗ be the total number of bands,
this argument upper bounds the number of height phases by
O(Kr∗ logη ρ). We then show that the number of bands r∗

is O((OPT + ρ)/ρ), which gives the desired bound on the
number of height phases.

Finally, we set η to log ρ/ log log ρ. Summing over
the number of phases of each type, we have that the
length of our schedule is upper-bounded by O(K ·
log ρ/ log log ρ)(OPT + ρ).

IV. INTEGRALITY GAP

We construct a new integrality gap instance that achieves
a ω(1) integrality gap in the presence of communication
delays. The gap construction consists of a layered DAG with
L = ω(1) layers and n vertices in each layer, where each
job in layer ` has dependencies on d randomly chosen jobs
in V`+1 as shown in Figure 3. In particular, ρ = dL = nc for
a small constant c > 0. The parameters of the construction
are set up in such a way that fractionally all the jobs can
be assigned in one phase (hence the LP solution value is at
most ρ).

n

V1 V` V`+1 VL

d

Figure 3. The figure shows the DAG with L layers V1, . . . , VL rep-
resenting the nL jobs. Each of the n jobs in V` has dependencies on d
randomly chosen jobs in V`+1. We set ρ = dL, m = ρ, and the parameters
L = c1

√
logn, d = 2c2

√
logn for some appropriate constants c1, c2 > 0.

The main technical challenge is to argue that Ω(L) phases
are needed to schedule all the jobs in order to get a lower
bound of Ω(Lρ) for the integer solution value. This gives
a gap of Ω(L) = Ω(

√
log ρ). From the expansion of the

random graph in each layer, it is easy to argue that at most
a o(1) fraction of the jobs in layers {1, . . . , L − 2} can be
scheduled in the first phase (since at most ρ � n of the
jobs can be on one machine). However, in the next phase
the results of all jobs that were scheduled previously are now
available to all the machines; moreover the choice of these
jobs could depend on the randomness in the DAG. Hence
the remaining graph in each layer (after removing vertices
that have already been scheduled) in the subsequent phases
is not random any longer!

To overcome this technical hurdle, we identify and exploit
a property of robust expansion, which may be of independent
interest. The standard vertex expansion property of a random
graph says that w.h.p. any subset S ⊂ V` of size |S| ≤ n/d
has a neighborhood of size |Γ(S)| = Ω(d|S|). However,
random graphs have the stronger property that no subset T of
size o(d|S|) can have Ω(d|S|) of the edges from S incident
on it. For our analysis, we need to prove the following
generalization for paths of length ` < L.

Lemma IV.1. For any S ⊂ Vi (of sufficiently small size),
there is w.h.p. no subset of size o(d`|S|) that can have
Ω(d`|S|) of the length-` paths going into S.

Each job u in layer i (i.e. a vertex in Vi) has d`−i incoming
paths from layer V`, and all of the vertices in these paths
need to be scheduled before scheduling u – either in a
previous phase, or on the same machine in the current phase.
The above robust expansion property is used to upper bound
the number of jobs completed in each phase in two different

ways: 1) to upper bound the number of jobs in Vi whose
dependencies in V` “mostly” consist of jobs scheduled in
previous phases, and 2) to upper bound the number of jobs
in Vi such that most of their dependencies in V` need to be
resolved in the current phase. This allows us to prove that
we need at least L/2 phases before most of the jobs in V1

can be scheduled.
We believe that our integrality gap argument applies to

a wider class of relaxations for the problem. Any program
that captures communication delay and precedence require-
ments through individual constraints for each job and has
independent load constraints for each machine is likely to
incur a similar gap.

V. BOUNDING THE DUPLICATION ADVANTAGE

The final contribution of this paper is to quantitatively
characterize the duplication advantage. While it is easy to
construct instances where the makespan of a schedule allow-
ing duplication (which we refer to as a general schedule) is
better than that of a no-duplication schedule (one in which
all jobs are processed exactly once), our goal is to place
upper and lower bounds on the duplication advantage.

Lower bound. We first present a simple family of instances
with m identical machines, n = 2m+ 1 unit jobs, and ρ =
logm, for which any no-duplication schedule has makespan
Ω(ρ2/ log ρ), while the optimal makespan is at most ρ. The
DAG for such an instance consists of a rooted binary tree
with m leaves and edges directed away from the root, such
that an optimal schedule executes each root-leaf path on a
separate machine (with necessary duplication), while any no-
duplication schedule is essentially forced to decompose the
tree into ρ/(log ρ) phases, interspersed with communication
delays. Note that we thus have Ω(logm/ log logm) and
Ω(log n/ log log n) bounds on the duplication advantage.

Upper bound. Our main result in this section is that the
duplication advantage is, in fact, also upper-bounded by
a polylogarithmic factor of O(log2 n logm). Our proof is
through a polynomial-time algorithm that transforms any
schedule σ with makespan M∗ to a no-duplication schedule
with the polylogarithmic factor loss in makespan.

The algorithm processes a given (general) schedule in
“phases” of length ρ. Consider the tth phase [tρ, (t + 1)ρ)
of σ for integer t ≥ 0. Let σt denote the schedule σ
restricted to job executions that begin in the time interval
[tρ, (t+ 1)ρ). Let G0 denote the subgraph of G induced by
the jobs processed in σ during phase 0. For t > 0, let Gt
denote the subgraph of G induced by jobs not in ∪`<tG`
whose first execution in σ begins in [tρ, (t + 1)ρ). For
convenience, we use G<t to denote ∪`<tG`.

The core of the algorithm is transforming each phase into
a no-duplication schedule of length O(ρ log2 n logm). There
are technical complications since (i) processing of jobs may
span multiple phases of the schedule, and (ii) the number of

phases may be super-polynomial in the size of the instance.
Both these can be handled relatively easily by considering
machines that are processing “long” jobs separately, and
ignoring phases where no jobs are started or completed. We
assume for now that all jobs take at most ρ time in σ. Later
we show how to remove this assumption.

With this assumption, our algorithm for transforming an
arbitrary schedule σ to a no-duplication schedule σ̂ consists
of transforming each σt, t ≥ 0, to a no-duplication schedule
σ̂t that completes Gt in O(ρ log2 n logm) time. We then
concatenate these schedules, inserting ρ time units before
and after each σ̂t. The extra time allows for communication
of all jobs from σ̂t−1 and for completion of all jobs in σt
(assuming pv ≤ ρ, ∀v). Since each σt is of length ρ, it
follows that σ̂ is of length O(M∗ · log2 n logm). From here
on, we fix the phase index t and consider σt.

The following lemma gives, for any two jobs in Gt that
share a predecessor in Gt, a lower bound on the number of
machines on which both jobs are executed.

Lemma V.1. Suppose jobs u and v in Gt share a common
predecessor p in Gt, and let mu, mv , and mp denote the
number of machines that process u, v, and p, respectively,
in σi. Then, there exist at least mu + mv − mp machines
that process both u and v in σi.

Proof: Let Mp (resp., Mu and Mv) denote the set of mp

(resp., mu and mv) machines processing p (resp., u and v)
in σi. Since Mp ⊇Mu,Mv , it follows that at most mp−mu

(resp., mp −mv) of the machines in Mp do not process u
(resp., v). Thus, at least mp − (mp −mu)− (mp −mv) =
mu + mv − mp machines in Mp process both u and v,
yielding the desired claim.

With lemma V.1, we can prove the following lemma,
which entails the desired bound for the special case in which
every job completes in ρ steps in σ.

Lemma V.2. There exists a polynomial-time com-
putable no-duplication schedule that can complete Gt in
O(ρ log2 n logm) steps.

We now give an overview of the algorithm’s core. Con-
sider the sub-DAG D of the original DAG formed by jobs
processed within a particular phase of the general schedule.
We face several technical challenges while designing a no-
duplication schedule for this sub-DAG. First, we need to
determine the relative order between the jobs. On the one
hand, if a node serves as a predecessor of many jobs, it
could be given higher priority. On the other hand, that same
job might be duplicated several times and have successors
on many different machines, something not allowed in the
no-duplication schedule. Second, if we choose to process
two jobs on two different machines in a phase, we have to
ensure that they do not share a common predecessor.

To address these challenges, we organize and process
the jobs of D as follows. First, we divide them into

O(log n logm) groups based on their level of duplication
in the general schedule; each group consists of jobs whose
duplication level is within a factor of (1+1/(2 log n)) of one
another. We then process the groups from the highest level
of duplication down to the lowest, since the duplication level
of a job in D is at least that of any of its successors. Within
a given group, we construct an undirected graph H over the
sink jobs (which have no successors in the group) in which
an edge exists between two sinks if they share a common
predecessor. Our key insight about H is that any subset of
jobs in H composed of regions of diameter O(log n) that
do not share any common neighbors among them can be
processed in a single phase in a no-duplication schedule.
We show that using a classic low-diameter decomposition
technique from approximation algorithms and distributed
computing (e.g., see [39], [40], [41]), we can find a subset of
Ω(H) jobs that has the desired structure. A recursive use of
this subroutine, together with the other techniques indicated
above, yields the desired no-duplication schedule. We now
give a more formal proof of Lemma V.2.

Proof: Recall that σt is a one-phase schedule for
completing Gt (with possible duplication of jobs). We divide
the jobs of Gt into groups based on the number of machines
they are duplicated on in σt. For any integer r ≥ 0,
let Gtr be the set of jobs that are duplicated on at least
(1 + µ)r machines and fewer than (1 + µ)r+1 machines,
where µ = 1/(2 log n). Since any job is duplicated on at
most m machines, we obtain that the number of subgroups
r∗ is at most log1+µm = O(logm log n).

We first argue that for any r and r′ < r, any job in
Gtr has no predecessors in Gtr′ . Recall that any job u
in Gtr is duplicated on at least (1 + µ)r machines and
suppose v is some predecessor of u in Gt. Since there is
no communication in σt, it follows that v must be executed
on every machine where u is executed, which implies that v
is also duplicated on at least (1 + µ)r machines. Therefore,
v ∈ Gtr′ for some r′ ≥ r.

Our algorithm computes a no-duplication schedule for
Gtr, in order from r = r∗ to r = 0. In the remainder,
we show that any Gtr can be completed by a no-duplication
schedule in O(log n) phases. Together with the bound on
the number of subgroups, this yields the desired bound.

Fix integer r ∈ [0, r∗]. We show how to construct a no-
duplication schedule that completes at least 1/4 of the sinks
(jobs with no successors) in Gtr in one phase. Repeating
this at most 2 log n times schedules all the sinks of Gtr,
and hence also all of Gtr in 2 log n phases (non-sink jobs
are scheduled with sink jobs for which they are required).

We construct an auxiliary undirected graph H over the
sinks in Gtr as follows: there is an edge between sink job
u and sink job v if and only if u and v share a common
predecessor in Gtr. Using a standard ball-growing technique
(or the notion of sparse partitions), we determine a collection
{S`} of disjoint sets of sinks in H such that (a) in every set

S`, there exists a sink s` that is within log n hops of every
sink in S`, (b) for any distinct `, `′ and any two sinks s ∈ S`
and s′ ∈ S`′ , s is not adjacent to s′; and (c) the total number
of sinks in the collection is at least |H|/2. Our algorithm
for obtaining a collection {S`} is given in Algorithm 2. For
any undirected graph K, vertex v ∈ K, and integer x ≥ 0,
let Bx(K, v) denote the ball of radius x around v in K.

Algorithm 2: Find Sinks

1 Initialize: H ′ ← H; `← 0
2 while H ′ is not empty do
3 s` ← an arbitrary node in H ′

4 x← min{y : |By+1(H ′, s`)| ≤ 2|By(H ′, s`)|}
5 S` ← Bx(H ′, s`)
6 H ′ ← H ′ \Bx+1(H ′, s`)

We now argue the three properties we desire. For (a),
we note that in step 4, x ≤ log n since otherwise
|By+1(H ′, s`)| > 2|By(H ′, s`)| for 0 ≤ y < log n, imply-
ing that |Blogn(H ′, s`)| exceeds n ≥ |H ′|, a contradiction.
For (b), we note that once we include a set S`, we remove
all sinks in H ′ \ S` that are adjacent to a sink in S`, which
ensures that any sink in S` is not adjacent to any sink in S`′
for `′ > `, thus establishing (b). Finally, for (c), we observe
that when S` is included in the collection, we remove a set
of size at most 2|S`| from H ′, implying that the total number
of sinks in the collection {S`} is at least |H ′|/2, as desired.

Consider any edge (u, v) in H . By Lemma V.1, since u
and v share a predecessor in Gir, it follows that there exist at
least (1+µ)r(1−µ) machines that process both u and v. Let
u be any job in S`. By a repeated application of the lemma
along the shortest path from s` to u, we obtain that s` and u
are processed on at least (1 + µ)r(1− µ)logn ≥ (1 + µ)r/2
machines. By a standard averaging argument, it follows that
there is a machine j` that processes a subset S′` of at least
|S`|/2 of the jobs in S` in σi.

The desired no-duplication schedule, which we denote by
σ̂H then consists of processing S′` and all of its predecessors
in Gir on machine j`, for every `. Since no two jobs in S`
and S`′ share any predecessors, it follows that no job is
executed on more than one machine, hence ensuring that
σ̂H is indeed a no-duplication schedule. Furthermore, since
the jobs scheduled by σ̂H on a given machine j is a subset
of the jobs scheduled by σi on j, σ̂H completes in a phase.
Finally, since |S′`| ≥ |S`|/2 and | ∪` S`| ≥ |H|/2, it follows
that at least |H|/4 of the sinks are completed in σ̂H . We
thus have obtained a no-duplication schedule that completes
at least 1/4 of the sinks in Gir in one phase, thus completing
the proof of the lemma.

For the general case where there exist jobs that take more
one phase to complete, we extend the above algorithm for
scheduling a given Gt as follows. For each t, we maintain a

set Mt of machines on which Gt will be scheduled. Initially,
M0 is the set of all machines. When processing Gt on Mt,
we first mark the jobs in Gt that begin in a phase but end at
a different phase; there is at most one marked job on each
machine in a given phase. We then apply the above algorithm
to all the jobs in Gt. In our schedule, any marked job, if
executed, would be the last job scheduled on the respective
machine. We add an additional delay of ρ so that any marked
jobs that complete in the following phase in σ are completed
in the no-duplication schedule. If a machine works on its
marked job for the next k > 1 phases in σ, then we remove
the machine from consideration for the next k iterations (i.e.,
remove the machine from Mj for t+ 1 ≤ j ≤ t+ k) since
it is not executing any jobs in Gt+1 through Gt+k. This
defines the set Mt+1 of machines on which Gt+1 will be
scheduled, and we repeat the process. This completes the
extension to the general case.

VI. DISCUSSION AND OPEN PROBLEMS

We have presented the first approximation algorithms
for scheduling precedence-constrained jobs of non-uniform
sizes on related machines with a fixed communication delay,
with the objective of minimizing makespan. Using standard
arguments, we can extend our makespan result Theorem 1
to obtain asymptotic approximations for the objective of
weighted completion times [22].

Theorem 4 (Weighted completion time). There is
a polynomial time algorithm, that given an instance
of DAG scheduling with fixed communcation de-
lay and a weight for each job, computes a sched-
ule with weighted completion time at most OPT ·
polylog(n,m) + Wρ, where OPT is the optimal
weighted completion time and W is the sum of
weights of all of the jobs.

We thus obtain a true polylogarithmic-approximation for
weighted completion time as long as at least a constant frac-
tion of the jobs, by weight, take at least one communication
phase to complete. Using Theorem 3, this approximation
ratio result also extends to no-duplication schedules.

Our work leaves several open problems and directions
for future research. Can we improve on the approximation
factor achieved for general schedules? Is there a ω(1) hard-
ness of approximation for the problem? We conjecture that
the integrality gap of the relaxations is Ω(log ρ/ log log ρ).
Improving the current bound and broadening the class of
programs is of interest. Also, there is a gap between the
lower and upper bounds for the duplication advantage. Nar-
rowing this gap, and finding better approximation algorithms
for no-duplication schedules would be useful for scenarios
where job duplication is not a viable option.

We believe the most significant direction for future re-
search is to study the scheduling problem under more gen-

eral communication delay environments. From a practical
standpoint, developing algorithms that account for delays in
a hierarchical network, which may be modeled for instance
by a hierarchically well-separated metric, would be valuable
for many datacenter scheduling problems.

REFERENCES

[1] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen,
Y. Zhou, N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “De-
vice placement optimization with reinforcement learning,” in
Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, 2017, pp. 2430–2439.

[2] Y. Gao, L. Chen, and B. Li, “Optimizing device placement for
training deep neural networks,” in International Conference
on Machine Learning, 2018.

[3] A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le,
and J. Dean, “Hierarchical planning for device placement,”
in International Conference on Learning Representations,
2018. [Online]. Available: https://openreview.net/pdf?id=Hkc-
TeZ0W

[4] C. H. Papadimitriou and M. Yannakakis, “Towards an
architecture-independent analysis of parallel algorithms,”
SIAM journal on computing, vol. 19, no. 2, pp. 322–328,
1990.

[5] D. Bozdag, F. Ozguner, and U. V. Catalyurek, “Compaction of
schedules and a two-stage approach for duplication-based dag
scheduling,” IEEE Transactions on Parallel and Distributed
Systems, vol. 20, no. 6, pp. 857–871, 2009.

[6] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Zomaya,
“A balanced scheduler with data reuse and replication for
scientific workflows in cloud computing systems,” Future
Generation Computer Systems, vol. 74, September 2017.

[7] D. Hu and B. Krishnamachari, “Throughput optimized sched-
uler for dispersed computing systems,” in 2019 7th IEEE
International Conference on Mobile Cloud Computing, Ser-
vices, and Engineering (MobileCloud), 2019, pp. 76–84.

[8] I. Song, W. Yoon, E. Jang, and S. Choi, “Task scheduling
algorithm with minimal redundant duplications in homo-
geneous multiprocessor system,” in Grid and Distributed
Computing, T.-h. Kim, H. Adeli, H.-s. Cho, O. Gervasi, S. S.
Yau, B.-H. Kang, and J. G. Villalba, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 238–245.

[9] I. Ahmad and Y.-K. Kwok, “On exploiting task duplication in
parallel program scheduling,” IEEE Transactions on Parallel
and Distributed Systems, vol. 9, no. 9, pp. 872–892, Sep.
1998.

[10] E. Bampis, A. Giannakos, and J.-C. König, “On the com-
plexity of scheduling with large communication delays,”
European Journal of Operational Research, vol. 94, pp. 252–
260, 1996.

[11] S. Darbha and D. P. Agrawal, “Optimal scheduling algorithm
for distributed-memory machines,” IEEE Transactions on
Parallel and Distributed Systems, vol. 9, pp. 87–95, 1998.

[12] J. Hoogeveen, J. Lenstra, and B. Veltman, “Three, four, five,
six, or the complexity of scheduling with communication
delays,” Operations Research Letters, vol. 16, no. 3, pp. 129
– 137, 1994.

[13] R. Lepere and C. Rapine, “An asymptotic O(ln ρ/ ln ln ρ)-
approximation algorithm for the scheduling problem with
duplication on large communication delay graphs,” in Annual
Symposium on Theoretical Aspects of Computer Science.
Springer, 2002, pp. 154–165.

[14] A. Munier, “Approximation algorithms for scheduling trees
with general communication delays,” Parallel Computing,
vol. 25, no. 1, pp. 41–48, 1999.

[15] A. Munier and C. Hanen, “Using duplication for scheduling
unitary tasks on m processors with unit communication de-
lays,” Theoretical Computer Science, vol. 178, no. 1, pp. 119
– 127, 1997.

[16] M. A. Palis, J.-C. Liou, and D. S. L. Wei, “Task clustering
and scheduling for distributed memory parallel architectures,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 7, no. 1, pp. 46–55, 1996.

[17] C. Picouleau, Two new NP-complete scheduling problems
with communication delays and unlimited number of proces-
sors. Inst. Blaise Pascal, Univ., 1991.

[18] V. J. Rayward-Smith, “Uet scheduling with unit interproces-
sor communication delays,” Discrete Applied Mathematics,
vol. 18, no. 1, pp. 55–71, 1987.

[19] N. Bansal, “Scheduling open problems: Old and
new,” 2017, mAPSP 2017. [Online]. Available:
http://www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf

[20] P. Schuurman and G. J. Woeginger, “Polynomial time ap-
proximation algorithms for machine scheduling: ten open
problems,” Journal of Scheduling, vol. 2, no. 5, pp. 203–213,
1999.

[21] J. Kulkarni, S. Li, J. Tarnawski, and M. Ye, “Hierarchy-
based algorithms for minimizing makespan under precedence
and communication constraints,” in Proceedings of the For-
tieth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, to appear, 2020.

[22] B. Maiti, R. Rajaraman, D. Stalfa, Z. Svitkina, and
A. Vijayaraghavan, “Scheduling precedence-constrained jobs
on related machines with communication delay,” 2020.
[Online]. Available: https://arxiv.org/abs/2004.10776

[23] F. A. Chudak and D. B. Shmoys, “Approximation algorithms
for precedence-constrained scheduling problems on parallel
machines that run at different speeds,” Journal of Algorithms,
vol. 30, no. 2, pp. 323–343, 1999.

[24] R. L. Graham, “Bounds on multiprocessing timing anoma-
lies,” SIAM J. Appl. Math., vol. 17, p. 416–429, 1969.

[25] J. M. Jaffe, “Efficient scheduling of tasks without full use of
processor resources,” Theoretical Computer Science, vol. 12,
no. 1, p. 1–17, Sep 1980.

[26] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein,
“Scheduling to minimize average completion time: Off-line
and on-line approximation algorithms,” Mathematics of Op-
erations Research, vol. 22, no. 3, p. 513–544, Aug 1997.

[27] M. Queyranne and M. Sviridenko, “Approximation algorithms
for shop scheduling problems with minsum objective,” Jour-
nal of Scheduling, vol. 5, no. 4, p. 287–305, 2002.

[28] C. Chekuri and M. Bender, “An efficient ap-
proximation algorithm for minimizing makespan on
uniformly related machines,” J. Algorithms, vol. 41,
no. 2, pp. 212–224, Nov. 2001. [Online]. Available:
http://dx.doi.org/10.1006/jagm.2001.1184

[29] S. Li, “Scheduling to minimize total weighted completion
time via time-indexed linear programming relaxations,” in
58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, 2017, pp. 283–294.

[30] J. K. Lenstra and A. H. G. R. Kan, “Complexity of scheduling
under precedence constraints,” Operations Research, vol. 26,
no. 1, pp. 22–35, 1978.

[31] N. Bansal and S. Khot, “Optimal long code test with one free
bit,” 2009 50th Annual IEEE Symposium on Foundations of
Computer Science, pp. 453–462, Oct 2009.

[32] O. Svensson, “Conditional hardness of precedence con-
strained scheduling on identical machines,” Proceedings of
the 42nd ACM symposium on Theory of computing - STOC
’10, p. 745–754, 2010.

[33] A. Bazzi and A. Norouzi-Fard, “Towards tight lower bounds
for scheduling problems,” Lecture Notes in Computer Science,
p. 118–129, 2015.

[34] B. Veltman, B. J. Lageweg, and J. Lenstra, “Multiprocessor
scheduling with com-munication delays.parallel computing,”
Parallel Computing, vol. 16, pp. 173–182, 1990.

[35] S. Davies, J. Kulkarni, T. Rothvoss, J. Tarnawski, and
Y. Zhang, “Scheduling with communication delays via
LP hierarchies and clustering,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.09682

[36] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee,
“Scheduling precedence graphs in systems with interprocessor
communication times,” SIAM Journal on Computing, vol. 18,
no. 2, pp. 244–257, 1989.

[37] Y. Su, X. Ren, S. Vardi, A. Wierman, and Y. He,
“Communication-aware scheduling of precedence-
constrained tasks,” ACM SIGMETRICS Performance
Evaluation Review, vol. 47, pp. 21–23, 12 2019.

[38] A. Munier and J.-C. König, “A heuristic for a scheduling
problem with communi-cation delays,” Operations Research,
vol. 45, no. 1, pp. 145–147, 1997.

[39] B. Awerbuch and D. Peleg, “Sparse partitions,” in Proceed-
ings of the 31st Annual IEEE Symposium on Foundations of
Computer Science, 1990, pp. 503–513.

[40] N. Linial and M. Saks, “Low diameter graph decompositions,”
Combinatorica, vol. 13, pp. 441–454, 1993.

[41] D. Peleg, Distributed Computing: A Locality-Sensitive Ap-
proach. Philadelphia, PA: SIAM, 2000.

