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Fig. 1. We develop an efficient strategy for optimizing curves while avoiding self-collisions. Here for instance, interwoven curves of increasing length are

confined inside a fixed domain, resulting in an intricate “curve packing.” Replacing ordinary gradient descent with a specially-tailored fractional Sobolev
gradient lets us take very large steps toward the solution, enabling rapid design exploration.

Curves play a fundamental role across computer graphics, physical sim-
ulation, and mathematical visualization, yet most tools for curve design
do nothing to prevent crossings or self-intersections. This paper develops
efficient algorithms for (self-)repulsion of plane and space curves that are
well-suited to problems in computational design. Our starting point is the
so-called tangent-point energy, which provides an infinite barrier to self-
intersection. In contrast to local collision detection strategies used in, e.g.,
physical simulation, this energy considers interactions between all pairs of
points, and is hence useful for global shape optimization: local minima tend
to be aesthetically pleasing, physically valid, and nicely distributed in space.
A reformulation of gradient descent, based on a Sobolev-Slobodeckij inner
product enables us to make rapid progress toward local minima—independent
of curve resolution. We also develop a hierarchical multigrid scheme that
significantly reduces the per-step cost of optimization. The energy is easily
integrated with a variety of constraints and penalties (e.g., inextensibility, or
obstacle avoidance), which we use for applications including curve packing,
knot untangling, graph embedding, non-crossing spline interpolation, flow
visualization, and robotic path planning.
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1 INTRODUCTION

Shape optimization plays a role in a broad range of tasks ranging
from variational data fitting to computational design. However, for
many tasks it is essential to design in context, i.e., relative to the ge-
ometry of the surrounding environment. Hard boundary conditions
(e.g., fixing the endpoints of a cable) provide a basic mechanism
for providing context, but do not account for another fundamental
requirement: physical objects cannot penetrate solid objects in the
environment, nor can they intersect themselves. In some contexts,
self-intersection can be avoided by detecting and resolving colli-
sions at the moment of impact. However, forward simulation is
not particularly effective at guiding shape optimization toward an
intelligent design—for example, untangling a complicated knot via
forward physical simulation is just as hard as trying to untangle it
by hand. In this paper we instead explore how a global variational
approach to curve self-avoidance provides new opportunities for
computational design.

Our starting point is the tangent-point en- /
ergy of Buck and Orloff [1995], which for an )
arc-length parameterized curve y : M — R3 Ly Ye
can be expressed as an integral over all pairs L
of points (x, y) € M? := M x M:

iy

— v X |
&= //M @ y@ne | W )

Here r(x,y) is the radius of the smallest

sphere tangent to y(x) and passing through y(y), and « € R is
a parameter controlling the strength of repulsion. This energy ap-
proaches infinity for points y(y) that are close to y(x) in space but
far from y(x) along the curve itself—preventing self-collision. For
points y(y”) close to y(x) along the curve, the radius r is very large—
keeping forces bounded, and making the integral well-defined.
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Although this energy has a simple definition, its gradient involves
high-order fractional derivatives. Hence, classic optimization tech-
niques must take extremely small steps, and standard techniques
from shape optimization are not well-suited to handle the nonlocal
nature of the energy. Our approach is to develop a preconditioner
that exactly matches the fractional order of the differential (Sec-
tion 4). In doing so, we obtain a gradient descent equation involving
no spatial derivatives, permitting large time steps that make rapid
progress toward local minima (Figure 2). In practice, this method
is orders of magnitude more efficient than the simple untangling
schemes often used in the knot literature (Figure 15), and offers
substantial improvements over general-purpose optimization tech-
niques from geometry processing (Section 7). Algorithms of this fla-
vor have proven effective for problems such as finding minimal sur-
faces [Pinkall and Polthier 1993], integrating Willmore flow [Schu-
macher 2017], and computing surface parameterizations [Kovalsky
et al. 2016]. However, little work has been done in the more chal-
lenging setting of nonlocal, “all-pairs” energies.

Contributions. Though knot energies have received significant
attention in mathematics, there has been little work on the numer-
ical and algorithmic tools needed to apply such energies to the
computational design of curves. In this paper we develop:

e a principled discretization of the tangent-point energy,
e anovel preconditioner based on the Sobolev-Slobodeckij inner
product,
e anumerical solver that easily incorporates constraints needed
for design, and
e a Barnes-Hut strategy and hierarchical multigrid scheme for
the tangent-point energy that greatly improve scalability.
We also explore a collection of constraints and potentials that en-
able us to apply this machinery to a broad range of applications in
visualization and computational design (Section 8).

2 RELATED WORK

We briefly review topics related to computational design of curves;
Section 3 gives more detailed background on curve energies. At a
high level, computational design of free-form curves has generally
focused on specific domains such as road networks [Hassan et al.
1998; McCrae and Singh 2009], telescoping structures [Yu et al. 2017],
or rod assemblies [Pérez et al. 2015; Zehnder et al. 2016]; Moreton
[1992, Chapter 3] gives a history of traditional design via spline
curves. Our goal is to develop tools that can be applied to a wide
range of multi-objective design scenarios, as explored in Section 8.

2.1 Curve Simulation

One natural idea is to avoid collision via physics-based simulation of
elastic rods [Bergou et al. 2008]. However, the paradigm of collision
detection and response is “too local”: for computational design, one
aims to globally optimize a variety of design criteria, rather than
simulate the behavior of a given curve. Sensitivity analysis, which
provides sophisticated local improvement of an initial design, has
been successfully applied to several rod design problems [Pérez et al.
2015; Zehnder et al. 2016; Pérez et al. 2017]. This technique can
be seen as complementary to global repulsion-based form-finding,
helping to incorporate, e.g., nonlinear mechanical phenomena into
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Fig. 2. Untangling the Freedman unknot (top left) to the unit circle. For
the same wall clock time, standard L? gradient descent makes almost no
progress, whereas conventional Sobolev descent fails to smooth out low
(H") or high (H?) frequencies. By carefully matching the inner product to
the energy, our fractional H® descent quickly flows to the circle.

a final design. Curves also arise naturally as filaments or field lines
in continuum phenomena like fluids, plasmas, and superfluids [An-
gelidis and Neyret 2005; Weilimann and Pinkall 2010; Padilla et al.
2019; Kleckner et al. 2016; Chern et al. 2016; DeForest and Kankel-
borg 2007]. However, using such phenomena for curve design is
challenging since (i) initial conditions are hard to construct, and (ii)
these systems naturally exhibit reconnection events where distinct
pieces of a curve merge [Maucher and Sutcliffe 2016].

2.2 Knot Energies

Motivated by questions in mathematics, biology, and physics [Calvo
etal. 2002], there is a significant body of work on the unknot problem:
can a closed loop be continuously deformed into a circle without
passing through itself (i.e., via isotopy)? Solving this decision prob-
lem is not our goal—so far it is not clear it can even be done in
polynomial time [Lackenby 2014]. Yet knot untangling energies
(discussed in Section 3) provide a valuable starting point for com-
putational design. Numerically, simple ad-hoc methods that repel
all pairs of vertices can yield inconsistent, unreliable behavior and
slow convergence (Figure 15, right). Starting with more principled
discretizations, KnotPlot [Scharein 1998] uses a simple relaxation
scheme, and Kusner and Sullivan [1998] apply a standard conjugate
gradient method via SurfaceEvolver [Brakke 1992], both evaluat-
ing all O(n?) interactions between the n vertices. Other, adjacent
methods have been developed for tightening a given knot [Pieranski
1998; Ashton et al. 2011], simulating the knot tying process [Brown
et al. 2004; Kubiak et al. 2007; Harmon et al. 2009], or untangling
knots without optimizing their shape [Ladd and Kavraki 2004];
more recent methods apply L? [Walker 2016] or integer Sobolev
(H?) descent [Bartels et al. 2018]. Octrees have been used to evaluate
the ropelength of a static knot [Ashton and Cantarella 2005], but
Barnes-Hut/multipole schemes have not yet been developed for
energy minimization. Likewise, little has been said about fractional
preconditioners, and treatment of general constraints.

Our approach builds on careful analysis of the fractional Sobolev
spaces associated with the tangent point energy [Blatt 2012, 2013;
Blatt and Reiter 2015]. Whereas this work focuses on, e.g., the exis-
tence of local minimizers and short-time existence of gradient flows
in the smooth setting, we use it to develop numerical algorithms.



2.3 Geometric Optimization

Optimization of curve and surface energies can be greatly acceler-
ated by “Sobolev-like” preconditioning. The idea is to replace the
ordinary L? inner product with one that is better matched to the en-
ergy, yielding a gradient flow that is easier to integrate (Section 4.1
gives a didactic example). Such flows make more rapid progress to-
ward minimizers (Figure 2), since energy is reduced uniformly across
all spatial frequencies. Crucially, Sobolev preconditioners are most
effective when the order of the preconditioner is perfectly matched to
the order of spatial derivatives in the energy. A preconditioner whose
order is too high or too low can slow down convergence—see for
instance Figure 5, bottom-right.

Sobolev-type preconditioners have seen some prior use in geom-
etry processing and scientific computing. For example, the minimal
surface algorithm of Pinkall and Polthier [1993] effectively performs
Sobolev descent [Brakke 1994, Section 16.10], but was not originally
framed in these terms; Renka and Neuberger [1995] give an algo-
rithm directly formulated via a (variable) Sobolev inner product.
Later work adopts Sobolev-like strategies for surface fairing and
filtering [Desbrun et al. 1999; Eckstein et al. 2007; Martin et al. 2013;
Crane et al. 2013; Schumacher 2017]. More recently, Sobolev-like
descent has become popular for minimizing elastic energies, such as
those arising in surface parameterization or shape deformation [Ko-
valsky et al. 2016; Claici et al. 2017; Zhu et al. 2018]; see Section 7
for in-depth comparisons.

Previous work on shape optimization does not consider the chal-
lenging fractional case, which differs significantly from standard
Sobolev preconditioning. From an analytical point of view, we must
first determine the order of derivatives arising in the differential—
achieved by reasoning about the associated function spaces (Appen-
dix A). We use this knowledge to formulate a novel preconditioner
in the smooth setting which carefully considers lower-order terms
(Section 4), which we then translate into the discrete setting via
a principled discretization of the tangent-point energy (Section 5).
From a computational point of view, the machinery needed to apply
a fractional preconditioner is also different from ordinary Sobolev
preconditioners: one cannot simply solve a sparse linear system, and
must instead construct an efficient hierarchical scheme for (approx-
imately) inverting a dense nonlocal operator. None of these pieces
appear in the previous optimization work discussed above, though
fractional operators and multigrid methods have been studied in
other contexts, such as finite element simulation [Ainsworth and
Glusa 2017] and multiphysics systems [Beerland et al. 2019; Beerland
2019]. Further, previously studied Sobolev preconditioners (such as
those based on the Laplacian) and standard optimization strategies
(such as Newton descent) are not as effective for our problem—as
we show via extensive numerical experiments (Section 7).

3 CURVE ENERGIES

We first give a detailed discussion of the tangent-point energy, which
we optimize in Section 4. Throughout we will use single bars |X| and
brackets (X, Y) to denote the Euclidean inner product on vectors
in R3, and reserve double bars || f|| and brackets (f, g) for norms
and inner products on functions. We also use | to indicate that a
quantity (e.g., an energy) is evaluated at a function f.
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3.1 Background

Consider a collection of curves given by a parameterizationy : M —
R3, where M is comprised of intervals and/or loops. How can we
formulate an energy that prevents self-intersection of y? In general
we will consider energies of the form

&)= [ kexy)dxyuy,

where the kernel k : M X M — R captures the interaction between
two points on the curve, and dx, denotes the length element on y.

3.1.1  Electrostatic Potential. One natural idea for defining k is to
imagine that there is electric charge distributed along y that pushes
it away from itself, producing the Coulomb-like potential

1
kcoulomb (%, Y) 1= @)
owom ly(x)-y@)I*
where the parameter o controls the strength of re-
pulsion. Unfortunately this simple energy does not
work for a continuous curve: for ¢ < 2 it is not
strong enough to prevent collisions, allowing the y(x) Y )

curve to pass through itself—yet for & > 1 the inte-
gral does not exist, resulting in unpredictable and
unreliable behavior when discretized.

3.1.2  Mébius Energy. To obtain a well-defined energy, one can
regularize the integrand in regions where x approaches y. One such
regularization, proposed by O’Hara [1991], is the Mobius energy,
with kernel

1 1

Y-y dx,y)?’

where d(x, y) denotes the shortest distance between x and y along
the curve (e.g., the smaller of two arcs along a circle). Intuitively:
if two points are both close in space and close along the curve, we
remove the singular energy; if they are close in space but distant
along the curve, they continue to repel each other (see inset). This
energy is invariant to Mobius transformations [Freedman et al. 1994],
which can be attractive from the perspective of knot theory—but
causes problems for computational design, since near-intersections
may not be penalized in a natural way (Figure 3).

Fnmibius (%, ) =

Mébius Tangent-Point

Dy
o) —

2
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/

o

Fig. 3. Left: Since the Mébius energy is scale-invariant, it allows “tight
spots” where the curve nearly touches itself; such features are avoided by
the tangent-point energy. Right: The Mébius energy can likewise artificially
eliminate knots by pulling them tight at no energetic cost. (Leftmost image
from Kusner and Sullivan [1998].)
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o =2

7

Fig. 4. Local minimizers of the tangent-point energy £5% . When a = 2 the
tangent-point energy is scale-invariant and can exhibit “tight spots”; for
larger values of « local interactions are penalized more than distant ones.

3.2 Tangent Point Energy

Instead, we will use the tangent point energy introduced in Section 1.
We can write this energy more explicitly by noting that (up to a
constant factor)

ly(0)—y ()|
IT(x) x (y(x)=y )l

where T(x) is the unit tangent of y at x. This expression leads to a
generalized tangent-point energy [Blatt and Reiter 2015], given by

r(x,y) =

g5 = [ kg vw. 00 dxy .

a

B

where k% is the tangent-point kernel

ITx(p-ql*

lp - qlP
In the case f = 2a, this energy agrees with Equation 1; as shown
by Blatt [2013] it is well-defined for any «, f satisfying « > 1 and
B ela+22a+1)(Lemma A.1). Most importantly, it tends toward
infinity as the curve approaches itself, preventing self-intersection.
In particular, when f# — & > 2 it is not scale-invariant, and hence
avoids the pull-tight phenomenon. (We set (a, §) to (2, 4.5) in Figures
14-19, and (3, 6) elsewhere.)

This energy is also attractive for design since it provides natu-
ral regularization, akin to bending energy. The reason is that the
integrand can vanish only for a straight line (where the radius r is
infinite at every point). The powers f and a have an impact on this
bending behavior—for instance, if § = 2a, then a higher « gives a
more repulsive energy where curves are willing to bend more in
order to avoid collision (Figure 4).

Ke(p.q.T) = )

4 OPTIMIZATION

Consider an energy £ that depends on a function f. A typical start-
ing point for optimization is to integrate the gradient flow

L f=—grad&(f), (4)

i.e,, to move in the direction of “steepest descent.” As mentioned in
Section 2, however, the efficiency of this flow depends critically on
the inner product used to define the gradient—in other words, there
are many different notions of what it means to be “steepest.” Recall
in particular that the differential d€ describes the change in £ due
to any small perturbation u of f:

dE|f(u) = lim FEf+ew)=E().
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The gradient of £ is then the unique function grad £ whose inner
product with any function u gives the differential in that direction:

(grad &, uYy = dE(u). (5)
Traditionally, the inner product (-, -)y is just the L? inner product

(u, N2 = /M(u(x), v(x)) dx.
More generally, however, one can try to pick a so-called Sobolev
inner product {(u, v))yx that yields an easier gradient flow equation.
Examples include the H' and H? inner products, which for a domain
without boundary can be written as

(u, o) = (gradu, gradv)> = —(Au, V)2, 6)
and
(o) = (Du, Aoz = (A2, o) 2, ™
which measure first and second derivatives (resp.) rather than func-
tion values. In general, if we write our inner product as {u, v));x =
{(Au,v))12 for some linear operator A, then we can express the new
gradient direction g as the solution to

Ag = grad;2 €. 3)

This transformation is akin to the preconditioning provided by New-
ton’s method, except that we replace the Hessian with an operator
A that is always positive-definite, and often easier to invert. In
particular, when A comes from a carefully-designed Sobolev inner
product, it will eliminate spatial derivatives, avoiding the stringent
time step restriction typically associated with numerical integration
of gradient flow (Figure 6).

4.1  Warm-up: Dirichlet energy

Since analysis of the tangent-point energy is quite involved, we
begin with a standard “toy” example that helps sketch out the main
ideas of our approach. In particular, consider the Dirichlet energy

Ep(f) =3 Jo | grad f(x)I* dx, ©

well-matched Sobolev descent (H')

standard gradient descent (L?) mismatched Sobolev descent (H?)
Fig. 5. For Dirichlet energy, which penalizes variations in a function f(x),
standard L? gradient descent mostly smooths out local features (bottom
left), whereas an inner product that is too high-order has trouble removing
high frequencies (bottom right). A Sobolev descent that is well-matched to
the order of the energy yields rapid progress toward a local minimizer (top).
We apply a similar strategy to quickly optimize the shape of curves.



which penalizes variation in a function f : Q — R. If the domain Q
has no boundary, then we can use integration by parts to write this
energy as

Ep(f) = 3(grad f. grad f2 = —3 (AS, fpz,

where A denotes the Laplace operator. The differential is then
dEplr(u) = —(Af u) 2,

and from Equation 5, we see that the L? gradient of £p is given by
gradp» Eplf = —Af. Hence, L? gradient descent yields the heat flow

Lf=Af.

which involves second-order derivatives in space [Andrews et al.
2020, Section 1.2]. If we try to solve this equation using, say, explicit
finite differences with grid spacing h, we will need a time step of size
O(h?) to remain stable—significantly slowing down computation
as the grid is refined. To lift this time step restriction, we can use a
different inner product to define the gradient. In particular, replacing
(-, -»v with the H! inner product in Equation 5 yields

(AgradgiEp,uPrz = (Af, u)pe. (10)

This equation can be satisfied by letting gradgi Ep = f, in which
case Equation 4 defines an H! gradient flow

&=

(L? gradient flow)

(H! gradient flow)

This flow involves no spatial
derivatives, and hence comes
with no time step restriction. In
effect, rather than a PDE, we
now have a system of indepen-
dent ODEs, which is far eas-
ier to integrate numerically. As
shown in Figure 5, the charac-
ter of this flow is quite different:
it makes progress by simultane- |
ously flattening all spatial fre- K
quencies, rather than just per-
forming local smoothing. While
this approach is not appropri-

low frequency (e;)

\

L2

................ 000000000000,
o

o

(%a) Aouanbaiy ysry

Fig. 6. Gradient flows projected onto
a low- and high-frequency mode

) ) ) . e1, ey, resp. Notice that poor precon-
ate for dynamical simulation, it ditioning leads to slow convergence.

is quite useful for finding local

minima, as needed in geometric design. In general, however, Sobolev

descent is not as simple as just uniform scaling—instead, one must

solve a linear PDE (Equation 8) for the new descent direction.
Note that we should not use an inner product with too many

derivatives. For example, if we use the H? inner product (Equation 7)

we get a gradient grady: Eply = —A71f, and a flow

Gf =07

This flow is again hard to integrate, and has trouble smoothing out
high frequencies (Figure 5, bottom-right). In general, one cannot
achieve good behavior by blindly picking a Sobolev inner product,
but must instead carefully match the inner product to the energy.

(H? gradient flow)
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Low-Order Terms. One remaining issue is that Equation 10 de-
termines the H! gradient only up to functions in the null space of
A. This situation is problematic, since it means we cannot obtain
a gradient by solving Equation 8 directly (with A = —A). Instead,
we must include low-order terms that make the overall operator A
invertible. For instance, we could let A := —A + id, where id denotes
the identity. But if we uniformly scale the domain by a factor ¢ > 0,
the new operator looks like —C—IZA + id and the character of the flow
changes substantially: when c is small it looks like the H I flow;
when c is large, it looks more like the L? flow. Careful treatment of
regularization and scaling is therefore an important consideration

in the development of our curve flow (Section 4.2.3).

4.2 Fractional Sobolev Gradient

In the case of a nonlocal energy like the tangent-point energy £%,
one can no longer use a standard Sobolev inner product—instead,
an inner product of fractional order is needed, in order to match
fractional derivatives that appear in the differential. Construction
of a suitable inner product for the tangent-point energy is fairly
technical—in a nutshell, we begin with a known expression for
the fractional Laplacian on Euclidean R", and formulate an anal-
ogous operator for embedded curves. Taking additional (integer)
derivatives yields a differential operator B, of the same order as
the differential d€¢. We then add a lower-order operator BY. that
makes the overall operator As := By + Bg more well-behaved. Our
Sobolev-Slobodeckij inner product is then defined as

(w, ohm; = (Ao, V) 2.

Details are given in Appendix A—here we give only the most essen-
tial definitions needed to derive our discrete algorithm (Section 5).

4.2.1 Derivative Operator. To define the inner product, we will need
the first derivative operator D given by

Du = dudy'/|dy|?. (11)

This operator just takes the usual derivative of u along M and ex-
presses it as a vector in R3 tangent to y; the factor 1/|dy|? accounts
for the fact that the curve is not in general arc-length parameterized.

4.2.2 High-Order Term. As discussed in Appendix A.3, the differ-
ential d€¢ of the tangent-point energy has order 2s, where s =
(B — 1)/a. To build an inner product of the same order, we first
define the fractional differential operator B, given by

Du(x)—-Du(y) Dov(x)-Du(y) dxydyy
(Bouoy = [ (12)
m2 ly@)=y@I7 Iy -y ly(x)-y@)l

for all sufficiently regular u,v : M — R, where 0 = s — 1. This

operator also has order 2s (Appendix A.4), and plays a role analogous

to the Laplacian in Section 4.1. Yet just like the Laplacian, B, is only

semidefinite, since it vanishes for functions that are constant over

each component of the domain M. Hence, it is not invertible, and

cannot be used directly to solve for a descent direction—instead we
must “regularize” B, by adding an additional, lower-order term.

4.2.3 Low-Order Term. A naive approach to regularization, like
adding some small ¢ > 0 times the identity, yields undesirable
behavior—e must be sufficiently large to have an effect, but if ¢
is too large, motion is significantly damped. Moreover, an inner
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v, B s, ™1 ‘, A\

L2 gradient
fractional Sobolev gradient

Fig. 7. Since an L? gradient flow is always perpendicular to the curve (red),
it fails to resolve even simple cases like the one shown above, where a large
near-tangential motion is needed to untangle a knot. The fractional Sobolev
gradient (blue) permits such motions, yielding a far more efficient flow.

product constructed this way will no longer exhibit predictable
scaling behavior, i.e, rescaling the input will actually change the
direction of the gradient rather than just its magnitude—and hence
can change the solution obtained by a designer. Instead, we carefully
choose an additional, low-order term B2 that not only provides the
right scaling behavior, but also enables us to steer the flow more
quickly toward self-avoiding configurations (Figure 7). In particular,
we add the term ((B%u, v)), given by

()~ u() () ~o(y)
k3 (y(x), y(y),
[ v Ten TS

where k¢ is the tangent-point kernel given in Equation 3. See Ap-

dxydyy, (13)

pendix A.4 for further discussion.

4.2.4  Sobolev-Slobodeckij Gradient. Following Equation 5, our final
gradient gradH; is defined via the fractional inner product:

(gradys £5. XDy = dEg1,(X).  for alX : M >R (14)

Since gradys £ and X are vector- rather than scalar-valued, we
apply the inner product componentwise. In other words,

grady: £ = A grad;. Eglys (15)

where A, denotes componentwise application of A,. Note that
the combined operator A, = B, + BY still has globally constant
functions in its kernel, corresponding to global translations. To make
Equation 15 well-defined, we can simply add any constraint that
fixes the translation of the curve (Section 5.3). In practice, we never
need a closed-form expression for the gradient, nor do we explicitly
invert the operator A ; instead, we solve Equation 8 numerically.

5 DISCRETIZATION

We now use the inner product from the previous section to derive an
efficient numerical scheme for minimizing the tangent-point energy.
Our discretization operates on polygonal curves. While in principle
splines could be used d la Bartels et al. [2018], in practice this makes
little difference due to the use of numerical quadrature in both
cases. The description given here assumes a naive implementation
using dense matrices and an O(n?) evaluation of the energy and its
differential; hierarchical acceleration is described in Section 6.
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Fig. 8. Left: notation used for discrete curves. Right: Our discrete energy is
obtained by applying the trapezoidal rule to the smooth energy for each
edge pair I, J.

Notation. In the discrete setting, we will model any collection of
curves and loops (including several curves meeting at a common
point) as a graph G = (V, E) with vertex coordinates y : V — R3
(Figure 8); we use |V| and |E| to denote the number of vertices and
edges, resp. For each edge I € E with endpoints i1, iz, we use

lr = |Yi1 - Yizl’ Tp = (Yiz - Yil)/gl’ and Xy = (Yil + yiz)/z
to denote the edge length, unit tangent, and midpoint, resp. For
any quantity u : V. — R on vertices we use uy = (u;, + u;,)/2 to
denote the average value on edge I = (i1, iz), and u[I] := [u;, uiz]T
to denote the 2 X 1 column vector storing the values at its endpoints.
Finally, we refer to any pair (T, x) € R® as a tangent-point.

5.1 Discrete Energy

Since the tangent-point energy is infinite
for polygonal curves [Strzelecki and von der
Mosel 2017, Figure 2.2], we assume that y is in-
scribed in some (unknown) smooth curve, and
apply numerical quadrature to the smooth en-
ergy £ . The resulting discrete energy then approximates the energy
of any sufficiently smooth curve passing through the vertices y;.

We start by integrating kg over all pairs of edges:

) /1 /J_k}’;’(y(X), y(). Tp) dxydyy . (16)

I€E JeE

Here I denotes the interval along edge I. As stated, this expression
is ill-defined since any two edges with a common endpoint con-
tribute infinite energy. One idea is to replace any such term with
one proportional to the curvature of the circle passing through the
three distinct endpoints (in the spirit of Equation 1). However, such
terms would contribute nothing to the energy in the limit of regular
refinement (Figure 9)—hence, we simply omit neighboring edge
pairs. Applying the (2D) trapezoidal rule to Equation 16 then yields
a discrete energy

Exn= >, &l (17)

I,J€E,Inj=0
where & is the discrete kernel
(kf)1y = § Tier Bjey kg (viovj. Tn)- (18)

The discrete differential is then simply the partial derivatives of this
energy with respect to the coordinates of all the curve vertices:

dégly = | 0€5/on o€ oy | e RV
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Fig. 9. The tangent-point energy is a double integral of the kernel kg’ (right)
over the curve y (left). Since this kernel is only weakly singular, omitting
diagonal terms has an insignificant effect on the overall energy.

These derivatives can be evaluated via any standard technique (e.g.,
by hand, or using symbolic or automatic differentiation).

5.2 Discrete Inner Product

As in the smooth setting, we define our inner product matrix as
asum A = B + B® of high-order and low-order terms B,B? ¢
RIVIxIVI (as defined below). For R3-valued functions, we also define
a corresponding 3|V| x 3|V| matrix

(A
A= A . (19)
A

Mirroring Equation 8, the discrete (fractional) Sobolev gradient
g € R3IV is then defined as the solution to the matrix equation

Ag = dEs. (20)

5.2.1 Discrete Derivative Operator. For each edge I € E we approx-
imate the derivative Du of a function u : M — R (Equation 11) via
the finite difference formula fil(u i, — uj; )T, where u; denotes the
value of u sampled at vertex i. The corresponding derivative matrix
D € R3EXIVI can be assembled from local 3 x 2 matrices

DI—_[ =Ty 11 ]

5.2.2 Discrete High-Order Term. We approximate the high-order
part of the inner product (Bsu, v)) as

uBv=" > > wi(Drull] - DyulJ]. Dpv[I] - DyvIJD), (21)

I,JeE,Inj=2

where the weights wy; arise from applying trapezoidal quadrature
to the denominator in Equation 25:

wiy = 1000y Sier Yjeg W

The entries of the corresponding Gram matrix B € RIVIXIVI are
obtained by differentiating Equation 21 with respect to the entries
of u and v. More explicitly, starting with the zero matrix one can
build B by making the following increments for all pairs of disjoint
edges I N J = @, and all pairs of values a,b € {1, 2}:

Bigi,+=(-1)*Pwyy /62, Bi,j,—=(-1)"bw; (T1, Ty)/(CrL)),

Bjj, +=(-D% wr /62, Bji,—=(1)*bwr; (T, Tr) /(€1 L1).
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Fig. 10. To enforce constraints ®(y) = 0 on the curve, we both project the
gradient g onto the tangent of the constraint set, and also apply an iterative
procedure to project the curve itself back onto the constraint set. In both
cases, the fractional Sobolev norm provides the definition of closeness.

5.2.3 Discrete Low-Order Term. To discretize the low-order term
BY (Section 4.2.3), we use a different discrete weight

k2(yi.yj. Tr)
KIKJZZ lyi - |20’+1’
iel jej 't

and define a matrix B® € RIVIXIVI, given by the relationship
Z Z w?](ul —up)(vr = vj).
I,J€E,INJ=2

Following a similar derivation as above, this matrix can be con-
structed via the following increments:

0 ,_1.0 0 __ 1.0
Bl t= v B, m= v
0 __1.0 0 ,_1.0
Bjaip == aVip BT aw

5.3 Constraints

For design applications, we will need to impose a variety of scalar
constraints ®;(y) = 0, i = 1,...,k, which we encode as a single
constraint function @ : R3IV| — RF (Section 8.1). To enforce these
constraints, we project the gradient onto a valid descent direction
(Section 5.3.1); after taking a step in this direction, we also project
the result onto the constraint set (Section 5.3.2).

5.3.1 Gradient Projection. Let C := d®(y) be the Jacobian matrix
of the constraint, and let g := gradH; E € R3IVI denote the uncon-

strained energy gradient. We seek the descent direction g that is
closest to g with respect to the fractional Sobolev norm, but which
is also tangent to the constraint set:

1~ 2 ~
mg1n§||g—g||H; st. Cg=0.

Writing ||v||§p as v' Av (Section 5.2), we can apply the method
¥

of Lagrange multipliers to obtain the usual first-order optimality
conditions, given by the saddle point system

IR 8 i e B

0
where A € R¥ are the Lagrange multipliers, and we have applied
the identity Ag = d€g|; (Equation 20).

ACM Trans. Graph., Vol. X, No. X, Article XX. Publication date: XXXX.
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Fig. 11. To accelerate evaluation of the tangent-point energy, we build a
bounding volume hierarchy that partitions both positions (left) and tangent
directions (right), here drawn as a curve on the unit sphere.

5.3.2  Constraint Projection. Suppose that we take a small step of
size 7 along the projected gradient direction g to get a new candidate
curve y := y — 8. To project this curve back onto the constraint
set, we will apply an approximation of Newton’s method that is
faster to evaluate. In particular, to find a displacement x € R3!V!
that takes us from y back toward the constraint set &(g) = 0, we
solve the problem

min %XTKX st. Cx=-9(y).
X

We then update our guess via y < y + x and repeat until the con-
straint violation ®(§) is numerically small (10~ in our experiments).
In practice, this process rarely takes more than three iterations. At
each iteration, x is obtained by solving the saddle point problem

L& i a0 | )

where p € RK are Lagrange multipliers.

5.4 Time Stepping

A judicious choice of time step can significantly improve the effi-
ciency of the flow. One strategy is to use the first time step zmax at
which a collision occurs as the starting point for a line search, which
guarantees that the curve remains in the same isotopy class. (Similar
approaches have been used in, e.g., KnotPlot [Scharein 1998] for knot
untangling, and by Smith and Schaefer [2015] for surface parameter-
ization.) Computing this time step via standard techniques [Redon
et al. 2002] costs about as much as a single energy evaluation, i.e.,
significantly less than the overall cost of a single time step. From
here we apply standard backtracking line search [Boyd and Vanden-
berghe 2004, Algorithm 9.2]; as a heuristic, we start this search at
%rmax. We use this strategy throughout Section 7.

An even simpler strategy that works well in practice (but comes
with no collision guarantees) is to just normalize the gradient and
perform backtracking line search starting with 7 = 1, until both
(i) the Armijo condition is satisfied and (ii) constraint projection
succeeds (Section 5.3.2). We use this latter strategy for all application
examples in Section 8. We stop when the L2 norm of the fractional
Sobolev gradient goes below a user-specified tolerance ¢. In our
examples we use ¢ = 1074, though of course for design applications
one can also stop whenever the results are aesthetically pleasing.

ACM Trans. Graph., Vol. X, No. X, Article XX. Publication date: XXXX.

6 ACCELERATION

Computational design problems can entail large collections of curves
with many thousands of vertices (Section 8). Optimization hence
becomes expensive since it involves not only an all-pairs energy
(Section 5.1), but also inverting a dense inner product (Section 5.2).
However, since the kernel falls off rapidly in space, we can use
hierarchical approximation to avoid a Q(]V|?) time and storage cost.
Though our high-level approach is reasonably standard, careful
consideration of the tangent-point energy is needed to develop a
scheme that is efficient, easy to implement, and handles general
nonlinear constraints. To streamline exposition, we reserve the
details of this scheme for Appendix B; at a high level it consists of
three main parts, outlined below. Note that since we care only about
finding a good descent direction—and not accurately simulating a
dynamical trajectory—we are free to use low-order schemes, which
still provide good preconditioning. Empirically, the overall strategy
exhibits near-linear scaling in both time and memory (Figure 20).

6.1 Energy and Differential Evaluation

To accelerate evaluation of the energy E% and its differential, we
apply the Barnes-Hut algorithm from N —gody simulation [Barnes
and Hut 1986]. The basic idea is to approximate distant energy
contributions by aggregating values in a spatial hierarchy. In our
case, this hierarchy must have six dimensions rather than three,
since £% depends on both positions y € R? and tangents T € R3. In
lieu of a standard octree we therefore use an axis-aligned bounding
volume hierarchy (BVH), for which additional dimensions do not
incur significant cost (Figure 11). Appendix B.1 gives further details.

6.2 Hierarchical Matrix-Vector Product

For optimization we need to solve linear systems involving so-called
kernel matrices. Any such matrix K € RIFIXIE| has a special form

Kry = k(pr.pp)tily,

where the kernel k maps a pair of tangent-points to a real value
(Section 3). If k is a sufficiently regular, then K is well-approximated
by a hierarchical matrix [Hackbusch 2015], i.e., a matrix of low-
rank blocks (Figure 12). Encoding this matrix as a block cluster
tree (BCT) enables fast matrix-vector multiplication via the fast
multipole method [Greengard and Rokhlin 1997]. Like the BVH, our
BCT involves both positions and tangents; in fact, each BCT block
corresponds to a pair of BVH nodes. See Appendix B.2 for details.

B
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Fig. 12. Left: A kernel matrix K encodes interactions between all pairs of
edges. Center: To accelerate multiplication, this matrix is approximated by
rank-1 blocks K 43, corresponding to pairs (A, BB) of distant BVH nodes.
Right: For pairs that are too close, this approximation is inadmissible, and
we must use the original matrix entries.
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Fig. 13. We accelerate linear solves using multigrid on a hierarchy of curves.

6.3 Multigrid Solver

Since the hierarchical matrix-vector multiply does not build an ex-
plicit matrix, we use an iterative method to solve our linear systems.
Empirically, off-the-shelf methods such as GMRES and BiCGStab
are not well-suited for our problem. Instead, we use geometric multi-
grid (Figure 13), since (i) it is straightforward to coarsen a curve
network, and (ii) the low frequency modes of our Laplace-like op-
erators are well-captured on a coarse mesh. In the Euclidean case,
this type of approach has been used successfully by Ainsworth
and Glusa [2017]. Appendix B.3 describes our geometric coarsen-
ing/prolongation operators, as well as our multigrid strategy for
both Sobolev gradient evaluation and constraint projection.

7 EVALUATION AND COMPARISONS

We performed extensive evaluation and comparisons of our frac-
tional Sobolev descent strategy relative to other methods. Here
we give an overview of results; a detailed account of how these
evaluations were performed can be found in supplemental material.

7.1 Dataset

We created two datasets of difficult knot embeddings: KNnoT128,
which contains random embeddings of 128 distinct isotopy classes
from KnotPlot’s “knot zoo,” and TREFoIL100, which contains 100
random embeddings of the trefoil knot (Figure 14). We also used the
Freedman unknot (Figure 2, top left), which is a standard “challenge
problem” from the knot energy literature [Scharein 1998, Section
3.3]. To examine scaling under refinement, we performed regular
refinement on knots from each of these sets.

KNoT128

TREFO|L1OO

4
& =
:% g@f ‘\*?‘3‘/ ( /:

Fig. 14. To evaluate performance, we built a “stress test” dataset of 128
random embeddings of different knot classes (left) and 100 random embed-
dings of the trefoil knot (right). The tangent point energy drives these curves
toward much simpler embeddings, as shown here.
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7.2 Performance Comparisons

We compared our fractional Sobolev descent strategy to a variety
of methods from optimization and geometry processing. Overall,
methods that use our fractional preconditioner performed best, espe-
cially as problem size increases. We first ran all methods on several
resolutions of a small set of test curves (Figure 18); we then took
the fastest methods, and ran them on all 228 curves from our two
datasets (Figure 19). For simplicity we did not use hierarchical accel-
eration in our method (and instead just solve dense systems), which
gave a significant performance advantage to alternative methods
(which are based on sparse solves). Even with this handicap, the frac-
tional approach outperformed all other methods; as indicated in Fig-
ure 20, hierarchical acceleration would widen this gap even further.
Importantly, previous methods also have a
much higher failure rate at untangling diffi-
cult curves such as those in our dataset (Fig-
ure 19). Further, cases on which the fractional
approach itself fails generally contain near-
intersections in the initial configuration (in-
set), which also lead to failures in most or all
other methods.

Note that some previous methods do not
directly handle hard nonlinear constraints;
for these methods we perform an apples-
to-apples comparison by replacing—in all
methods—hard edge length constraints with a
soft elastic penalty (see supplemental material
for further details).

Knot untangling methods. We first compared to two well-known
methods for knot untangling (Figure 15): KnotPlot, based on the so-
called symmetric energy, and shrink on no overlaps (SONO) [Pieranski
1998] which performs a local iterative projection in the spirit of
contemporary position-based dynamics [Miiller et al. 2007]. Both
methods successfully untangle the Freedman knot, but only after
tens of thousands of iterations [Scharein 1998, Figure 7.6]. The basic
reason is that, like L% descent, such methods focus on reduction of
local error, making global convergence quite slow.

Ist-order methods. Figure 16 indicates that basic 1st-order schemes
like ordinary L2 gradient descent, L-BFGS using 10, 30, or 100 vec-
tors, and nonlinear conjugate gradients a la Fletcher and Reeves
[1964] exhibit poor performance relative to our fractional scheme

W

\
KnotPlot

2500 iterations SONO

Sobolev 2500 iterations

120 iterations

Fig. 15. Our fractional Sobolev strategy is dramatically more efficient than
previous methods for knot untangling—here we untangle the unknot from
Figure 2. Neither KnotPlot nor SONO converged after several hours.
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Fig. 16. Across a wide variety of descent methods and inner products, our
fractional Sobolev approach does significantly better both in terms of energy
reduction per iteration (middle left) and real-world run time (middle right).
At top we show results for an equal amount of compute time.

in terms of both wall clock time and number of iterations. This
example also indicates that for 1 < s < 2, the next smallest or
largest integer Sobolev preconditioners (H! and H?) underperform
the fractional H® preconditioner, whether using explicit (forward)
or implicit (backward) Euler. We solve the backward Euler update
equation using Newton’s method, either by updating the Hessian
for each Newton step (“Newton”), or “freezing” the Hessian at the
beginning of the time step (“frozen”). If Newton’s method fails to
converge within a few (10) iterations, the step size is halved and the
solve is reattempted. We also tried stochastic gradient descent (SGD)
with respect to the L? inner product, implemented by subsampling a
fixed proportion (25% in our trials) of edge pairs (u, v) for each edge
u in each iteration for energy and gradient evaluation. This method
did far worse than any other scheme we tried. SGD with respect to
H* works better, but the speedup from stochastic evaluation does
not compensate for the poor quality of the descent direction.

2nd-order methods. Second-order schemes like Newton’s method
can be adapted to nonconvex problems by projecting the Hessian
onto a nearby positive-semidefinite matrix. Since a global projection
is prohibitively expensive, a heuristic sometimes used in geometric
optimization is to project and sum up the Hessians of each local
energy term [Teran et al. 2005]; in our case we can decompose the
energy into the edge-edge terms from Equation 17. Though this
heuristic can work well for, e.g., elastic energies, it does not appear to
work very well for the tangent-point energy, and for larger examples

had among the slowest run times of any scheme we tried (Figure 18).
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initial curve L? projected.gradient convexified Newton AQP
(knot0064-1024E) =N N .
\ 0N b\ b\ - -
A < A\ \ N [ < A
)L N 4
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H' projected gradient H'NCG H'L-BFGS H? projected gradient
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H* projected gradient H*NCG H* L-BFGS
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Fig. 17. The tangent point energy appears to have relatively few local min-
ima; hence, different descent strategies tend to find the same local minimiz-
ers (though some, like L2, do not find solutions in a reasonable amount of
time). See supplemental material for several hundred more examples.

Quasi-Newton methods. Several recent methods from geometry
processing apply Sobolev-like preconditioning to elastic energies,
such as those used for shape deformation or surface parameter-
ization [Kovalsky et al. 2016; Claici et al. 2017; Zhu et al. 2018].
Since the highest-order term in such problems often looks like a
Dirichlet energy, H! preconditioning via the Laplacian A can be an
effective starting point for optimization (as discussed in Section 4.1).
However, such preconditioners do not perform as well as our frac-
tional preconditioner, since they are not as well-matched to the
order of the differential d€¢ . For instance, as seen in Figure 18, the
AQP strategy of Kovalsky et al. [2016] significantly underperforms
our preconditioner when the Laplacian is used as the quadratic
proxy; using our fractional operator as the quadratic proxy improves
performance—but of course requires the machinery introduced in
this paper. Another possibility is to use Laplacian-initialized L-BFGS
(in the spirit of Zhu et al. [2018]); we found this strategy works a
bit better than AQP, but again not as well as the fractional precon-
ditioner. We also considered several variants of these strategies,
such as applying Nesterov acceleration, and combining nonlinear
conjugate gradients (NCG) a la Polak and Ribiere [1969] or L-BFGS
with our fractional preconditioner. For hard constraints we advocate
the use of our fractional (H*) projected gradient scheme (as detailed
in Section 5); if soft constraint enforcement is acceptable, then L-
BFGS or H*-preconditioned NCG are both good options: the former
converges faster near minima; the latter gets stuck less often.

7.3 Local minimizers

As seen in Figure 17, the local minimizers found via our fractional
descent strategy generally appear to be the same as with other
schemes, up to rigid motions. Hundreds more such examples can
be found in the supplemental material. Very rarely, two different
methods produced local minimizers that were identical up to a
reflection; such amphichiral pairs exist in some knot classes [Liang
and Mislow 1994], but of course have the same energy.
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hard constraint methods

convexified Newton [dense]
L? projected gradient [sparse]
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Laplacian (H') projected gradient [sparse]
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Fig. 18. We compared our descent strategy to a variety of 1st-order, 2nd-order, and quasi-Newton strategies, using both hard constraints (top) and a soft
penalty (bottom) to preserve length. Here we show energy versus both time and iteration count for several resolutions of the initial curve from Figure 2; tests
on additional curves yield very similar results (see supplemental material). Note that we achieve the best real-world clock time—even though we compare a

dense implementation of our method (without hierarchical acceleration) to sparse versions of other schemes.
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Fig. 19. We used a dataset of about two hundred difficult knot embeddings to evaluate the performance of our strategy compared to the next most competitive
methods. Even without hierarchical acceleration, our fractional strategy was significantly faster—and succeeded at untangling a much larger fraction of knots.
Here we plot the time it took for each method to get within 1.1x of the reference energy, against the time taken by our fractional strategy. Results have been
split into hard/soft constraint enforcement (top/bottom rows), and iteration count/wall clock time (left/right columns). At the top of each plot we show the
number of failures after 24 minutes of compute time—stuck indicates a failure of line search to make progress due to collisions; nonconvergent means the

method failed to get below 1.1x of the reference energy.
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Fig. 20. A comparison of runtime per iteration on samplings of the same
curve with increasing resolution. “Exact” indicates no acceleration, “Barnes-
Hut” indicates accelerated gradients only, and “Multigrid” indicates all
accelerations enabled, with and without constraint projection. Reported
numbers are averages over up to 500 iterations or until convergence.

7.4  Scaling behavior

We compared per-iteration costs of the unaccelerated scheme, a
scheme using only Barnes-Hut (Section 6.1), and the full acceleration
scheme described in Section 6—see Figure 20. With full acceleration
we observe near-linear scaling, whereas schemes that directly solve
the dense system exhibit super-quadratic scaling and quickly run
out of memory. Note that constraint projection with direct solvers
comes nearly for free, since a factorization of Equation 23 can be
reused to solve Equation 22. In contrast, no reuse is possible in the
fully accelerated scheme, making constraint projection relatively
expensive. Disabling this step further speeds up the accelerated
scheme, but leads to constraint drift over time. Alternative methods
for constraint enforcement (such as soft penalties, as noted above)
might hence provide further improvement.

8 RESULTS AND APPLICATIONS

Given how ubiquitous plane and space curves are in areas like
geometry, graphics, robotics, and visualization—and how natural it
is to want to avoid collision of such curves—our method provides a
useful computational framework for a wide variety of tasks. Here
we explore some preliminary applications that we hope will inspire
future work. All other examples in this section completed within a
few minutes, except for the 3D curve packing example where we
allowed curves to grow longer for several hours as a stress test. We
first describe constraints and potentials used for these examples.

8.1 Constraints and Potentials

A key feature of our optimization framework is that it not only
efficiently minimizes knot energies, but that it can do so in con-
junction with fairly arbitrary user-defined constraints and penalties
(Section 5.3). This opens the door to a rich variety of computational
design applications beyond the basic “knot untangling” that has
been the focus of previous work. For the applications that will be
explored in Section 8, we consider the following constraints:

e Barycenter. This fixes the barycenter of the curve to a point
xo via the constraint ®pqrycenter(y) = Xreg €1(x1—xo). In the
absence of other constraints, this eliminates the null space of
globally constant functions discussed in Appendix A.
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Fig. 21. Allowing curves to slide freely over constraint surfaces (left) enables
design tasks like arranging networks of muscles or muscle fibers (right).

Length. The repulsive curve energy naturally wants to make
the curve longer and longer. A simple way to counteract this
is via a total length constraint ®jengih(y) = L0 — Yieptr,
where L? is the target length.
Edge Length. We can also constrain the lengths of each
individual edge, allowing only isometric motions. This entails
a constraint @ength, 1(y) = é’? — {1 for each edge I, where {’?
is the target edge length.
Point Constraint. To fix the position of a vertex i to the
point x; € R3, we can add the constraint Dpoint,i(¥) = yi—xi.
Surface Constraint. To keep a point of the curve constrained
to an implicit surface f(x) = 0, we can add the constraint
cI)sulrface,i()/) = f(yi)-
Tangent Constraint. We can force the tangent T7 of an
edge I to match a unit vector X € R? via the constraint
cI:'tangent,l()/) =T -X.

In several applications, we progressively increase or decrease the
target length values Lg or l?; the next constraint projection step then
enforces the new length. We also consider the following penalties:

e Total length. A simple energy is the total curve length,
which provides a “soft” version of the total length constraint.
Discretely, this energy is given by glength()/) = Yreg (1
Length difference. This energy penalizes differences in ad-
jacent edge lengths, given by (cjdiff()/) =Yovevi, (lr, =€y, ),
where Vi denotes the set of “interior” vertices with degree
2,and I, and J,, are the indicent edges to v.

Surface potential. Given a surface M C R3, we use the
energy Ep(y) = fy /M 1/|xpm — y(xy)|ﬁ_“dxM dxy to avoid
collisions. This is effectively a Coulomb potential of the same
order as £% on M. In the discrete setting, M is a triangulated
surface, and we use a BVH on M to accelerate the evaluation
of €y and its differential, in a similar fashion to £4.

o Field potential. Given a fixed unit vector field X on R3,

the energy Ex(y) = foL |T(x) x X(y(x))|? dxy, encourages y
to run parallel (or anti-parallel) to X. We discretize this as
Ex(y) = Zpe blTr x X(xp)|?.

Note that the energies considered here involve lower-order deriva-
tives than those in £%, and do not therefore have a major effect on
the stiffness of the overall system. Hence, we can continue to use
the fractional Sobolev inner product without modification to define
an efficient gradient flow.
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Fig. 22. Just as repulsive potentials are commonly used to find equally-
distributed points, we can compute collections of equally-spaced curves
(here constrained to a region via a fixed curve potential).

Fig. 23. By penalizing proximity to a fixed surface, we can pack curves
into any domain. Progressively increasing edge length forces curves to
maintain a balance between surface avoidance and self-avoidance. (Here
we render curves with a non-circular cross section, which is not modeled by
the energy.)

8.2 Curve Packing

Packing problems (such as bin packing) appear throughout geometry
and computer graphics, playing an important role in, e.g., 2D layouts
for manufacturing or UV atlas generation. An adjacent problem is
generation of regular sampling patterns, e.g., blue noise sampling
via Poisson disk rejection. The ability to optimize large families
of repulsive curves enables us to solve analogous “curve packing”
problems—for instance, in Figure 22, we use a fixed boundary curve
to pack disks of increasing length; likewise, in Figures 1 and 23,
we use a surface penalty to pack increasingly long curves into a
target region. Figure 24 likewise packs increasingly long curves on
a surface. Going the opposite direction, we can also decrease length
while encouraging repulsion to generate clean illustrations that are
difficult to draw by hand (Figure 25). Finally, by constraining only
parts of curves to lie on surfaces, we can design biologically-inspired
curve networks such as muscle fibers (Figure 21), which are attached
to objects at their endpoints but are otherwise free.

8.3 Graph Drawing

A basic problem in data visualization is drawing graphs; a typical
approach is to use a force-based layout that seeks to avoid, e.g., col-
lisions between nodes, or over/under-extension of edges [Fruchter-
man and Reingold 1991]. Our framework makes it easy to optimize
the geometry of the edges themselves, opening the door to graph
layouts that are both more compact and more legible (Figure 26). We
can also use this machinery to obtain legible drawings of nonplanar
graphs, by perturbing a planar embedding (Figure 27); here, the
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Fig. 24. Patterns obtained by constraining a collection of repulsive curves
to a surface and increasing their lengths (initial states shown above their
final configurations).

NZX

Fig. 25. Loops arising in topology can be difficult to draw by hand—the
sketches at left were done by Nathan Dunfield to illustrate Dehn-Thurston
coordinates. At right we generate an equispaced version of this curve by
flowing a rough sketch, subject to an implicit surface constraint.

Fig. 26. Traditional 2D graph drawing algorithms based on nodal proximity
may cause edges to cross (left) or position nodes extremely close together
(center); these layouts were produced by the popular Graphviz library [Ellson
et al. 2001]. By treating edges as repulsive curves, we can obtain graph
drawings that are both more compact and more legible (right).

ability to preserve lengths conveys information about edge weights.
A particularly interesting graph embedding problem is the design
of synthetic hydrogel vascular networks [Grigoryan et al. 2019]; Fig-
ure 28 shows a simple example where we optimize a multivascular
network (starting from subgraphs of a tet mesh and its dual).
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Fig. 27. Isometric embedding: by jittering 2D drawings of non-planar graphs
(which necessarily have crossings), curve repulsion with length constraints
yields nicely spaced embeddings in R® with prescribed edge lengths.

initial

Fig. 28. Left: a crude initial topology for a synthetic vascular network (left)
is optimized to achieve more uniform delivery of nutrients throughout
a volume. Right: plotting the maximum collision-free thickness helps to
visualize the improvement in uniformity.

Note that at junctures between more than 7
two edges, the tangent-point energy will al-
ways be large (since three or more edges can-
not be collinear), rapidly forcing vertices away
from each other. This can be counteracted by
constraining their edge lengths, forcing the
vertices to lie on spheres of constant radii around the junctures.

8.4 Self-Avoiding Splines

Beyond standard Bézier input, sophisticated tools have been de-
veloped for drawing spline curves—but do not consider the basic
constraint of ensuring that curves do not cross themselves (which is
often desirable for physical or aesthetic reasons). For instance, Fig-
ure 30 (center) shows the interpolation of a set of control points by
k-curves [Yan et al. 2017], which underpin one of the basic drawing

N0

Fig. 29. As with Bézier curves, we can also control curve tangents at both
interior and endpoints. Here we flow a polygonal curve (left), to a smooth
interpolant with fixed points (red), and fixed points and tangents (blue).
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k-curves ours

Fig. 30. Standard curve interpolation methods in 2D drawing programs can
cause curves to self-intersect (center), even when the control polygon (left)
does not. By starting from the control polygon and constraining the control
points, we obtain a smooth, non-intersecting interpolant (right).

tools in Adobe Illustrator (the Curvature Tool). By simply apply-
ing point constraints at the control points, and letting the length
increase under our repulsive flow, we obtain a nice interpolating
curve without self-intersection (Figure 30, right). In this context we
can also use our tangent constraint to control the behavior of such
a curve at open endpoints (Figure 29).

8.5 Multi-agent Path Planning

In robotics, numerous algorithms have been developed for the prob-
lem of multi-agent path planning [de Wilde et al. 2013], wherein
multiple agents must travel from fixed start to end locations with-
out colliding with the environment or each other. Many algorithms
operate on a discrete grid or graph [Yu and LaValle 2013], which
quantizes the solution space and does not penalize near-collisions;
such trajectories may therefore not be robust to sensing or control
error. By treating path planning as a space-time optimization of
continuous curves with fixed endpoints, we can use curve repulsion
to find (or refine) trajectories that maximize collision avoidance,
making them more resilient to error (Figure 31). Finding such tra-
jectories in n dimensions is equivalent to optimizing a braid in
n + 1 dimensions; since neither the size of the curve nor the cost

target configuration

‘
_
awiy

initial configuration

Fig. 31. Top-left: In this path planning scenario, an initial trajectory brings
the four agents dangerously close together. Bottom-left: By treating trajecto-
ries as curves in space-time, our system provides solutions that maximally
avoid collisions, making them more robust to control errors. Right: Finding
2D trajectories is equivalent to optimizing a 3D braid with fixed endpoints
constrained to an extrusion of the given environment. This same construc-
tion can easily be generalized to 3D environments.
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input

Fig. 32. Encouraging curve tangents to align with a given vector field im-
prove the quality of streamline visualization. Here, a random set of curve
segments (top) aligns itself with a rotational vector field; we can also opti-
mize randomly sampled streamlines (bottom) to improve their spacing.

of a BVH/BCT depends strongly on dimension, this strategy easily
generalizes to three (or more) dimensions.

8.6 Streamline Visualization

A common way to visualize vector fields is by tracing integral curves
or streamlines; significant effort has gone into algorithms that pro-
vide uniform spacing (e.g., by incrementally constructing a Delaunay
triangulation [Mebarki et al. 2005]), though such methods can be
difficult to generalize to 3D volumes or vector fields on surfaces. We
can generate nicely-spaced streamlines by adding a field alignment
potential to the tangent-point energy—for instance, in Figure 32
we start with a set of random curve segments, which automatically
coalesce into streamlines.

9 LIMITATIONS AND CONCLUSION

Since we approximate the tangent-
point energy via numerical quadra-
ture, it is possible for a very coarse
curve to pass through the energy bar-
rier. However, crossings can be pre-
vented via continuous time collision
detection (Section 5.4); to maintain
accuracy one could also try adding
more quadrature points at the previous time step if any collisions
occur. For the design tasks in this paper, we did not find such strate-
gies necessary. Also on very coarse meshes, edges that are extremely
close together can temporarily get stuck in a near-crossing configu-
ration (see inset). In this situation, the term ki from the low-order
term (Equation 13) is very large, causing the inverse of A—and hence
the Sobolev gradient—to be very small. One idea is to use adaptive
quadrature for edge pairs that are close in space, which would better
resolve the near-infinite high-order term and hence push the curve
apart. Given the scalability of our approach, another pragmatic
solution is simply to increase the overall resolution.

There are many ways to further accelerate our solver. For instance,
we did not vectorize our code, parallelized only the matrix-vector
multiply in non-well-separated leaves of the BCT, and did not make
use of the GPU. For small time steps one might re-fit rather than
re-build the BVH; likewise, it may be beneficial to incrementally
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Fig. 33. Untangling a pair of earbuds via repulsion (see supplemental video).

update the BCT. Better line search or descent direction heuristics
may also reduce the overall number of steps.

Finally, a natural question is how to extend these techniques to
surface repulsion. The tangent-point energy seems attractive here
since (unlike M&bius energy) it needs only Euclidean rather than
geodesic distances. One now has double integrals over surfaces, but
might still achieve efficiency via hierarchical acceleration. In general,
we are hopeful our investigation will provide valuable insight into
using repulsive energies for computational design.

ACKNOWLEDGMENTS

Thanks to Stelian Coros for early discussion of these ideas. The
bunny mesh is used courtesy of the Stanford Computer Graphics
Laboratory. This work was supported by a Packard Fellowship, NSF
awards 1717320 and 1943123, and gifts from Autodesk, Adobe, Ac-
tivision Blizzard, Disney, and Facebook. The second author was
supported by a postdoc fellowship of the German Academic Ex-
change Service and by DFG-Project 282535003: Geometric curvature
functionals: energy landscape and discrete methods.

REFERENCES

M. Ainsworth and C. Glusa. 2017. Aspects of an Adaptive Finite Element Method for
the Fractional Laplacian. Comput. Methods Appl. Mech. Eng. 327 (2017).

B. Andrews, B. Chow, C. Guenther, and M. Langford. 2020. Extrinsic Geometric Flows.
Graduate Studies in Mathematics, Vol. 206.

A. Angelidis and F. Neyret. 2005. Simulation of smoke based on vortex filament
primitives. In Symp. Comp. Anim. 87-96.

T. Ashton and J. Cantarella. 2005. A fast octree-based algorithm for computing rope-
length. In Physical And Numerical Models In Knot Theory. 323-341.

T. Ashton, ]J. Cantarella, M. Piatek, and E. Rawdon. 2011. Knot tightening by constrained
gradient descent. Experimental Mathematics 20, 1 (2011), 57-90.

Trygve Beerland. 2019. An Auxiliary Space Preconditioner for Fractional Laplacian of
Negative Order. arXiv preprint arXiv:1908.04498 (2019).

Trygve Beerland, Miroslav Kuchta, and Kent-Andre Mardal. 2019. Multigrid methods
for discrete fractional Sobolev spaces. SIAM J. Sci. Comput. 41, 2 (2019), A948-A972.
https://doi.org/10.1137/18M1191488

J. Barnes and P. Hut. 1986. A hierarchical O(N log N) force-calculation algorithm.
Nature 324, 6096 (1986), 446-449.

S. Bartels, P. Reiter, and J. Riege. 2018. A simple scheme for the approximation of
self-avoiding inextensible curves. IMA J. Num. Anal. 38, 2 (2018), 543-565.

M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. 2008. Discrete
elastic rods. In ACM Trans. Graph., Vol. 27. ACM, 63.

S. Blatt. 2012. Boundedness and Regularizing Effects of O’hara’s Knot Energies. Journal
of Knot Theory and Its Ramifications 21, 01 (2012).

S. Blatt. 2013. The Energy Spaces of the Tangent Point Energies. Journal of Topology
and Analysis 5, 3 (2013), 261-270.

S. Blatt and P. Reiter. 2015. Regularity Theory for Tangent-point Energies: the Non-
degenerate Sub-critical Case. Adv. Calc. Var. 8, 2 (2015), 93-116.

S. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press.

D. Braess and R. Sarazin. 1997. An Efficient Smoother for the Stokes Problem. Applied
Numerical Mathematics 23, 1 (1997), 3-19.

K. Brakke. 1992. The surface evolver. Experimental mathematics 1, 2 (1992).

K. Brakke. 1994. Surface evolver manual.

J. Brown, J. Latombe, and K. Montgomery. 2004. Real-time Knot-tying Simulation. The
Visual Computer 20, 2 (01 May 2004), 165-179.

G. Buck and J. Orloff. 1995. A simple energy function for knots. Top. Appl. 61, 3 (1995).

J. Calvo, K. Millett, and E. Rawdon. 2002. Physical Knots: Knotting, Linking, and Folding
Geometric Objects in R3. Vol. 304. American Mathematical Society.

A. Chern, F. Kn6ppel, U. Pinkall, P. Schroder, and S. Weifimann. 2016. Schrodinger’s
smoke. ACM Trans. Graph. 35, 4 (2016), 77.

S. Claici, M. Bessmeltsev, S. Schaefer, and J. Solomon. 2017. Isometry-aware precondi-
tioning for mesh parameterization. In Comp. Graph. Forum, Vol. 36.


https://doi.org/10.1137/18M1191488

K. Crane, U. Pinkall, and P. Schréder. 2013. Robust Fairing via Conformal Curvature
Flow. ACM Trans. Graph. 32, 4 (2013).

B. de Wilde, A. ter Mors, and C. Witteveen. 2013. Push and rotate: cooperative multi-
agent path planning. In Proc. Conf. Auton. Agents and Multi-agent Sys.

C. DeForest and C. Kankelborg. 2007. Fluxon Modeling of Low-beta Plasmas. J. Atm.
Sol.-Terr. Phys. 69, 1-2 (2007), 116-128.

M. Desbrun, M. Meyer, P. Schréder, and A. Barr. 1999. Implicit Fairing of Irregular
Meshes Using Diffusion and Curvature Flow. In Proc. ACM SIGGRAPH. 8.

E. Di Nezza, G. Palatucci, and E. Valdinoci. 2012. Hitchhiker’s guide to the fractional
Sobolev spaces. Bull. Sci. Math. 136, 5 (2012), 521-573.

1. Eckstein, J. Pons, Y. Tong, C. Kuo, and M. Desbrun. 2007. Generalized Surface Flows for
Mesh Processing. In Geometry Processing, Alexander Belyaev and Michael Garland
(Eds.). The Eurographics Association.

J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. 2001. Graphviz: Open
Source Graph Drawing Tools. In Int. Symp. on Graph Drawing. 483-484.

R. Fletcher and C. Reeves. 1964. Function minimization by conjugate gradients. The
computer journal 7, 2 (1964), 149-154.

M. Freedman, Z. He, and Z. Wang. 1994. Mobius Energy of Knots and Unknots. Annals
of Mathematics 139, 1 (1994), 1-50.

T. Fruchterman and E. Reingold. 1991. Graph drawing by force-directed placement.
Software: Practice and experience 21, 11 (1991), 1129-1164.

L. Greengard and V. Rokhlin. 1997. A new version of the fast multipole method for the
Laplace equation in three dimensions. Acta numerica 6 (1997).

B. Grigoryan, S. Paulsen, et al. 2019. Multivascular networks and functional intravascu-
lar topologies within biocompatible hydrogels. Science 364, 6439 (2019), 458—464.

W. Hackbusch. 2015. Hierarchical matrices: algorithms and analysis. Vol. 49. Springer.

D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun. 2009. Asynchronous
Contact Mechanics. In ACM Trans. Graph., Vol. 28. ACM, 87.

Y. Hassan, S. Easa, and A. Abd El Halim. 1998. State-of-the-art of Three-dimensional
Highway Geometric Design. Can. J. Civ. Eng. 25, 3 (1998), 500-511.

D. Kleckner, L. Kauffman, and W. Irvine. 2016. How Superfluid Vortex Knots Untie.
Nature Physics 12, 7 (2016), 650.

S. Kovalsky, M. Galun, and Y. Lipman. 2016. Accelerated quadratic proxy for geometric
optimization. ACM Trans. Graph. 35, 4 (2016), 1-11.

B. Kubiak, N. Pietroni, F. Ganovelli, and M. Fratarcangeli. 2007. A Robust Method for
Real-time Thread Simulation. In Proc. ACM Symp. Virt. Real. Soft. Tech. ACM, 85-88.

R. Kusner and J. Sullivan. 1998. Mébius-invariant knot energies. Ideal knots 19 (1998).

M. Kwasnicki. 2017. Ten equivalent definitions of the fractional Laplace operator. Fract.
Cale. Appl. Anal. 20, 1 (2017), 7-51.

M. Lackenby. 2014. Elementary Knot Theory. Clay Mathematics Institute (2014).

A. Ladd and L. Kavraki. 2004. Motion Planning for Knot Untangling. 7-23.

C. Liang and K. Mislow. 1994. On amphicheiral knots. J. Math. Chem. 15, 1 (1994).

T. Martin, P. Joshi, M. Bergou, and N. Carr. 2013. Efficient Non-linear Optimization via
Multi-scale Gradient Filtering. In Comp. Grap. Forum, Vol. 32. 89-100.

F. Maucher and P. Sutcliffe. 2016. Untangling knots via reaction-diffusion dynamics of
vortex strings. Physical review letters 116, 17 (2016), 178101.

J. McCrae and K. Singh. 2009. Sketching Piecewise Clothoid Curves. Computers &
Graphics 33, 4 (2009), 452-461.

A. Mebarki, P. Alliez, and O. Devillers. 2005. Farthest point seeding for efficient
placement of streamlines. In IEEE Visualization. 479-486.

H. Moreton. 1992. Minimum curvature variation curves, networks, and surfaces for fair
free-form shape design. Ph.D. Dissertation. University of California, Berkeley.

M. Miiller, B. Heidelberger, M. Hennix, and J. Ratcliff. 2007. Position based dynamics. 7.
Vis. Comm. and Im. Repr. 18, 2 (2007), 109-118.

J. O’Hara. 1991. Energy of a knot. Topology 30, 2 (1991), 241-247.

M. Padilla, A. Chern, F. Knéppel, U. Pinkall, and P. Schréder. 2019. On bubble rings and
ink chandeliers. ACM Trans. Graph. 38, 4 (2019), 129.

J. Pérez, M. Otaduy, and B. Thomaszewski. 2017. Computational design and automated
fabrication of kirchhoff-plateau surfaces. ACM Trans. Graph. 36, 4 (2017), 62.

J. Pérez, B. Thomaszewski, et al. 2015. Design and Fabrication of Flexible Rod Meshes.
ACM Trans. Graph. 34, 4 (2015).

P. Pieranski. 1998. In Search of Ideal Knots. In Ideal Knots, A. Stasiak, V. Katritch, and
L. Kauffman (Eds.). Vol. 19. World Scientific.

U. Pinkall and K. Polthier. 1993. Computing discrete minimal surfaces and their conju-
gates. Experimental mathematics 2, 1 (1993), 15-36.

E. Polak and G. Ribiere. 1969. Note sur la convergence de méthodes de directions
conjuguées. ESAIM: Math. Model. Num. Anal. 3, R1 (1969), 35-43.

S. Redon, A. Kheddar, and S. Coquillart. 2002. Fast continuous collision detection
between rigid bodies. In Comp. Graph. Forum, Vol. 21. 279-287.

R. Renka and J. Neuberger. 1995. Minimal Surfaces and Sobolev Gradients. SIAM
Journal on Scientific Computing 16, 6 (1995), 1412-1427.

R. Scharein. 1998. Interactive Topological Drawing. Ph.D. Dissertation. University of
British Columbia.

H. Schumacher. 2017. On H?-gradient Flows for the Willmore Energy. arXiv e-prints
(Mar 2017).

Repulsive Curves « XX:17

J. Smith and S. Schaefer. 2015. Bijective parameterization with free boundaries. ACM
Trans. Graph. 34, 4 (2015), 1-9.

P. Strzelecki and H. von der Mosel. 2017. Geometric curvature energies: facts, trends,
and open problems. In New Directions in Geometric and Applied Knot Theory.

J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. 2005. Robust quasistatic finite elements
and flesh simulation. In Symp. Comp. Anim. 181-190.

H. Triebel. 1983. Theory of function spaces. Monographs in Mathematics, Vol. 78.

S. Walker. 2016. Shape optimization of self-avoiding curves. J. Comp. Phys. 311 (2016).

S. Weifimann and U. Pinkall. 2010. Filament-based smoke with vortex shedding and
variational reconnection. In ACM Trans. Graph., Vol. 29.

Z.Yan, S. Schiller, G. Wilensky, N. Carr, and S. Schaefer. 2017. k-curves: interpolation
at local maximum curvature. ACM Trans. Graph. 36, 4 (2017).

C. Yu, K. Crane, and S. Coros. 2017. Computational Design of Telescoping Structures.
ACM Trans. Graph. 36, 4 (2017).

J. Yu and S. LaValle. 2013. Multi-agent path planning and network flow. In Algorithmic
Foundations of Robotics X. Springer, 157-173.

J. Zehnder, S. Coros, and B. Thomaszewski. 2016. Designing structurally-sound orna-
mental curve networks. ACM Trans. Graph. 35, 4 (2016), 99.

Y. Zhu, R. Bridson, and D. Kaufman. 2018. Blended cured quasi-newton for distortion
optimization. ACM Trans. Graph. 37, 4 (2018), 1-14.

A SOBOLEV-SLOBODECKIJ GRADIENT

How do we obtain an ideal gradient flow for the tangent-point
energy (i.e., one that behaves like an ODE)? Unlike standard energies
(elastic energy, Willmore energy, etc.), an answer to this question
has not yet been worked out formally. However, we can make an
educated guess based on past wisdom about curve energies.

In general, suppose an energy £ has a (Fréchet) differential d€. To
determine the highest-order derivatives, it is not necessary to derive
an explicit expression for d€ as we did for the Dirichlet energy
(Section 4.1). Instead, we can reason about the associated function
spaces: as long as we know the order of d€, we can “cancel” spatial
derivatives by constructing an inner product of the same order.

For the tangent-point energy, existing analysis gives the maxi-
mum order of derivatives in £ (Appendix A.2), from which we
deduce the order of dé‘g (Appendix A.3). What is unusual here is
that the number of derivatives is fractional (Appendix A.1.2); to
build an inner product of appropriate order, we therefore start with
the fractional Laplacian (Section A.1), and formulate an analogous
operator for embedded curves. Taking further (integer) derivatives
then yields an operator of the same order as d€% (Appendix A.4).
From there, we use additional heuristics (inspired by numerical
experiments) to choose a low-order term that makes this operator
well-behaved and invertible (Appendix A.4.2), allowing us to use it
in the definition of a fractional Sobolev gradient (Section 4.2).

A.1  Fractional Analysis

We begin with a brief discussion of Sobolev spaces of fractional
order k ¢ Z; for further background, see [Di Nezza et al. 2012].

A.1.1  Fractional Differential Opera- f
tors. Whereas standard differential op-
erators L are purely local (i.e., the value
of (Lu)(x) depends only on an arbitrar-
ily small neighborhood of u(x)), frac-
tional differential operators are nonlo-
cal ((Lu)(x) can depend on the value
of u at any point y). Since the tangent-
point energy is nonlocal, it will also
have nonlocal derivatives. Hence, find-

ing an inner product well-matched to  Fig- 34. Fractional Laplacian
of f for several values of o.

Ay f
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its gradient flow entails constructing

an appropriate fractional differential operator—an important ex-
ample in our setting is the fractional Laplacian (-A)° on R",
which is commonly defined by taking powers of the eigenvalues
in the spectral expansion. For ¢ € (0, 1) and all sufficiently regular
u,v : R" — R, the operator can also be expressed via the integral

(0o =c [ SO SO B oy

lx—ylo |x—y|"’

where the constant C € R depends only on n and o [Kwasnicki
2017]. The behavior of this operator is illustrated in Figure 34.

A.1.2  Fractional Sobolev Spaces. There are two common ways to
understand Sobolev spaces of fractional order. One is to consider the
Fourier transform of the Laplacian A, leading to the Bessel potential
spaces HP := (—A)~S/2(LP) [Triebel 1983, Section 2.2.2]. For us,
however, this viewpoint helps only to understand the case W*2.
The other, essential for studying the tangent-point energy, is via
the Sobolev-Slobodeckij spaces WX*7P_ Functions u in these spaces
look like functions in an ordinary Sobolev space, but with a non-
local regularity condition on the highest-order derivative u®) In
particular, suppose we write s = k + o for k € Z»p and o € (0, 1).
Then, on an n-dimensional Riemannian manifold M, one defines

wkroP (M) = {u e WEP(M) | [u® ]y < oo}
The expression in square brackets is the (Gagliardo) semi-norm
u(x)-u(y)|P  dxdy Up
[ulwor = p al
mz | d(x,y) d(x,y)

where d(x, y) is the shortest distance between x and y in M. Just
as a Lipschitz function is more regular than an arbitrary continu-

ous function without being differentiable, a function in wkto.p is
more regular than one in Wk-P without getting a whole additional
derivative (i.e, Wk*1:P ¢ Wk+9-P) Figure 35 shows an example.

Dual Space. Just as the dual of the classical Sobolev space wk-p
is Wk-4 (where 1/p+1/q = 1), the dual of the Sobolev-Solobdeckij
space W*-P can be characterized as a space with “—s derivatives” in
the sense that the fractional Laplacian (—A)® identifies W5 with
W9 := (WSP)* [Di Nezza et al. 2012, Remark 2.5].

A2 Energy Space

To determine the order of the tangent-point differential d€%, we
first consider the biggest space of functions for which the energy
£9 is well-defined. Blatt [2013] gives the following condition on the
differentiability of the curve y (see also Blatt and Reiter [2015]):

Fig. 35. The curves (x, |x|?) are examples of curves in W2 (left). Their
1st derivatives are not L? integrable (right).
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LEMMA A.1. Supposea > landf € [a+2,2a+1), lets := g - é,
and consider an embedded curve y € C'(S';R3). Then y has finite
tangent point energy Sg(y) if and only if, up to reparameterization,

y € WS9(SL;R3).

In other words, the tangent point energy is well-defined only for
curves that have an sth derivative, and for which the ath power of
that derivative is integrable—for example, it will not be finite for a
polygonal curve. The somewhat unusual situation is that s is not an
integer: instead, it is a fractional value in the interval (1, 2).

A.3  Order of the Differential

In general, if an energy & is defined for functions in a space X,
then its differential d€¢ will have the prototype d€ : X — X*,
where X* is the dual space. For instance, the Dirichlet energy £p
operates only on functions f € H'. Hence, its differential is a map
dEp : H — (H')*, which we saw explicitly in Section 4.1: given
a function f € H!, d&p |f produces a linear map {—Af,-)) from
functions in H! to real numbers, i.e., an element of (H!)*.

In the case of the tangent point energy, then, we get that d€¢ is a
map from W*-P to the dual space (W*:P)* = W59 (Section A.1.1).
Hence, d€9 is a “differential operator” of order 2s, i.e., it reduces the
differentiability of its argument by 2s. To get a well-behaved flow,
we should therefore pick an inner product of the same order, and
(for computational purposes) is reasonably easy to invert.

A.4  Fractional Inner Product

Just as one uses the Laplace operator A to define integer Sobolev
inner products, we use a fractional operator to define a fractional
Sobolev inner product. For an embedded curve y : M — R3, one idea
is to start with the 1D fractional Laplacian (—A)?. Alternatively, we
can define an analogous operator by replacing the intrinsic distance
|x — y| on the right-hand side of Equation 24 with the extrinsic
distance |y(x) — y(y)| between points in the embedding. This latter
construction yields an operator L, defined by the relationship

Loy =[] MO0 oA0-ol) byl

mly )=y ly(x)=y®I° ly(x)=y @)l
for all sufficiently regular u,v : M — R. For any o € (0, 1), both
(=A)? and L are fractional operators of order 2¢. But the benefit of
L is that it requires only Euclidean distances—which for embedded
curves are easier to evaluate than geodesic distances. Moreover,
building a fractional Laplacian via an explicit Fourier transform is
prohibitively expensive, requiring a full eigendecomposition of a dis-
crete Laplace matrix. In contrast, integral expressions like Equations
24 and 25 can easily be evaluated d la Section 5.2.3, and accelerated
using hierarchical techniques a la Section 6.

A.4.1 High-Order Term. To get an inner product of the same order
as d€%, we compose the operator L, with further (integer) deriva-
tives % In particular, Lemma A.1 implies that s = 1+ ¢ for o € (0, 1).
Hence, to define an operator B, of order 2s = 20 + 2, we apply two
additional derivatives to Ly, i.e., we say that

(Bou,v)) = (Lo Du, Dv))

for all sufficiently regular u, v : M — R. This relationship provides
the definition of B, in Equation 12.



A.4.2  Low-Order Term. As discussed in Section 4.2.2, the operator
By is not invertible. We hence add the low-order term B% from
Equation 13. Since B, and B2 exhibit the same scaling behavior
under a rescaling of y, the behavior of the resulting gradient flow
will not depend on the global scale. To see why, consider a rescaling
of the curve y — cy by a factor ¢ > 0. Then D scales by a factor
1/c, the term 1/]y(x) — y(y)|?S™! scales by 1/¢%$*!, and the measure
dxydyy scales by c2. Then B, scales by ¢?/(c?¢**1) = 1/¢?*1, and
Ly scales by just ¢2/c?*1. Hence, to get BY we multiply L, by ki,
which scales like 1/c? (since it has ¢? in the numerator, and ¢* in
the denominator). More generally, one could use k% for any «a,
such that @ — f = —2. This low-order term also tends to accelerate
the evolution of the flow by preserving near-constant motions that
slide near-tangentially and do not tend toward collision (Figure 7).

B ACCELERATION SCHEME
B.1 Energy and Differential Evaluation

B.1.1 Bounding Volume Hierarchy. To build the BVH we first con-
struct tangent-points py = (Tr, x7) € R® for each edge I € E. We
then cycle through all six coordinates, choosing a splitting plane
that minimizes the sum of squared diameters of the two child bound-
ing boxes. Below a user-specified threshold, all remaining tangent-
points are placed in a single leaf node. In each node A we also store
data needed for Barnes-Hut. Specifically,

LN:=Z lr, EN:Z Crxr /Ly, TN:Z LT/ Ly,
IeN TeN TeN

give the total mass, center of mass, and (length-weighted) average
tangent, resp.; we will use p,, = (T a7, Xar) to denote the corre-
sponding tangent-point. We also store the bounding box radii rfcv

and r#/ with respect to spatial and tangential coordinates, resp.

B.1.2  Barnes-Hut Approximation. To evaluate the energy for a
tangent-point p; = (T7,x7) € R® with mass {; € R, we traverse
the BVH from the root, checking at each node if a local approxima-
tion is admissable (see below). If so, we evaluate the approximation
Ty X (xp —xB)|*
(s = B L, (26)
lx1 - x5l

and terminate traversal; otherwise, we sum the energy of the two
children. If we reach a leaf node B, we directly add up the contribu-

tions of the edges contained in this node, i.e.,
Tr X (xp —xp)|*
Ty X (x1 —xp)| 0.
fas P-x 718

Admissibility. A simple Taylor series analysis of Equation 26 in-
dicates that to keep approximation error below a user-specified
threshold ¢ > 0, it is sufficient to ensure that

rf/|x1 -xg| e and rTB < e (27)

Intuitively, if 3 is far from the query point pj relative to its size, and
contains tangents that are close together, then the “lumped” energy
is a good approximation of the total energy between edge I and the
edges in 5.

Repulsive Curves « XX:19

Differential. Rather than differentiate our Barnes-Hut approxi-
mation of c‘:’g we approximate the differential of the (full) discrete
energy directly. Starting with the zero vector d€% = 0 € R3IV, we
perform a BVH traversal for the tangent point p; associated with
each edge I € E. At each admissible node B and for each endpoint
ig, a = 1,2 of I we increment the differential via

(@E5)i,+= Lis gl (Ca(ks (ar, B, Ty) + ks (B 21, Ti)))

Here, k% is the discrete kernel defined in Equation 18; note that Lj,
X3, an(f?g do not depend on y;, or y;,, since I is not contained in
any admissible node B. At any leaf node B we add the corresponding
derivatives for all edges J € B.

B.2 Hierarchical Matrix-Vector Product

B.2.1  Block Cluster Tree (BCT). A BCT partitions a matrix into
low-rank blocks that approximate the original entries (Figure 12). It
is like a quadtree, except that the matrix ordering is not fixed a priori.
The basic idea is that the edges in a BVH node A/ correspond to a
subset of BCT rows/columns. A block of the BCT is hence specified
by a pair of nodes (A, B) from the BVH. To construct a BCT, we
recursively split the root block (R, R), where R is the root of the
BVH. A block (A, B) is a leaf if and only if (i) it is well-separated, i.e.,
it provides a good approximation of the local double sum, or (ii) .A
or B contains just a few edges. Otherwise, this block is given four
children (A1, B1), (A1, B2), (Az, B1), (A2, B2), where A1, Ay are
the children of A in the BVH (and likewise for BB). The conditions
for being well-separated are similar to Equation 27:

max(r;f, rf) -
lx4 = xBl

where r}/(\f and r/Tv are the spatial and tangential radii of node N

and max(rf‘, rng) < &, (28)

B.2.2  Matrix-Vector Product. The BCT is used to accelerate a matrix-
vector product ¢ = Ky via the fast multipole method. We adopt
the lowest (0th) order version of this method, which is accurate
enough for preconditioning. In particular, for any admissible leaf
node (A, B), the midpoints and tangents of edges in A and B are
quite coherent relative to the distance between them. Since the ker-
nel k is regular, the restriction of K to rows I € A and columns
J € B is hence well-approximated by

Kap = (LA k(P 4. p) (1B,

where £[N] € R is the vector of edge lengths in \V. Using this
rank-1 approximation, matrix-vector multiplication amounts to a
single dot product (with £[B]), followed by a scalar-vector product.

To perform a multiplication, we start with the zero vector ¢ =
0 € RIEl and iterate over all BCT leaves. For each admissible leaf
(A, B) (i.e., one which satisfies Equation 28) we perform an update

0l Al < gl Al + Kap yIB].
For inadmissible leaves, we simply sum over all edge pairs:
Q1 < Q1+ Z K1y ¥y
JeB

for all I € A. To accelerate evaluation, we percolate these sums up
and down the BVH, following a standard fast multipole strategy.
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B.3 Multigrid Solver

We first sketch out a generic multigrid strategy for saddle-point
problems on a curve network; the specific solves needed for the
tangent-point energy are detailed in Appendix B.3.4.

B.3.1 Geometric Multigrid. Suppose we want to solve a linear equa-
tion Ax = b. The basic idea of geometric multigrid is to use a coarser
mesh to reduce the residual of an equation on the finer mesh. Con-
sider a simple two-level hierarchy—in particular, let Ay € RIVolxIVol
and A; € RIViIXIVil be discretizations of A on a fine and coarse
mesh, resp., and let by be a discretization of the function b onto
the finest mesh. Also let J; € RIVoI*IVil be a so-called prolongation
operator, which interpolates data from the coarse mesh onto the fine
mesh. Starting with any initial guess xo € RVl we first apply a
smoothing procedure S to the system Agxo = by, i.e., a fixed number
of iterations of any iterative linear solver to get an improved guess
Xo < S(Ag, X0, bo). We then compute the residual rg < Agxo — b,
and transfer it to the coarse mesh via by « JIro. On the coarse mesh
we solve the system A1x; = by directly, and transfer the result back
to the fine mesh via yg < J1x1. These values are used to update our
guess via Xg < Xo + Yo, and smoothed again. If the residual is small
enough, we stop; otherwise, we repeat another such V-cycle until
convergence. More generally, one can apply this two-level strategy
to solve the linear system on the coarser level, yielding a multi-level
strategy. The size of the coarsest level is chosen so that a direct solve
at this level is more efficient than continuing to apply multigrid.

Initialization. We get an initial guess x¢ by first coarsening the
fine right-hand side by down to the coarsest mesh. We then perform
a direct solve and prolong the solution all the way to the finest mesh,
applying smoothing after each refinement. In practice this strategy
works much better than starting with the zero vector.

Implementation Details. In practice we use a standard conjugate
gradient smoother, and typically need 6 or fewer V-cycles to achieve
a relative residual of order 1073, Making the residual smaller via
further cycles (and a more accurate BCT) yields diminishing returns:
we need only a reasonable intermediate descent direction. Note that
although we build a BCT at each level, overall construction cost is
only about twice the cost at the finest level.

B.3.2  Curve Coarsening and Prolongation. To ~_o—*—a 1
build a multigrid hierarchy on a curve net- o N\ ?
work, we apply a simple coarsening scheme. Y S

We mark alternating vertices as “black” and ~ °—+—° ° .
“white”, and mark all endpoints and junctures e ° . %&o
where two or more curves meet as black. The — %/

next coarsest curve is obtained by removing  ° E—

white vertices; we stop when we reach a target
size or when there are no more white nodes.
The prolongation operator ] preserves values .
at black vertices, and at white vertices takes .

the average of the two neighboring black vertices. In our experience,
using linear interpolation based on edge lengths did not improve
multigrid performance. Coarsening need not preserve the isotopy
class of the curve network to provide useful preconditioning for the
next level of the hierarchy.
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B.3.3  Multigrid for Saddle Point Problems. Our constraint scheme
entails solving saddle point problems of the form

RN @

where A is the inner product (for vector-valued functions) (see
Equation 19), and C is the constraint matrix (Section 5.3.1); the
data a € R3IV depends on the problem being solved. We follow
the approach of Braess and Sarazin [1997], who note that for the
structurally identical Stokes’ problem (where A and C are replaced
by the Laplace and divergence operators, resp.), applying multigrid
to the whole matrix does not work well. Instead, let P € R3IVI3IVI
be a projection onto the null space of C, i.e, CP = 0 and P? = P.
Then by construction, any solution y to the equation

PTAPy = PTa (30)
yields a vector x = Py within the constraint space Cx = 0 that satis-
fies our original equation. Equation 30 is therefore the system that

we actually solve via multigrid. In particular, we use the projection
P := CC", where T denotes the (Moore-Penrose) pseudoinverse

ct:=(cchIc.

Since our constraints are typically sparse, we can factorize the inner
term CCT (once per time step) to further accelerate computation.
Note that one must build a constraint matrix C; and projection
matrix P; at each level i of the multigrid hierarchy.

B.3.4  Gradient Solve and Constraint Projection. With these pieces
in place, we can apply multigrid to compute the constrained gradient
(Equation 22), and perform constraint projection (Equation 23).

Gradient. To compute the gradient, recall that A = B+B. A matrix-
vector product B’u can be expressed as

B%u = E'(diag(K1) — K)Eu (31)

where diag(v) is a diagonal matrix with entries v, E € RIEIXIV]
averages values from vertices to edges (i.e., (Eu); = %(ui1+ui2 )), and

Ky = (k§g+5(x1’ xJ, 1) + k§a+5(x]’ X7, T]))f[f]. (32)
We use the method from Appendix B.2 to efficiently perform the
products K1 and B%u, and ordinary sparse matrix multiplication
for E. The high-order part B is expressed exactly as in Equation 31,
except that (i) we replace the averaging operator E with the dif-
ference operator D, (ii) we define a different kernel matrix K by
replacing kza 45 With kZo‘ 41 in Equation 32, and (iii) just like A,
K acts blockwise on the three components of vector-valued data
x € R3El (4 Ia Equation 19).

Constraint Projection. To use our multigrid solver for constraint
projection, we apply a simple transformation to Equation 23 that
gives it the same form as Equation 29. In particular, we solve

A [y | A
C 0 gl o |
where z := C'b, and b is the lower block of the right-hand side of

Equation 23. The final result is then given by
X=z-Y. (33)
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