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Fig. 1. We develop an efficient strategy for optimizing curves while avoiding self-collisions. Here for instance, interwoven curves of increasing length are
confined inside a fixed domain, resulting in an intricate “curve packing.” Replacing ordinary gradient descent with a specially-tailored fractional Sobolev
gradient lets us take very large steps toward the solution, enabling rapid design exploration.

Curves play a fundamental role across computer graphics, physical sim-

ulation, and mathematical visualization, yet most tools for curve design

do nothing to prevent crossings or self-intersections. This paper develops

efficient algorithms for (self-)repulsion of plane and space curves that are

well-suited to problems in computational design. Our starting point is the

so-called tangent-point energy, which provides an infinite barrier to self-

intersection. In contrast to local collision detection strategies used in, e.g.,
physical simulation, this energy considers interactions between all pairs of

points, and is hence useful for global shape optimization: local minima tend

to be aesthetically pleasing, physically valid, and nicely distributed in space.

A reformulation of gradient descent, based on a Sobolev-Slobodeckij inner
product enables us tomake rapid progress toward local minima—independent

of curve resolution. We also develop a hierarchical multigrid scheme that

significantly reduces the per-step cost of optimization. The energy is easily

integrated with a variety of constraints and penalties (e.g., inextensibility, or
obstacle avoidance), which we use for applications including curve packing,

knot untangling, graph embedding, non-crossing spline interpolation, flow

visualization, and robotic path planning.
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1 INTRODUCTION
Shape optimization plays a role in a broad range of tasks ranging

from variational data fitting to computational design. However, for

many tasks it is essential to design in context, i.e., relative to the ge-

ometry of the surrounding environment. Hard boundary conditions

(e.g., fixing the endpoints of a cable) provide a basic mechanism

for providing context, but do not account for another fundamental

requirement: physical objects cannot penetrate solid objects in the

environment, nor can they intersect themselves. In some contexts,

self-intersection can be avoided by detecting and resolving colli-

sions at the moment of impact. However, forward simulation is

not particularly effective at guiding shape optimization toward an

intelligent design—for example, untangling a complicated knot via

forward physical simulation is just as hard as trying to untangle it

by hand. In this paper we instead explore how a global variational

approach to curve self-avoidance provides new opportunities for

computational design.

Our starting point is the tangent-point en-
ergy of Buck and Orloff [1995], which for an

arc-length parameterized curve γ : M → R3

can be expressed as an integral over all pairs

of points (x,y) ∈ M2
:= M ×M :

ℰ :=

∬
M2

1

r (γ (x),γ (y))α
dxdy. (1)

Here r (x,y) is the radius of the smallest

sphere tangent to γ (x) and passing through γ (y), and α ∈ R is

a parameter controlling the strength of repulsion. This energy ap-

proaches infinity for points γ (y) that are close to γ (x) in space but

far from γ (x) along the curve itself—preventing self-collision. For
points γ (y′) close to γ (x) along the curve, the radius r is very large—
keeping forces bounded, and making the integral well-defined.
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Although this energy has a simple definition, its gradient involves

high-order fractional derivatives. Hence, classic optimization tech-

niques must take extremely small steps, and standard techniques

from shape optimization are not well-suited to handle the nonlocal

nature of the energy. Our approach is to develop a preconditioner

that exactly matches the fractional order of the differential (Sec-

tion 4). In doing so, we obtain a gradient descent equation involving

no spatial derivatives, permitting large time steps that make rapid

progress toward local minima (Figure 2). In practice, this method

is orders of magnitude more efficient than the simple untangling

schemes often used in the knot literature (Figure 15), and offers

substantial improvements over general-purpose optimization tech-

niques from geometry processing (Section 7). Algorithms of this fla-

vor have proven effective for problems such as finding minimal sur-

faces [Pinkall and Polthier 1993], integrating Willmore flow [Schu-

macher 2017], and computing surface parameterizations [Kovalsky

et al. 2016]. However, little work has been done in the more chal-

lenging setting of nonlocal, “all-pairs” energies.

Contributions. Though knot energies have received significant

attention in mathematics, there has been little work on the numer-

ical and algorithmic tools needed to apply such energies to the

computational design of curves. In this paper we develop:

• a principled discretization of the tangent-point energy,

• a novel preconditioner based on the Sobolev-Slobodeckij inner
product,

• a numerical solver that easily incorporates constraints needed

for design, and

• a Barnes-Hut strategy and hierarchical multigrid scheme for

the tangent-point energy that greatly improve scalability.

We also explore a collection of constraints and potentials that en-

able us to apply this machinery to a broad range of applications in

visualization and computational design (Section 8).

2 RELATED WORK
We briefly review topics related to computational design of curves;

Section 3 gives more detailed background on curve energies. At a

high level, computational design of free-form curves has generally

focused on specific domains such as road networks [Hassan et al.

1998; McCrae and Singh 2009], telescoping structures [Yu et al. 2017],

or rod assemblies [Pérez et al. 2015; Zehnder et al. 2016]; Moreton

[1992, Chapter 3] gives a history of traditional design via spline

curves. Our goal is to develop tools that can be applied to a wide

range of multi-objective design scenarios, as explored in Section 8.

2.1 Curve Simulation
One natural idea is to avoid collision via physics-based simulation of

elastic rods [Bergou et al. 2008]. However, the paradigm of collision

detection and response is “too local”: for computational design, one

aims to globally optimize a variety of design criteria, rather than

simulate the behavior of a given curve. Sensitivity analysis, which
provides sophisticated local improvement of an initial design, has

been successfully applied to several rod design problems [Pérez et al.

2015; Zehnder et al. 2016; Pérez et al. 2017]. This technique can

be seen as complementary to global repulsion-based form-finding,

helping to incorporate, e.g., nonlinear mechanical phenomena into

Fig. 2. Untangling the Freedman unknot (top left) to the unit circle. For
the same wall clock time, standard L2 gradient descent makes almost no
progress, whereas conventional Sobolev descent fails to smooth out low
(H 1) or high (H 2) frequencies. By carefully matching the inner product to
the energy, our fractional H s descent quickly flows to the circle.

a final design. Curves also arise naturally as filaments or field lines

in continuum phenomena like fluids, plasmas, and superfluids [An-

gelidis and Neyret 2005; Weißmann and Pinkall 2010; Padilla et al.

2019; Kleckner et al. 2016; Chern et al. 2016; DeForest and Kankel-

borg 2007]. However, using such phenomena for curve design is

challenging since (i) initial conditions are hard to construct, and (ii)

these systems naturally exhibit reconnection events where distinct
pieces of a curve merge [Maucher and Sutcliffe 2016].

2.2 Knot Energies
Motivated by questions in mathematics, biology, and physics [Calvo

et al. 2002], there is a significant body of work on the unknot problem:

can a closed loop be continuously deformed into a circle without

passing through itself (i.e., via isotopy)? Solving this decision prob-

lem is not our goal—so far it is not clear it can even be done in

polynomial time [Lackenby 2014]. Yet knot untangling energies

(discussed in Section 3) provide a valuable starting point for com-

putational design. Numerically, simple ad-hoc methods that repel

all pairs of vertices can yield inconsistent, unreliable behavior and

slow convergence (Figure 15, right). Starting with more principled

discretizations, KnotPlot [Scharein 1998] uses a simple relaxation

scheme, and Kusner and Sullivan [1998] apply a standard conjugate

gradient method via SurfaceEvolver [Brakke 1992], both evaluat-

ing all O(n2) interactions between the n vertices. Other, adjacent

methods have been developed for tightening a given knot [Pierański

1998; Ashton et al. 2011], simulating the knot tying process [Brown

et al. 2004; Kubiak et al. 2007; Harmon et al. 2009], or untangling

knots without optimizing their shape [Ladd and Kavraki 2004];

more recent methods apply L2 [Walker 2016] or integer Sobolev

(H2
) descent [Bartels et al. 2018]. Octrees have been used to evaluate

the ropelength of a static knot [Ashton and Cantarella 2005], but

Barnes-Hut/multipole schemes have not yet been developed for

energy minimization. Likewise, little has been said about fractional

preconditioners, and treatment of general constraints.

Our approach builds on careful analysis of the fractional Sobolev

spaces associated with the tangent point energy [Blatt 2012, 2013;

Blatt and Reiter 2015]. Whereas this work focuses on, e.g., the exis-
tence of local minimizers and short-time existence of gradient flows

in the smooth setting, we use it to develop numerical algorithms.
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2.3 Geometric Optimization
Optimization of curve and surface energies can be greatly acceler-

ated by “Sobolev-like” preconditioning. The idea is to replace the

ordinary L2 inner product with one that is better matched to the en-

ergy, yielding a gradient flow that is easier to integrate (Section 4.1

gives a didactic example). Such flows make more rapid progress to-

wardminimizers (Figure 2), since energy is reduced uniformly across

all spatial frequencies. Crucially, Sobolev preconditioners are most

effective when the order of the preconditioner is perfectly matched to
the order of spatial derivatives in the energy. A preconditioner whose

order is too high or too low can slow down convergence—see for

instance Figure 5, bottom-right.
Sobolev-type preconditioners have seen some prior use in geom-

etry processing and scientific computing. For example, the minimal

surface algorithm of Pinkall and Polthier [1993] effectively performs

Sobolev descent [Brakke 1994, Section 16.10], but was not originally

framed in these terms; Renka and Neuberger [1995] give an algo-

rithm directly formulated via a (variable) Sobolev inner product.

Later work adopts Sobolev-like strategies for surface fairing and

filtering [Desbrun et al. 1999; Eckstein et al. 2007; Martin et al. 2013;

Crane et al. 2013; Schumacher 2017]. More recently, Sobolev-like

descent has become popular for minimizing elastic energies, such as

those arising in surface parameterization or shape deformation [Ko-

valsky et al. 2016; Claici et al. 2017; Zhu et al. 2018]; see Section 7

for in-depth comparisons.

Previous work on shape optimization does not consider the chal-

lenging fractional case, which differs significantly from standard

Sobolev preconditioning. From an analytical point of view, we must

first determine the order of derivatives arising in the differential—

achieved by reasoning about the associated function spaces (Appen-

dix A). We use this knowledge to formulate a novel preconditioner

in the smooth setting which carefully considers lower-order terms

(Section 4), which we then translate into the discrete setting via

a principled discretization of the tangent-point energy (Section 5).

From a computational point of view, the machinery needed to apply

a fractional preconditioner is also different from ordinary Sobolev

preconditioners: one cannot simply solve a sparse linear system, and

must instead construct an efficient hierarchical scheme for (approx-

imately) inverting a dense nonlocal operator. None of these pieces

appear in the previous optimization work discussed above, though

fractional operators and multigrid methods have been studied in

other contexts, such as finite element simulation [Ainsworth and

Glusa 2017] and multiphysics systems [Bærland et al. 2019; Bærland

2019]. Further, previously studied Sobolev preconditioners (such as

those based on the Laplacian) and standard optimization strategies

(such as Newton descent) are not as effective for our problem—as

we show via extensive numerical experiments (Section 7).

3 CURVE ENERGIES
Wefirst give a detailed discussion of the tangent-point energy, which

we optimize in Section 4. Throughout we will use single bars |X | and
brackets ⟨X ,Y ⟩ to denote the Euclidean inner product on vectors

in R3, and reserve double bars ∥ f ∥ and brackets ⟨⟨f ,д⟩⟩ for norms

and inner products on functions. We also use ·|f to indicate that a

quantity (e.g., an energy) is evaluated at a function f .

3.1 Background
Consider a collection of curves given by a parameterizationγ : M →
R3, where M is comprised of intervals and/or loops. How can we

formulate an energy that prevents self-intersection of γ ? In general

we will consider energies of the form

ℰ(γ ) =
∬

M2

k(x,y) dxγdyγ ,

where the kernel k : M ×M → R captures the interaction between

two points on the curve, and dxγ denotes the length element on γ .

3.1.1 Electrostatic Potential. One natural idea for defining k is to

imagine that there is electric charge distributed along γ that pushes

it away from itself, producing the Coulomb-like potential

k
Coulomb

(x,y) :=
1

|γ (x)−γ (y)|α
, (2)

where the parameter α controls the strength of re-

pulsion. Unfortunately this simple energy does not

work for a continuous curve: for α < 2 it is not

strong enough to prevent collisions, allowing the

curve to pass through itself—yet for α ≥ 1 the inte-

gral does not exist, resulting in unpredictable and

unreliable behavior when discretized.

3.1.2 Möbius Energy. To obtain a well-defined energy, one can

regularize the integrand in regions where x approaches y. One such
regularization, proposed by O’Hara [1991], is the Möbius energy,
with kernel

k
Möbius

(x,y) :=
1

|γ (x)−γ (y)|2
−

1

d(x,y)2
,

where d(x,y) denotes the shortest distance between x and y along
the curve (e.g., the smaller of two arcs along a circle). Intuitively:

if two points are both close in space and close along the curve, we

remove the singular energy; if they are close in space but distant
along the curve, they continue to repel each other (see inset). This

energy is invariant toMöbius transformations [Freedman et al. 1994],

which can be attractive from the perspective of knot theory—but

causes problems for computational design, since near-intersections

may not be penalized in a natural way (Figure 3).

Möbius Tangent-Point

Fig. 3. Left: Since the Möbius energy is scale-invariant, it allows “tight
spots” where the curve nearly touches itself; such features are avoided by
the tangent-point energy. Right: The Möbius energy can likewise artificially
eliminate knots by pulling them tight at no energetic cost. (Leftmost image
from Kusner and Sullivan [1998].)
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Fig. 4. Local minimizers of the tangent-point energy ℰα
2α . When α = 2 the

tangent-point energy is scale-invariant and can exhibit “tight spots”; for
larger values of α local interactions are penalized more than distant ones.

3.2 Tangent Point Energy
Instead, we will use the tangent point energy introduced in Section 1.

We can write this energy more explicitly by noting that (up to a

constant factor)

r (x,y) =
|γ (x)−γ (y)|2

|T (x) × (γ (x)−γ (y))|

where T (x) is the unit tangent of γ at x . This expression leads to a

generalized tangent-point energy [Blatt and Reiter 2015], given by

ℰαβ (γ ) :=
∬

M2

kαβ (γ (x),γ (y),T (x)) dxγdyγ ,

where kαβ is the tangent-point kernel

kαβ (p,q,T ) :=
|T × (p − q)|α

|p − q |β
. (3)

In the case β = 2α , this energy agrees with Equation 1; as shown

by Blatt [2013] it is well-defined for any α, β satisfying α > 1 and

β ∈ [α + 2, 2α + 1) (Lemma A.1). Most importantly, it tends toward

infinity as the curve approaches itself, preventing self-intersection.

In particular, when β − α > 2 it is not scale-invariant, and hence

avoids the pull-tight phenomenon. (We set (α, β) to (2, 4.5) in Figures
14–19, and (3, 6) elsewhere.)

This energy is also attractive for design since it provides natu-

ral regularization, akin to bending energy. The reason is that the

integrand can vanish only for a straight line (where the radius r is
infinite at every point). The powers β and α have an impact on this

bending behavior—for instance, if β = 2α , then a higher α gives a

more repulsive energy where curves are willing to bend more in

order to avoid collision (Figure 4).

4 OPTIMIZATION
Consider an energy ℰ that depends on a function f . A typical start-

ing point for optimization is to integrate the gradient flow

d
dt f = − grad ℰ(f ), (4)

i.e., to move in the direction of “steepest descent.” As mentioned in

Section 2, however, the efficiency of this flow depends critically on

the inner product used to define the gradient—in other words, there

are many different notions of what it means to be “steepest.” Recall

in particular that the differential dℰ describes the change in ℰ due

to any small perturbation u of f :

dℰ |f (u) = lim

ε→0

1

ε (ℰ(f + εu) − ℰ(f )) .

The gradient of ℰ is then the unique function grad ℰ whose inner

product with any function u gives the differential in that direction:

⟨⟨grad ℰ,u⟩⟩V = dℰ(u). (5)

Traditionally, the inner product ⟨⟨·, ·⟩⟩V is just the L2 inner product

⟨⟨u,v⟩⟩L2 :=
∫
M ⟨u(x),v(x)⟩ dx .

More generally, however, one can try to pick a so-called Sobolev
inner product ⟨⟨u,v⟩⟩Hk that yields an easier gradient flow equation.

Examples include theH1
andH2

inner products, which for a domain

without boundary can be written as

⟨⟨u,v⟩⟩H 1 := ⟨⟨gradu, gradv⟩⟩L2 = −⟨⟨∆u,v⟩⟩L2 , (6)

and

⟨⟨u,v⟩⟩H 2 := ⟨⟨∆u,∆v⟩⟩L2 = ⟨⟨∆
2u,v⟩⟩L2 , (7)

which measure first and second derivatives (resp.) rather than func-

tion values. In general, if we write our inner product as ⟨⟨u,v⟩⟩Hk =

⟨⟨Au,v⟩⟩L2 for some linear operator A, then we can express the new

gradient direction д as the solution to

Aд = gradL2 ℰ . (8)

This transformation is akin to the preconditioning provided by New-

ton’s method, except that we replace the Hessian with an operator

A that is always positive-definite, and often easier to invert. In

particular, when A comes from a carefully-designed Sobolev inner

product, it will eliminate spatial derivatives, avoiding the stringent

time step restriction typically associated with numerical integration

of gradient flow (Figure 6).

4.1 Warm-up: Dirichlet energy
Since analysis of the tangent-point energy is quite involved, we

begin with a standard “toy” example that helps sketch out the main

ideas of our approach. In particular, consider the Dirichlet energy

ℰD (f ) := 1

2

∫
Ω
| grad f (x)|2 dx, (9)

standard gradient descent (L2) mismatched Sobolev descent (H 2)

well-matched Sobolev descent (H 1)

Fig. 5. For Dirichlet energy, which penalizes variations in a function f (x ),
standard L2 gradient descent mostly smooths out local features (bottom
left), whereas an inner product that is too high-order has trouble removing
high frequencies (bottom right). A Sobolev descent that is well-matched to
the order of the energy yields rapid progress toward a local minimizer (top).
We apply a similar strategy to quickly optimize the shape of curves.
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which penalizes variation in a function f : Ω → R. If the domain Ω
has no boundary, then we can use integration by parts to write this

energy as

ℰD (f ) = 1

2
⟨⟨grad f , grad f ⟩⟩L2 = −

1

2
⟨⟨∆f , f ⟩⟩L2 ,

where ∆ denotes the Laplace operator. The differential is then

dℰD |f (u) = −⟨⟨∆f ,u⟩⟩L2 ,

and from Equation 5, we see that the L2 gradient of ℰD is given by

gradL2 ℰD |f = −∆f . Hence, L2 gradient descent yields the heat flow

d
dt f = ∆f , (L2 gradient flow)

which involves second-order derivatives in space [Andrews et al.

2020, Section 1.2]. If we try to solve this equation using, say, explicit

finite differences with grid spacing h, we will need a time step of size

O(h2) to remain stable—significantly slowing down computation

as the grid is refined. To lift this time step restriction, we can use a

different inner product to define the gradient. In particular, replacing

⟨⟨·, ·⟩⟩V with the H1
inner product in Equation 5 yields

⟨⟨∆ gradH 1ℰD ,u⟩⟩L2 = ⟨⟨∆f ,u⟩⟩L2 . (10)

This equation can be satisfied by letting gradH 1ℰD := f , in which

case Equation 4 defines an H1
gradient flow

d
dt f = −f . (H1

gradient flow)

Fig. 6. Gradient flows projected onto
a low- and high-frequency mode
e1, e2, resp. Notice that poor precon-
ditioning leads to slow convergence.

This flow involves no spatial

derivatives, and hence comes

with no time step restriction. In

effect, rather than a PDE, we

now have a system of indepen-

dent ODEs, which is far eas-

ier to integrate numerically. As

shown in Figure 5, the charac-

ter of this flow is quite different:

it makes progress by simultane-

ously flattening all spatial fre-

quencies, rather than just per-

forming local smoothing. While

this approach is not appropri-

ate for dynamical simulation, it

is quite useful for finding local

minima, as needed in geometric design. In general, however, Sobolev

descent is not as simple as just uniform scaling—instead, one must

solve a linear PDE (Equation 8) for the new descent direction.

Note that we should not use an inner product with too many
derivatives. For example, if we use theH2

inner product (Equation 7)

we get a gradient gradH 2 ℰD |f = −∆−1 f , and a flow

d
dt f = ∆−1 f . (H2

gradient flow)

This flow is again hard to integrate, and has trouble smoothing out

high frequencies (Figure 5, bottom-right). In general, one cannot

achieve good behavior by blindly picking a Sobolev inner product,

but must instead carefully match the inner product to the energy.

Low-Order Terms. One remaining issue is that Equation 10 de-

termines the H1
gradient only up to functions in the null space of

∆. This situation is problematic, since it means we cannot obtain

a gradient by solving Equation 8 directly (with A = −∆). Instead,
we must include low-order terms that make the overall operator A
invertible. For instance, we could let A := −∆+ id, where id denotes
the identity. But if we uniformly scale the domain by a factor c > 0,

the new operator looks like − 1

c2 ∆ + id and the character of the flow

changes substantially: when c is small it looks like the H1
flow;

when c is large, it looks more like the L2 flow. Careful treatment of

regularization and scaling is therefore an important consideration

in the development of our curve flow (Section 4.2.3).

4.2 Fractional Sobolev Gradient
In the case of a nonlocal energy like the tangent-point energy ℰαβ ,
one can no longer use a standard Sobolev inner product—instead,

an inner product of fractional order is needed, in order to match

fractional derivatives that appear in the differential. Construction

of a suitable inner product for the tangent-point energy is fairly

technical—in a nutshell, we begin with a known expression for

the fractional Laplacian on Euclidean Rn , and formulate an anal-

ogous operator for embedded curves. Taking additional (integer)

derivatives yields a differential operator Bσ of the same order as

the differential dℰαβ . We then add a lower-order operator B0σ that

makes the overall operator Aσ := Bσ + B
0

σ more well-behaved. Our

Sobolev-Slobodeckij inner product is then defined as

⟨⟨u,v⟩⟩H s
γ
:= ⟨⟨Aσu,v⟩⟩L2 .

Details are given in Appendix A—here we give only the most essen-

tial definitions needed to derive our discrete algorithm (Section 5).

4.2.1 Derivative Operator. To define the inner product, we will need
the first derivative operator 𝒟 given by

𝒟u := du dγ T/|dγ |2. (11)

This operator just takes the usual derivative of u along M and ex-

presses it as a vector in R3 tangent to γ ; the factor 1/|dγ |2 accounts
for the fact that the curve is not in general arc-length parameterized.

4.2.2 High-Order Term. As discussed in Appendix A.3, the differ-

ential dℰαβ of the tangent-point energy has order 2s , where s =
(β − 1)/α . To build an inner product of the same order, we first

define the fractional differential operator Bσ , given by

⟨⟨Bσu,v⟩⟩ :=

∬
M2

𝒟u(x)−𝒟u(y)

|γ (x)−γ (y)|σ
𝒟v(x)−𝒟v(y)
|γ (x)−γ (y)|σ

dxγdyγ

|γ (x)−γ (y)|
(12)

for all sufficiently regular u,v : M → R, where σ = s − 1. This

operator also has order 2s (Appendix A.4), and plays a role analogous
to the Laplacian in Section 4.1. Yet just like the Laplacian, Bσ is only

semidefinite, since it vanishes for functions that are constant over
each component of the domain M . Hence, it is not invertible, and

cannot be used directly to solve for a descent direction—instead we

must “regularize” Bσ by adding an additional, lower-order term.

4.2.3 Low-Order Term. A naïve approach to regularization, like

adding some small ϵ > 0 times the identity, yields undesirable

behavior—ε must be sufficiently large to have an effect, but if ε
is too large, motion is significantly damped. Moreover, an inner
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L2 gradient
fractional Sobolev gradient

Fig. 7. Since an L2 gradient flow is always perpendicular to the curve (red),
it fails to resolve even simple cases like the one shown above, where a large
near-tangential motion is needed to untangle a knot. The fractional Sobolev
gradient (blue) permits such motions, yielding a far more efficient flow.

product constructed this way will no longer exhibit predictable

scaling behavior, i.e., rescaling the input will actually change the

direction of the gradient rather than just its magnitude—and hence

can change the solution obtained by a designer. Instead, we carefully

choose an additional, low-order term B0σ that not only provides the

right scaling behavior, but also enables us to steer the flow more

quickly toward self-avoiding configurations (Figure 7). In particular,

we add the term ⟨⟨B0σu,v⟩⟩, given by∬
M2

k2
4
(γ (x),γ (y),T (x))

(u(x)−u(y))(v(x)−v(y))

|γ (x)−γ (y)|2σ+1
dxγdyγ , (13)

where kαβ is the tangent-point kernel given in Equation 3. See Ap-

pendix A.4 for further discussion.

4.2.4 Sobolev-Slobodeckij Gradient. Following Equation 5, our final
gradient gradH s

γ
is defined via the fractional inner product:

⟨⟨gradH s
γ
ℰαβ ,X ⟩⟩H s

γ
= dℰαβ |γ (X ), for all X : M → R3. (14)

Since gradH s
γ
ℰαβ and X are vector- rather than scalar-valued, we

apply the inner product componentwise. In other words,

gradH s
γ
ℰαβ = Ā−1σ gradL2 ℰ

α
β |γ , (15)

where Āσ denotes componentwise application of Aσ . Note that

the combined operator Aσ = Bσ + B0σ still has globally constant

functions in its kernel, corresponding to global translations. Tomake

Equation 15 well-defined, we can simply add any constraint that

fixes the translation of the curve (Section 5.3). In practice, we never

need a closed-form expression for the gradient, nor do we explicitly

invert the operator Aσ ; instead, we solve Equation 8 numerically.

5 DISCRETIZATION
We now use the inner product from the previous section to derive an

efficient numerical scheme for minimizing the tangent-point energy.

Our discretization operates on polygonal curves. While in principle

splines could be used à la Bartels et al. [2018], in practice this makes

little difference due to the use of numerical quadrature in both

cases. The description given here assumes a naïve implementation

using dense matrices and an O(n2) evaluation of the energy and its

differential; hierarchical acceleration is described in Section 6.

Fig. 8. Left: notation used for discrete curves. Right: Our discrete energy is
obtained by applying the trapezoidal rule to the smooth energy for each
edge pair I , J .

Notation. In the discrete setting, we will model any collection of

curves and loops (including several curves meeting at a common

point) as a graph G = (V , E) with vertex coordinates γ : V → R3

(Figure 8); we use |V | and |E | to denote the number of vertices and

edges, resp. For each edge I ∈ E with endpoints i1, i2, we use

ℓI := |γi1 − γi2 |, TI := (γi2 − γi1 )/ℓI , and xI := (γi1 + γi2 )/2

to denote the edge length, unit tangent, and midpoint, resp. For
any quantity u : V → R on vertices we use uI := (ui1 + ui2 )/2 to

denote the average value on edge I = (i1, i2), and u[I ] := [ui1 ui2 ]
T

to denote the 2× 1 column vector storing the values at its endpoints.

Finally, we refer to any pair (T , x) ∈ R6 as a tangent-point.

5.1 Discrete Energy
Since the tangent-point energy is infinite

for polygonal curves [Strzelecki and von der

Mosel 2017, Figure 2.2], we assume thatγ is in-

scribed in some (unknown) smooth curve, and

apply numerical quadrature to the smooth en-

ergy ℰαβ . The resulting discrete energy then approximates the energy

of any sufficiently smooth curve passing through the vertices γi .
We start by integrating kαβ over all pairs of edges:∑

I ∈E

∑
J ∈E

∫
Ī

∫
J̄
kαβ (γ (x),γ (y),TI ) dxγdyγ . (16)

Here Ī denotes the interval along edge I . As stated, this expression
is ill-defined since any two edges with a common endpoint con-

tribute infinite energy. One idea is to replace any such term with

one proportional to the curvature of the circle passing through the

three distinct endpoints (in the spirit of Equation 1). However, such

terms would contribute nothing to the energy in the limit of regular

refinement (Figure 9)—hence, we simply omit neighboring edge

pairs. Applying the (2D) trapezoidal rule to Equation 16 then yields

a discrete energy

ˆℰαβ (γ ) =
∑∑

I , J ∈E ,I∩J=�
( ˆkαβ )I J ℓI ℓJ , (17)

where
ˆk is the discrete kernel

( ˆkαβ )I J :=
1

4

∑
i ∈I

∑
j ∈J k

α
β (γi ,γj ,TI ). (18)

The discrete differential is then simply the partial derivatives of this

energy with respect to the coordinates of all the curve vertices:

d ˆℰαβ |γ =
[
∂ℰαβ /∂γ1 · · · ∂ℰαβ /∂γ |V |

]
∈ R3 |V | .
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Fig. 9. The tangent-point energy is a double integral of the kernel kαβ (right)
over the curve γ (left). Since this kernel is only weakly singular, omitting
diagonal terms has an insignificant effect on the overall energy.

These derivatives can be evaluated via any standard technique (e.g.,
by hand, or using symbolic or automatic differentiation).

5.2 Discrete Inner Product
As in the smooth setting, we define our inner product matrix as

a sum A = B + B0 of high-order and low-order terms B,B0 ∈
R |V |× |V | (as defined below). For R3-valued functions, we also define
a corresponding 3|V | × 3|V | matrix

A =


A

A
A

 . (19)

Mirroring Equation 8, the discrete (fractional) Sobolev gradient

g ∈ R3 |V | is then defined as the solution to the matrix equation

Ag = d ˆℰαβ . (20)

5.2.1 Discrete Derivative Operator. For each edge I ∈ E we approx-

imate the derivative 𝒟u of a function u : M → R (Equation 11) via

the finite difference formula
1

ℓI
(ui2 − ui1 )TI , where ui denotes the

value of u sampled at vertex i . The corresponding derivative matrix

D ∈ R3 |E |× |V | can be assembled from local 3 × 2 matrices

DI =
1

ℓI
[ −TI TI ].

5.2.2 Discrete High-Order Term. We approximate the high-order

part of the inner product ⟨⟨Bσu,v⟩⟩ as

uTBv =
∑∑

I , J ∈E ,I∩J=�
wI J ⟨DI u[I ] − DJ u[J ],DI v[I ] − DJ v[J ]⟩, (21)

where the weightswI J arise from applying trapezoidal quadrature

to the denominator in Equation 25:

wI J :=
1

4
ℓI ℓJ

∑
i ∈I

∑
j ∈J

1

|γi−γj |2σ+1
.

The entries of the corresponding Gram matrix B ∈ R |V |× |V | are
obtained by differentiating Equation 21 with respect to the entries

of u and v. More explicitly, starting with the zero matrix one can

build B by making the following increments for all pairs of disjoint

edges I ∩ J = �, and all pairs of values a,b ∈ {1, 2}:

Bia ib+= (–1)
a+bwI J /ℓ

2

I , Bia jb−= (–1)
a+bwI J ⟨TI ,TJ ⟩/(ℓI ℓJ ),

Bja jb+= (–1)
a+bwI J /ℓ

2

J , Bja ib−= (–1)
a+bwI J ⟨TJ ,TI ⟩/(ℓJ ℓI ).

Fig. 10. To enforce constraints Φ(γ ) = 0 on the curve, we both project the
gradient д onto the tangent of the constraint set, and also apply an iterative
procedure to project the curve itself back onto the constraint set. In both
cases, the fractional Sobolev norm provides the definition of closeness.

5.2.3 Discrete Low-Order Term. To discretize the low-order term
B0σ (Section 4.2.3), we use a different discrete weight

w0

I J :=
1

4
ℓI ℓJ

∑
i ∈I

∑
j ∈J

k2
4
(γi ,γj ,TI )

|γi − γj |2σ+1
,

and define a matrix B0 ∈ R |V |× |V | , given by the relationship

uTB0v =
∑∑

I , J ∈E ,I∩J=�
w0

I J (uI − uJ )(vI − vJ ).

Following a similar derivation as above, this matrix can be con-

structed via the following increments:

B0ia ib+=
1

4
w0

I J , B0ia jb−=
1

4
w0

I J ,

B0ja ib−=
1

4
w0

I J , B0ja jb+=
1

4
w0

I J .

5.3 Constraints
For design applications, we will need to impose a variety of scalar

constraints Φi (γ ) = 0, i = 1, . . . ,k , which we encode as a single

constraint function Φ : R3 |V | → Rk (Section 8.1). To enforce these

constraints, we project the gradient onto a valid descent direction

(Section 5.3.1); after taking a step in this direction, we also project

the result onto the constraint set (Section 5.3.2).

5.3.1 Gradient Projection. Let C := dΦ(γ ) be the Jacobian matrix

of the constraint, and let g := gradH s
γ
E ∈ R3 |V | denote the uncon-

strained energy gradient. We seek the descent direction g̃ that is

closest to g with respect to the fractional Sobolev norm, but which

is also tangent to the constraint set:

min

g̃
1

2
| |g̃ − g| |2H s

γ
s.t. Cg̃ = 0.

Writing | |v | |2H s
γ
as vTAv (Section 5.2), we can apply the method

of Lagrange multipliers to obtain the usual first-order optimality

conditions, given by the saddle point system[
A CT

C 0

] [
g̃
λ

]
=

[
dℰαβ |

T
γ

0

]
, (22)

where λ ∈ Rk are the Lagrange multipliers, and we have applied

the identity Ag = dℰαβ |
T
γ (Equation 20).
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Fig. 11. To accelerate evaluation of the tangent-point energy, we build a
bounding volume hierarchy that partitions both positions (left) and tangent
directions (right), here drawn as a curve on the unit sphere.

5.3.2 Constraint Projection. Suppose that we take a small step of

size τ along the projected gradient direction g̃ to get a new candidate

curve γ̃ := γ − τ g̃. To project this curve back onto the constraint

set, we will apply an approximation of Newton’s method that is

faster to evaluate. In particular, to find a displacement x ∈ R3 |V |

that takes us from γ̃ back toward the constraint set Φ(g) = 0, we

solve the problem

min

x
1

2
xTAx s.t. Cx = −Φ(γ̃ ).

We then update our guess via γ̃ ← γ̃ + x and repeat until the con-

straint violation Φ(γ̃ ) is numerically small (10
−4

in our experiments).

In practice, this process rarely takes more than three iterations. At

each iteration, x is obtained by solving the saddle point problem[
A CT

C 0

] [
x
µ

]
=

[
0

−Φ(γ̃ )

]
, (23)

where µ ∈ Rk are Lagrange multipliers.

5.4 Time Stepping
A judicious choice of time step can significantly improve the effi-

ciency of the flow. One strategy is to use the first time step τmax at

which a collision occurs as the starting point for a line search, which

guarantees that the curve remains in the same isotopy class. (Similar

approaches have been used in, e.g., KnotPlot [Scharein 1998] for knot
untangling, and by Smith and Schaefer [2015] for surface parameter-

ization.) Computing this time step via standard techniques [Redon

et al. 2002] costs about as much as a single energy evaluation, i.e.,
significantly less than the overall cost of a single time step. From

here we apply standard backtracking line search [Boyd and Vanden-

berghe 2004, Algorithm 9.2]; as a heuristic, we start this search at

2

3
τmax. We use this strategy throughout Section 7.

An even simpler strategy that works well in practice (but comes

with no collision guarantees) is to just normalize the gradient and

perform backtracking line search starting with τ = 1, until both

(i) the Armijo condition is satisfied and (ii) constraint projection

succeeds (Section 5.3.2). We use this latter strategy for all application

examples in Section 8. We stop when the L2 norm of the fractional

Sobolev gradient goes below a user-specified tolerance ε . In our

examples we use ε = 10
−4
, though of course for design applications

one can also stop whenever the results are aesthetically pleasing.

6 ACCELERATION
Computational design problems can entail large collections of curves

with many thousands of vertices (Section 8). Optimization hence

becomes expensive since it involves not only an all-pairs energy

(Section 5.1), but also inverting a dense inner product (Section 5.2).

However, since the kernel falls off rapidly in space, we can use

hierarchical approximation to avoid a Ω(|V |2) time and storage cost.

Though our high-level approach is reasonably standard, careful

consideration of the tangent-point energy is needed to develop a

scheme that is efficient, easy to implement, and handles general

nonlinear constraints. To streamline exposition, we reserve the

details of this scheme for Appendix B; at a high level it consists of

three main parts, outlined below. Note that since we care only about

finding a good descent direction—and not accurately simulating a

dynamical trajectory—we are free to use low-order schemes, which

still provide good preconditioning. Empirically, the overall strategy

exhibits near-linear scaling in both time and memory (Figure 20).

6.1 Energy and Differential Evaluation
To accelerate evaluation of the energy

ˆℰαβ and its differential, we

apply the Barnes-Hut algorithm from N -body simulation [Barnes

and Hut 1986]. The basic idea is to approximate distant energy

contributions by aggregating values in a spatial hierarchy. In our

case, this hierarchy must have six dimensions rather than three,

since
ˆℰαβ depends on both positions γ ∈ R3 and tangentsT ∈ R3. In

lieu of a standard octree we therefore use an axis-aligned bounding
volume hierarchy (BVH), for which additional dimensions do not

incur significant cost (Figure 11). Appendix B.1 gives further details.

6.2 Hierarchical Matrix-Vector Product
For optimization we need to solve linear systems involving so-called

kernel matrices. Any such matrix K ∈ R |E |× |E | has a special form

KI J = k(pI ,p J )ℓI ℓJ ,

where the kernel k maps a pair of tangent-points to a real value

(Section 3). If k is a sufficiently regular, then K is well-approximated

by a hierarchical matrix [Hackbusch 2015], i.e., a matrix of low-

rank blocks (Figure 12). Encoding this matrix as a block cluster
tree (BCT) enables fast matrix-vector multiplication via the fast
multipole method [Greengard and Rokhlin 1997]. Like the BVH, our

BCT involves both positions and tangents; in fact, each BCT block

corresponds to a pair of BVH nodes. See Appendix B.2 for details.

inadm
issible

adm
issible

Fig. 12. Left: A kernel matrix K encodes interactions between all pairs of
edges. Center: To accelerate multiplication, this matrix is approximated by
rank-1 blocks K̂𝒜ℬ , corresponding to pairs (𝒜, ℬ) of distant BVH nodes.
Right: For pairs that are too close, this approximation is inadmissible, and
we must use the original matrix entries.

ACM Trans. Graph., Vol. X, No. X, Article XX. Publication date: XXXX.



Repulsive Curves • XX:9

Fig. 13. We accelerate linear solves using multigrid on a hierarchy of curves.

6.3 Multigrid Solver
Since the hierarchical matrix-vector multiply does not build an ex-

plicit matrix, we use an iterative method to solve our linear systems.

Empirically, off-the-shelf methods such as GMRES and BiCGStab
are not well-suited for our problem. Instead, we use geometric multi-

grid (Figure 13), since (i) it is straightforward to coarsen a curve

network, and (ii) the low frequency modes of our Laplace-like op-

erators are well-captured on a coarse mesh. In the Euclidean case,

this type of approach has been used successfully by Ainsworth

and Glusa [2017]. Appendix B.3 describes our geometric coarsen-

ing/prolongation operators, as well as our multigrid strategy for

both Sobolev gradient evaluation and constraint projection.

7 EVALUATION AND COMPARISONS
We performed extensive evaluation and comparisons of our frac-

tional Sobolev descent strategy relative to other methods. Here

we give an overview of results; a detailed account of how these

evaluations were performed can be found in supplemental material.

7.1 Dataset
We created two datasets of difficult knot embeddings: Knot128,

which contains random embeddings of 128 distinct isotopy classes

from KnotPlot’s “knot zoo,” and Trefoil100, which contains 100

random embeddings of the trefoil knot (Figure 14). We also used the

Freedman unknot (Figure 2, top left), which is a standard “challenge

problem” from the knot energy literature [Scharein 1998, Section

3.3]. To examine scaling under refinement, we performed regular

refinement on knots from each of these sets.

Knot128 Trefoil100

Fig. 14. To evaluate performance, we built a “stress test” dataset of 128
random embeddings of different knot classes (left) and 100 random embed-
dings of the trefoil knot (right). The tangent point energy drives these curves
toward much simpler embeddings, as shown here.

7.2 Performance Comparisons
We compared our fractional Sobolev descent strategy to a variety

of methods from optimization and geometry processing. Overall,

methods that use our fractional preconditioner performed best, espe-

cially as problem size increases. We first ran all methods on several

resolutions of a small set of test curves (Figure 18); we then took

the fastest methods, and ran them on all 228 curves from our two

datasets (Figure 19). For simplicity we did not use hierarchical accel-

eration in our method (and instead just solve dense systems), which

gave a significant performance advantage to alternative methods

(which are based on sparse solves). Even with this handicap, the frac-

tional approach outperformed all other methods; as indicated in Fig-

ure 20, hierarchical acceleration would widen this gap even further.

Importantly, previous methods also have a

much higher failure rate at untangling diffi-

cult curves such as those in our dataset (Fig-

ure 19). Further, cases on which the fractional

approach itself fails generally contain near-

intersections in the initial configuration (in-

set), which also lead to failures in most or all

other methods.

Note that some previous methods do not

directly handle hard nonlinear constraints;

for these methods we perform an apples-

to-apples comparison by replacing—in all
methods—hard edge length constraints with a

soft elastic penalty (see supplemental material

for further details).

Knot untangling methods. We first compared to two well-known

methods for knot untangling (Figure 15): KnotPlot, based on the so-

called symmetric energy, and shrink on no overlaps (SONO) [Pierański
1998] which performs a local iterative projection in the spirit of

contemporary position-based dynamics [Müller et al. 2007]. Both

methods successfully untangle the Freedman knot, but only after

tens of thousands of iterations [Scharein 1998, Figure 7.6]. The basic

reason is that, like L2 descent, such methods focus on reduction of

local error, making global convergence quite slow.

1st-ordermethods. Figure 16 indicates that basic 1st-order schemes

like ordinary L2 gradient descent, L-BFGS using 10, 30, or 100 vec-
tors, and nonlinear conjugate gradients à la Fletcher and Reeves

[1964] exhibit poor performance relative to our fractional scheme

KnotPlot
2500 iterations

fractional
Sobolev

120 iterations

SONO
2500 iterations

Fig. 15. Our fractional Sobolev strategy is dramatically more efficient than
previous methods for knot untangling—here we untangle the unknot from
Figure 2. Neither KnotPlot nor SONO converged after several hours.
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H2

(implicit, Newton)

H2

(implicit, frozen)

H2

(explicit)
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(stochastic)
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Fig. 16. Across a wide variety of descent methods and inner products, our
fractional Sobolev approach does significantly better both in terms of energy
reduction per iteration (middle left) and real-world run time (middle right).
At top we show results for an equal amount of compute time.

in terms of both wall clock time and number of iterations. This

example also indicates that for 1 < s < 2, the next smallest or

largest integer Sobolev preconditioners (H1
and H2

) underperform

the fractional H s
preconditioner, whether using explicit (forward)

or implicit (backward) Euler. We solve the backward Euler update

equation using Newton’s method, either by updating the Hessian

for each Newton step (“Newton”), or “freezing” the Hessian at the

beginning of the time step (“frozen”). If Newton’s method fails to

converge within a few (10) iterations, the step size is halved and the

solve is reattempted. We also tried stochastic gradient descent (SGD)

with respect to the L2 inner product, implemented by subsampling a

fixed proportion (25% in our trials) of edge pairs (u,v) for each edge

u in each iteration for energy and gradient evaluation. This method

did far worse than any other scheme we tried. SGD with respect to

H s
works better, but the speedup from stochastic evaluation does

not compensate for the poor quality of the descent direction.

2nd-order methods. Second-order schemes like Newton’s method

can be adapted to nonconvex problems by projecting the Hessian

onto a nearby positive-semidefinite matrix. Since a global projection

is prohibitively expensive, a heuristic sometimes used in geometric

optimization is to project and sum up the Hessians of each local

energy term [Teran et al. 2005]; in our case we can decompose the

energy into the edge-edge terms from Equation 17. Though this

heuristic can work well for, e.g., elastic energies, it does not appear to
work very well for the tangent-point energy, and for larger examples

had among the slowest run times of any scheme we tried (Figure 18).

convexified Newtonconvexified NewtonL2 projected gradientL2 projected gradientinitial curve
(knot0064_1024E)
initial curve
(knot0064_1024E)

AQPAQP

H1 projected gradientH1 projected gradient

Hs projected gradientHs projected gradient Hs NCGHs NCG Hs L-BFGSHs L-BFGS

H1 NCGH1 NCG H1 L-BFGSH1 L-BFGS H2 projected gradientH2 projected gradient

Fig. 17. The tangent point energy appears to have relatively few local min-
ima; hence, different descent strategies tend to find the same local minimiz-
ers (though some, like L2, do not find solutions in a reasonable amount of
time). See supplemental material for several hundred more examples.

Quasi-Newton methods. Several recent methods from geometry

processing apply Sobolev-like preconditioning to elastic energies,

such as those used for shape deformation or surface parameter-

ization [Kovalsky et al. 2016; Claici et al. 2017; Zhu et al. 2018].

Since the highest-order term in such problems often looks like a

Dirichlet energy, H1
preconditioning via the Laplacian ∆ can be an

effective starting point for optimization (as discussed in Section 4.1).

However, such preconditioners do not perform as well as our frac-

tional preconditioner, since they are not as well-matched to the

order of the differential dℰαβ . For instance, as seen in Figure 18, the

AQP strategy of Kovalsky et al. [2016] significantly underperforms

our preconditioner when the Laplacian is used as the quadratic

proxy; using our fractional operator as the quadratic proxy improves

performance—but of course requires the machinery introduced in

this paper. Another possibility is to use Laplacian-initialized L-BFGS

(in the spirit of Zhu et al. [2018]); we found this strategy works a

bit better than AQP, but again not as well as the fractional precon-

ditioner. We also considered several variants of these strategies,

such as applying Nesterov acceleration, and combining nonlinear

conjugate gradients (NCG) à la Polak and Ribiere [1969] or L-BFGS

with our fractional preconditioner. For hard constraints we advocate

the use of our fractional (H s
) projected gradient scheme (as detailed

in Section 5); if soft constraint enforcement is acceptable, then L-

BFGS or H s
-preconditioned NCG are both good options: the former

converges faster near minima; the latter gets stuck less often.

7.3 Local minimizers
As seen in Figure 17, the local minimizers found via our fractional

descent strategy generally appear to be the same as with other

schemes, up to rigid motions. Hundreds more such examples can

be found in the supplemental material. Very rarely, two different

methods produced local minimizers that were identical up to a

reflection; such amphichiral pairs exist in some knot classes [Liang

and Mislow 1994], but of course have the same energy.
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Fig. 18. We compared our descent strategy to a variety of 1st-order, 2nd-order, and quasi-Newton strategies, using both hard constraints (top) and a soft
penalty (bottom) to preserve length. Here we show energy versus both time and iteration count for several resolutions of the initial curve from Figure 2; tests
on additional curves yield very similar results (see supplemental material). Note that we achieve the best real-world clock time—even though we compare a
dense implementation of our method (without hierarchical acceleration) to sparse versions of other schemes.
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hard constraint methods
Laplacian (H1) projected gradient [sparse]

bi-Laplacian (H2) projected gradient [sparse]

fractional (Hs) projected gradient [dense]

standard (L2) projected gradient [sparse]
Newton (convexified)

hard constraint methods
Laplacian (H1) projected gradient [sparse]

bi-Laplacian (H2) projected gradient [sparse]

fractional (Hs) projected gradient [dense]

standard (L2) projected gradient [sparse]
Newton (convexified)

Fig. 19. We used a dataset of about two hundred difficult knot embeddings to evaluate the performance of our strategy compared to the next most competitive
methods. Even without hierarchical acceleration, our fractional strategy was significantly faster—and succeeded at untangling a much larger fraction of knots.
Here we plot the time it took for each method to get within 1.1x of the reference energy, against the time taken by our fractional strategy. Results have been
split into hard/soft constraint enforcement (top/bottom rows), and iteration count/wall clock time (left/right columns). At the top of each plot we show the
number of failures after 24 minutes of compute time—stuck indicates a failure of line search to make progress due to collisions; nonconvergent means the
method failed to get below 1.1x of the reference energy.
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Fig. 20. A comparison of runtime per iteration on samplings of the same
curve with increasing resolution. “Exact” indicates no acceleration, “Barnes-
Hut” indicates accelerated gradients only, and “Multigrid” indicates all
accelerations enabled, with and without constraint projection. Reported
numbers are averages over up to 500 iterations or until convergence.

7.4 Scaling behavior
We compared per-iteration costs of the unaccelerated scheme, a

scheme using only Barnes-Hut (Section 6.1), and the full acceleration

scheme described in Section 6—see Figure 20. With full acceleration

we observe near-linear scaling, whereas schemes that directly solve

the dense system exhibit super-quadratic scaling and quickly run

out of memory. Note that constraint projection with direct solvers

comes nearly for free, since a factorization of Equation 23 can be

reused to solve Equation 22. In contrast, no reuse is possible in the

fully accelerated scheme, making constraint projection relatively

expensive. Disabling this step further speeds up the accelerated

scheme, but leads to constraint drift over time. Alternative methods

for constraint enforcement (such as soft penalties, as noted above)

might hence provide further improvement.

8 RESULTS AND APPLICATIONS
Given how ubiquitous plane and space curves are in areas like

geometry, graphics, robotics, and visualization—and how natural it

is to want to avoid collision of such curves—our method provides a

useful computational framework for a wide variety of tasks. Here

we explore some preliminary applications that we hope will inspire

future work. All other examples in this section completed within a

few minutes, except for the 3D curve packing example where we

allowed curves to grow longer for several hours as a stress test. We

first describe constraints and potentials used for these examples.

8.1 Constraints and Potentials
A key feature of our optimization framework is that it not only

efficiently minimizes knot energies, but that it can do so in con-

junction with fairly arbitrary user-defined constraints and penalties

(Section 5.3). This opens the door to a rich variety of computational

design applications beyond the basic “knot untangling” that has

been the focus of previous work. For the applications that will be

explored in Section 8, we consider the following constraints:

• Barycenter. This fixes the barycenter of the curve to a point
x0 via the constraint Φbarycenter

(γ ) :=
∑
I ∈E ℓI (xI −x0). In the

absence of other constraints, this eliminates the null space of

globally constant functions discussed in Appendix A.

Fig. 21. Allowing curves to slide freely over constraint surfaces (left) enables
design tasks like arranging networks of muscles or muscle fibers (right).

• Length. The repulsive curve energy naturally wants to make

the curve longer and longer. A simple way to counteract this

is via a total length constraint Φ
length

(γ ) := L0 −
∑
I ∈E ℓI ,

where L0 is the target length.
• Edge Length. We can also constrain the lengths of each

individual edge, allowing only isometric motions. This entails

a constraint Φ
length,I (γ ) := ℓ

0

I − ℓI for each edge I , where ℓ0I
is the target edge length.

• Point Constraint. To fix the position of a vertex i to the

point xi ∈ R
3
, we can add the constraint Φpoint,i (γ ) := γi −xi .

• SurfaceConstraint.To keep a point of the curve constrained
to an implicit surface f (x) = 0, we can add the constraint

Φ
surface,i (γ ) := f (γi ).

• Tangent Constraint. We can force the tangent TI of an

edge I to match a unit vector X ∈ R3 via the constraint

Φtangent,I (γ ) := TI − X .

In several applications, we progressively increase or decrease the

target length values L0 or l
0

I ; the next constraint projection step then

enforces the new length. We also consider the following penalties:

• Total length. A simple energy is the total curve length,

which provides a “soft” version of the total length constraint.

Discretely, this energy is given by
ˆℰ
length

(γ ) :=
∑
I ∈E ℓI .

• Length difference. This energy penalizes differences in ad-

jacent edge lengths, given by
ˆℰ
diff
(γ ) =

∑
v ∈Vint

(ℓIv − ℓJv )
2
,

where Vint denotes the set of “interior” vertices with degree

2, and Iv and Jv are the indicent edges to v .
• Surface potential. Given a surface M ⊂ R3, we use the

energy ℰM (γ ) :=
∫
γ

∫
M 1/|xM −γ (xγ )|

β−αdxM dxγ to avoid

collisions. This is effectively a Coulomb potential of the same

order as ℰαβ onM . In the discrete setting,M is a triangulated

surface, and we use a BVH onM to accelerate the evaluation

of ℰM and its differential, in a similar fashion to ℰαβ .
• Field potential. Given a fixed unit vector field X on R3,

the energy ℰX (γ ) :=
∫ L
0
|T (x) × X (γ (x))|2 dxγ encourages γ

to run parallel (or anti-parallel) to X . We discretize this as

ˆℰX (γ ) :=
∑
I ∈E ℓI |TI × X (xI )|

2
.

Note that the energies considered here involve lower-order deriva-

tives than those in ℰαβ , and do not therefore have a major effect on

the stiffness of the overall system. Hence, we can continue to use

the fractional Sobolev inner product without modification to define

an efficient gradient flow.
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Fig. 22. Just as repulsive potentials are commonly used to find equally-
distributed points, we can compute collections of equally-spaced curves
(here constrained to a region via a fixed curve potential).

Fig. 23. By penalizing proximity to a fixed surface, we can pack curves
into any domain. Progressively increasing edge length forces curves to
maintain a balance between surface avoidance and self-avoidance. (Here
we render curves with a non-circular cross section, which is not modeled by
the energy.)

8.2 Curve Packing
Packing problems (such as bin packing) appear throughout geometry

and computer graphics, playing an important role in, e.g., 2D layouts

for manufacturing or UV atlas generation. An adjacent problem is

generation of regular sampling patterns, e.g., blue noise sampling

via Poisson disk rejection. The ability to optimize large families

of repulsive curves enables us to solve analogous “curve packing”

problems—for instance, in Figure 22, we use a fixed boundary curve

to pack disks of increasing length; likewise, in Figures 1 and 23,

we use a surface penalty to pack increasingly long curves into a

target region. Figure 24 likewise packs increasingly long curves on

a surface. Going the opposite direction, we can also decrease length
while encouraging repulsion to generate clean illustrations that are

difficult to draw by hand (Figure 25). Finally, by constraining only

parts of curves to lie on surfaces, we can design biologically-inspired

curve networks such as muscle fibers (Figure 21), which are attached

to objects at their endpoints but are otherwise free.

8.3 Graph Drawing
A basic problem in data visualization is drawing graphs; a typical
approach is to use a force-based layout that seeks to avoid, e.g., col-
lisions between nodes, or over/under-extension of edges [Fruchter-

man and Reingold 1991]. Our framework makes it easy to optimize

the geometry of the edges themselves, opening the door to graph

layouts that are both more compact and more legible (Figure 26). We

can also use this machinery to obtain legible drawings of nonplanar

graphs, by perturbing a planar embedding (Figure 27); here, the

Fig. 24. Patterns obtained by constraining a collection of repulsive curves
to a surface and increasing their lengths (initial states shown above their
final configurations).

output

input

sketch #1

sketch #2

Fig. 25. Loops arising in topology can be difficult to draw by hand—the
sketches at left were done by Nathan Dunfield to illustrate Dehn-Thurston
coordinates. At right we generate an equispaced version of this curve by
flowing a rough sketch, subject to an implicit surface constraint.
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Fig. 26. Traditional 2D graph drawing algorithms based on nodal proximity
may cause edges to cross (left) or position nodes extremely close together
(center); these layouts were produced by the popular Graphviz library [Ellson
et al. 2001]. By treating edges as repulsive curves, we can obtain graph
drawings that are both more compact and more legible (right).

ability to preserve lengths conveys information about edge weights.

A particularly interesting graph embedding problem is the design

of synthetic hydrogel vascular networks [Grigoryan et al. 2019]; Fig-

ure 28 shows a simple example where we optimize a multivascular

network (starting from subgraphs of a tet mesh and its dual).
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Fig. 27. Isometric embedding: by jittering 2D drawings of non-planar graphs
(which necessarily have crossings), curve repulsion with length constraints
yields nicely spaced embeddings in R3 with prescribed edge lengths.

initial initialoptimized

optimized

Fig. 28. Left: a crude initial topology for a synthetic vascular network (left)
is optimized to achieve more uniform delivery of nutrients throughout
a volume. Right: plotting the maximum collision-free thickness helps to
visualize the improvement in uniformity.

L

Note that at junctures between more than

two edges, the tangent-point energy will al-

ways be large (since three or more edges can-

not be collinear), rapidly forcing vertices away

from each other. This can be counteracted by

constraining their edge lengths, forcing the

vertices to lie on spheres of constant radii around the junctures.

8.4 Self-Avoiding Splines
Beyond standard Bézier input, sophisticated tools have been de-

veloped for drawing spline curves—but do not consider the basic

constraint of ensuring that curves do not cross themselves (which is

often desirable for physical or aesthetic reasons). For instance, Fig-

ure 30 (center) shows the interpolation of a set of control points by

k-curves [Yan et al. 2017], which underpin one of the basic drawing

Fig. 29. As with Bézier curves, we can also control curve tangents at both
interior and endpoints. Here we flow a polygonal curve (left), to a smooth
interpolant with fixed points (red), and fixed points and tangents (blue).

k-curves ours

Fig. 30. Standard curve interpolation methods in 2D drawing programs can
cause curves to self-intersect (center), even when the control polygon (left)
does not. By starting from the control polygon and constraining the control
points, we obtain a smooth, non-intersecting interpolant (right).

tools in Adobe Illustrator (the Curvature Tool). By simply apply-

ing point constraints at the control points, and letting the length

increase under our repulsive flow, we obtain a nice interpolating

curve without self-intersection (Figure 30, right). In this context we

can also use our tangent constraint to control the behavior of such

a curve at open endpoints (Figure 29).

8.5 Multi-agent Path Planning
In robotics, numerous algorithms have been developed for the prob-

lem of multi-agent path planning [de Wilde et al. 2013], wherein

multiple agents must travel from fixed start to end locations with-

out colliding with the environment or each other. Many algorithms

operate on a discrete grid or graph [Yu and LaValle 2013], which

quantizes the solution space and does not penalize near-collisions;

such trajectories may therefore not be robust to sensing or control

error. By treating path planning as a space-time optimization of

continuous curves with fixed endpoints, we can use curve repulsion

to find (or refine) trajectories that maximize collision avoidance,

making them more resilient to error (Figure 31). Finding such tra-

jectories in n dimensions is equivalent to optimizing a braid in

n + 1 dimensions; since neither the size of the curve nor the cost

tim
e

initial configuration

target configuration

Fig. 31. Top-left: In this path planning scenario, an initial trajectory brings
the four agents dangerously close together. Bottom-left: By treating trajecto-
ries as curves in space-time, our system provides solutions that maximally
avoid collisions, making them more robust to control errors. Right: Finding
2D trajectories is equivalent to optimizing a 3D braid with fixed endpoints
constrained to an extrusion of the given environment. This same construc-
tion can easily be generalized to 3D environments.
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input

input output

output

Fig. 32. Encouraging curve tangents to align with a given vector field im-
prove the quality of streamline visualization. Here, a random set of curve
segments (top) aligns itself with a rotational vector field; we can also opti-
mize randomly sampled streamlines (bottom) to improve their spacing.

of a BVH/BCT depends strongly on dimension, this strategy easily

generalizes to three (or more) dimensions.

8.6 Streamline Visualization
A commonway to visualize vector fields is by tracing integral curves

or streamlines; significant effort has gone into algorithms that pro-

vide uniform spacing (e.g., by incrementally constructing a Delaunay

triangulation [Mebarki et al. 2005]), though such methods can be

difficult to generalize to 3D volumes or vector fields on surfaces. We

can generate nicely-spaced streamlines by adding a field alignment

potential to the tangent-point energy—for instance, in Figure 32

we start with a set of random curve segments, which automatically

coalesce into streamlines.

9 LIMITATIONS AND CONCLUSION
Since we approximate the tangent-

point energy via numerical quadra-

ture, it is possible for a very coarse

curve to pass through the energy bar-

rier. However, crossings can be pre-

vented via continuous time collision

detection (Section 5.4); to maintain

accuracy one could also try adding

more quadrature points at the previous time step if any collisions

occur. For the design tasks in this paper, we did not find such strate-

gies necessary. Also on very coarse meshes, edges that are extremely

close together can temporarily get stuck in a near-crossing configu-

ration (see inset). In this situation, the term k2
4
from the low-order

term (Equation 13) is very large, causing the inverse ofA—and hence
the Sobolev gradient—to be very small. One idea is to use adaptive

quadrature for edge pairs that are close in space, which would better

resolve the near-infinite high-order term and hence push the curve

apart. Given the scalability of our approach, another pragmatic

solution is simply to increase the overall resolution.

There aremanyways to further accelerate our solver. For instance,

we did not vectorize our code, parallelized only the matrix-vector

multiply in non-well-separated leaves of the BCT, and did not make

use of the GPU. For small time steps one might re-fit rather than

re-build the BVH; likewise, it may be beneficial to incrementally

Fig. 33. Untangling a pair of earbuds via repulsion (see supplemental video).

update the BCT. Better line search or descent direction heuristics

may also reduce the overall number of steps.

Finally, a natural question is how to extend these techniques to

surface repulsion. The tangent-point energy seems attractive here

since (unlike Möbius energy) it needs only Euclidean rather than

geodesic distances. One now has double integrals over surfaces, but
might still achieve efficiency via hierarchical acceleration. In general,

we are hopeful our investigation will provide valuable insight into

using repulsive energies for computational design.
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A SOBOLEV-SLOBODECKIJ GRADIENT
How do we obtain an ideal gradient flow for the tangent-point

energy (i.e., one that behaves like an ODE)? Unlike standard energies
(elastic energy, Willmore energy, etc.), an answer to this question

has not yet been worked out formally. However, we can make an

educated guess based on past wisdom about curve energies.

In general, suppose an energy ℰ has a (Fréchet) differential dℰ . To
determine the highest-order derivatives, it is not necessary to derive

an explicit expression for dℰ as we did for the Dirichlet energy

(Section 4.1). Instead, we can reason about the associated function

spaces: as long as we know the order of dℰ , we can “cancel” spatial

derivatives by constructing an inner product of the same order.

For the tangent-point energy, existing analysis gives the maxi-

mum order of derivatives in ℰαβ (Appendix A.2), from which we

deduce the order of dℰαβ (Appendix A.3). What is unusual here is

that the number of derivatives is fractional (Appendix A.1.2); to

build an inner product of appropriate order, we therefore start with

the fractional Laplacian (Section A.1), and formulate an analogous

operator for embedded curves. Taking further (integer) derivatives

then yields an operator of the same order as dℰαβ (Appendix A.4).

From there, we use additional heuristics (inspired by numerical

experiments) to choose a low-order term that makes this operator

well-behaved and invertible (Appendix A.4.2), allowing us to use it

in the definition of a fractional Sobolev gradient (Section 4.2).

A.1 Fractional Analysis
We begin with a brief discussion of Sobolev spaces of fractional
order k < Z; for further background, see [Di Nezza et al. 2012].

Fig. 34. Fractional Laplacian
of f for several values of σ .

A.1.1 Fractional Differential Opera-
tors. Whereas standard differential op-

erators L are purely local (i.e., the value
of (Lu)(x) depends only on an arbitrar-

ily small neighborhood of u(x)), frac-
tional differential operators are nonlo-
cal ((Lu)(x) can depend on the value

of u at any point y). Since the tangent-
point energy is nonlocal, it will also

have nonlocal derivatives. Hence, find-

ing an inner product well-matched to
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its gradient flow entails constructing

an appropriate fractional differential operator—an important ex-

ample in our setting is the fractional Laplacian (−∆)σ on Rn ,
which is commonly defined by taking powers of the eigenvalues

in the spectral expansion. For σ ∈ (0, 1) and all sufficiently regular

u,v : Rn → R, the operator can also be expressed via the integral

⟨⟨(−∆)σu,v⟩⟩ = C

∬
Rn×Rn

u(x)−u(y)

|x − y |σ
v(x)−v(y)

|x − y |σ
dxdy

|x − y |n
, (24)

where the constant C ∈ R depends only on n and σ [Kwaśnicki

2017]. The behavior of this operator is illustrated in Figure 34.

A.1.2 Fractional Sobolev Spaces. There are two common ways to

understand Sobolev spaces of fractional order. One is to consider the

Fourier transform of the Laplacian ∆, leading to the Bessel potential
spaces H s ,p

:= (−∆)−s/2(Lp ) [Triebel 1983, Section 2.2.2]. For us,

however, this viewpoint helps only to understand the caseW s ,2
.

The other, essential for studying the tangent-point energy, is via

the Sobolev-Slobodeckij spacesW k+σ ,p
. Functions u in these spaces

look like functions in an ordinary Sobolev space, but with a non-

local regularity condition on the highest-order derivative u(k). In
particular, suppose we write s = k + σ for k ∈ Z≥0 and σ ∈ (0, 1).
Then, on an n-dimensional Riemannian manifoldM , one defines

W k+σ ,p (M) :=
{
u ∈W k ,p (M)

�� [u(k )]W σ ,p < ∞
}
.

The expression in square brackets is the (Gagliardo) semi-norm

[u]W σ ,p :=

(∬
M2

����u(x)−u(y)d(x,y)σ

����p dx dy

d(x,y)n

)
1/p
,

where d(x,y) is the shortest distance between x and y in M . Just

as a Lipschitz function is more regular than an arbitrary continu-

ous function without being differentiable, a function inW k+σ ,p
is

more regular than one inW k ,p
, without getting a whole additional

derivative (i.e.,W k+1,p ⊊W k+σ ,p
). Figure 35 shows an example.

Dual Space. Just as the dual of the classical Sobolev spaceW k ,p

isW −k ,q (where 1/p + 1/q = 1), the dual of the Sobolev-Solobdeckij

spaceW s ,p
can be characterized as a space with “−s derivatives” in

the sense that the fractional Laplacian (−∆)s identifiesW s ,p
with

W −s ,q := (W s ,p )∗ [Di Nezza et al. 2012, Remark 2.5].

A.2 Energy Space
To determine the order of the tangent-point differential dℰαβ , we
first consider the biggest space of functions for which the energy

ℰαβ is well-defined. Blatt [2013] gives the following condition on the

differentiability of the curve γ (see also Blatt and Reiter [2015]):

Fig. 35. The curves (x , |x |σ ) are examples of curves inW σ ,p (left). Their
1st derivatives are not Lp integrable (right).

Lemma A.1. Suppose α > 1 and β ∈ [α +2, 2α +1), let s B β
α −

1

α ,
and consider an embedded curve γ ∈ C1(S1;R3). Then γ has finite
tangent point energy ℰαβ (γ ) if and only if, up to reparameterization,
γ ∈W s ,α (S1;R3).

In other words, the tangent point energy is well-defined only for

curves that have an sth derivative, and for which the α th power of

that derivative is integrable—for example, it will not be finite for a

polygonal curve. The somewhat unusual situation is that s is not an
integer: instead, it is a fractional value in the interval (1, 2).

A.3 Order of the Differential
In general, if an energy ℰ is defined for functions in a space X ,
then its differential dℰαβ will have the prototype dℰ : X → X ∗,
where X ∗ is the dual space. For instance, the Dirichlet energy ℰD
operates only on functions f ∈ H1

. Hence, its differential is a map

dℰD : H1 → (H1)∗, which we saw explicitly in Section 4.1: given

a function f ∈ H1
, dℰD |f produces a linear map ⟨⟨−∆f , ·⟩⟩ from

functions in H1
to real numbers, i.e., an element of (H1)∗.

In the case of the tangent point energy, then, we get that dℰαβ is a

map fromW s ,p
to the dual space (W s ,p )∗ =W −s ,q (Section A.1.1).

Hence, dℰαβ is a “differential operator” of order 2s , i.e., it reduces the
differentiability of its argument by 2s . To get a well-behaved flow,

we should therefore pick an inner product of the same order, and

(for computational purposes) is reasonably easy to invert.

A.4 Fractional Inner Product
Just as one uses the Laplace operator ∆ to define integer Sobolev

inner products, we use a fractional operator to define a fractional

Sobolev inner product. For an embedded curveγ : M → R3, one idea
is to start with the 1D fractional Laplacian (−∆)σ . Alternatively, we
can define an analogous operator by replacing the intrinsic distance

|x − y | on the right-hand side of Equation 24 with the extrinsic

distance |γ (x) − γ (y)| between points in the embedding. This latter

construction yields an operator Lσ defined by the relationship

⟨⟨Lσu,v⟩⟩ :=

∬
M2

u(x)−u(y)

|γ (x)−γ (y)|σ
v(x)−v(y)

|γ (x)−γ (y)|σ
dxγdyγ

|γ (x)−γ (y)|
(25)

for all sufficiently regular u,v : M → R. For any σ ∈ (0, 1), both
(−∆)σ and Lσ are fractional operators of order 2σ . But the benefit of
Lσ is that it requires only Euclidean distances—which for embedded

curves are easier to evaluate than geodesic distances. Moreover,

building a fractional Laplacian via an explicit Fourier transform is

prohibitively expensive, requiring a full eigendecomposition of a dis-

crete Laplace matrix. In contrast, integral expressions like Equations

24 and 25 can easily be evaluated à la Section 5.2.3, and accelerated

using hierarchical techniques à la Section 6.

A.4.1 High-Order Term. To get an inner product of the same order

as dℰαβ , we compose the operator Lσ with further (integer) deriva-

tives𝒟. In particular, Lemma A.1 implies that s = 1+σ for σ ∈ (0, 1).
Hence, to define an operator Bσ of order 2s = 2σ + 2, we apply two

additional derivatives to Lσ , i.e., we say that

⟨⟨Bσu,v⟩⟩ := ⟨⟨Lσ𝒟u,𝒟v⟩⟩
for all sufficiently regular u,v : M → R. This relationship provides

the definition of Bσ in Equation 12.
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A.4.2 Low-Order Term. As discussed in Section 4.2.2, the operator

Bσ is not invertible. We hence add the low-order term B0σ from

Equation 13. Since Bσ and B0σ exhibit the same scaling behavior

under a rescaling of γ , the behavior of the resulting gradient flow
will not depend on the global scale. To see why, consider a rescaling

of the curve γ 7→ cγ by a factor c > 0. Then 𝒟 scales by a factor

1/c , the term 1/|γ (x) −γ (y)|2s+1 scales by 1/c2s+1, and the measure

dxγdyγ scales by c2. Then Bσ scales by c2/(c2c2s+1) = 1/c2s+1, and

Lσ scales by just c2/c2s+1. Hence, to get B0σ we multiply Lσ by k2
4
,

which scales like 1/c2 (since it has c2 in the numerator, and c4 in
the denominator). More generally, one could use kαβ for any α, β

such that α − β = −2. This low-order term also tends to accelerate

the evolution of the flow by preserving near-constant motions that

slide near-tangentially and do not tend toward collision (Figure 7).

B ACCELERATION SCHEME

B.1 Energy and Differential Evaluation
B.1.1 Bounding Volume Hierarchy. To build the BVH we first con-

struct tangent-points pI := (TI , xI ) ∈ R
6
for each edge I ∈ E. We

then cycle through all six coordinates, choosing a splitting plane

that minimizes the sum of squared diameters of the two child bound-

ing boxes. Below a user-specified threshold, all remaining tangent-

points are placed in a single leaf node. In each node𝒩 we also store

data needed for Barnes-Hut. Specifically,

L𝒩 :=
∑
I ∈𝒩
ℓI , x𝒩 :=

∑
I ∈𝒩
ℓIxI /L𝒩 , T𝒩 :=

∑
I ∈𝒩
ℓITI /L𝒩 ,

give the total mass, center of mass, and (length-weighted) average

tangent, resp.; we will use p𝒩 := (T𝒩 , x𝒩 ) to denote the corre-

sponding tangent-point. We also store the bounding box radii r𝒩x
and r𝒩T with respect to spatial and tangential coordinates, resp.

B.1.2 Barnes-Hut Approximation. To evaluate the energy for a

tangent-point pI = (TI , xI ) ∈ R
6
with mass ℓI ∈ R, we traverse

the BVH from the root, checking at each node if a local approxima-

tion is admissable (see below). If so, we evaluate the approximation

(ℰαβ )Iℬ :=
|TI × (xI − xℬ)|

α

|xI − xℬ |β
ℓILℬ . (26)

and terminate traversal; otherwise, we sum the energy of the two

children. If we reach a leaf node ℬ, we directly add up the contribu-

tions of the edges contained in this node, i.e.,∑
J ∈ℬ

|TI × (xI − x J )|
α

|xI − x J |β
ℓI ℓJ .

Admissibility. A simple Taylor series analysis of Equation 26 in-

dicates that to keep approximation error below a user-specified

threshold ε > 0, it is sufficient to ensure that

rℬx /|xI − xℬ | ≲ ε and rℬT ≲ ε . (27)

Intuitively, if ℬ is far from the query point pI relative to its size, and
contains tangents that are close together, then the “lumped” energy

is a good approximation of the total energy between edge I and the

edges in ℬ.

Differential. Rather than differentiate our Barnes-Hut approxi-

mation of
ˆℰαβ , we approximate the differential of the (full) discrete

energy directly. Starting with the zero vector d ˆℰαβ = 0 ∈ R3 |V | , we
perform a BVH traversal for the tangent point pI associated with

each edge I ∈ E. At each admissible node ℬ and for each endpoint

ia , a = 1, 2 of I we increment the differential via

(d ˆℰαβ )ia+= Lℬ
∂

∂γia

(
ℓI ( ˆk

α
β (xI , xℬ,TI ) +

ˆkαβ (xℬ, xI ,Tℬ))
)
.

Here,
ˆkαβ is the discrete kernel defined in Equation 18; note that Lℬ ,

xℬ , and Tℬ do not depend on γi1 or γi2 , since I is not contained in

any admissible nodeℬ. At any leaf nodeℬwe add the corresponding

derivatives for all edges J ∈ ℬ.

B.2 Hierarchical Matrix-Vector Product
B.2.1 Block Cluster Tree (BCT). A BCT partitions a matrix into

low-rank blocks that approximate the original entries (Figure 12). It

is like a quadtree, except that the matrix ordering is not fixed a priori.
The basic idea is that the edges in a BVH node𝒩 correspond to a

subset of BCT rows/columns. A block of the BCT is hence specified

by a pair of nodes (𝒜,ℬ) from the BVH. To construct a BCT, we

recursively split the root block (ℛ,ℛ), whereℛ is the root of the

BVH. A block (𝒜,ℬ) is a leaf if and only if (i) it is well-separated, i.e.,
it provides a good approximation of the local double sum, or (ii) 𝒜
or ℬ contains just a few edges. Otherwise, this block is given four

children (𝒜1,ℬ1), (𝒜1,ℬ2), (𝒜2,ℬ1), (𝒜2,ℬ2), where 𝒜1,𝒜2 are

the children of 𝒜 in the BVH (and likewise for ℬ). The conditions
for being well-separated are similar to Equation 27:

max(r𝒜x , r
ℬ
x )

|x𝒜 − xℬ |
≲ ε and max(r𝒜T , r

ℬ
T ) ≲ ε, (28)

where r𝒩x and r𝒩T are the spatial and tangential radii of node 𝒩 .

B.2.2 Matrix-Vector Product. The BCT is used to accelerate amatrix-

vector product φ = Kψ via the fast multipole method. We adopt

the lowest (0th) order version of this method, which is accurate

enough for preconditioning. In particular, for any admissible leaf

node (𝒜,ℬ), the midpoints and tangents of edges in 𝒜 and ℬ are

quite coherent relative to the distance between them. Since the ker-

nel k is regular, the restriction of K to rows I ∈ 𝒜 and columns

J ∈ ℬ is hence well-approximated by

K̂𝒜ℬ := ℓ[𝒜]k(p𝒜,pℬ) ℓ[ℬ]
T,

where ℓ[𝒩 ] ∈ R |𝒩 | is the vector of edge lengths in𝒩 . Using this

rank-1 approximation, matrix-vector multiplication amounts to a

single dot product (with ℓ[ℬ]), followed by a scalar-vector product.

To perform a multiplication, we start with the zero vector φ =

0 ∈ R |E | and iterate over all BCT leaves. For each admissible leaf

(𝒜,ℬ) (i.e., one which satisfies Equation 28) we perform an update

φ[𝒜] ← φ[𝒜] + K̂𝒜ℬψ [ℬ].

For inadmissible leaves, we simply sum over all edge pairs:

φI ← φI +
∑
J ∈ℬ

KI J ψ J

for all I ∈ 𝒜. To accelerate evaluation, we percolate these sums up

and down the BVH, following a standard fast multipole strategy.
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B.3 Multigrid Solver
We first sketch out a generic multigrid strategy for saddle-point

problems on a curve network; the specific solves needed for the

tangent-point energy are detailed in Appendix B.3.4.

B.3.1 Geometric Multigrid. Suppose we want to solve a linear equa-
tionAx = b. The basic idea of geometric multigrid is to use a coarser

mesh to reduce the residual of an equation on the finer mesh. Con-

sider a simple two-level hierarchy—in particular, let A0 ∈ R |V0 |× |V0 |

and A1 ∈ R
|V1 |× |V1 |

be discretizations of A on a fine and coarse

mesh, resp., and let b0 be a discretization of the function b onto

the finest mesh. Also let J1 ∈ R |V0 |× |V1 |
be a so-called prolongation

operator, which interpolates data from the coarse mesh onto the fine

mesh. Starting with any initial guess x0 ∈ R |V0 |
, we first apply a

smoothing procedure S to the system A0x0 = b0, i.e., a fixed number

of iterations of any iterative linear solver to get an improved guess

x̃0 ← S(A0, x0, b0). We then compute the residual r0 ← A0x̃0 − b0,
and transfer it to the coarse mesh via b1 ← JT

1
r0. On the coarse mesh

we solve the system A1x1 = b1 directly, and transfer the result back

to the fine mesh via y0 ← J1x1. These values are used to update our

guess via x̃0 ← x̃0 + y0, and smoothed again. If the residual is small

enough, we stop; otherwise, we repeat another such V-cycle until
convergence. More generally, one can apply this two-level strategy

to solve the linear system on the coarser level, yielding a multi-level

strategy. The size of the coarsest level is chosen so that a direct solve

at this level is more efficient than continuing to apply multigrid.

Initialization. We get an initial guess x0 by first coarsening the

fine right-hand side b0 down to the coarsest mesh. We then perform

a direct solve and prolong the solution all the way to the finest mesh,

applying smoothing after each refinement. In practice this strategy

works much better than starting with the zero vector.

Implementation Details. In practice we use a standard conjugate

gradient smoother, and typically need 6 or fewer V-cycles to achieve

a relative residual of order 10
−3
. Making the residual smaller via

further cycles (and a more accurate BCT) yields diminishing returns:

we need only a reasonable intermediate descent direction. Note that

although we build a BCT at each level, overall construction cost is

only about twice the cost at the finest level.

B.3.2 Curve Coarsening and Prolongation. To
build a multigrid hierarchy on a curve net-

work, we apply a simple coarsening scheme.

We mark alternating vertices as “black” and

“white”, and mark all endpoints and junctures

where two or more curves meet as black. The

next coarsest curve is obtained by removing

white vertices; we stop when we reach a target

size or when there are no more white nodes.

The prolongation operator J preserves values
at black vertices, and at white vertices takes

the average of the two neighboring black vertices. In our experience,

using linear interpolation based on edge lengths did not improve

multigrid performance. Coarsening need not preserve the isotopy

class of the curve network to provide useful preconditioning for the

next level of the hierarchy.

B.3.3 Multigrid for Saddle Point Problems. Our constraint scheme

entails solving saddle point problems of the form[
A CT

C 0

] [
x
λ

]
=

[
a
0

]
, (29)

where A is the inner product (for vector-valued functions) (see

Equation 19), and C is the constraint matrix (Section 5.3.1); the

data a ∈ R3 |V | depends on the problem being solved. We follow

the approach of Braess and Sarazin [1997], who note that for the

structurally identical Stokes’ problem (where A and C are replaced

by the Laplace and divergence operators, resp.), applying multigrid

to the whole matrix does not work well. Instead, let P ∈ R3 |V |×3 |V |

be a projection onto the null space of C, i.e., CP = 0 and P2 = P.
Then by construction, any solution y to the equation

PTAPy = PTa (30)

yields a vector x = Py within the constraint space Cx = 0 that satis-

fies our original equation. Equation 30 is therefore the system that

we actually solve via multigrid. In particular, we use the projection

P := CC†, where † denotes the (Moore-Penrose) pseudoinverse

C† := (CCT)−1CT.

Since our constraints are typically sparse, we can factorize the inner

term CCT
(once per time step) to further accelerate computation.

Note that one must build a constraint matrix Ci and projection

matrix Pi at each level i of the multigrid hierarchy.

B.3.4 Gradient Solve and Constraint Projection. With these pieces

in place, we can apply multigrid to compute the constrained gradient

(Equation 22), and perform constraint projection (Equation 23).

Gradient. To compute the gradient, recall thatA = B0+B. Amatrix-

vector product B0u can be expressed as

B0u = ET(diag(K1) − K)Eu (31)

where diag(v) is a diagonal matrix with entries v, E ∈ R |E |× |V |

averages values from vertices to edges (i.e., (Eu)I = 1

2
(ui1+ui2 )), and

KI J = (k
2

2σ+5(xI , x J ,TI ) + k
2

2σ+5(x J , xI ,TJ ))ℓI ℓJ . (32)

We use the method from Appendix B.2 to efficiently perform the

products K1 and B0u, and ordinary sparse matrix multiplication

for E. The high-order part B is expressed exactly as in Equation 31,

except that (i) we replace the averaging operator E with the dif-

ference operator D, (ii) we define a different kernel matrix K by

replacing k2
2σ+5 with k0

2σ+1 in Equation 32, and (iii) just like A,
K acts blockwise on the three components of vector-valued data

x ∈ R3 |E | (à la Equation 19).

Constraint Projection. To use our multigrid solver for constraint

projection, we apply a simple transformation to Equation 23 that

gives it the same form as Equation 29. In particular, we solve[
A CT

C 0

] [
y
µ

]
=

[
Az
0

]
,

where z := C†b, and b is the lower block of the right-hand side of

Equation 23. The final result is then given by

x = z − y. (33)
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