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Abstract

Spiking neural networks (SNNs) are well suited for spatio-temporal learning and
implementations on energy-efficient event-driven neuromorphic processors. How-
ever, existing SNN error backpropagation (BP) methods lack proper handling of
spiking discontinuities and suffer from low performance compared with the BP
methods for traditional artificial neural networks. In addition, a large number of
time steps are typically required to achieve decent performance, leading to high la-
tency and rendering spike based computation unscalable to deep architectures. We
present a novel Temporal Spike Sequence Learning Backpropagation (TSSL-BP)
method for training deep SNNs, which breaks down error backpropagation across
two types of inter-neuron and intra-neuron dependencies and leads to improved
temporal learning precision. It captures inter-neuron dependencies through presy-
naptic firing times by considering the all-or-none characteristics of firing activities,
and captures intra-neuron dependencies by handling the internal evolution of each
neuronal state in time. TSSL-BP efficiently trains deep SNNs within a much short-
ened temporal window of a few steps while improving the accuracy for various
image classification datasets including CIFAR10.

1 Introduction

Spiking neural networks (SNNs), a brain-inspired computational model, have gathered significant
interests [9]. The spike-based operational principles of SNNs not only allow information coding
based on efficient temporal codes and give rise to promising spatiotemporal computing power but
also render energy-efficient VLSI neuromorphic chips such as IBM’s TrueNorth [1] and Intel’s
Loihi [6]. Despite the recent progress in SNNs and neuromorphic processor designs, fully leveraging
the theoretical computing advantages of SNNs over traditional artificial neural networks (ANNs) [17]
to achieve competitive performance in wide ranges of challenging real-world tasks remains difficult.

Inspired by the success of error backpropagation (BP) and its variants in training conventional deep
neural networks (DNN5s), various SNNs BP methods have emerged, aiming at attaining the same level
of performance [4, 16, 24, 13, 21, 28, 11, 2, 3, 29]. Although many appealing results are achieved
by these methods, developing SNNs BP training methods that are on a par with the mature BP tools
widely available for training ANNSs today is a nontrivial problem [22].

Training of SNNs via BP are challenged by two fundamental issues. First, from an algorithmic
perspective, the complex neural dynamics in both spatial and temporal domains make the BP process
obscure. Moreover, the errors are hard to be precisely backpropagated due to the non-differentiability
of discrete spike events. Second, a large number of time steps are typically required for emulating
SNNs in time to achieve decent performance, leading to high latency and rendering spike based
computation unscalable to deep architectures. It is desirable to demonstrate the success of BP in
training deeper SNNs achieving satisfactory performances on more challenging datasets. We propose a
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new SNNs BP method, called temporal spike sequence learning via BP (TSSL-BP), to learn any target
output temporal spiking sequences. TSSL-BP acts as a universal training method for any employed
spike codes (rate, temporal, and combinations thereof). To tackle the above difficulties, TSSL-BP
breaks down error backpropagation across two types of inter-neuron and intra-neuron dependencies,
leading to improved temporal learning precision. It captures the inter-neuron dependencies within an
SNN by considering the all-or-none characteristics of firing activities through presynaptic firing times;
it considers the internal evolution of each neuronal state through time, capturing how the intra-neuron
dependencies between different firing times of the same presynaptic neuron impact its postsynaptic
neuron. The efficacy and precision of TSSL-BP allows it to successfully train SNNs over a very
short temporal window, e.g. over 5-10 time steps, enabling ultra-low latency spike computation. As
shown in Section 4, TSSL-BP signficantly improves accuracy and runtime efficiency of BP training
on several well-known image datasets of MNIST [15], NMNIST [19], FashionMNIST [26], and
CIFARI1O [14]. Specifically, it achieves up to 3.98% accuracy improvement over the previously
reported SNN work on CIFAR10, a challenging dataset for all prior SNNs BP methods.

2 Background

2.1 Existing Backpropagation methods for SNNs

One of the earliest SNNs BP methods is the well-known SpikeProp algorithm [4]. However, SpikeProp
and its variants [5, 10, 27] are still limited to single spike per output neuron without demonstrating
competitive performance on real-world tasks. In addition, [7, 8, 12, 20] train ANNs and then
approximately convert them to SNNs. Nevertheless, such conversion leads to approximation errors
and cannot exploit SNNs’ temporal learning capability.

Recently, training SNNs with BP under a firing rate (or activity level) coded loss function has been
shown to deliver competitive performances [16, 24, 21, 13, 28, 11, 2, 29]. Among them, [16] does not
consider the temporal correlations of neural activities and treats spiking times as noise to allow error
gradient computation. [21, 24, 28, 2] capture the temporal effects by performing backpropagation
through time (BPTT) [23]. However, they get around the non-differentiability of spike events by
approximating the spiking process using the surrogate gradient method [18]. These approximations
lead to inconsistency between the computed gradient and target loss, and thus degrade training
performance. [11] presents a BP method for recurrent SNNs based on a novel combination of a gate
function and threshold-triggered synaptic model that are introduced to handle non-differentiability
of spikes. In this work, depolarization of membrane potential within a narrow active zone below
the firing threshold also induces graded postsynaptic current. [13, 29] present spike-train level BP
methods by capturing the effects of spiking neurons aggregated at the spike train level. However, the
length of spike trains over which BP is applied need to be long enough, leading to long inference
latency and high training cost.

[25] can train SNNs over a relatively small number of time steps by adding optimization techniques
such as neuron normalization and population decoding. Since its core lies at the method of [24], it
still approximates the all-or-none firing characteristics of spiking neurons by a continuous activation
function, causing the same problems introduced before.

In this work, we propose the TSSL-BP method as a universal training method for any employed spike
codes. It can not only precisely capture the temporal dependencies but also allow ultra-low latency
inference and training over only five time steps while achieving excellent accuracies.

2.2 Spiking Neuron Model

SNNs employ more biologically plausible spiking neuron models than ANNS. In this work, we adopt
the leaky integrate-and-fire (LIF) neuron model and synaptic model [9].

Consider the input spike train from pre-synaptic neuron j to neuron i: s;(t) = >_.(») 0(t — t§f )),
J

where tg-f ) denotes a particular firing time of presynaptic neuron j. The incoming spikes are converted
into an (unweighted) postsynaptic current (PSC) a,(t) through a synaptic model. The neuronal



membrane voltage wu;(t) at time ¢ for neuron ¢ is given by

du;(t
50— i)+ R 3 i) () m

where I and 7, are the effective leaky resistance and time constant of the membrane, w;; is the
synaptic weight from pre-synaptic neuron j to neuron i, a;(t) is the (unweighted) postsynaptic
potential (PSC) induced by the spikes from pre-synaptic neuron j, and 7)(t) denotes the reset function.

The PSC and the reset function can be written as

aj(t) = (exs;)(t),  mi(t) = (v*si)(t), (2)
where €(-) and v/(+) are the spike response and reset kernel, respectively. In this work, we adopt a first
order synaptic model as the spike response kernel which is expressed as:

T aii(tt) = —a;(t) + 5;(t), 3)

where T; is the synaptic time constant.

The reset kernel reduces the membrane potential by a certain amount A g, where A is equal to the
firing threshold right after the neuron fires. Considering the discrete time steps simulation, we use the
fixed-step first-order Euler method to discretize (1) to

1
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The ratio of R and 7, is absorbed into the synaptic weight. The reset function 7 [t] represents the
firing-and-resetting mechanism of the neuron model. Moreover, the firing output of the neuron is
expressed as
sit] = H (us[t] — Vi) S
where V;y, is the firing threshold and H (-) is the Heaviside step function.

3 Methods

3.1 Forward Pass

Without loss of generality, we consider perform-
ing BP across two adjacent layers [—1 and [ with D) ath O u® o

N;_; and Nj neurons, respectively, in a fully- 7777 | ccem . mmm: .
connected feedforward SNNs as shown in Fig-
ure 1. The procedure can be also applied to con-
volutional and pooling layers. Denote the presy-
! T
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where w, ’ is a column vector of weights from
all the neurons in layer [ — 1 to the neuron ¢ Figure 1: Forward evaluation pass of SNNs.
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T
ing output spike trains of the [ layer neurons respectively by w(!)[t] = uy) [t],--- ,ug\l,)l [t]| and

T
sO[t] = [sgl) [t],---, sg\lg [t]} , where variables associated with neurons in the layer  have [ as the
superscript.
The forward propagation between the two layers is described as

a" V[ =(exs""N[, wP[=01- Ti)u“) t—1+Wal "V + (v« sY)[1],

sV = H (u(l) [t — Vth) . ©



In the forward pass, the spike trains s/ ~1)[t] of the [ — 1 layer generate the (unweighted) PSCs
a!~V[t] according to the synaptic model. Then, a’~1)[t] are multiplied the synaptic weights and
passed onto the neurons of layer /. The integrated PSCs alter the membrane potentials and trigger the
output spikes of the layer [ neurons when the membrane potentials exceed the threshold.

3.2 The Loss Function

The goal of the proposed TSSL-BP method is to train a given SNN in such a way that each output
neuron learns to produce a desired firing sequence arbitrarily specified by the user according to
the input class label. Denote the desired and the actual spike trains in the output layer by d =
[d[to], - ,d[tn,]] and s = [s[to], - - - , 8[tw,]] where N is the number of the considered time steps,
d[t] and s[t] the desired and actual firing events for all output neurons at time ¢, respectively.

The loss function L can be defined using any suitable distance function measuring the difference
between d and s. In this work, the loss function is defined by the total square error summed over
each output neuron at each time step:
N
L= ZEtk Z ((ex d)[tr] — (€% 8)[tx])? (7)

k=0

where E[t] is the error at time ¢ and €(-) a kernel function which measures the so-called Van Rossum
distance between the actual spike train and desired spike train.

3.3 Temporal Spike Sequence Learning via Backpropagation (TSSL-BP) Method

From the loss function (7), we define the error E[t;] at each time step. E[t;] is based on the output
layer firing spikes at ¢;, which further depend on all neuron states ul[t], ¢t < ¢;. Below we consider
these temporal dependencies and derive the main steps of the proposed TSSL-BP method. Full details
of the derivation are provided in Section 1 of the Supplementary Material.

Using (7) and the chain rule, we obtain

k N
N 8E tk au (1—1) . 8E[tk]
aW ow D Z Z uDt aw(l Z o lin] = Oul[tn,] ®
Similar to the conventional backpropagation, we use d to denote the back propagated error at time ¢,
as 6O[t,,] = S A aiﬂﬁ] 7- a'~V[t,,] can be easily obtained from (6). () [t,,,] is considered in

two cases.

[1 is the output layer.] The §(V[t,,] can be computed from

N,
4 8E t;c 8a(l)[tk]
oW, : 9
1= 2 5a00] 0ule] ®
The first term of (9) can be obtained directly from the loss function. The second term g “( 5 [[ ]] is the
key part of the TSSL-BP method and is discussed in the following sections.
[l is a hidden layer.] §(V[t,,] is derived using the chain rule and (6).
Ny J
0aV[ty] (u'TV[ty] OE[t;] 2at;]
0 o k k j - (1+1) AP IR
0 [tm] = Z Z uD[t,] ( a0 [ty] Bu”ﬂ)[tk]) =W ) Bu Dltm ]5 [tx]. (10)

j=mk=m
(10) maps the error § from layer [ + 1 to layer [. It is obtained from the fact that membrane potentials
u®) of the neurons in layer [ influence their (unweighted) corresponding postsynaptic currents (PSCs)
a® through fired spikes, and a(") further affect the membrane potentials w1 in the next layer.

3.3.1 Key challenges in SNN BackPropagation

As shown above, for both the output layer and hidden layers, once ;)T[[t]] (tg > t.,) are known, the

error § can be back propagated and the gradient of each layer can be calculated.



Importantly, the dependencies of the PSCs on the corresponding membrane potentials of the presy-

naptic neurons reflected in W[[t]] (tx > ty,) are due to the following spiking neural behaviors: a

change in the membrane potential may bring it up to the firing threshold, and hence activate the corre-

sponding neuron by generating a spike, which in turn produces a PSC. Computing W[[tt]] (tx > tm)
involves the activation of each neuron, i.e. firing a spike due to the membrane potential’s crossing the
firing threshold from below. Unfortunately, the all-or-none firing characteristics of spiking neurons

makes the activation function nondifferentiable, introducing several key challenges.
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Figure 2: “Fictitious” smoothing of activation Figure 3: Inter/Intra neuron dependencies.

A typical strategy in dealing with the non-differentiability of the activation is to smooth the activation
function by approximating it using a differentiable curve [24] as shown in the Figure 2, or a continuous
probability density function [21], which is similar to the former approach in spirit. However, these
approaches effectively spread each discrete firing spike continuously over time, converting one
actual spike to multiple “fictitious” spikes and also generating multiple “fictitious” PSCs displaced at
different time points. We stress that while smoothing circumvents the numerical challenges brought
by non-differentiability of the spiking activation, it effectively alters the underlying spiking neuron
model and firing times, and leads to degraded accuracy in the error gradient computation. It is
important to reflect that spike timing is the hallmark of spiking neural computation, altering firing
times in BP can hamper precise learning of the targeted firing sequences as pursued in this paper.

3.3.2 The Main Ideas Behind TSSL-BP

TSSL-BP addresses the two key limitations of the prior BP methods: lack proper handling of spiking
discontinuities (leading to loss of temporal precision) and need for many time steps (i.e. high latency)

W[[t]} across two categories of spatio-temporal
dependencies in the network: inter-neuron and intra-neuron dependencies. As shown in Figure 3,
our key observations are: 1) temporal dependencies of a postsynaptic neuron on any of its presynaptic
neurons only take place via the presynaptic spikes which generate PSCs to the postsynaptic neuron,
and shall be considered as inter-neuron dependencies; 2) furthermore, the timing of one presynaptic
spike affects the timing of the immediately succeeding spike from the same presynaptic neuron
through the intra-neuron temporal dependency. The timing of the first presynaptic spike affects the
PSC produced by the second spike, and has additional impact on the postynaptic neuron through this

to ensure good performance. TSSL-BP computes

®
indirect mechanism. In the following, we show how to derive the %{:k}] for each neuron i in layer
y i ltm
I. We denote (b (tk, m) = Do) _ ¢£l)<1>(tk, tm) + ¢§l)<2>(tk,tm), where ¢§l)<1>(tk,tm)

e (l)[t
represents the inter-neuron dependencies and ¢El)<2> (tx, t,) is the intra-neuron dependencies.

3.3.3 Inter-Neuron Backpropagation

Instead of performing the problematic activation smoothing, we critically note that the all-or-none
characteristics of firing behavior is such that a PSC waveform is only triggered at a presynaptic firing
time. Specially, as shown in Figure 4, a perturbation Augl) of ugl) [tm], i.€, due to weight updates,
may result in an incremental shift in the firing time At¢, which in turn shifts the onset of the PSC
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waveform corresponding to the shifted spike, leading to a perturbation Aa;” of a,’ [tx]. We consider
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Figure 4: PSC dependencies on presynaptic potential.  Figure 5: Inter-neuron dependencies.

We make two important points: 1) we shall capture the inter-neuron dependencies via (the incremental
changes of) the presynaptic firing times, which precisely corresponds to how different neurons interact

El) at tg

with each other in an SNN; and 2) the inter-neuron dependency of each neuron ¢’s PSC a

on its membrane potential uz(-l) at t,,, happens only if the neuron fires at ¢,,,. In general, agl) [tr]’s

inter-neuron dependencies on all preceding firing times shall be considered. Figure 5 shows the
®

situation where a; ' [t;] depends on two presynaptic firing times ¢,,, and ¢,,. Conversely, the inter-

neuron dependencies ¢El)<1> (tk,tm) = 0if ¢, < t,,, or there is no spike at ¢,,,. Assuming that the
presynaptic neuron ¢ spikes at t,,,, The inter-neuron dependencies is

9a"[ty]  Otm

H<1>
» thytm) = , 11
¢z ( ks ) 8tm augl)[tm] ( )
where, importantly, the chain rule is applied through the presynaptic firing time ¢,,,.
From (2), the two parts part of (11) can be calculated as
9a[te] (e * 5 [tm]) [tk] Ot ~1
= ; = o (12)
Otom, Oty ouV [t u) [t,]
v m at’”l

oul [t,n]

m

where is obtained by differentiating (4).

3.3.4 Intra-Neuron Backpropagation

Now we consider the intra-neuron dependency ¢§l)<2> (tkstm)

c!eﬁned between an arbitrary .time ti and a presynaptic ﬁring Membrane £n has spike and £, < ¢, < £
time t,, (t,, < tx). From Section 3.3.3, the presynpatic firing at Potential  tp IS the first spike after ¢,,
time t,, invokes a continuous PSC which has a direct impact on

the postsynaptic potential at time ¢5, which is an inter-neuron

dependency. On the other hand, ¢§l)<2> (tg, tm) corresponds
to an indirect effect on the postsynaptic potential via the intra-

neuron dependency. —> Time

» t

t

tm

We consider ¢El><2> (tk, tm) specifically under the context of Figure 6: Intra-neuron depen-
the adopted LIF model, which may occur if the presynaptic  gepcies.

neuron spikes at ¢, immediately following ,,, such that ¢, <

t, < tg. In this case, the presynatpic membrane potential at

t,, not only contributes to a PSC due to the neuron firing, but

also affects the membrane potential at the next spike time ¢, resulted from the reset occurring at

t,n, as described in (4). The PSC al(-l) [tr] has an inter-neuron dependency on membrane potential
ugl) [tp] while ugl) [tp] is further affected by the immediately preceding firing time ¢,, due to the

reset of the presynaptic potential at ¢,,. Recall sgl) [t] = 1 if neuron i fires at ¢ as in (5). More
@

precisely, gbgl)<2>(tk, t,,) takes this indirect intra-neuron effect on a,’[t;] into consideration if



3t, € (tm,tx)such thats( )[ tp] = 1 and sl(-l)[t] = 0Vt € (tm,tp), i.e. no other presynaptic spike
exists between ,,, and t,,

0a" [ty oulV[t,) Ot
[t Otm 9u[t,,]

O * sV tm)t] Ot
Otm Ou [tn]

i m

OV (b b)) = = ¢V (ty, tp) . (13)

]
where v(+) is the reset kernel and ﬁ is evaluated by (12). In (13), q/)(l (tx,tp) would have been
already computed during the backpropagation process since t,, is a presynaptic firing time after ¢,,,.

Putting the inter-neuron and intra-neuron dependencies together, one of the key derivatives required

5a®
in the BP process gzbgl)(tk, tm) = ga(,)[[ m]] with ¢, <1, <ty is given by
0 517 [tm] = 0,5 [t5] = 0ty € (tm, tr),
3 tn] ot (z) 0
@ () = O 5O 81 lbm] = 1,8.71tn] = 098y € (b 1),
fa, [l _otm 4 g M<2>(4 ) O] = 1,50 [t,] = 1,50[t] = 0V € (tm, tp),

Otm Bugl) [tm]
(14)
l(-l)<2>(tk:7 tm ) of (13) is considered.

The complete derivation of TSSL-BP is provided in Section 1 of the Supplementary Material. There
are two key distinctions setting our approach apart from the aforementioned activation smoothing.
First, the inter-neuron dependencies are only considered at pre-synaptic firing times as opposed
to all prior time points, latter of which is the case when the activation smoothing is applied with
BPTT. The handling adopted in TSSL-BP is a manifestation of the all-or-none firing characteristics
of spiking neurons. Second, as in Figure 4, the key step in backpropagation is the consideration of
the incremental change of spiking times, which is not considered in recent SNNs BP works.

where t,, is an arbitrary time between ¢,,, and ¢, and ¢

4 Experiments and Results

We test the proposed TSSL-BP method on four image datasets MNIST [15], N-MNIST [19], Fashion-
MNIST [26] and CIFAR10 [14]. We compare TSSL-BP with several state-of-the-art results with the
same or similar network sizes including different SNNs BP methods, converted SNNs, and traditional
ANN:Ss. The details of practical simulation issues, experimental settings, and datasets preprocessing
methods are described in Section 2 of the supplementary material. We have made our Pytorch
implementation available online!. We expect this work would help move the community forward
towards enabling high-performance spiking neural networks simulation within short latency.

4.1 MNIST

On MNIST [15], we compares the accuracies of the spiking CNNss trained by the TSSL-BP method
with ones trained by other algorithms in Table 1. In our method, the pixel intensities of the image are
converted into real-valued spike current to the inputs within a short time window. The proposed TSSL-
BP delivers up to 99.53% accuracy and outperforms all other methods except for the ST-RSBP [29]
whose accuracy is slightly higher by 0.09%. However, compared to ST-RSBP, TSSL-BP can train
high-performance SNNs with only 5 time steps, achieving 80x reduction of step count (latency). The
accuracy of [29] drops below that of TSSL-BP noticeably under short time windows. In addition, no
data augmentation is applied in this experiment, which is adopted in [13] and [29].

4.2 N-MNIST

We test the proposed method on N-MNIST dataset [19], the neuromorphic version of the MNIST. The
inputs to the networks are spikes rather than real value currents. Table 2 compares the results obtained
by different models on N-MNIST. The SNN trained by our proposed approach naturally processes
spatio-temporal spike patterns, achieving the start-of-the-art accuracy of 99.40%. It is important to
note that our proposed method with the accuracy of 99.28% outperforms the best previously reported
results in [21], obtaining 10 times fewer time steps which leads to significant latency reduction.

"https://github. com/stonezwr/TSSL-BP
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Table 1: Performances of Spiking CNNs on MNIST.

Methods Network Time steps  Epochs Mean Stddev Best

Spiking CNN [16]  20C5-P2-50C5-P2-200 > 200 150 99.31%
STBP [24] 15C5-P2-40C5-P2-300 > 100 200 99.42%
SLAYER [21] 12C5-p2-64C5-p2 300 100 99.36% 0.05%  99.41%
HM2BP [13] 15C5-P2-40C5-P2-300 400 100 99.42% 0.11%  99.49%
ST-RSBP [29] 15C5-P2-40C5-P2-300 400 100 99.57% 0.04%  99.62%
This work 15C5-P2-40C5-P2-300 5 100 99.50% 0.02%  99.53%

20CS5: convolution layer with 20 of the 5 x 5 filters. P2: pooling layer with 2 x 2 filters.

Table 2: Performances on N-MNIST.

Methods Network Time steps Mean Stddev Best Steps reduction
HM2BP [13] 400 — 400 600 98.88%  0.02%  98.88% 20x
SLAYER [21] 500 — 500 300 98.89%  0.06%  98.95% 10x
SLAYER [21] 12C5-P2-64C5-P2 300 99.20%  0.02%  99.22% 10x

This work 12C5-P2-64C5-P2 100 99.35% 0.03% 99.40% 3.3x

This work 12C5-P2-64C5-P2 30 99.23%  0.06%  99.28%

All the experiments in this table train the N-MNIST for 100 epochs

4.3 FashionMNIST

We compare several trained fully-connected feedforward SNNs and spiking CNNs on FashionM-
NIST [26], a more challenging dataset than MNIST. In Table 3, TSSL-BP achieves 89.80% test
accuracy on the fully-connected feedforward network of two hidden layers with each having 400
neurons, outperforming the HM2BP method of [13], which is the best previously reported algorithm
for feedforward SNNs. TSSL-BP can also deliver the best test accuracy with much fewer time steps.
Moreover, TSSL-BP achieves 92.83% on the spiking CNN networks, noticeably outperforming the
same size non-spiking CNN trained by a standard BP method.

Table 3: Performances on FashionMNIST.

Methods Network Time steps  Epochs Mean Stddev Best

ANN [29] 400 — 400 100 89.01%
HM2BP [29] 400 — 400 400 100 88.99%
This work 400 — 400 5 100 89.75% 0.03%  89.80%
ANN [26] 32C5-P2-64C5-P2-1024 100 91.60%
This work 32C5-P2-64C5-P2-1024 5 100 92.69% 0.09% 92.83%

44 CIFAR10

Furthermore, we apply the proposed method on the more challenging dataset of CIFAR10 [14]. As
shown in Table 4, our TSSL-BP method achieves 89.22% accuracy with a mean of 88.98% and a
standard deviation of 0.27% under five trials on the first CNN and achieves 91.41% accuracy on
the second CNN architecture. TSSL-BP delivers the best result among a previously reported ANN,
SNNs converted from pre-trained ANNs, and the spiking CNNs trained by the STBP method of
[25]. CIFARIO is a challenging dataset for most of the existing SNNs BP methods since the long
latency required by those methods makes them hard to scale to deeper networks. The proposed
TSSL-BP not only achieves up to 3.98% accuracy improvement over the work of [25] without the
additional optimization techniques including neuron normalization and population decoding which
are employed in [25], but also utilizes fewer time steps.



Table 4: Performances of CNNs on CIFAR10.

Methods Network  Time steps  Epochs Accuracy
Converted SNN [12] CNN 1 80 83.52%
STBP [25] CNN 1 8 150 85.24%
This work CNN 1 5 150 89.22%
ANN [25] CNN 2 90.49%
Converted SNN [20] CNN 2 200 87.46%
STBP (without NeuNorm) [25] CNN 2 8 150 89.83%
STBP (with NeuNorm) [25] CNN 2 8 150 90.53%
This work CNN 2 5 150 91.41%

CNN 1: 96C3-256C3-P2-384C3-P2-384C3-256C3-1024-1024
CNN 2: 128C3-256C3-P2-512C3-P2-1024C3-512C3-1024-512

4.5 Firing Sparsity

As presented, the proposed TSSL-BP method can train SNNs with low latency. In the meanwhile, the
firing activities in well-trained networks also tend to be sparse. To demonstrate firing sparsity, we
select two well-trained SNNs, one for the CIFAR10 and the other for the N-MNIST.

The CIFAR10 network is simulated over 5 time steps. We count the percentage of neurons that fire
0,1,...,5 times, respectively, and average the percentages over 100 testing samples. As shown in
Figure 7, the network’s firing activity is sparse. More than 84% of neurons are silent while 12% of
neurons fire more than once, and about 4% of neurons fire at every time step.

The N-MNIST network demonstrated here is simulated over 100 time steps. The firing rate of each
neuron is logged. The number of neurons with a certain range of firing rates is counted and averaged
over 100 testing samples. Similarly, as shown in Figure 8, the firing events of the N-MNIST network
are also sparse and more than 75% of neurons keep silent. In the meanwhile, there are about 5% of
neurons with a firing rate of greater than 10%.

0 spike : 84.07 % 0% rate : 76.49 %
B 1 spike:3.50% BN 0%~10% rate : 18.10 %
2 spikes: 3.23 % 10%~20% rate : 3.79 %
3 spikes: 1.33 % 20%~30% rate : 1.07 %
4 spikes : 4.00 % 30%~40% rate : 0.34 %
Ml 5 spikes: 3.87 % EEE >40% rate: 0.21 %

T

Figure 7: Firing activity on CIFAR10 Figure 8: Firing activity on N-MNIST

5 Conclusion

We have presented the novel temporal spike sequence learning via a backpropagation (TSSL-BP)
method to train deep SNNs. Unlike all prior SNNs BP methods, TSSL-BP improves temporal learning
precision by circumventing the non-differentiability of the spiking activation function while faithfully
reflecting the all-or-none firing characteristics and the underlying structure in the dependencies of
spiking neural activities in both space and time.

TSSL-BP provides a universal BP tool for learning arbitrarily specified target firing sequences with
high accuracy while achieving low temporal latency. This is in contrast with most of the existing
SNN BP methods which require hundreds of time steps for achieving decent accuracy. The ability in
training and inference over a few time steps results in significant reductions of the computational
cost required for training large/deep SNNs, and the decision time and energy dissipation of the SNN
model when deployed on either a general-purpose or a dedicated neurormorphic computing platform.



Broader Impact

Our proposed Temporal Spike Sequence Learning Backpropagation (TSSL-BP) method is able to
train deep SNNs while achieving the state-of-the-art efficiency and accuracy. TSSL-BP breaks down
error backpropagation across two types of inter-neuron and intra-neuron dependencies and leads to
improved temporal learning precision. It captures inter-neuron dependencies through presynaptic
firing times by considering the all-or-none characteristics of firing activities, and captures intra-neuron
dependencies by handling the internal evolution of each neuronal state in time.

Spiking neural networks offer a very appealing biologically plausible model of computation and may
give rise to ultra-low power inference and training on recently emerged large-scale neuromorphic
computing hardware. Due to the difficulties in dealing with the all-or-one characteristics of spiking
neurons, however, training of SNNs is a major present challenge and has limited wide adoption of
SNNs models.

The potential impacts of this work are several-fold:

1) Precision: TSSL-BP offers superior precision in learning arbitrarily specified target temporal
sequences, outperforming all recently developed the-state-of-the-art SNN BP methods.

2) Low latency: TSSL-BP delivers high-precision training over a very short temporal window of
a few time steps. This is contrast with many BP methods that require hundreds of time steps for
maintaining a decent accuracy. Low latency computation immediately corresponds to fast decision
making.

3) Scalability and energy efficiency: The training of SNNs is signficantly more costly than that of
the conventional neural networks. The training cost is one major bottleneck to training large/deep
SNNs in order to achieve competitive performance. The low latency training capability of TSSL-
BP reduces the training cost by more than one order of magnitude and also cuts down the energy
dissipation of the training and inference on the deployed computing hardware.

4) Community impact: TSSL-BP has been prototyped based on the widely adopted Pytorch frame-
work and will be made available to the public. We believe our TSSL-BP code will benefit the
brain-inspired computing community from both an algorithmic and neuromorphic computing hard-
ware development perspective.
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