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Abstract

This paper studies distributed estimation and support recovery for high-dimensional
linear regression model with heavy-tailed noise. To deal with heavy-tailed noise whose
variance can be infinite, we adopt the quantile regression loss function instead of the com-
monly used squared loss. However, the non-smooth quantile loss poses new challenges
to high-dimensional distributed estimation in both computation and theoretical develop-
ment. To address the challenge, we transform the response variable and establish a new
connection between quantile regression and ordinary linear regression. Then, we provide a
distributed estimator that is both computationally and communicationally efficient, where
only the gradient information is communicated at each iteration. Theoretically, we show
that, after a constant number of iterations, the proposed estimator achieves a near-oracle
convergence rate without any restriction on the number of machines. Moreover, we estab-
lish the theoretical guarantee for the support recovery. The simulation analysis is provided
to demonstrate the effectiveness of our method.

Keywords: Distributed estimation, high-dimensional linear model, quantile loss, robust
estimator, support recovery

1. Introduction

The development of internet technology has led to the generation of modern data that
exhibits several challenges in statistical estimation:

1. The first challenge comes from the scalability of the data. In particular, modern
large-scale data usually cannot be fit into memory or are collected in a distributed

Weidong Liu and Xiaojun Mao are the co-corresponding authors.

c©2020 Xi Chen, Weidong Liu, Xiaojun Mao, and Zhuoyi Yang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/20-B297.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/20-297.html


Chen, Liu, Mao, and Yang

environment. For example, a personal computer usually has a limited memory size in
GBs; while the data stored on a hard disk could have a size in TBs. In addition, sensor
network data are naturally collected by many sensors. For these types of large-scale
data, traditional methods, which load all the data into memory and run a certain
optimization procedure (e.g., Lasso), are no longer applicable due to both storage and
computation issues.

2. The second challenge comes from the dimensionality of data. High-dimensional data
analysis has been an important research area in statistics over the past decade. A
sparse model is commonly adopted in high-dimensional literature and support recovery
is an important task for high-dimensional analysis (see, e.g., Zhao and Yu (2006);
Wainwright (2009); Bühlmann and Van De Geer (2011); Tibshirani et al. (2015)).
There are some recent work on statistical estimation for high-dimensional distributed
data (see, e.g., Zhao et al. (2014), Lee et al. (2017), Battey et al. (2018)). However,
these work usually adopt a de-biased approach, which leads to a dense estimated
coefficient vector. Moreover, the support recovery problem in a distributed setting
still largely remains open.

3. The third challenge comes from heavy-tailed noise, which is prevalent in practice (see,
e.g., Hsu and Sabato (2016); Fan et al. (2017); Chen et al. (2018); Sun et al. (2020);
Zhou et al. (2018)). When the finite variance assumption for the noise does not exist,
most existing theories based on least squares or Huber loss in robust statistics will no
longer be applicable.

The main purpose of the paper is to provide a new estimation approach for high-
dimensional linear regression in a distributed environment and establish the theoretical
results on both estimation and support recovery. More specifically, we consider the follow-
ing linear model,

Y = XTβ∗ + e, (1)

where X = (1, X1, . . . , Xp)
T is a (p + 1)-dimensional vector, β∗ = (β∗0 , β

∗
1 , . . . , β

∗
p)T is the

true regression coefficient, with β∗0 being the intercept, and e is the noise. We only assume
that e is independent of the covariate vector (X1, . . . , Xp)

T and the density function of e
exists. It is worthwhile noting that the independence assumption has been adopted in
estimating robust linear models when using a quantile loss function (see, e.g., Zou and
Yuan (2008); Fan et al. (2014)). In Remark 7, we will briefly comment on how to extend
our method to the case when the noise is not independent with covariates. Furthermore,
we allow the dimension p to be much larger than the sample size n (e.g., p = o(nν) for some
ν > 0). We assume that β∗ is a sparse vector with s non-zero elements.

In this paper, we allow a very heavy-tailed noise e, whose variance can be infinite (e.g.,
Cauchy distribution). For such a heavy-tailed noise, the squared-loss based Lasso approach
is no longer applicable. To address this challenge, we can assume without loss of generality
that P(e ≤ 0) = τ for a specified quantile level τ ∈ (0, 1) (otherwise, we can shift the first
component to be β∗0 − qτ so that this assumption holds, where qτ is the τ -th quantile of e).
Then, it is easy to see that

β∗ = arg min
β∈Rp+1

Eρτ (Y −XTβ),
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where ρτ (x) = x(τ−I[x ≤ 0]) (see, e.g., Koenker (2005)) is known as the quantile regression
(QR) loss function. Given n i.i.d. samples (Xi, Yi) for 1 ≤ i ≤ n, the high-dimensional QR
estimator takes the following form,

β̂ = arg min
β∈Rp+1

1

n

n∑
i=1

ρτ (Yi −XT
i β) + λn|β|1, (2)

where |β|1 the `1-regularization of β, and λn is the regularization parameter.

It is worthwhile noting that in robust statistical literature, the MOM (median of means)
has been adopted to corrupted data in high-dimensional settings (Hsu and Sabato, 2014;
Lugosi and Mendelson, 2016; Lecué et al., 2020; Lugosi et al., 2019; Lecué and Lerasle,
2019). However, the MOM is a multi-stage method that requires data splitting. Moreover,
when true regression coefficients are sparse, support recovery guarantee is not available in
existing MOM literature. Moreover, the quantile loss has been a useful approach to deal
with heavy-tailed noise, see, e.g., Fan et al. (2014) for single quantile level and Zou and
Yuan (2008) for multiple quantile levels. However, the existing literature does not address
the challenging issue on efficient distributed implementation, which is the main focus of this
paper.

Although the adoption of QR loss provides robustness to heavy-tailed noises, it also
poses new challenges due to limited computation power and memory to store data especially
when the sample size and dimension are both large. Therefore, distributed estimation
procedure becomes increasingly important. The main purpose of the paper is to develop a
new estimation approach for high-dimensional QR and establish the theoretical results on
both estimation and support recovery. In fact, as we will survey in the next paragraph, the
support recovery problem in a high-dimensional distributed setting still largely remains as
an open problem.

In a distributed setting, let us assume n samples are stored in L local machines. In
particular, we split the data index set {1, 2, . . . , n} into H1, . . . ,HL, where Hk denotes
the set of indices on the k-th machine. For the ease of illustration, we assume that the
data are evenly distributed (n/L is an integer) and each local machine has the sample size
|Hk| = m = n/L (see Remark 6 at the end of Section 3 for the discussion on general data
partitions). On each machine, one can construct a local estimator β̂k by solving

β̂k = arg min
β∈Rp+1

1

m

∑
i∈Hk

ρτ (Yi −XT
i β) + λm|β|1. (3)

Then the final estimator of β∗ can be naturally taken as the averaging estimator β̂avg =
1
L

∑L
k=1 β̂k. This method is usually known as averaging divide-and-conquer approach (see,

e.g., Li et al. (2013); Zhao et al. (2016); Fan et al. (2019b); Shi et al. (2018); Banerjee
et al. (2019)). Although this method enjoys low communication cost (i.e., one-shot commu-
nication), the obtained estimator is usually no longer sparse. Instead of constructing the
local estimator in its original form as in (3), there are a number of works that construct a
de-biased estimator as the local estimator, and then take the average (see, e.g., Zhao et al.
(2014); Lee et al. (2017); Battey et al. (2018)). The de-biased estimator has been popular
in high-dimensional statistics (see, e.g., Belloni et al. (2013); Van de Geer et al. (2014);
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Zhang and Zhang (2014); Javanmard and Montanari (2014) and references therein). Zhao
et al. (2014) studied the averaging divide-and-conquer approach for high-dimensional QR
based on de-biased estimator. There are several issues of the averaging de-biased estimator
for high-dimensional distributed estimation. First, due to de-biasing, the local estimator on
each machine is no longer sparse and thus the final averaging estimator cannot be used for
support recovery. Second, the de-biased approach needs to estimate a p×p precision matrix
Σ−1, which requires each machine to solve p optimization problems (see, e.g., Eq. (3.17) in
Zhao et al. (2014)), while each optimization problem involves computing a variant of the
CLIME estimator (Cai et al., 2011). In other words, instead of solving one p-dimensional
optimization as in (3), the de-biased estimator requires to solve (p+ 1) optimization prob-
lems. This would be computationally very expensive especially when p is large. Finally,
the theoretical result of the averaging estimator requires that the number of machines L is
not too large. For example, in high-dimensional QR, the theoretical development in Zhao
et al. (2014) requires L = o(n1/3/(s log5/3(max(p, n)))), where s is the number of non-zero
elements in β∗. It would be an interesting theoretical question on how to remove such a
constraint on L. In Wang et al. (2017), Jordan et al. (2019) and Fan et al. (2019a), they
develop iterative methods with multiple rounds of aggregations (instead of one-shot aver-
aging), which relax the condition on the number of machines. However, their methods and
theory require the loss function to be second-order differentiable and thus cannot be applied
to the non-smooth QR loss. We also note that Chen et al. (2019) studied distributed QR
problem in a low dimensional setting, where β∗ is dense and p grows much more slowly
than n.

In this paper, we propose a new distributed estimator for estimating high-dimensional
linear model with heavy-tailed noise. We first show that the estimation of regression coeffi-
cient β∗ can be resorted to a penalized least squares optimization problem with a pseudo-
response Ỹi instead of Yi. This leads to a pooled estimator, which essentially solves a Lasso
problem with the squared loss based on Ỹi, without requiring any moment condition on
the noise term. This pooled estimator is computationally much more efficient than solving
high-dimensional QR (2) in a single machine setting.

Moreover, our result establishes an interesting connection between the QR estimation
and the ordinary linear regression. This connection translates a non-smooth objective
function to a smooth one, which greatly facilitates computation in a distributed setting.
Given the transformed penalized least squares formulation, we further provide a communi-
cation efficient distributed algorithm, which runs iteratively and only communicates (p+1)-
dimensional gradient information at each iteration (instead of the (p+ 1)× (p+ 1) matrix
information). Our distributed algorithm is essentially an approximate Newton method (see,
e.g., Shamir et al. (2014)), which uses gradient information to approximate Hessian infor-
mation and thus allows efficient communication. In this paper, we provide a more intuitive
derivation of the method simply based on the standard Lasso theory.

Then we establish the theoretical properties of the proposed distributed estimator. We
first establish the convergence rate in `2-norm for one iteration (Theorem 2). Based on
this result, we further characterize the convergence rate for multiple iterations. We show
that, after a constant number of iterations, our method achieves a near-oracle rate of√
s log(max(p, n))/n (Theorem 3). This rate is identical to the rate of `1-regularized QR in

a single machine setting (Belloni and Chernozhukov, 2011), and almost matches the oracle
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rate
√
s/n (upto a logarithmic factor) where the true support is known. Furthermore, we

provide the support recovery result of the distributed estimator. We first show that the
estimated support is a subset of the true support with high probability (Theorem 4 and
5). Then we characterize the “beta-min” condition for the exact support recovery, and we
show that the “beta-min” condition becomes weaker as the number of iterations increases
(Theorem 5). Again, after a constant number of iterations, the lower bound in our “beta-
min” condition matches the ideal case with all the samples on a single machine. To the
best of our knowledge, this is the first support recovery result for high-dimensional robust
distributed estimation.

1.1. Paper Organization and Notations

The rest of our paper is organized as follows. In Section 2 we define the estimator and
provide our algorithm. In Section 3 we provide the theoretical guarantee for the convergence
rate and support recovery for our estimator. Numerical experiments based on simulation
are provided in Section 4 to illustrate the performance of the estimator. Section 5 gives
some concluding remarks and future directions. The proofs of main theoretical results is
relegated to the Appendix A.

For a vector v = (v1, . . . , vn)T, define |v|1 =
∑n

i=1 |vi| and |v|2 =
√∑n

i=1 v
2
i . For a ma-

trix A = (aij) ∈ Rp×q, define |A|∞ = max1≤i≤p,1≤j≤q |aij |, ‖A‖L1 = max1≤j≤q
∑p

i=1 |aij |,
‖A‖op = max|v|2=1 |Av|2, and ‖A‖∞ = max1≤i≤p

∑q
j=1 |aij |. For two sequences an and bn

we say an � bn if and only if both an = O(bn) and bn = O(an) hold. For a matrix A,
define Λmax(A) and Λmin(A) to be the largest and smallest eigenvalues of A respectively.
For a matrix A ∈ Rm×n and two subsets of indices S = {s1, . . . , sr} ⊆ {1, . . . ,m} and
T = {t1, . . . , tq} ⊆ {1, . . . , n}, we use AS×T to denote the r by q submatrix given by (asitj ).
We use C, c, c0, c1, . . . to denote constants whose value may change from place to place,
which do not depend on n, p, s and m.

2. Methodology

In this section, we introduce the proposed method. We start with a robust estimator
with Lasso (REL), which establishes the connection between quantile regression (QR) and
ordinary linear regression in a single machine setting. This proposed estimator will motivate
the construction of our distributed estimator.

2.1. Robust Estimator with Lasso (REL)

Our method is inspired by the Newton-Raphson method. Consider the following stochastic
optimization problem,

β∗ = arg min
β∈Rp+1

E[G(β;X, Y )], (4)

where G(β;X, Y ) is the loss function. In G(β;X, Y ), X and Y are random covariates and
response and β is the coefficient vector of interest. To solve this stochastic optimization
problem, the population version of the Newton-Raphson iteration takes the following form

β̃1 = β0 −H(β0)
−1E[g(β0;X, Y )], (5)
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where β0 is an initial solution, g(β;X, Y ) is the subgradient of the loss function G(β;X, Y )
with respect to β, and H(β) := ∂E[g(β;X, Y )]/∂β denotes the population Hessian matrix
of EG(β;X, Y ). In particular, let us consider the case where G(β;X, Y ) is the QR loss,
i.e.,

G(β;X, Y ) = ρτ (Y −XTβ). (6)

Given G(β;X, Y ) in (6), the subgradient and Hessian matrix take the form of g(β;X, Y ) =
X(I[Y −XTβ ≤ 0] − τ) and H(β) = E(XXTf(XT(β − β∗))), respectively. Here, f(x)
is the density function of the noise e. When the initial estimator β0 is close to the true
parameter β∗, H(β0) will be close to H(β∗) = Σf(0), where Σ = EXXT is the population
covariance matrix of the covariates X. UsingH(β∗) in (5) motivates the following iteration,

β1 = β0 −H(β∗)−1E[g(β0;X, Y )] = β0 −Σ−1f−1(0)E[g(β0;X, Y )]. (7)

Further, under some regularity conditions, we have the following Taylor expansion of
E[g(β0;X, Y )] at β∗,

E[g(β0;X, Y )] =H(β∗)(β0 − β∗) +O(|β0 − β∗|22)
=Σf(0)(β0 − β∗) +O(|β0 − β∗|22).

Combine it with (7), and it is easy to see that

|β1 − β∗|2 =|β0 −Σ−1f−1(0)
(
Σf(0)(β0 − β∗) +O(|β0 − β∗|22)

)
− β∗|2

=O(|β0 − β∗|22).

In summary, if we have a consistent estimator β0, we can refine it by the Newton-Raphson
iteration in (7).

Next, we show how to translate the Newton-Raphson iteration into a least squares
optimization problem. First we rewrite the equation (7) to be

β1 = Σ−1
(
Σβ0 − f−1(0)E[g(β0;X, Y )]

)
= Σ−1E

[
X
{
XTβ0 − f−1(0)(I[Y ≤XTβ0]− τ)

}]
.

Let us define a new response variable Ỹ as

Ỹ = XTβ0 − f−1(0)(I[Y ≤XTβ0]− τ).

Then β1 = Σ−1E(XỸ ) is the best linear regression coefficient of Ỹ on X, i.e., β1 =
arg minβ∈Rp+1 E(Ỹ − XTβ)2. To further encourage the sparsity of the estimator, it is
natural to consider the following `1-regularized problem,

β1,λ = arg min
β∈Rp+1

1

2
E(Ỹ −XTβ)2 + λ|β|1, (8)

where β1,λ is sparse and can achieve a better convergence rate than β0. So far, we have
shown that if we have a consistent estimator β0 of β∗, then the estimation of the high-
dimensional sparse β∗ can be implemented by solving a penalized least squares optimization
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in (8) instead of the penalized QR optimization. It is well known that the latter optimization
problem is computationally expensive when n is large since the QR loss is non-smooth.
More importantly, the transformation from QR loss to least squares will greatly facilitate
the development of the distributed estimator. In particular, our distributed estimator is
derived from the Lasso theory, which is based on the squared loss (see Section 2.2).

Now, we are ready to define the empirical version of β1,λ in a single machine setting.

Let β̂0 be an initial estimator of β∗ and f̂(0) be an estimator of the density f(0). We use
β̂0 to denote the empirical version of the initial estimator, which is distinguished from the
population version β0. Given n i.i.d. samples (Xi, Yi) from (1), for each 1 ≤ i ≤ n, we
construct

Ỹi = XT
i β̂0 − f̂−1(0)(I[Yi ≤XT

i β̂0]− τ).

It is natural to estimate β∗ by the empirical version of (8):

β̂pool = arg min
β∈Rp+1

{ 1

2n

n∑
i=1

(Ỹi −XT
i β)2 + λn|β|1

}
. (9)

We note that in a single machine setting, computing this pooled estimator essentially solves a
Lasso problem, which is computationally much more efficient than solving an `1-regularized
QR problem.

Finally, we choose f̂(0) to be a kernel density estimator of f(0):

f̂(0) =
1

nh

n∑
i=1

K
(Yi −XT

i β̂0

h

)
,

where K(x) is a kernel function which satisfies the condition (C3) (see Section 3) and h→ 0
is the bandwidth. The selection of bandwidth will be discussed in our theoretical results
(see Section 3).

In the next section, we will introduce a distributed robust estimator with Lasso which
can estimate β∗ with a near-oracle convergence rate.

2.2. Distributed Robust Estimator with Lasso

Given our new proposed estimator β̂pool, we can use the approximate Newton method to
solve the distributed estimation problem. To illustrate this technique from the Lasso theory,
we first consider a general convex quadratic optimization as follows,

β̂ = arg min
β∈Rp+1

1

2
βTAβ − βTb+ λn|β|1, (10)

where A is a non-negative definite matrix and b is a vector in Rp+1. From standard Lasso
theory (see Bühlmann and Van De Geer (2011)), we have the following proposition.

Proposition 1 Assume the following conditions hold

|Aβ∗ − b|∞ ≤ λn/2, (11)
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min
δ:|δ|1≤c1

√
s|δ|2

δTAδ

|δ|22
≥ c2, c1, c2 > 0. (12)

where s is the sparsity of β∗, i.e., s =
∑p

j=0 I[β
∗
j 6= 0]. Then we have

|β̂ − β∗|2 ≤ c
√
sλn, (13)

for some constant c > 0.

Note that the condition (12) is known as the compatibility condition, which is used to
provide the `2-consistency of the Lasso estimator. For the purpose of completeness, we
include a proof of Proposition 1 in the Appendix A. As one can see from (11), if we can
choose a matrix A and a vector b such that λn is as small as possible, we can obtain a fast
convergence rate of β̂.

Now let us discuss how to use Proposition 1 to develop our distributed estimator. Sup-
pose that n samples are stored in L = n/m machines and each local machine has m samples.
We first split the data index set {1, 2, . . . , n} into H1, . . . ,HL with |Hk| = m and the k-th
machine stores samples {(Xi, Yi) : i ∈ Hk}. Let us define

Σ̂k =
1

m

∑
i∈Hk

XiX
T
i , Σ̂ =

1

n

n∑
i=1

XiX
T
i =

1

L

L∑
k=1

Σ̂k, (14)

as the sample covariance matrix on the k-th machine and the sample covariance matrix of
the entire dataset, respectively. It is worthwhile noting that our algorithm does not need
to explicitly compute and communicate Σ̂k (for k 6= 1) (see Algorithm 1 for more details).

In Proposition 1, we first choose A = Σ̂1 to be the sample covariance matrix computed
on the first machine. Our goal is to construct a vector b such that |Aβ∗ − b|∞ can be as
small as possible. Note that

Aβ∗ − b =Σ̂1β
∗ − b

=Σ̂β∗ + (Σ̂1 − Σ̂)β∗ − b. (15)

It can be proved that Σ̂β∗ is close to zn := 1
n

∑n
i=1XiỸi (see Proposition 11 in the Appendix

A). We note that zn can be computed effectively in a distributed setting since

zn =
1

L

L∑
k=1

znk, znk =
1

m

∑
i∈Hk

XiỸi,

where znk can be computed on the k-th local machine. Therefore we can rewrite (15) as

|Aβ∗ − b|∞ =|Σ̂β∗ − zn + zn + (Σ̂1 − Σ̂)β∗ − b|∞
≤|Σ̂β∗ − zn|∞ + |zn + (Σ̂1 − Σ̂)β∗ − b|∞.

Since β∗ is unknown, in order to make the second term as small as possible, it is natural
to set

b = zn + (Σ̂1 − Σ̂)β̂0.
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For A = Σ̂1 and b = zn + (Σ̂1 − Σ̂)β̂0, we can prove that (see Eq. (39) in the proof of
Theorem 2 and 3)

|Σ̂1β
∗ − b|∞ ≤ λn/2,

for some specified λn (see Theorem 2). With A and b in place, the equation (10) leads to
the following `1-regularized quadratic programming,

β̂(1) = arg min
β∈Rp+1

1

2m

∑
i∈H1

(XT
i β)2 − βT

{
zn + (Σ̂1 − Σ̂)β̂0

}
+ λn|β|1. (16)

Note that when m = n, we have β̂(1) = β̂pool. In other words, when the data is pooled on

a single machine, the proposed distributed estimator automatically reduces to β̂pool in (9).

We also note that Σ̂β̂0 in the vector b can be computed effectively in a distributed manner.
In particular, each local machine computes and communicates a (p+ 1)-dimensional vector
Σ̂kβ̂0 = 1

m

∑
i∈Hk

Xi(X
T
i β̂0) to the first machine. Then the first machine computes Σ̂β̂0

by

Σ̂β̂0 =
1

L

L∑
k=1

Σ̂kβ̂0.

Our algorithm only communicates znk = 1
m

∑
i∈Hk

XiỸi and Σ̂kβ̂0 to the first machine at
each iteration. Therefore, the per-iteration communication complexity is only O(p) and
there is no need to communicate the (p+ 1)× (p+ 1) sample covariance matrix Σ̂k.

Given (16) as the estimator from the first iteration, it is easy to construct an iterative
estimator. In particular, let β̂(t−1) be the distributed REL in the (t−1)-th iteration. Define

f̂ (t) (0) =
1

nht

n∑
i=1

K

(
Yi −XT

i β̂
(t−1)

ht

)
,

as the density estimator in the t-th iteration where ht → 0 is the bandwidth for the t-th
iteration. The bandwidth ht shrinks as t grows, whose rate will be specified in Theorem 3.
Let us define

Ỹ
(t)
i = XT

i β̂
(t−1) − (f̂ (t) (0))−1

(
I
[
Yi ≤XT

i β̂
(t−1)

]
− τ
)
, (17)

and

z(t)n =
1

n

n∑
i=1

XiỸ
(t)
i .

As in (16), our distributed estimator β̂(t) is the solution of the following `1-regularized
quadratic programming problem:

β̂(t) = arg min
β∈Rp+1

1

2m

∑
i∈H1

(XT
i β)2 − βT

{
z(t)n +

(
Σ̂1 − Σ̂

)
β̂(t−1)

}
+ λn,t |β|1 . (18)

It is worthwhile noting that the convex optimization problem (18) has been extensively
studied in the optimization literature and several efficient optimization methods have been
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Algorithm 1 Distributed high-dimensional QR estimator

Input: Data on local machines {Xi, Yi : i ∈ Hk} for k = 1, . . . , L, the number of iterations
t, quantile level τ , kernel function K, a sequence of bandwidths hg for g = 1, . . . , t and the
regularization parameters λ0, λn,g for g = 1, . . . , t.

1: Compute the initial estimator β̂(0) = β̂0 based on {Xi, Yi : i ∈ H1}:

β̂0 = arg min
β∈Rp+1

1

m

∑
i∈H1

ρτ (Yi −XT
i β) + λ0|β|1. (19)

2: for g = 1, 2 . . . , t do
3: Transmit β̂(g−1) to all local machines.
4: for k = 1, . . . , L do

5: The k-th machine computes f̂ (g,k) (0) := 1
m

∑
i∈Hk

K

(
Yi−XT

i β̂
(g−1)

hg

)
and sends

it back to the first machine.
6: end for
7: The first machine computes f̂ (g) (0) based on

f̂ (g) (0) =
1

L

L∑
k=1

f̂ (g,k) (0) .

8: Transmit f̂ (g) (0) to all local machines.
9: for k = 1, . . . , L do

10: The k-th machine computes Σ̂kβ̂
(g−1) and znk = 1

m

∑
i∈Hk

XiỸ
(g)
i based on (17)

and sends them back to the first machine.
11: end for
12: Compute the estimator β̂(g) on the first machine based on (18).
13: end for

Output: The final estimator β̂(t).

developed, e.g., FISTA (Beck and Teboulle, 2009), active set method (Solntsev et al., 2015),
and PSSgb (Projected Scaled Subgradient, Gafni-Bertsekas variant, (Schmidt, 2010)). In
our experiments, we adopt the PSSgb optimization method for solving (18). We present
the entire distributed estimation procedure in Algorithm 1.

For the choice of the initial estimator β̂0, we propose to solve the high-dimensional QR
problem using the data on the first machine, i.e.,

β̂0 = arg min
β∈Rp+1

1

m

∑
i∈H1

ρτ (Yi −XT
i β) + λ0|β|1. (20)

Note that although this paper uses the (20) as the initial estimator, one can adopt any
estimator as β̂0 as long as it satisfies the condition (C6) (see Section 3).

We assume the quantile level τ is pre-specified in Algorithm 1. Our paper mainly
focuses on the algorithm for distributed estimation under a general τ and develop the
related theoretical results. Different choices of τ correspond to different loss functions we

10
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want to use and different parameters we are interested in. The choice of τ to fit the model
is a separate topic which clearly depends on the practical problem and the parameters we
are interested in. For example, without the covariate X (for briefness), β∗0 is the τ -quantile
of Y and the choice of τ depends on what quantile of Y we are interested in. In extreme
climate studies, people would like to choose τ as some large values (0.9 and 0.99) or small
values (0.1 and 0.01) to evaluate the extreme climate performance. In economic domain, to
learn the problem associated with median salary, we can simply set τ = 0.5.

3. Theoretical Results

In this section we provide the theoretical results for our distributed method. We define

S = {0 ≤ i ≤ p : β∗i 6= 0},

as the support of β∗ and s = |S|. We assume the following regular conditions.

(C1) The density function of the noise f(·) is bounded and Lipschitz continuous (i.e.,
|f(x)−f(y)| ≤ CL|x−y| for any x, y ∈ R and some constant CL > 0). Moreover, we assume
f(0) > c > 0 for some constant c.

(C2) Suppose that Σ = EXXT satisfies∥∥ΣSc×SΣ−1S×S
∥∥
∞ ≤ 1− α, (21)

for some 0 < α < 1. Also assume that c−10 ≤ Λmin(Σ) ≤ Λmax(Σ) ≤ c0 for some constant
c0 > 0.

(C3) Assume that the kernel function K(·) is integrable with
∫∞
−∞K(u)du = 1. More-

over, assume that K(·) satisfies K(u) = 0 if |u| ≥ 1. Further, assume K(·) is differentiable
and its derivative K ′(·) is bounded.

(C4) We assume that the covariate X satisfies the sub-Gaussian condition for some
t > 0 and C > 0,

sup
|θ|2=1

E exp(t(θTX)2) ≤ C.

(C5) The dimension p satisfies p = O(nν) for some ν > 0. The local sample size m
on each machine satisfies m ≥ nc for some 0 < c < 1, and the sparsity level s satisfies
s = O(mr) for some 0 < r < 1/3.

(C6) The initial estimator β̂0 satisfies |β̂0 − β∗|2 = OP(
√
s(log n)/m). Furthermore,

assume that P(supp(β̂0) ⊆ S)→ 1.

Condition (C1) is a regular condition on the smoothness of the density function f(·).
Condition (C2) is the standard irrepresentable condition, which is commonly adopted to
establish support recovery in high-dimensional statistics literature (see, e.g., Zhao and Yu
(2006); Wainwright (2009); Bühlmann and Van De Geer (2011); Tibshirani et al. (2015)).
Condition (C3) is a standard condition on the kernel function K(·) (see an example of
K(·) in Section 4). Condition (C4) is a regular condition on the distribution of X while
Condition (C5) is on dimension p, local sample size m and sparsity level s. The conditions
m ≥ nc for some 0 < c < 1 and s = O(mr) make sure that our algorithm achieves the
near-oracle convergence rate only using a finite number of iterations (see Eq. (26) below).

11
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Condition (C6) is a condition on the convergence rate and support recovery of the initial
estimator. Note that in Algorithm 1, the initial estimator β̂0 is proposed as the solution to
the high-dimensional QR problem using data on the first machine. It can be shown that β̂0

in (20) fulfills condition (C6) under conditions (C1), (C2), (C4), (C5) and some regularity
conditions (Fan et al., 2014). In addition, we also show that the condition (C6) is satisfied
for the proposed estimator for the t-th iteration β̂(t), which serves as the initial estimator
for the (t + 1)-th iteration, in Theorems 2–5. We also note that by p = O(nν) in (C5),
we have that log(max(n, p)) = C1 log(n) for some constant C1 > 0. Therefore, we will use
log(n) in our convergence rates (instead of log(max(n, p))) for notational simplicity.

Let {an} be the convergence rate of the initial estimator, i.e., |β̂0 − β∗|2 = OP(an). By
condition (C6) we can assume that an =

√
s(log n)/m. We first provide the convergence

rate for β̂(1) after one iteration.

Theorem 2 Let |β̂0 − β∗|2 = OP(an) and choose the bandwidth h � an, take

λn = C0

(√
log n

n
+ an

√
s log n

m

)
,

with C0 being a sufficiently large constant. Under (C1)-(C6), we have∣∣∣β̂(1) − β∗
∣∣∣
2

= OP

(√
s log n

n
+ an

√
s2 log n

m

)
. (22)

With the choice of the bandwidth h shrinking at the same rate as an, conclusion (22)
shows that one iteration enables a refinement of the estimator with its rate improved from an
to max{

√
s(log n)/n, an

√
s2(log n)/m} where

√
s2(log n)/m = o(1) by condition (C5). By

recursive applications of Theorem 2, we provide the convergence rate for the multi-iteration
estimator β̂(t). The next theorem shows that an iterative refinement of the initial estimator
will improve the estimation accuracy and achieve a near-oracle rate after a constant number
of iterations.

In particular, let us define

an,g =

√
s log n

n
+ s(2g+1)/2

(
log n

m

)(g+1)/2

, 0 ≤ g ≤ t. (23)

From Theorem 3 below, we can see that an,g is the convergence rate of the estimator β̂(g)

after g iterations.

Theorem 3 Assume that the initial estimator β̂0 satisfies |β̂0−β∗|2 = OP(
√
s(log n)/m).

Let hg � an,g−1 for 1 ≤ g ≤ t, and take

λn,g = C0

(√
log n

n
+ an,g−1

√
s log n

m

)
, (24)

with C0 being a sufficiently large constant. Under (C1)-(C6), we have∣∣∣β̂(t) − β∗
∣∣∣
2

= OP

(√
s log n

n
+ s(2t+1)/2

(
log n

m

)(t+1)/2
)
. (25)

12
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It can be shown that when the iteration number t is sufficiently large, i.e.,

t ≥ log(n/m)

log(c0m/(s2 log n))
, for some c0 > 0, (26)

the second term in (25) is dominated by the first term, and the convergence rate in (25)
becomes |β̂(t) − β∗|2 = OP(

√
s(log n)/n). We note that this rate matches the convergence

rate of the `1-regularized QR estimator in a single machine setup (see Belloni and Cher-
nozhukov (2011)). Moreover, it nearly matches the oracle convergence rate

√
s/n (upto

a logarithmic factor) when the support of β∗ is known. We also note that the conditions
m ≥ nc and s = o(m1/3) in (C5) ensure that the right hand side of (26) is bounded by a
constant, which implies that a constant number of iterations would guarantee a near-oracle
rate of β̂(t).

The following theorems provide results on support recovery of the proposed estimators

β̂(1) and β̂(t). Recall S = {j : β∗j 6= 0} is the support of β∗. Let β̂(1) = (β̂
(1)
0 , β̂

(1)
1 , . . . , β̂

(1)
p )T

and

Ŝ(1) =
{
j : β̂

(1)
j 6= 0

}
.

Theorem 4 Assume that the conditions in Theorem 2 hold.

(i) We have Ŝ(1) ⊆ S with probability tending to one.

(ii) In addition, suppose that for a sufficiently large constant C > 0,

min
j∈S

∣∣β∗j ∣∣ ≥ C‖Σ−1S×S‖∞
(√

log n

n
+ an

√
s log n

m

)
. (27)

Then we have Ŝ(1) = S with probability tending to one.

Based on Theorem 4, we can further obtain the support recovery result for β̂(t), which

requires a weaker condition on min
j∈S

∣∣∣β∗j ∣∣∣. Denote β̂(t) = (β̂
(t)
0 , β̂

(t)
1 , . . . , β̂

(t)
p )T and

Ŝ(t) =
{
j : β̂

(t)
j 6= 0

}
.

Theorem 5 Assume the conditions in Theorem 3 hold.

(i) We have Ŝ(t) ⊆ S with probability tending to one.

(ii) In addition, suppose that for a sufficiently large constant C > 0,

min
j∈S

∣∣β∗j ∣∣ ≥ C‖Σ−1S×S‖∞
(√

log n

n
+ st

(
log n

m

)(t+1)/2
)
. (28)

Then we have Ŝ(t) = S with probability tending to one.
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Note that the “beta-min” condition gets weaker as t increases. When t satisfies (26),

the condition (28) will reduce to min
j∈S

∣∣∣β∗j ∣∣∣ ≥ C‖Σ−1S×S‖∞
√

logn
n , which matches the rate

of the lower bound for the “beta-min” condition in Lasso in a single machine setting (see
Wainwright (2009)).

Furthermore, we state the results in both Theorem 4 and 5 by a high-probability state-
ment “with probability tending to one”. The convergence rate actually can be represented
as 1− qn, where qn = O(1−P(supp(β̂0) ⊆ S)) +O(n−γ) is a small quantity goes to 0 when
both n and p go to ∞. More specifically, the convergence rate depends on the convergence
rate P(supp(β̂0) ⊆ S) → 1 for the initial estimator β̂0. Below we further provide two
remarks on our method.

Remark 6 It is worthwhile noting that we assume the data is evenly split only for the ease
of discussions. In fact, the local sample size m in our theoretical results is the sample size
on the first machine in Algorithm 1 (a.k.a. the central machine in distributed computing).
As long as the sample size m on the first machine is specified, our method does not depend
on the partition of the entire dataset.

Remark 7 We note that the proposed estimator can be generalized to the case when the
noise e and the covariates X are not independent. More specifically, without the indepen-
dence assumption, we assume P(e ≤ 0|X) = τ for some specified τ ∈ (0, 1). The Hessian
matrix becomes H(β∗) = E(XXTf(0|X)). Although H(β∗) no longer takes the form of
Σf(0) when the noise depends on covariates, it can be approximate by

Dh(β0) = E
(
XXT 1

h
K

(
Y −XTβ0

h

))
,

for a positive kernel function K(·) (i.e., K(x) > 0 for all x). Let β̂0 be an initial estimator
of β∗. Given n i.i.d. samples (Xi, Yi) from (1), for each 1 ≤ i ≤ n, we construct the
following quantities:

γi,h =

√√√√1

h
K

(
Yi −XT

i β̂0

h

)
, X̃i,h = γi,hXi, D̂h =

1

n

n∑
i=1

X̃i,hX̃
T
i,h,

Ỹi,h = X̃T
i,hβ̂0 −

I[Yi ≤XT
i β̂0]− τ

γi,h
.

Then, we can construct the pooled estimator (i.e., the counterpart of (9)) by solving the

following Lasso problem with both transformed input X̃i,h and response Ỹi,h:

β̂ = arg min
β∈Rp+1

{ 1

2n

n∑
i=1

(Ỹi,h − X̃T
i,hβ)2 + λn|β|1

}
. (29)

Using a similar distributed approach described in Section 2.2, the pooled estimator in Eq.
(29) can be extended into a distributed estimator.

14
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Although the extension to the dependent case seems relatively straightforward, the non-
parametric estimation of the conditional density f(0|X) has the issue of “curse of di-
mensionality”, especially when X is high-dimensional. Without any strong assumption
on f(0|X), it requires a huge number of local samples to construct an accurate estimator

D̂1,h = 1
m

∑
i∈H1

X̃i,hX̃
T
i,h in the distributed implementation. We leave more investigation

of the dependent noise case to future work.

4. Simulation Study

In this section, we report the simulation studies to illustrate the performance of our dis-
tributed REL.

4.1. Simulation Setup

We consider the following linear model

Yi = XT
i β
∗ + ei, i = 1, 2, . . . , n,

where XT
i = (1, Xi,1, . . . , Xi,p) is a (p + 1)-dimensional covariate vector and

(Xi,1, . . . , Xi,p)s are drawn i.i.d. from a multivariate normal distribution N(0,Σ). The
covariance matrix Σ is constructed by Σij = 0.5|i−j| for 1 ≤ i, j ≤ p. We fix the dimension
p = 500 and choose the loss function to be the QR loss with quantile level τ = 0.3. Note
that other choices of τ lead to similar results in the experiment. We provide additional
experimental results for τ = 0.5 in the appendix. Let s be the sparsity level and the true
coefficient is set to

β∗ = (
10

s
,

20

s
,

30

s
, . . . ,

10(s− 1)

s
, 10, 0, 0 . . . , 0).

We consider the following three noise distributions:

1. Normal: the noise ei ∼ N(0, 1).

2. Cauchy: the noise ei ∼ Cauchy(0, 1).

3. Exponential: the noise ei ∼ exp(1).

We note that the variance of the Cauchy distribution is infinite. The initial estimator is
computed by directly solving the `1-regularized QR optimization using only the data on
the first machine (see Eq. (19)). At each iteration, the constant C0 in the regularization
parameter λn,g in (24) is chosen by validation. In particular, we choose C0 to minimize
the quantile loss on an independently generated validation dataset with the sample size n.
Moreover, we could also apply cross-validation or an information criterion such as BIC to
choose λn.

For the choice of the kernel function K(·), we use a biweight kernel function

K(x) =


0, if x ≤ −1,

−315
64 x

6 + 735
64 x

4 − 525
64 x

2 + 105
64 , if − 1 ≤ x ≤ 1,

0, if x ≥ 1.
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It is easy to verify that K(·) satisfies the condition (C3). We also note that other choices
of K(·) provide similar results.

From Theorem 2 and 3 in Section 3, the bandwidth is set to hg = can,g−1 for some
constant c > 0, where an,g−1 is defined in (23). In our simulation study, we choose

hg =
√

s logn
n + s−1/2

(
c0
s2 logn
m

)(g+1)/2
(i.e., set the constant c = 1) for convenience. Note

that the constant c0 is used to ensure that s2 logn
m < 1, and we set c0 = 0.1 in the following

experiments. In fact, our algorithm is quite robust with respect to the choice of the band-
width (see the sensitivity analysis in Section 4.5). All the results reported in this section
are average of 100 independent runs of simulations.

We compare the performance of the proposed distributed REL (dist REL for short) with
other two approaches:

1. Averaging divide-and-conquer (Avg-DC) which computes the `1-regularized QR (see
Eq. (3)) on each local machine and combines the local estimators by taking the
average.

2. Robust estimator with Lasso (REL) on a single machine with pooled data (see Eq.
(9)), which is denoted by pooled REL.

Note that the `1-regularized QR estimator in (2) and the de-biased averaging divide-and-
conquer estimator (see Zhao et al. (2014)) are not included in most comparisons because
they are computationally very expensive to be implemented in our setting, with large n
and p. Moreover, the de-biased estimator generates a dense estimated coefficient due to the
de-biasing procedure. In the experiment on computation efficiency, we compare the running
time of our method to the `1-regularized QR estimator. The result shows that our method
achieves a similar performance as the `1-regularized QR estimator and it is computationally
much more efficient.

4.2. Effect of the Number of Iterations

We first show the performance of our distribute REL by varying the number of iterations.
We fix the sample size n = 10000, local sample size m = 500, the sparsity level s = 20 and
dimension p = 500. We plot the `2-error from the true QR coefficients versus the number
of iterations. Since the Avg-DC only requires one-shot communication, we use a horizontal
line to show its performance. The results are shown in Figure 1. From the result, both
pooled REL and distributed REL outperform the Avg-DC algorithm and become stable
after a few iterations. Therefore, for the rest of the experiments in this section, we use 50 as
the number of iterations in the algorithm. Moreover, the distributed REL almost matches
the performance of pooled REL for all three noises.

4.3. Effect of the QR Loss Under Heavy-Tailed Noise

We study the effect of the QR loss in the presence of heavy-tailed noise. We compare with
the standard Lasso estimator in a single machine setting with pooled data. We vary the
sample size n and compute the F1-score and the `2-error for the distributed REL, Pooled
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(a) Normal noise (b) Cauchy noise (c) Exponential noise

Figure 1: The `2-error from the true QR coefficient versus the number of iterations. The
sample size n is fixed to n = 10000 and the local sample size m is 500.

Table 1: The F1-score and `2-error of the distributed REL, pooled REL, Avg-DC, and
Lasso estimator under different sample size n. Noises are generated from normal

distribution. The local sample size is fixed to m = 500.

n
Dist REL Pooled REL Avg-DC Lasso

F1-score `2-error F1-score `2-error F1-score `2-error F1-score `2-error

2500 0.90 0.189 0.83 0.183 0.23 0.255 1.00 0.161
5000 0.95 0.138 0.91 0.132 0.14 0.221 1.00 0.113
10000 0.97 0.102 0.93 0.097 0.10 0.203 1.00 0.079
15000 0.98 0.085 0.96 0.083 0.09 0.196 1.00 0.065
20000 0.99 0.073 0.96 0.069 0.08 0.192 1.00 0.056
25000 0.99 0.067 0.97 0.050 0.08 0.196 1.00 0.050

REL, Avg-DC, and the Lasso estimator. The F1-score is defined as

F1 =

(
recall−1 + precision−1

2

)−1
= 2 · precision · recall

precision + recall
,

which is commonly used as an evaluation of support recovery (note that F1-score=1 implies
perfect support recovery). In Table 1, 2 and 3, we report the results for all three types
of noises. As expected, when the noise is normal, the Lasso estimator has smaller `2-
error and better support recovery. However, when the noise has a slightly heavier tail
(e.g., exponential noise), both the distributed REL and pooled REL outperform the Lasso
estimator in `2-error. In the case of heavy-tailed noise (e.g., Cauchy noise), the Lasso
approach completely fails with very large `2-errors while the distributed REL is much better
in both `2-error and support recovery. It is clear that the Lasso estimator is not robust to
heavy-tailed noises, and therefore we omit the Lasso estimator in the rest of the simulation
studies.
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Table 2: The F1-score and `2-error of the distributed REL, pooled REL, Avg-DC, and
Lasso estimator under different sample size n. Noises are generated from Cauchy

distribution. The local sample size is fixed to m = 500.

n
Dist REL Pooled REL Avg-DC Lasso

F1-score `2-error F1-score `2-error F1-score `2-error F1-score `2-error

2500 0.84 0.320 0.75 0.312 0.25 0.436 0.25 151.4
5000 0.92 0.229 0.85 0.221 0.16 0.380 0.26 138.8
10000 0.96 0.168 0.89 0.160 0.11 0.349 0.27 128.3
15000 0.98 0.139 0.92 0.132 0.09 0.338 0.25 132.1
20000 0.97 0.118 0.93 0.113 0.08 0.329 0.26 121.0
25000 0.98 0.107 0.94 0.101 0.08 0.330 0.23 120.8

Table 3: The F1-score and `2-error of the distributed REL, pooled REL, Avg-DC, and
Lasso estimator under different sample size n. Noises are generated from exponential

distribution. The local sample size is fixed to m = 500.

n
Dist REL Pooled REL Avg-DC Lasso

F1-score `2-error F1-score `2-error F1-score `2-error F1-score `2-error

2500 0.96 0.093 0.91 0.089 0.25 0.115 1.00 0.102
5000 0.98 0.069 0.92 0.066 0.15 0.101 1.00 0.094
10000 0.99 0.051 0.96 0.048 0.10 0.092 1.00 0.069
15000 0.99 0.043 0.97 0.040 0.09 0.089 1.00 0.054
20000 1.00 0.037 0.98 0.034 0.08 0.086 1.00 0.048
25000 0.99 0.033 0.98 0.031 0.08 0.087 1.00 0.043
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Table 4: The `2-error, precision, and recall of the three estimators under different
combinations of the sample size n and local sample size m. Noises are generated from

normal distribution.

m 200 500 1000

n 5000 10000 20000 5000 10000 20000 5000 10000 20000

Pooled
REL

Precision 0.79 0.85 0.92 0.79 0.89 0.93 0.78 0.85 0.92
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.136 0.098 0.071 0.138 0.101 0.073 0.135 0.100 0.072

Dist
REL

Precision 0.98 0.99 1.00 0.91 0.95 0.98 0.83 0.89 0.95
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.154 0.111 0.081 0.142 0.105 0.076 0.137 0.102 0.074

Avg
DC

Precision 0.05 0.04 0.04 0.08 0.06 0.05 0.13 0.08 0.06
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.348 0.328 0.314 0.225 0.205 0.199 0.180 0.156 0.145

CSL
Precision 0.86 0.85 0.88 0.08 1.00 1.00 1.00 1.00 1.00

Recall 0.95 0.93 0.94 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.480 0.455 0.452 0.218 0.201 0.190 0.154 0.141 0.098

Another interesting phenomena revealed in Tables 1-3 is that, in terms of the F1-score,
the distributed REL is slightly better than pooled REL. This is indeed affected by the
selection of regularization parameter λn. According to our Theorem 2, we set λn for the
first round on the order of s log n/m, where m is the local sample size and n the total
sample size. For the pooled estimator where m = n, this term becomes s log n/n, which
becomes smaller. Therefore, our distributed estimator has already eliminated many features
for the first round due to a larger regularization parameter, which leads to a slightly better
precision. It is noted that this also happens in the following experiments.

4.4. Effect of Sample Size and Local Sample Size

In this section, we investigate how the performance of the distributed REL changes with
the total sample size n and the local sample size m. We also compare our estimator
with the Communication-efficient Surrogate Likelihood (CSL) estimator proposed in Jor-
dan et al. (2019). The original method in Jordan et al. (2019) requires second-order dif-
ferentiable loss functions, which is not directly applicable to quantile loss function. Thus,
we adopt a smoothing technique to smooth the QR loss function as in Horowitz (1998);
Chen et al. (2019). We fix sparsity level s = 20, p = 500, and vary the sample size
n ∈ {5000, 10000, 20000} and the local sample size m ∈ {200, 500, 1000}. The precision,
recall of the support recovery and the `2-error are reported for each estimator. The results
are shown in Table 4, 5 and 6.

From the results, we observe that both distributed REL and pooled REL outperform
the Avg-DC algorithm and CSL estimator in all settings. The `2-error of the distributed
REL improves as the local sample size m grows and it becomes close to pooled REL when
m is large. This is expected since the pooled REL is a special case of distributed REL
with m = n. We also observe that the precision and recall of the distributed REL are
both close to 1, which indicates good support recovery. In particular, the recall of our
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Table 5: The `2-error, precision, and recall of the three estimators under different
combinations of the sample size n and local sample size m. Noises are generated from

Cauchy distribution.

m 200 500 1000

n 5000 10000 20000 5000 10000 20000 5000 10000 20000

Pooled
REL

Precision 0.72 0.84 0.89 0.75 0.82 0.88 0.70 0.81 0.87
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.220 0.159 0.118 0.221 0.161 0.116 0.221 0.156 0.114

Dist
REL

Precision 0.98 0.99 1.00 0.86 0.91 0.95 0.76 0.87 0.92
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.251 0.181 0.134 0.230 0.169 0.122 0.223 0.158 0.117

Avg
DC

Precision 0.05 0.04 0.04 0.08 0.06 0.04 0.14 0.08 0.06
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.704 0.671 0.667 0.375 0.355 0.332 0.291 0.245 0.235

CSL
Precision 0.09 0.12 0.12 0.28 0.35 0.48 0.64 0.77 0.89

Recall 0.91 0.93 0.90 0.97 0.97 0.98 0.98 0.98 0.99
`2-error 0.834 0.790 0.728 0.324 0.327 0.312 0.255 0.195 0.171

Table 6: The `2-error, precision, and recall of the three estimators under different
combinations of the sample size n and local sample size m. Noises are generated from

exponential distribution.

m 200 500 1000

n 5000 10000 20000 5000 10000 20000 5000 10000 20000

Pooled
REL

Precision 0.90 0.98 0.98 0.88 0.94 0.96 0.86 0.93 0.96
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.060 0.045 0.031 0.059 0.042 0.032 0.059 0.042 0.030

Dist
REL

Precision 1.00 1.00 1.00 0.95 0.98 0.99 0.91 0.95 0.98
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.076 0.061 0.043 0.062 0.044 0.034 0.060 0.042 0.031

Avg
DC

Precision 0.05 0.04 0.04 0.07 0.06 0.04 0.15 0.09 0.05
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.168 0.162 0.154 0.090 0.084 0.079 0.072 0.062 0.054

CSL
Precision 0.86 0.85 0.88 0.08 1.00 1.00 1.00 1.00 1.00

Recall 0.95 0.93 0.94 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.480 0.455 0.452 0.218 0.201 0.190 0.154 0.141 0.098
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(a) Normal noise (b) Cauchy noise (c) Exponential noise

Figure 2: The `2-error from the true QR coefficient versus the local sample size m, with
the total sample size fixed to n = 20000.

(a) Normal noise (b) Cauchy noise (c) Exponential noise

Figure 3: The F1-score versus the local sample size m, with the total sample size fixed to
n = 20000.
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(a) Normal noise (b) Cauchy noise (c) Exponential noise

Figure 4: The `2-error from the true QR coefficient versus the sample size n, with the
local sample size fixed to m = 500.

(a) Normal noise (b) Cauchy noise (c) Exponential noise

Figure 5: The F1-score versus the sample size n, with the local sample size fixed to
m = 500.

distributed REL is always 1, implying that all the relevant variables are selected. The
precision of our method is close to 1, which indicates that only a very small number of
irrelevant variables are selected. On the other hand, the precision of Avg-DC is very small
because the averaging procedure results in a dense estimator, especially when m is small.
In addition, the performance of CSL estimator heavily depends on m. For example, for
Cauchy error distribution in Table 5, a smaller m leads to a relatively poor performance.

For better visualization, with the sample size n = 20000 fixed, we vary the local sample
size m and plot the `2-error and F1-score of pooled REL, distributed REL and Avg-DC
estimator. The results are presented in Figure 2 and 3. Similarly, in Figure 4 and 5, we fix
the local sample size m = 500 and vary the total sample size n.

From Figure 2 we can see that the `2-error of distributed REL is close to that of pooled
REL when m is not too small, and both of them outperform the Avg-DC estimator. From
Figure 4 we observe that the `2-error of distributed REL is close to that of pooled REL
and both errors decrease as the sample size n becomes large. However, the `2-error of the
Avg-DC estimator stays large and fails to converge as the sample size n increases. From
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Table 7: The F1-score and `2-error of the distributed REL, pooled REL, and Avg-DC
under different sample size n and choices of bandwidth constant c. Local sample size

m = 500. Noises are generated from Cauchy distribution.

n c
Dist REL Pooled REL Avg-DC

F1-score `2-error F1-score `2-error F1-score `2-error

5000 0.5 0.99 0.249 0.96 0.236 0.17 0.377
10000 0.5 1.00 0.183 0.99 0.171 0.12 0.356
20000 0.5 0.99 0.130 0.99 0.123 0.09 0.348

5000 1 0.99 0.253 0.96 0.241 0.16 0.373
10000 1 0.99 0.179 0.98 0.170 0.11 0.345
20000 1 1.00 0.125 0.98 0.117 0.09 0.328

5000 2 0.99 0.259 0.97 0.245 0.16 0.38
10000 2 1.00 0.188 0.98 0.177 0.11 0.347
20000 2 1.00 0.131 0.99 0.124 0.09 0.332

5000 5 0.99 0.255 0.97 0.239 0.16 0.378
10000 5 1.00 0.185 0.98 0.173 0.11 0.349
20000 5 1.00 0.138 0.98 0.124 0.09 0.339

5000 10 1.00 0.270 0.99 0.252 0.16 0.382
10000 10 1.00 0.194 0.99 0.180 0.1 0.346
20000 10 1.00 0.136 0.98 0.121 0.09 0.331

Figure 3 and 5 we can see that the F1-score of both distributed REL and pooled REL are
close to 1, while the Avg-DC approach clearly fails in support recovery in high-dimensional
settings.

4.5. Sensitivity Analysis for the Bandwidth

In this section, we study the sensitivity of the scaling constant in the bandwidth of the
proposed REL. Recall that the bandwidth is h = can,g where an,g is defined in (23) with
c > 0 being the scaling constant. We vary the sample size n and the constant c from 0.5
to 10 and compute the F1-score and the `2-error of the distributed REL, pooled REL, and
the Avg-DC estimator. Due to space limitations, we report the Cauchy noise case as an
example. For other noises, the performance is even less sensitive. The results are shown in
Table 7.

From Table 7, we observe that both distributed REL and pooled REL exhibit good
performance under all choices of bandwidth constant. Therefore even under a suboptimal
choice of bandwidth constant, the distributed REL still achieves small `2-error and good
support recovery.

4.6. Effect of the Sparsity

In this section we investigate how the performance of the distributed REL algorithm changes
with the sparsity level of the true coefficient β∗. We fix the sample size n = 10000 and the
local sample size m = 500, and we set the constant c0 in hg to be 0.01. Recall that the true
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Table 8: The `2-error, precision, and recall of the three estimators with different sparsity
level s. Noises are generated from normal distribution. The local sample size is fixed to

m = 500.

Sparsity s 5 10 20 30 50 100

Pooled
REL

Precision 0.98 0.96 0.86 0.82 0.73 0.66
Recall 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.063 0.080 0.096 0.117 0.141 0.191

Relative `2-error(×10−2) 0.426 0.408 0.360 0.361 0.341 0.329

Dist
REL

Precision 1.00 0.98 0.94 0.93 0.91 0.88
Recall 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.065 0.082 0.101 0.123 0.150 0.202

Relative `2-error(×10−2) 0.441 0.418 0.379 0.379 0.363 0.347

Avg
DC

Precision 0.02 0.03 0.06 0.08 0.11 0.20
Recall 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.147 0.175 0.204 0.243 0.280 0.368

Relative `2-error(×10−2) 0.988 0.890 0.760 0.751 0.675 0.633

coefficient is set to be

β∗ = (
10

s
,

20

s
,

30

s
, . . . ,

10(s− 1)

s
, 10, 0, 0 . . . , 0).

We vary the sparsity level s in {5, 10, 20, 30, 50, 100} and report the precision, recall and
`2-error. Since the `2-norm of the true coefficient β∗ changes with the sparsity level s, we
also report the relative `2-error which is defined by |β̂ − β∗|2/|β∗|2. The results are shown
in Table 8, 9 and 10.
From the result, we can observe that the `2-errors of all three estimators become larger as
the sparsity level s increases and the distributed REL algorithm performs much better than
the Avg-DC algorithm. Moreover, the performance of the distributed REL is very close to
the performance of the pooled REL.

4.7. Computation Time Comparison

We further study the computation efficiency of our proposed estimator. We fix the local
sample size m, dimension p, and vary the sample size n. In Table 11, we report the F1-score,
`2-error, and the computation time of distributed REL, pooled REL, Avg-DC, and the `1-
regularized QR estimator. To solve the `1-regularized QR estimator, we formulate it into
a standard linear programming problem (LP) and solve it by Gurobi (Gurobi Optimiza-
tion, 2020), which is the state-of-the-art LP solver. We implement the three distributed
algorithms (distributed REL, pooled REL and Avg-DC) in a fully synchronized distributed
setting.

From Table 11 we can see that the distributed REL is much faster than the `1-regularized
QR estimator. In fact, for larger sample size (i.e., n > 20000), we cannot implement the `1-
regularized QR method due to memory and computation time issues. We also note that the
computation time of the pooled REL is similar to the distributed version. This is because
for the comparison propose, simulated datasets can still be fully stored in memory, and thus
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Table 9: The `2-error, precision, and recall of the three estimators with different sparsity
level s. Noises are generated from Cauchy distribution. The local sample size is fixed to

m = 500.

Sparsity s 5 10 20 30 50 100

Pool
QR

Precision 0.95 0.91 0.79 0.73 0.66 0.64
Recall 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.103 0.129 0.156 0.186 0.230 0.318

Relative `2-error(×10−2) 0.696 0.656 0.581 0.574 0.555 0.547

Dist
QR

Precision 0.97 0.95 0.91 0.87 0.86 0.84
Recall 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.105 0.132 0.163 0.194 0.239 0.330

Relative `2-error(×10−2) 0.709 0.674 0.608 0.598 0.578 0.567

Avg
DC

Precision 0.02 0.04 0.06 0.07 0.11 0.20
Recall 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.264 0.319 0.347 0.419 0.542 0.885

Relative `2-error(×10−2) 1.779 1.628 1.295 1.293 1.308 1.252

Table 10: The `2-error, precision, and recall of the three estimators with different sparsity
level s. Noises are generated from exponential distribution. The local sample size is fixed

to m = 500.

Sparsity s 5 10 20 30 50 100

Pooled
REL

Precision 0.97 0.97 0.95 0.92 0.87 0.79
Recall 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.026 0.034 0.043 0.049 0.062 0.080

Relative `2-error(×10−2) 0.178 0.171 0.160 0.151 0.149 0.138

Dist
REL

Precision 0.99 0.99 0.98 0.98 0.98 0.99
Recall 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.027 0.035 0.045 0.052 0.066 0.092

Relative `2-error(×10−2) 0.185 0.180 0.169 0.161 0.160 0.158

Avg
DC

Precision 0.02 0.04 0.05 0.07 0.11 0.20
Recall 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.054 0.065 0.083 0.099 0.113 0.151

Relative `2-error(×10−2) 0.365 0.329 0.311 0.305 0.273 0.260
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Table 11: The F1-score, `2-error, and computation time of the distributed REL, pooled
REL, Avg-DC, and `1-regularized QR estimator under different sample size n. Noises are

generated from Cauchy distribution. The local sample size is fixed to m = 500.

n
Dist REL Pooled REL

F1-score `2-error Time F1-score `2-error Time

5000 0.95 0.137 0.40 0.90 0.132 0.44
10000 0.97 0.099 0.42 0.92 0.095 0.45
15000 0.98 0.083 0.42 0.95 0.080 0.47
20000 0.99 0.074 0.44 0.96 0.071 0.48

n
Avg-DC `1-QR

F1-score `2-error Time F1-score `2-error Time

5000 0.15 0.223 2.82 0.95 0.132 159.6
10000 0.10 0.202 3.08 0.97 0.091 576.1
15000 0.09 0.198 3.07 0.98 0.077 1223.1
20000 0.08 0.192 3.15 0.99 0.068 2059.3

pooled REL takes the advantage of solving the entire optimization problem in memory. For
large-scale datasets that cannot be stored in memory, the pool REL is no longer applicable.

5. Conclusions and Future Directions

In this paper, we address the problem of distributed estimation for high-dimensional linear
model with the presence of heavy-tailed noise. The proposed method achieves the same
convergence rate as the ideal case with pooled data. Furthermore, we establish the support
recovery guarantee of the proposed method. One key insight from this work is that a non-
smooth loss can be transformed into a smooth one by constructing a new response. Our
method is essentially an iterative refinement approach in a distributed environment, which
is superior to the averaging divide-and-conquer scheme.

One important future direction is to further investigate the inference problem. We note
that Zhao et al. (2014) first provide the inference result based on averaging de-biased QR
local estimators. As we mentioned, this approach might suffer from heavy computational
cost and requires a condition on the number of machines. It would be interesting to develop
computationally efficient inference approaches without any restriction on the number of ma-
chines. Moreover, the idea of transforming to `1-regularized least-squares problem and the
iterative distributed implementation can be generalized other high-dimensional problems,
e.g., `1-regularized Huber regression in robust statistics. Our algorithm can also be general-
ized to handle other sparsity-inducing penalties, such as SCAD or MCP (Fan and Li, 2001;
Zhang, 2010). Deriving the corresponding theoretical results for other sparsity-inducing
penalties would be another interesting future direction.
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Appendix A. Proof of Results

In this section, we provide the proofs of our main results and some technical lemmas.

A.1. Proof of Proposition 1

Proposition 1 1 Assume the following conditions hold

|Aβ∗ − b|∞ ≤ λn/2,

min
δ:|δ|1≤c1

√
s|δ|2

δTAδ

|δ|22
≥ c2, c1, c2 > 0.

where s is the sparsity of β∗, i.e., s =
∑p

j=0 I[β
∗
j 6= 0]. Then we have

|β̂ − β∗|2 ≤ c
√
sλn,

for some constant c > 0.

Proof We first show that |β̂ − β∗|1 ≤ 4
√
s|β̂ − β∗|2. Let S be the support of β. By the

definition of β̂, we have

1

2
β̂TAβ̂ − β̂Tb− (

1

2
β∗TAβ∗ − β∗Tb) ≤λn(|β∗|1 − |β̂|1)

=λn(|β∗S |1 − |β̂S |1 − |β̂SC |1)

≤λn|(β∗ − β̂)S |1 − λn|(β∗ − β̂)SC |1.

Since A is non-negative definite, we have

1

2
β̂TAβ̂ − β̂Tb− (

1

2
β∗TAβ∗ − β∗Tb) ≥(Aβ∗ − b)(β̂ − β∗)

≥− |Aβ∗ − b|∞|β̂ − β∗|1
≥− λn|β̂ − β∗|1/2.

Combine the two inequalities and we get |(β̂ − β∗)SC |1 ≤ 3|(β̂ − β∗)S |1 and this implies
|β̂ − β∗|1 ≤ 4|(β̂ − β∗)S |1 ≤ 4

√
s|(β̂ − β∗)S |2 ≤ 4

√
s|β̂ − β∗|2.

By the definition of β̂ and the first order condition, we have |Aβ̂− b|∞ ≤ λn. Combine
this with (11) and we have |A(β̂−β∗)|∞ ≤ 2λn. Together with the condition (12) we have

|β̂ − β∗|2 ≤ c(β̂ − β∗)TA(β̂ − β∗) ≤ 2cλn|β̂ − β∗|1 ≤ 8cλn
√
s|β̂ − β∗|2.
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A.2. Proof of Some Technical Lemmas

In this section, we introduce some technical lemmas which will be used in our main proof.
Let

Un = sup
|βS−β∗

S|2≤an

∣∣∣ 1
n

n∑
i=1

[
XiI

[
ei ≤XT

i,S (βS − β∗S)
]
−XiF

(
XT
i,S (βS − β∗S)

)]
− 1

n

n∑
i=1

[XiI [ei ≤ 0]−XiF (0)]
∣∣∣
∞
. (30)

Lemma 8 For any γ > 0, there exists a constant c > 0 such that

P

(
Un ≥ c

√
san log n

n

)
= O

(
n−γ

)
.

Proof [Proof of Lemma 8] Let

Cnj(β) =
1

n

n∑
k=1

[
XkjI

[
ek ≤XT

k,S (βS − β∗S)
]
−XkjF

(
XT
k,S (βS − β∗S)

)]
− 1

n

n∑
k=1

[XkjI [ek ≤ 0]−XkjF (0)] .

For notation briefness, we denote β∗S = (β∗1 , . . . , β
∗
s )T. For every i, we divide the interval

[β∗i −an, β∗i +an] into nM small subintervals and each has length 2an/n
M , where M is a large

positive constant. Therefore, there exists a set of points in Rp+1, {βk, 1 ≤ k ≤ qn} with
qn ≤ nMs, such that for any β in the ball |βS−β∗S |2 ≤ an, we have |βS−βk,S |2 ≤ 2

√
san/n

M

for some 1 ≤ k ≤ qn and |βk,S − β∗S |2 ≤ an. We can see that∣∣F (XT
i,S (βk,S − β∗S)

)
− F

(
XT
i,S (βS − β∗S)

)∣∣ ≤ C√sann−M |Xi,S |2 ,

and∣∣I [ei ≤XT
i,S (βk,S − β∗S)

]
− I

[
ei ≤XT

i,S (βS − β∗S)
]∣∣

≤I
[
XT
i,S (βk,S − β∗S)− 2 |Xi,S |2

√
sann

−M ≤ ei ≤XT
i,S (βk,S − β∗S) + 2 |Xi,S |2

√
sann

−M]
=:Gi,k.

Denote the right hand of the above equation by Gi,k and let E∗(·) be the conditional
expectation given {Xi, 1 ≤ i ≤ n}. Then we have

E∗ (Gi,k) =F
(
XT
i,S (βk,S − β∗S) + 2 |Xi,S |2

√
sann

−M)
− F

(
XT
i,S (βk,S − β∗S)− 2 |Xi,S |2

√
sann

−M) .
It is straightforward to conclude that |E(|Xij |Gi,k)| ≤ C

√
sann

−ME|Xij ||Xi,S |2 ≤
Csann

−M and E(X2
ijG

2
i,k) ≤ Csann

−M . By the exponential inequality, we can obtain
that for any large γ, there exists a constant c such that

sup
k

P
( 1

n

∣∣∣ n∑
i=1

(|Xij |Gik − E|Xij |Gik)
∣∣∣ ≥ c√san log n

n

)
≤ Cn−γs.
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Note that

sup
|βS−β∗

S|2≤an
|Cn,j (β)| − sup

k
|Cn,j (βk)| ≤ C

√
sann

−M 1

n

n∑
i=1

|Xi,S |2

+
1

n

∣∣∣ n∑
i=1

(|Xij |Gik − E|Xij |Gik)
∣∣∣

+
1

n

∣∣∣ n∑
i=1

E(|Xij |Gik)
∣∣∣.

Therefore

sup
j

[
sup

|βS−β∗
S|2≤an

|Cn,j (β)| − sup
k
|Cn,j (βk)|

]
= OP

(√
san log n

n

)
. (31)

It is enough to show that supj supk |Cn,j(βk)| satisfies the bound in the lemma. Since the
density function of ek is bounded, we have

E(Cn,j(βk))
2 ≤ Cn−1 |βk,S − β∗S |2 ≤ Cn

−1an.

By the exponential inequality (Lemma 1 in Cai and Liu (2011)) and the fact that
√
s log n =

o(
√
nan), we have

sup
j

sup
k

P

(
|Cn,j (βk)| ≥ C

√
san log n

n

)
= O

(
n−γs

)
.

We complete the proof of the lemma.

Lemma 9 Assume that (C1)-(C6) hold. Let |β̂0 − β∗|2 = OP(an) and P(supp(β̂0) ⊆ S)
→ 1. Let h ≥ cs(log n)/n for some c > 0 and h = O(an). We have

∣∣∣f̂ (0)− f (0)
∣∣∣ = OP

(√
s log n

nh
+ an

)
.

Proof [Proof of Lemma 9] Denote Ŝ=supp(β̂0) and let

Dn,h (β) =
1

nh

n∑
i=1

K

(
Yi −XT

i,SβS

h

)
.

We have |β∗S − β̂0,S |2 = OP(an). To prove the proposition, without loss of generality, we

can assume that |β∗S − β̂0,S |2 ≤ an and Ŝ ⊆ S. It follows that f̂(0) = Dn,h(β̂0) and∣∣∣f̂ (0)− f (0)
∣∣∣ ≤ sup

|βS−β∗
S |2≤an

|Dn,h (β)− f (0)| .
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Recall the definition of {βk, 1 ≤ k ≤ qn} in the proof of Lemma 8. We have∣∣∣∣∣1hK
(
Yi −XT

i,SβS

h

)
− 1

h
K

(
Yi −XT

i,Sβk,S

h

)∣∣∣∣∣ ≤ Ch−2 ∣∣XT
i,S (βS − βk,S)

∣∣ .
This yields that

sup
|βS−β∗

S |2≤an
|Dn,h (β)− f (0)| − sup

1≤k≤qn
|Dn,h (βk)− f (0)| ≤ C

√
san

nM+1h2

n∑
i=1

|Xi,S |2 .

Since maxi,j E|Xi,j |2 < ∞ (due to the sub-Gaussian condition (C4)), for any γ > 0, by
letting M large enough, we have

sup
|βS−β∗

S |2≤an
|Dn,h (β)− f (0)| − sup

1≤k≤nMs

|Dn,h (βk)− f (0)| = OP
(
n−γ

)
. (32)

It is enough to show that supk |Dn,h(βk)− EDn,h(βk)| and supk |EDn,h(βk)− f(0)| satisfy
the bound in the proposition. Let E∗(·) denote the conditional expectation given {Xk}. We
have

E∗

{
1

h
K

(
ei −XT

i,S (βS − β∗S)

h

)}
=

∫ ∞
−∞

K (x) f
{
hx+XT

i,S (βS − β∗S)
}
dx

=f (0) +O
(
h+

∣∣XT
i,S (βS − β∗S)

∣∣) .
Since sup|α|2=1 E|αTX| ≤ C, we have

|EDn,h (βk)− f (0)| ≤ C
(
h+ |βk,S − β∗S |2

)
= O(h+ an).

It remains to bound supk |Dn,h(βk)− EDn,h(βk)|. Put

ξi,k = K

(
ei −XT

i,S (βk,S − β∗S)

h

)
.

We have

E∗ξ2i,k = h

∫ ∞
−∞
{K (x)}2 f

{
hx+XT

i,S (βk,S − β∗S)
}
dx ≤ Ch.

Since K(x) is bounded, we have, by the exponential inequality (Lemma 1 in Cai and Liu
(2011)) and the fact that s log n = O(nh), for any γ > 0, there exists a constant C > 0 such
that

sup
k

P

(∣∣∣∣∣
n∑
i=1

(ξi,k − Eξi,k)

∣∣∣∣∣ ≥ C√nhs log n

)
= O

(
n−γs

)
.

By letting γ > M , we can obtain that∣∣∣∣sup
k
|Dn,h(βk)− EDn,h(βk)|

∣∣∣∣ = OP

(√
s log n

nh

)
.

This completes the proof.
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Lemma 10 We have

max
1≤j≤p

∥∥∥∥∥n−1
n∑
k=1

|Xkj |Xk,SX
T
k,S

∥∥∥∥∥
op

= OP(1).

Proof [Proof of Lemma 10 ]
For a unit ball B in Rs, we have the fact that there exist qs balls with centers x1, . . . ,xqs

and radius z (i.e., Bi = {x ∈ Rs : |x − xi| ≤ z}, 1 ≤ i ≤ qs) such that B ⊆ ∪qsi=1Bi and qs
satisfies qs ≤ (1 + 2/z)s. So for any |x|2 = 1 in the unit sphere, there exists some xi such
that |x − xi|2 ≤ z and so this xi satisfies 1 − z ≤ |xi|2 ≤ 1 + z. Therefore, there exists a
subset K ⊂ {1, 2, . . . , qs} such that {x : |x|2 = 1} ⊆ ∪i∈KBi and 1 − z ≤ |xi|2 ≤ 1 + z for
i ∈ K. We have ds := |K| ≤ qs ≤ (1 + 2/z)s.

For any s× s symmetric matrix A, we have

|xTAx| − |yTAy| ≤ |(x− y)TA(x+ y)|.

So ‖A‖op = sup|x|2=1 |xTAx| ≤ maxi∈K |xT
i Axi| + z(2 + z)‖A‖op. Now take z = 1/4, we

have ‖A‖op ≤ 3 maxi∈K |xT
i Axi| and ds ≤ 9s. It is enough to prove that

max
1≤j≤p

max
i∈K

1

n

n∑
k=1

|Xkj |(xT
i Xk,S)2 = OP(1).

Define X̂kj = XkjI[|Xkj | ≤ log n]. By the sub-Gaussian condition on X, it is enough to
show that

max
1≤j≤p

max
i∈K

1

n

n∑
k=1

|X̂kj |(xT
i Xk,S)2 = OP(1).

Set

Ykij = |X̂kj |(xT
i Xk,S)2I[|X̂kj |(xT

i Xk,S)2 ≤ (s+ 1)(log n)3].

Note that

np9s max
k,j

max
i∈K

P
(
|X̂kj |(xT

i Xk,S)2 ≥ (s+ 1)(log n)3
)

= o(1).

It suffices to prove that max1≤j≤p maxi∈K
1
n

∑n
k=1 Ykij = Op(1). It is easy to see that

EYkij ≤ E|Xkj |(xT
i Xk,S)2 ≤ C(EX2

kj)
1/2 sup|x|2=1(E(xTXk,S)4)1/2 = O(1) and similarly,

EY 2
kij = O(1), uniformly in k, i, j. By Bernstein’s inequality,

P

(∣∣∣ 1
n

n∑
k=1

(Ykij − EYkij)
∣∣∣ ≥ 1

)
≤ e−c1n + e

−c2 n
(s+1)(log n)3 ,

for some positive constants c1 and c2 uniformly in i, j. Since s = O(mr) for some 0 < r <
1/3, we have

np9s
(
e−c1n + e

−c2 n
(s+1)(log n)3

)
= o(1).

This proves max1≤j≤p maxi∈K
1
n

∑n
k=1 Ykij = Op(1).
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A.3. Proof of Theorem 2 and Theorem 3

We first state a proposition for the proof of our main theorems.

Proposition 11 Assume that (C1)-(C6) hold. Let |β̂0 − β∗|2 = OP(an) and h � an. We
have ∣∣∣zn − Σ̂β∗

∣∣∣
∞

= OP

(√
log n

n
+ a2n

)
.

Proof [Proof of Proposition 11] Recall the definition of Un in (30). For the initial estimator,
we have β̂0,Sc = 0 with high probability. Due to the fact that β∗Sc = 0 and β0,Sc = 0, by

|β∗ − β̂0|2 = OP(an), we have∣∣∣zn − Σ̂β∗
∣∣∣
∞

=

∣∣∣∣∣− f̂−1 (0)

n

n∑
k=1

Xk

(
I
[
Yk ≤XT

k β̂0

]
− τ
)

+ Σ̂
(
β̂0 − β∗

)∣∣∣∣∣
∞

≤

∣∣∣∣∣ f̂−1 (0)

n

n∑
k=1

Xk

{
F
(
XT
k,S

(
βS − β̂0,S

))
− F (0)

}
+

1

n

n∑
k=1

XkX
T
k,S

(
β̂0,S − β∗S

)∣∣∣∣∣
∞

+
∣∣∣f̂−1(0)

∣∣∣ ∣∣∣∣∣ 1n
n∑
k=1

[XkI [ek ≤ 0]−XkF (0)]

∣∣∣∣∣
∞

+
∣∣∣f̂−1 (0)

∣∣∣Un.
For the last term, by Lemma 8, we have |f̂−1 (0) |Un = OP(

√
san(log n)/n). For the second

term of the right hand side, we have∣∣∣f̂−1(0)
∣∣∣ ∣∣∣∣∣ 1n

n∑
k=1

[XkI [ek ≤ 0]−XkF (0)]

∣∣∣∣∣
∞

= OP

(√ log p

n

)
.

Denote the first term of the right hand side to be H. For the first component of H, by
second order Taylor expansion, under (C1) we have

f̂−1 (0)

n

n∑
k=1

Xkj

{
F
(
XT
k,S

(
β∗S − β̂0,S

))
− F (0)

}
=
f̂−1 (0) f (0)

n

n∑
k=1

XkjX
T
k,S

(
β∗S − β̂0,S

)
+
Cf̂−1 (0)

n

n∑
k=1

|Xkj |
{
XT
k,S

(
β∗S − β̂0,S

)}2
.

It is standard to show that

P

(
|Σ̂−Σ|∞ ≤ C

√
log n

n

)
→ 1.

Since Λmax(Σ) ≤ c0, we have∣∣∣∣∣ 1n
n∑
k=1

XkX
T
k,S

(
β∗S − β̂0,S

)∣∣∣∣∣
∞

≤ OP

(√
s log n

n
an

)
+
∣∣∣Σ(β∗S − β̂0,S

)∣∣∣
∞
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= OP(an).

Denote (1, |Xk1|, . . . , |Xkp|)T by |Xk|. Then by Lemma 9 and 10, we have

|H|∞ ≤
∣∣∣f̂−1 (0) f (0)− 1

∣∣∣ ∣∣∣∣∣ 1n
n∑
k=1

XkX
T
k,S

(
β∗S − β̂0,S

)∣∣∣∣∣
∞

+ Cf̂−1 (0)

∣∣∣∣∣ 1n
n∑
k=1

|Xk|
{
XT
k,S

(
β∗S − β̂0,S

)}2
∣∣∣∣∣
∞

=OP

((√
s log n

nh
+ an

)
an

)
+OP(a2n).

So we can easily have∣∣∣zn − Σ̂β∗
∣∣∣
∞

= OP

(√
log p

n
+

√
san log n

n
+ an

√
s log n

nh
+ a2n

)
.

Since h � an and san = o(1), we prove the proposition.

Proof [Proof of Theorem 2 and Theorem 3]
First, we show the results for Theorem 2. Define β̃ to be the solution of the following

optimization problem:

β̃ = arg min
θ∈Rp+1,θSc=0

1

2
θTΣ̂1θ − θT

{
zn +

(
Σ̂1 − Σ̂

)
β̂0

}
+ λn |θ|1 ,

where θSc denotes the subset vector with the coordinates of θ in Sc. Then there exist
sub-gradients Z̃ with |Z̃|∞ ≤ 1 such that

Σ̂1,S×Sβ̃S −
{
zn +

(
Σ̂1 − Σ̂

)
β̂0

}
S

+ λnZ̃S = 0. (33)

It is enough to show that there exist sub-gradients Z that satisfy

Σ̂1β̂ −
{
zn +

(
Σ̂1 − Σ̂

)
β̂0

}
+ λnZ = 0, (34)

|ZS |∞ ≤ 1 and |ZSc |∞ < 1, i.e., |Zi| are strictly less than one for i ∈ Sc. To construct such
Z, we let ZS = Z̃S and

ZSc = −λ−1n
{(

Σ̂1β̃
)
Sc
−
{
zn +

(
Σ̂1 − Σ̂

)
β̂0

}
Sc

}
.

Lemma 12 Under the conditions in Theorem 2, we have, with probability tending to one,

|Zi| ≤ v

uniformly for i ∈ Sc, for some 0 < v < 1.
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Proof [Proof of Lemma 12] Recall that

Σ̂1,S×Sβ̃S −
{
zn +

(
Σ̂1 − Σ̂

)
β̂0

}
S

= −λnZ̃S . (35)

Write (35) as

−λnZ̃S =ΣS×S

(
β̃S − β∗S

)
+
(
Σ̂1,S×S −ΣS×S

)(
β̃S − β∗S

)
+ Σ̂1,S×Sβ

∗
S

−
{
zn +

(
Σ̂1 − Σ̂

)
β̂0

}
S
.

This implies that

β̃S − β∗S = Σ−1S×S

{
− λnZ̃S −

(
Σ̂1,S×S −ΣS×S

)(
β̃S − β∗S

)
−Σ̂1,S×SβS +

{
zn +

(
Σ̂1 − Σ̂

)
β̂0

}
S

}
= Σ−1S×S

{
− λnZ̃S −

(
Σ̂1,S×S −ΣS×S

)(
β̃S − β∗S

)
−
(
Σ̂1,S×S − Σ̂S×S

)(
β∗S − β̂0,S

)
+
(
zn − Σ̂β∗

)
S

}
.

By (38), we have with probability tending to one,∣∣∣β̃S − β∗S∣∣∣
2
≤ C

√
sλn + C

√
s log n

m

∣∣∣β̃S − β∗S∣∣∣
2

+C
√
s

(√
log n

m
+

√
log n

n

)∣∣∣β∗S − β̂0,S

∣∣∣
2

+ C
√
s
∣∣∣zn − Σ̂β∗

∣∣∣
∞
.

By the choice of λn, Proposition 11 and an = O(
√
s(log n)/m),∣∣∣β̃S − β∗S∣∣∣

2
≤ C
√
sλn, (36)

with probability tending to one.
Due to the definition of ZSc , we have that

ZSc

=− λ−1n
{(

Σ̂1β̃
)
Sc
−
{
zn +

(
Σ̂1 − Σ̂

)
β̂0

}
Sc

}
=− λ−1n Σ̂1,Sc×SΣ̂−11,S×S

{
zn +

(
Σ̂1 − Σ̂

)
β̂0

}
S

+ Σ̂1,Sc×SΣ̂−11,S×SZ̃S

+ λ−1n

{
zn +

(
Σ̂1 − Σ̂

)
β̂0

}
Sc

=− λ−1n Σ̂1,Sc×SΣ̂−11,S×S

[{
zn − Σ̂β∗

}
S

+
(
Σ̂S×{1,...,p+1} − Σ̂1,S×{1,...,p+1}

)(
β∗ − β̂0

)]
+ Σ̂1,Sc×SΣ̂−11,S×SZ̃S + λ−1n

{
zn − Σ̂β∗

}
Sc

+ λ−1n

(
Σ̂Sc×{1,...,p+1} − Σ̂1,Sc×{1,...,p+1}

)(
β∗ − β̂0

)
.

(37)
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Note that

Σ̂1,Sc×SΣ̂−11,S×S

=
(
Σ̂1,Sc×S −ΣSc×S

)(
Σ̂−11,S×S −Σ−1S×S

)
+ ΣSc×S

(
Σ̂−11,S×S −Σ−1S×S

)
+
(
Σ̂1,Sc×S −ΣSc×S

)
Σ−1S×S + ΣSc×SΣ−1S×S .

By the proof of Lemma 10, we can easily get∥∥∥Σ̂1,S×S −ΣS×S

∥∥∥
op

= OP

(√s+ log n

m

)
.

This yields that ∥∥∥Σ̂−11,S×S −Σ−1S×S

∥∥∥
op

= OP

(√s+ log n

m

)
.

Then ∥∥∥(Σ̂1,Sc×S −ΣSc×S

)(
Σ̂−11,S×S −Σ−1S×S

)∥∥∥
∞

≤s3/2
∣∣∣Σ̂1,Sc×S −ΣSc×S

∣∣∣
∞

∥∥∥Σ̂−11,S×S −Σ−1S×S

∥∥∥
op

=OP
(
s2(log n)/m

)
.

Similarly, ∥∥∥ΣSc×S

(
Σ̂−11,S×S −Σ−1S×S

)∥∥∥
∞
≤s‖Σ‖op

∥∥∥Σ̂−11,S×S −Σ−1S×S

∥∥∥
op

=OP

(
s

√
s+ log n

m

)
,

and ∥∥∥(Σ̂1,Sc×S −ΣSc×S

)
Σ−1S×S

∥∥∥
∞
≤s3/2

∣∣∣Σ̂1,Sc×S −ΣSc×S

∣∣∣
∞

∥∥∥Σ−1S×S∥∥∥
op

=OP

(√
s3 log n

m

)
.

So we have ‖Σ̂1,Sc×SΣ̂−11,S×S‖∞ ≤ oP(1) + ‖ΣSc×SΣ−1S×S‖∞. Since C0 in λn is sufficiently

large, we can see that λ−1n |zn − Σ̂β∗|∞ is small enough.
Since ‖ΣSc×SΣ−1S×S‖∞ ≤ 1−α and |Z̃S |∞ ≤ 1, we have |Σ̂1,Sc×SΣ̂−11,S×SZ̃S |∞ ≤ 1−α/2

with probability tending to one. Note that P(supp(β̂0) ⊆ S)→ 1, we have

λ−1n

∣∣∣(Σ̂1,S×{1,...,p+1} − Σ̂S×{1,...,p+1}

)(
β∗ − β̂0

)∣∣∣
∞

=OP(1)λ−1n
√
s(log n)/m

∣∣∣β∗ − β̂0

∣∣∣
2

=OP

(
λ−1n an

√
s(log n)/m

)
=OP(1/C0),
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and ∣∣∣(Σ̂1,Sc×{1,...,p+1} − Σ̂Sc×{1,...,p+1}

)(
β∗ − β̂0

)∣∣∣
∞

=OP(1)λ−1n
√
s(log n)/m

∣∣∣β∗ − β̂0

∣∣∣
2

=OP(1/C0).

The above arguments, together with (37), imply uniformly for j ∈ Sc and some v < 1,

|Zj | ≤ v < 1.

By Lemma 12, uniformly for i ∈ Sc and some v < 1,

|Zi| ≤ v < 1

with probability tending to one. By this primal-dual witness construction, we have β̂ = β̃
with probability tending to one. Thus

P
(
|β̂ − β∗|1 ≤

√
s|β̂ − β∗|2

)
→ 1.

It is easy to see that ∣∣∣Σ̂1β̂ − zn −
(
Σ̂1 − Σ̂

)
β̂0

∣∣∣
∞
≤ λn,

due to equation (33) and |Z|∞ ≤ 1. It is standard to show that for some C > 0,

P

(
|Σ̂1 −Σ|∞ ≤ C

√
log n

m

)
→ 1. (38)

Note that P(supp(β̂0) ⊆ S)→ 1. By Proposition 11,

|Σ̂1β
∗ − zn − (Σ̂1 − Σ̂)β̂0|∞ ≤ |zn − Σ̂β∗|∞ + |(Σ̂1 − Σ̂)(β̂0 − β∗)|∞

= OP

(√
log n

n
+ a2n +

√
s log n

m
an

)
=

OP(1)

C0
λn. (39)

Therefore, by letting C0 in λn being sufficiently large, we have |Σ̂1(β
∗ − β̂)|∞ ≤ 2λn with

probability tending to one. By the following condition

min
δ:|δ|1≤c1

√
s|δ|2

δTΣ̂1δ

|δ|22
≥ c2, c1, c2 > 0, (40)

we can further have∣∣∣β̂ − β∗∣∣∣2
2
≤ C

(
β̂ − β∗

)T
Σ̂1

(
β̂ − β∗

)
≤ Cλn

∣∣∣β̂ − β∗∣∣∣
1
≤ Cλn

√
s
∣∣∣β̂ − β∗∣∣∣

2
.
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This proves that |β̂ − β∗|2 ≤ Cλn
√
s.

To prove Theorem 2, it is enough to show that Σ̂1 satisfies condition (40). We have,
with probability tending to one,

δTΣ̂1δ ≥ |δ|22 λmin (Σ)− |δ|21
∣∣∣Σ̂1 −Σ

∣∣∣
∞

≥ |δ|22 λmin (Σ)− |δ|22 s
∣∣∣Σ̂1 −Σ

∣∣∣
∞

≥c |δ|22 ,

for some c > 0 as s = o((m/ log n)1/2). This completes the proof of Theorem 2.
For t = 1, note that we assume |β̂0 − β∗|2 = OP(

√
s(log n)/m). Then let an =√

s(log n)/m in Theorem 2 and it is easy to see Theorem 3 holds for t = 1. Now sup-
pose Theorem 3 holds for t = k − 1 with some k ≥ 2. Then for t = k with initial estimator

being β̂(k−1), we have an,k−1 =
√

s logn
n + s(2k−1)/2

(
logn
m

)k/2
. Hence by Theorem 2 again

and the condition on s,

∣∣∣β̂(k) − β∗
∣∣∣
2

= OP

(√
s log n

n
+ an,k−1

√
s2 log n

m

)

= OP

(√
s log n

n
+ s(2k+1)/2

(
log n

m

)(k+1)/2
)
.

This implies that Theorem 3 holds for t = k. Then it completes the proof of Theorem 3.

A.4. Proof of Theorem 4 and Theorem 5

Proof [Proof of Theorem 4 and Theorem 5] Theorem 4 (i) and 5 (i) follow directly from
the proof of Theorem 2. As for Theorem 4 (ii), note that P(β̂ = β̃)→ 1. Recall

β̃S − β∗S = Σ−1S×S

{
− λnZ̃S −

(
Σ̂1,S×S −ΣS×S

)(
β̃S − β∗S

)
−
(
Σ̂1,S×S − Σ̂S×S

)(
β∗S − β̂0,S

)
+
(
zn − Σ̂β∗

)
S

}
.

By Equation (36), we obtain that, with probability tending to one,∣∣∣Σ−1S×S (Σ̂1,S×S −ΣS×S

)(
β̃S − β∗S

)∣∣∣
∞
≤ C‖Σ−1S×S‖∞‖Σ̂1,S×S −ΣS×S‖op

∣∣∣β̃S − β∗S∣∣∣
2

≤ C‖Σ−1S×S‖∞
√
s(s+ log n)/m

∣∣∣β̃S − β∗S∣∣∣∞ ,∣∣∣Σ−1S×S (Σ̂1,S×S − Σ̂S×S

)(
β∗S − β̂0,S

)∣∣∣
∞
≤ C‖Σ−1S×S‖∞an

√
(s+ log n)/m,

and ∣∣∣Σ−1S×S (zn − Σ̂β∗
)
S

∣∣∣
∞

= OP

(
‖Σ−1S×S‖∞

√
log n

n
+ ‖Σ−1S×S‖∞a

2
n

)
.
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Table 12: The `2-error, precision, and recall of the three estimators under different
combinations of the sample size n and local sample size m. Noises are generated from

normal distribution and quantile level τ = 0.5.

m 200 500 1000

n 5000 10000 20000 5000 10000 20000 5000 10000 20000

Pooled
REL

Precision 0.83 0.91 0.94 0.81 0.87 0.94 0.82 0.86 0.93
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.133 0.097 0.071 0.131 0.094 0.069 0.130 0.098 0.070

Dist
REL

Precision 0.98 0.99 1.00 0.91 0.95 0.98 0.86 0.90 0.96
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.149 0.112 0.088 0.137 0.098 0.073 0.132 0.100 0.072

Avg
DC

Precision 0.05 0.04 0.04 0.07 0.05 0.04 0.14 0.08 0.05
Recall 0.99 1.00 1.00 0.98 0.99 1.00 0.97 0.99 0.99
`2-error 0.341 0.324 0.313 0.219 0.202 0.192 0.174 0.156 0.139

With Lemma 11 and the choice of λn, we obtain that∣∣∣β̃S − β∗S∣∣∣∞ ≤ C‖Σ−1S×S‖∞
(√

log n

n
+ an

√
s log n

m

)
.

Then Theorem 4 (ii) follows from the above and together with the lower bound condition
on minj∈S |β∗j |.

Theorem 5 (ii) follows from the similar proof of Theorem 4 (ii) by replacing the initial
estimator as β̂(t−1) and the lower bound condition on minj∈S |β∗j |.

Appendix B. Additional Experiments

In this section we provide some additional experiment results using quantile level τ = 0.5.
The results are reported in Tables 12, 13 and 14. The observations are similar to the case
of τ = 0.3 in Section 4.4.
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Table 13: The `2-error, precision, and recall of the three estimators under different
combinations of the sample size n and local sample size m. Noises are generated from

Cauchy distribution and quantile level τ = 0.5.

m 200 500 1000

n 5000 10000 20000 5000 10000 20000 5000 10000 20000

Pooled
REL

Precision 0.82 0.88 0.94 0.85 0.91 0.95 0.83 0.89 0.93
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.118 0.083 0.063 0.120 0.087 0.063 0.119 0.085 0.062

Dist
REL

Precision 0.99 0.99 1.00 0.93 0.96 0.99 0.85 0.92 0.96
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.135 0.098 0.072 0.124 0.091 0.066 0.121 0.087 0.064

Avg
DC

Precision 0.05 0.04 0.04 0.09 0.06 0.04 0.14 0.08 0.06
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.303 0.302 0.280 0.196 0.176 0.166 0.159 0.133 0.122

Table 14: The `2-error, precision, and recall of the three estimators under different
combinations of the sample size n and local sample size m. Noises are generated from

exponential distribution and quantile level τ = 0.5.

m 200 500 1000

n 5000 10000 20000 5000 10000 20000 5000 10000 20000

Pooled
REL

Precision 0.83 0.87 0.98 0.82 0.93 0.95 0.83 0.92 0.95
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.071 0.053 0.035 0.068 0.050 0.038 0.065 0.047 0.034

Dist
REL

Precision 0.89 0.97 0.99 0.86 0.95 0.98 0.85 0.94 0.99
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.086 0.063 0.040 0.073 0.051 0.039 0.072 0.049 0.035

Avg
DC

Precision 0.08 0.07 0.06 0.07 0.08 0.05 0.09 0.06 0.07
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
`2-error 0.188 0.188 0.179 0.100 0.098 0.095 0.085 0.073 0.063
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