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Abstract

The logical parallelism of propositional connectives and type constructors extends beyond

the static realm of predicates, to the dynamic realm of processes. Understanding the logical

parallelism of process propositions and dynamic types was one of the central problems of the

semantics of computation, albeit not always clear or explicit. It sprung into clarity through the

early work of Samson Abramsky, where the central ideas of denotational semantics and pro-

cess calculus were brought together and analyzed by categorical tools, e.g. in the structure of

interaction categories. While some logical structures borne of dynamics of computation im-

mediately started to emerge, others had to wait, be it because the underlying logical principles

(mainly those arising from coinduction) were not yet sufficiently well-understood, or simply

because the research community was more interested in other semantical tasks. Looking back,

it seems that the process logic uncovered by those early semantical efforts might still be start-

ing to emerge and that the vast field of results that have been obtained in the meantime might

be a valley on a tip of an iceberg.

In the present paper, I try to provide a logical overview of the gamut of interaction cate-

gories and to distinguish those that model computation from those that capture processes in

general. The main coinductive constructions turn out to be of the latter kind, as illustrated to-

wards the end of the paper by a compact category of all real numbers as processes, computable

and uncomputable, with polarized bisimulations as morphisms. The operation of addition of

the reals arises as the biproduct, real vector spaces are the enriched bicompletions, and linear

algebra arises from the enriched kan extensions. At the final step, I sketch a structure that

characterizes the computable fragment of categorical semantics.

*Supported by NSF and AFOSR.
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Personal introduction

I first learned about Samson Abramsky’s work from his invited plenary lecture at the International

Category Theory Meeting in Montreal in 1991. It was the golden age of category theory, and Mon-

treal was at the heart of it, and I got to be a postdoc there. Just a few years earlier, I was a dropout

freelance programmer, but had become a mathematician, and was uninterested in computers. I was

told, however, that Abramsky had constructed some categories that no one had seen before, so I

came to listen to his talk. I also had a talk to give later that day myself, but for some reason, I do

not recall how that went. At the end of Abramsky’s plenary lecture, Saunders Mac Lane stood up,

one of the two fathers of category theory, high up near the ceiling of the amphitheater, and spoke

for a long time. He criticized computer science in general. After that, Bill Lawvere stood up, and

provided some friendly comments, suggesting directions for progress and improvement.

Two years later, I became an ”EU Human Capital Mobility” fellow within the Theory Group

at the Imperial College in London, led by Samson Abramsky. I started learning computer science

and spent a lot of time trying to understand Samson’s interaction categories [3]. In the meantime,

he had constructed more categories that no one had seen before. My fellowship ended after a year

or two, and the human capital mobility turned out to be much greater than anyone could imagine,

but I continued to think about interaction categories for years. Here I try to summarize some of

that thinking.

1 Introduction: On categorical logics and propositions-as-types

The category of sets or types. This is a paper about categorical semantics. It is written for a

collection intended for logicians. If you are reading this, then you are presumed to be interested

in categorical logic, although you may not be interested in categories in general. To ease this

tension, I will avoid abstract categories, and mostly stick with the category S of sets and functions.

It is presented, however, as a universe of types, by specifying which type constructors are used

in each construction. Initially, we just need the cartesian products, but later we need more. The

naive set theory used to be presented incrementally. Nowadays most mathematicians think of

types as sets, and most programmers think of sets as types, so it seems reasonable for logicians

and computer scientists to identify the two. To keep the naive-set-theory flavor, we usually call the

type inhabitants elements, where type theorists use the term terms.

When a set is constructed as a type, then it can also be construed as a proposition: since its

elements are constructions, they can be viewed as proofs [71]. Such interpretations originate from

logic, where the idea of propositions-as-types was first encountered along the paths of proofs-as-

constructions [30, 55, 70]. We retrace these paths first, and proceed throughout with propositions-

as-types, types-as-sets, terms-as-elements, elements-as-morphisms [62, 64].

Naming names. While sets and types signal different approaches, many concepts are studied in

different communities under different names even if there are no significant differences. This is

useful to place narratives in their contexts or to authenticate speakers’ allegiances. It is not easy to

avoid such connotations when they are undesired. In some cases, I resorted to renaming. E.g., the
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histories from Sec. 2.3.1 onwards are known as non-empty lists, or words, or strings. There are

other examples. I am not trying to reinvent them but to dissociate them from narrow contexts. I

hope they will not be too distracting.

1.1 Logics of types

Bertrand Russell proposed his ramified theory of types [104] as a logical framework for paradox

prevention. Alonzo Church and Stephen Kleene advanced type theory into a model of computation

[30, 52]. Dana Scott adopted type theory as the foundation for a mathematical approach to the

semantics of computation [105]. The semantics of programming languages were built steadily

upon that foundation [45, 102]. Process semantics also arose from that foundation [73], but had

to undergo a substantive conceptual evolution before the types could capture dynamics. I followed

these developments through Samson Abramsky’s work.

The propositions-as-types paradigm was discovered many times. In logic and computer sci-

ence, it is attributed to Haskell Curry and William Howard [106, 42, Ch. 3]. Howard got the idea

from Georg Kreisel [114], and Kreisel’s goal was to formalize Brouwer’s concept of proofs-as-

constructions [56]. An early formalization of Brouwer’s concept goes back to Kolmogorov [55].

The structural reason why propositions and types obey analogous laws was offered by Law-

vere [65], who pointed out that the propositional and the typing rules are instances of analogous

categorical adjunctions; and that the proof constructions and the term derivations arise from the

adjunction units and counits. This gave rise to the idea of categorical proof theory, pursued by

Lambek [58, 60, 61], and to the basic structures of categorical semantics, succinctly described in

[63, and the references therein]. In the preface to his seminal report [105], Dana Scott explained

that

”a category represents the ’algebra of types’, just as abstract rings give us the algebra

of polynomials, originally understood to concern only integers or rationals. One can of

course think only of particular type systems, but, for a full understanding, one needs

also to take into account the general theory of types, and especially translations or

interpretations of one system in another.”

Samson Abramsky spearheaded the efforts towards expanding the categorical semantics of pro-

gram abstraction, as formalized in type theory and merge it with a categorical semantics of process

abstraction and interaction, as formalized in the theory of concurrency and process calculi. This

led to interaction categories [3, 31, 84, 86], specification structures [11, 95], and a step further to

geometry of interaction [13] and game semantics [5, 12, 14, 15, and many other publications]. As

the realm of program abstraction expanded, e.g. into quantum computation and protocols [10], the

semantical apparatus also expanded [7, 8], the tree branched [33, 91], some branches crossed1. In

the present paper, however, we are only concerned with the root. And even that might be overly

ambitious.

1E.g., [90] used the methods of [95] to expand the models of [10].
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1.2 Categorical proof theory

Proofs-as-constructions. The Curry-Howard isomorphism is one of the conceptual building

blocks of type theory, built deep into the foundation of computer science and functional program-

ming [42, ch. 3]. The fact that it is an isomorphism means that the type constructors on one side

obey the same laws as the propositional connectives on the other side; and these laws are expressed

as a bijection between the terms and the proofs.

1.2.1 Entailments as morphisms

In categorical proof theory, logical sequents are treated as arrows in a category [58, 60, 61, 65].

The reflexivity and the transitivity of the entailment relation then correspond to the main categorical

structures: the identities and the composition.

A � A

1

S(A, A)

�id� (1)

A � B B � C

A � C

S(A, B) × S(B,C)

S(A,C)

(−;−)

But while there is at most one sequent A � B for given A and B, there can be many arrows between

A and B in a category. Categorical semantics of the logical entailment must therefore be imposed
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by equations:

S(A, B) S(A, B)

S(A, A) × S(A, B) S(A, B) × S(B, B)

S(A, B) S(A, B)

id

〈�id�,id〉

id

〈id,�id�〉

(−;−) (−;−)

S(A, B) × S(B,C) × S(C,D) S(A, B) × S(B,D)

S(A,C) × S(C,D) S(A,D)

(−;−)×id

id×(−;−)

(−;−)

(−;−)

1.2.2 Conjunction and disjunction as product and coproduct

Algebraically, the conjunction and the disjunction are the meet and the join in the proposition

lattice. Categorically, they are the product and the coproduct:

X � A X � B
=====================

X � A ∧ B

S(X, A) × S(X, B)

S(X, A × B)

〈−,−〉
〈〈
πA◦−,πB◦−

〉〉 (2)

A � X B � X
=====================

A ∨ B � X

S(A, X) × S(B, X)

S(A + B, X)

[−,−]
〈〈
−◦ιA,−◦ιB

〉〉 (3)

Definition 1.1 A category with the product constructor × supporting the correspondence (2) is

called cartesian. A category with the coproduct constructor +supporting the correspondence (3) is

called cocartesian.

The difference between the algebraic and the categorical view is that in the first case there is at

most one entailment X � A, whereas in the second case there can be many arrows X → A, usually

labelled, and viewed as functions in the category S. The mapping in (2) on the right establishes the

bijection between the proofs or functions X → A × B and the pairs of proofs or functions X → A

and X → B. The proof transformations thus become function manipulations. If the elements of

sets or entries of data types, witness the corresponding propositions, then the logical operations are

operations on data. E.g., proof of conjunction becomes a pair of data entries. It often comes as a

surprise that such simple-minded analogies can be effective tools in functional programming [93].

They also have far-reaching logical consequences, some of which are pursued in the present paper.
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1.2.3 Function abstraction and cartesian closed categories

The fact that the conjunction A∧ (−) is the right adjoint to the implication A ⊃ (−) [65] means that

the implication introduction and elimination can be expressed as the reversible logical rule in (4)

on the left.

(A ∧ X) � B
============ ⊃
X � (A ⊃ B)

S(A × X, B)

S
(
X, (A⇒B)

)
(A⇒−)◦ηX εX◦(A×−) (4)

The corresponding type-theoretic correspondence in (4) on the right was the first example of the

propositions-as-types phenomenon. This bijection between two sets of proofs-as-terms was no-

ticed by Haskell Curry back in the 1930s. The operation corresponding to the implication intro-

duction, i.e. going down, is called the abstraction. The operation corresponding to the implication

elimination, i.e. going up, is called the application. The categorical view of the resulting corre-

spondence captures its uniformity with respect to all indexing types X, i.e. its polymorphism, as the

naturality with respect to the type constructors (A × −) and (A⇒−). A correspondence between

two constructors is natural if it is preserved under all substitutions. For (4) every f ∈ S(X, Y)

induces the two squares in (5), one formed by ηs, the other by εs.

S(A × Y, B) S(A × X, B)

S
(
Y, (A⇒B)

)
S
(
X, (A⇒B)

)
(A⇒−)◦ηY

−◦(A× f )

(A⇒−)◦ηXεY◦(A×−)

−◦ f

εX◦(A×−) (5)

The naturality of these squares means that they are commutative. The commutativity of these

squares captures the type-theoretic conversion rules imposed on the abstraction operation and the

application operation:

A × (A⇒ (A × X))

A × X A × X

εA×X

id

A×ηX

(
λa. fx(a)

)
· b = fx(b) (β)

A ⇒ X A ⇒ X

A ⇒ (A × (A⇒X))

id

η(A⇒X) (A⇒εX) λa.
(
gx · a

)
= gx (η)

The application operation is derived from the adjunction counit εX : A × (A⇒X) −−→ X in the

form g · a = ε(a, g). The abstraction operation is written in type theory it is written using the

variables, like in the rules (β) and (η) above, but can also derived from the adjunction unit ηX :

X −−→ (A⇒ (A × X)), in the form λ( f ) = (A⇒ f ) ◦ ηX.
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Definition 1.2 A cartesian closed category is a cartesian category S with the static implication

(A⇒B) for every pair of types A, B and the X-natural (function) abstraction operation

S(A × X, B)
λAB

X

−−−−−→
∼

S(X, (A⇒B)) (6)

Remark. Towards aligning with Def. 2.1, note that the function abstraction λAB is with respect to

the functors HAB,∇AB : So −−→ S defined

HABX = S(A × X, B) ∇ABX = S(X, (A⇒B)

The arrow parts are induced by precomposition.

1.3 Modalities as monads and comonads

1.3.1 Possibility and side-effects

A possibility modality can be introduced by the rules on the left.

A � �A

A ∧ B � �C

�A ∧ �B � �C

S(A × B,MC)

S
(
MA × MB,MC

)#φ ηη (7)

Each of the logical rules corresponds to one of the categorical transformations on the right, where

ηη precomposes A × B
ηA×ηB

−−−−→ MA × MB −−→ MC, whereas #φ first #-lifts A × B
g
−→ MC, and then

precomposes to MA × MB
φ
−→ M(A × B)

g#

−→ MC. The quadruple (M, η, #, φ) is the structure of a

commutative monad [23, 53, 54, 68]. The type constructor M, the unit η : A −−→ MA and the lifting

# of A
f
−→ MC to MA

f #

−→ MB satisfy the equations

η#
A = idMA f # ◦ ηA×B = f ( f # ◦ t)# = f # ◦ t# (8)

This triple is one of the equivalent presentations of the structure of a monad [68]. Most presen-

tations [23, 63] define a monad as a triple (M, η, μ), where μA : MMA −−→ MA are the (cochain)

evaluators. The lifting # is derivable from the evaluators by setting f # =

(
MA

M f
−−→ MMB

μ
−→ MB

)
,

whereas the evaluators are derivable as the liftings of the identities, in the form μA =

(
MMA

id#

−−→ MA

)
.

The lifting operation # seems more convenient for programming. The last component φ of the

structure (M, η, #, φ) (or of the equivalent form (M, η, μ, φ)) is the bilinearity φAB : MA × MB −−→

M(A × B), which makes the monad commutative [53, 54]. This natural family satisfies

φAC ◦ (ηA × ηC) = ηA×C

(
φBD ◦ ( f × g)

)#
◦ φAC = φBD ◦ ( f # × g#) (9)
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for all pairs f : A −−→ MB and g : C −−→ MD. Similar equations are valid for all tuples. The

equations in (8) define the identities and the composition in the category of free algebras (in the

Kleisli form)

|SM | = |S|

SM(A, B) = S(A,MB)

While correspondences (3) persist in SM , the natural bijection in (2) does not, and SM is not a

cartesian category any more. However, the equations in (9) assure that the product × from S

persists as a monoidal structure in SM [54]. Intuitively, a function A −−→ MB produces not just

the outputs in B, but also some side-effects [73], represented in the type MB. E.g., the fact that

computations may not terminate means that they implement functions in the form A −−→ B⊥ where

the monad

(−)⊥ : S −−→ S (10)

X �→ X ∪ {⊥}

adjoins to each set a fresh element ⊥. This is the maybe monad, corresponding to the algebraic

theory with a single constant and no operations or equations. The category S⊥ is (equivalent to)

the category of sets and partial functions.

Another side-effect of interest is the nondeterminism. Some computations may depend on the

states of the computer, which may depend on the environment. Running the same program on the

same inputs may therefore produce different outputs at different times, for no unobservable reason.

Such computations implement functions in the form A −−→ ℘B, where the monad

℘ : S −−→ S (11)

X �→ {V ⊆ X}

maps each set to the set of its subsets, a.k.a. its powerset. This is the nondeterminism (or powerset)

monad. It maps to every function X
g
−→ Y the function ℘X

℘g
−−→ ℘Y , which takes V ⊆ X to

℘g(V) = {g(x) ∈ Y | x ∈ V}. The unit X
η
−→ ℘X maps x ∈ X to η(x) = {x}. The lifting maps a

function A
f
−→ ℘B to ℘A

f #

−→ ℘B where f #(V) = ∪v∈V f (v). For reasons discussed in Appendix A, it

satisfies

S(A, ℘B) � S(B, ℘A)

which makes the category S℘ of nondeterminisic functions self-dual, along the natural bijection

S℘(A, B) � S℘(B, A). The idea is that, given a nondeterministic function A −−→ ℘B, knowing all

possible B-outputs for each A-input allows us to extract all possible A-inputs for each B-output,

which yilelds just another nondeterministic function B −−→ ℘A. See Appendix A for more.

Notation. Since they will be cast in leading roles, the above categories of functions with effects

are abbreviated to:

• P = S⊥ — category of partial functions, and

• R = S℘ — category of relations.
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Background. In mathematics, monads emerged as a ”standard construction” of free algebras

involving topologies [23, 68]. The observation that the type constructors M that add side-effects

also carry the monad structure goes back to [78]. Initially proposed as a semantical tool, monads

turned out to be a powerful and convenient programming tool. Nowadays, monads’ popularity

among programmers drives interest in semantics. Mathematically, a monad M is a saturated view

of an algebraic theory, presented not by operations and equations, but as a mapping from any set of

generators B to the free algebra MB. The unit ηmaps each generator to its place in the free algebra.

The lifting # expands the assignment A
f
−→ MB from the generators A to the algebra homomorpism

MA
f #

−→ MB. Any monad corresponds to an algebraic theory, albeit with infinitary operations. The

semantical assumption that all computational side-effects can be captured by algebraic operations

has deep repercussions on the concept of computation.

1.3.2 Necessity and reductions

Dually, a necessity modality can be introduced by

�A � A

�A � B ∨ C

�A � �B ∨ �C

S(GA, B + C)

S
(
GA,GB +GC

)# −◦εB+C (12)

This time the triple (G, ε, #) is made into a comonad by the equations:

ε#
A = idGA εB+C ◦ f # = f ( f ◦ t#)# = f # ◦ t#

The third equation defines the composition in the category of coffee coalgebras, in the Kleisli form

again:

|SG | = |S|

SG(A, B) = S(GA, B)

Computational interpretations of comonads are less standard, but overviews can be found in [25,

108]. We will need a history comonad to capture the time extension of processes in Sec. 2.3.1. For

the moment, let us just mention the indexing comonads

A × (−) : S −−→ S (13)

X �→ A × X

which exist for each A ∈ S, with the counits A × X
ε
−→ X realized by the projections, and the lifting

A×X
h
−→ Y +Z defined to be A×X

〈idA,h〉
−−−−→ A× (Y +Z) � (A×Y)+ (A×Z). The Kleisli category SA×

freely adjoins an indeterminate arrow 1
x
−→ A to S, and plays the role of the polynomial extension

S[x : A] [63, 88]. Like any Kleisli category, SA× provides a resolution of its comonad, in the sense

that it factors through the functors

A × (−) =
(
S

−◦ε
−−→ SA×

#
−→ S

)
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as displayed in (12). While the Kleisli resolution is initial among the resolutions of the comonad

A × (−), some of the constructions in this paper are built upon the fact that the resolution

A × (−) =
(
S
ΠA

−−→ S/A
Dom
−−−→ S

)
is final among all resolutions. Here S/A is the category of S-morphisms into A, the functor ΠA

functor maps X to the projection A × X
πA

−→ A, whereas the Dom functor Dom takes the S/A-

objects, which are the S-morphisms with the codomain A, to their domains Dom(X −−→ A) = X.

Lemma 1.3 The domain functor Dom : S/A −−→ S is final among all functors F : C −−→ S which

map the terminal object 1 into A.

C

S

S/A

∃!F′

∀F

Dom

Proof. Given F with F1 = A, the unique F′ with Dom ◦ F′ = F is F′X = F(X
!
−→ 1). �

1.4 Labelled sequents, commutative monads, and surjections

In propositional logic, a sequent X � Y transforms proofs of X into proofs of Y . If there are several

different ways to derive one from the other, the sequent X � Y identifies them all. This leads to

a mismatch within the propositions-as-types interpretation because it implies that there is at most

one proof X � A ⊃ B, while there can be many different terms of type X
t
−→ (A⇒B). This mismatch

is resolved by labelling the sequents, writing X |
t
−→A ⊃ B for the former sequent. We use the symbol

|→(and not �) for labelled sequents, to be able to write X |→Y instead of X |
f
−→Y when the label f is

irrelevant. The categorical proof theory originates from studies of labelled sequents in [58, 60, 61].

A non-categorical theory of labelled sequents was developed in [39].

For a modality �, the sequents between the propositions �A ∧ �B and �(A ∧ B) are derivable

both ways, and the two are considered equivalent. The proposition �� is also equivalent to the

truth �. For a monad M, the maps M(A × B)
〈MπA,MπB〉
−−−−−−−−→ MA × MB and M1

!
−→ 1 are derivable

from the cartesian structure, and the maps MA × MB
φ
−→ M(A × B) and 1

η
−→ M1 are given by

the monad structure. However, these pairs of functions both ways are generally not inverse to one

another. The type M1 is generally not final, and the type M(A × B) is generally not a product. The

side-effects of type M(A × B) are different from the side-effects that arise when the outputs are

received into MA and MB separately.

While this state of affairs is justified in algebra, where M1 is the free algebra over a single

generator, it is not justified in the semantics of computation, where the trivial outputs of type

1 should not cause nontrivial side effects contained in type M1. Viewing the monad M as an

12



algebraic theory shows that the nontrivial elements of M1 arise from the constants of the algebraic

theory. This requirement is not satisfied either by the maybe monad, or by the nondeterminism

monad, as the former gives the universe P = S⊥ of sets and partial maps, the latter the universe

R = S℘ of sets and relations. The former is the category of free algebras for the theory with a single

constant ⊥, and no other operations. The latter is the category of free join semilattices, where the

lattice unit is a constant again.

Lemma 1.3 says that making 1 into the unit type (final object) in R = S℘ leads to the slice

category tR = R/1, which boils down to

|tR| =
∐
A∈|S|

℘A

tR(S ⊆A, T⊆B) =
{
R ∈ R(A, B) | (x ∈ S ⇐⇒ ∃y ∈ T. xRy) ∧ (14)

∧ (y ∈ T ⇐⇒ ∃x ∈ S . xRy)
}

Since the ⇒-direction of each of the conjuncts in (14) implies the ⇐-direction of the other con-

junct, the requirement boils down to ∀x ∈ S∃y ∈ T. xRy and ∀y ∈ T∃x ∈ S . xRy. The category

tR is thus equivalent to the subcategory of R comprised of the relations that are total in both direc-

tions. Proceeding in a similar way to make 1 into the final type in the category S⊥ = P leads to the

slice category tP = P/1, which is equivalent to the subcategory tS of S spanned by the surjective

functions:

|tP| =
∐
A∈|S|

℘A

tP(S ⊆A, T⊆B) =
{
f ∈ S(S , T ) | y ∈ T ⇒ ∃x ∈ S . f (x) = y

}
(15)

Remark for the category theorist. The forgetful functor tP −−→ tS, where tS is the category of

sets and surjections, is an equivalence because it is surjective on the objects, and full and faithful

on the morphisms. However, for each set S ∈ S there is a proper class of sets A such that S ⊆A ∈ tP

is mapped to S ∈ tS. Constructing the adjoint equivalence tS −−→ tP thus involves a choice from

these proper classes of objects.

2 Process logics

2.1 Idea of process

The alignment of logic and type theory remains stable as long as the world is stable: the true

propositions remain true, and the data types remain as given. The problems arise when processes

need to be modeled, and their dynamic aspects need to be taken into account.

There are physical processes, chemical processes, mental processes, social processes. The

common denominator is that they change state: a physical process changes the state of matter; a

mental process changes the state of mind. Computation is also a process. Although already a local

execution of a program changes the local states of a computer, it seems that the crucial aspects of
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processes of computation arise from their interleaving with the processes of communication, from

the resulting computational interactions, and only emerge into light when the problem of concur-

rency is taken into account. That is why the semantics of computational processes, formalized in

process calculi, initially forked off from the main branch of the semantics of programming lan-

guages. The main part of Samson Abramsky’s work, which I am trying to reconstruct in logical

terms, was concerned with bringing the two branches together.

2.2 Process propositions and implications

2.2.1 Process sequents must be labelled

Process logics involve modeling states. There are many different ways to model states, but within

a propositions-as-types framework, state spaces occur together with the data types, subject to the

same derivation rules. Although the two must be treated differently within the rules (as we shall see

already in Sec. 2.4), both require labelled sequents. For state spaces, this is clearly unavoidable.

As mentioned in Sec. 1.4, an unlabelled sequent X � Y identifies all different proofs that X entails

Y . In particular, there is just one entailment X � X, the trivial one. But if X is a state space, then

modeling state transitions requires nontrivial sequents X |
ξ
−→X. The labels allow distinguishing the

nontrivial sequents, where the states change, from the trivial one, where they do not.

2.2.2 Machine abstraction and process-closed categories

A process implication [A, B] asserts not just that A implies B, but also that A implies [A, B]. Under

the propostions-as-types interpretation, the type [A, B] thus comes with two functions

• A ∧ [A, B] |
ε
−→B (υ•)

• A ∧ [A, B] |
ζ
−→ [A, B] (υ◦)

The label says that the latter is not an instance of the propositional conjunction elimination, a.k.a.

projection on the types side. The sequent ζ is a coinductive clause, saying that [A, B] is true on its

own whenever it is true together with A as a guard [35, 89]. This is a typical impredicative claim,

of kind which is often used mathematical analysis [97, 98, 100]. The general idea is that, whenever

a proposition X, guarded by a proposition A, entails a proposition B, and moreover also itself, i.e.

whenever X comes with the sequents

• A ∧ X |→B (�−�•)

• A ∧ X |→X (�−�◦)

then X also entails the process implication [A, B]. Putting it all together, we get the following rules:

υ
A ∧ [A, B] |

υ
−→B ∧ [A, B]

A ∧ X |
ϕ
−→B ∧ X

�−�

X |
�ϕ�
−−−→ [A, B]

S(A × X, B × X)

S (X, [A, B])

�−�X
(16)
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Terminology. A function in the form ξ : A×X −−→ B×X is often called a machine, and the set X

is construed as its state space. The induced description
�
ξ

�
: X −−→ [A, B] is called anamorphism.2

Naturality. Comparing the �−�-rule with the (⊃)-rule in Sec. 1.2.3, shows the sense in which

[A, B] is a dynamic version of the implication (A ⊃ B). But note that the rule (⊃) is reversible,

whereas the rule �−� is not; and that the X-natural bijection in (4) on the right boils down to

an X-natural transformation on the right in (16). Moreover, since X occurs on both sides of the

sequent A ∧ X |
ϕ
−→B ∧ X, and thus in both covariant and contravariant position in S(A × X, B × X),

the naturality of �−�X is not as simple as in (5), and it genuinely adds to the story. This time the

naturality is in the form

S (A × Y, B × Y) S (A × X, B × X)

S (Y, [A, B]) S (X, [A, B])

�−�Y

ΘAB f

�−�X

(−◦ f )

(17)

where ΘAB is the functor

ΘAB : So −−→ R (18)

X �→ S(A × X, B × X)

where R is the category of sets and relations, described in Appendix A. The arrow part of this

functor transforms a function f ∈ S(X, Y) into the relation ΘAB f = ( f ) which is a subset of

S(A × Y, B × Y) × S(A × X, B × X) defined by

ζ( f )ξ ⇐⇒

A × Y A × X

B × Y B × X

ζ ξ

A× f

B× f

(19)

The relation (− ◦ f ) in (17) is the arrow part of the functor

∇AB : So −−→ R (20)

X �→ S(X, [A, B])

2Anamorphisms are the coalgebra homomorphisms into final coalgebras. The name is due, I believe, to Lambert

Meertens. It seems to have caught on without having been introduced in a publication. Many functional programmers

call them unfolds, generalizing the special case of lists. A machine A × X −−→ B × X can be viewed as a coalgebra

X −−→ (A⇒ (B × X)).
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where ∇AB f = (− ◦ f ) is the subset of S(Y, [A, B]) × S(X, [A, B]) defined

y(− ◦ f )x ⇐⇒ y ◦ f = x (21)

∇AB is, of course, just homming into [A, B], i.e. a functor to the category of sets S extended along

the inclusion S ↪→ R of functions as special relations. The naturality of �−� : ΘAB −−→ ∇AB

genuinely depends on this casting. It says that �−� must preserve the machine (i.e. coalgebra)

homomorphisms specified in (19). The concept of an AB-machine homomorphism has herewith

been reconstructed logically, from the properties of the dynamic implication [A, B] in (16).

To reconstruct the structure of final AB-machine, substitute [A, B] for Y in (16), to get the outer

square in

S (A × [A, B] , B × [A, B]) S (A × X, B × X)

υ ϕ

id[A,B]

�
ϕ

�

S ([A, B] , [A, B]) S (X, [A, B])

�−�

(�ϕ�)

�−�

(−◦�ϕ�)

(22)

The inner square says that, if we bind together the two left-hand rules in (16) by requiring that

�υ�[A,B] = id[A,B]

then the naturality requirement in (16) implies that A × [A, B]
υ
−→ B × [A, B] is final among all AB-

machines. This is conveniently summarized in the next definition, intended for the readers with

categorical background.

Definition 2.1 A process closed category is a cartesian category S with a process implication

[A, B] for any pair of types A, B and the X-natural machine abstraction operaton

S(A × X, B × X)
�−�AB

X

−−−−−−→ S(X, [A, B]) (23)

The naturality of �−�AB is with respect to the functors ΘAB,∇AB : So −−→ R defined in (18–21).

Remark. Def. 2.1 can be viewed as a lifting of Def. 1.2 to process logics. While the latter is the

categorical setting of the static propositions-as-types paradigm, the former recasts categories with

final AB-machines in a logical form. The simple logical relation between the two structures will

be spelled out in Prop. 2.3.3.
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2.2.3 Process propositions

A static proposition B is equivalent with the static implication � ⊃ X, where � is the true propo-

sition. All propositions can thus be viewed as special implications: namely the implications from

the truth. A dynamic proposition [B] can thus be defined in the form [B] = [�, B]. Since the

conjunctions � ∧ X are also equivalent with X, dynamic propositions can be defined by the rules

υ

[B] |
υ
−→B ∧ [B]

X |
β
−→B ∧ X

�−�

X |
�β�
−−−→ [B]

S(X, B × X)

S(X, [B])

�−�

Retracing the analysis from Sec. 2.2.2 now presents a proposition [B] with a structure map [B]
υ
−→

B × [B], as final among all maps in the form X −−→ B × X. The structure map is thus a pair

υ = 〈υ•, υ◦〉, where υ• : [B] −−→ B gives an output of the process proposition, or an action, and

υ◦ : [B] −−→ [B] gives a resumption. It is thus a stream of elements in B.

2.3 Relating process implications and static implications

The static implication is defined by the rules and the correspondence in (4). The process implica-

tion is defined by the rules and the correspondence in (16). How are they related? Under which

conditions are both sets of rules supported? Prop. 2.3.3 provides an answer. Sections 2.3.1 and

2.3.2, introduce the structures involved in the answer.

2.3.1 History types

A process of A-histories over a state space X is a pair of functions κ =
〈
κ(−), κ(::)

〉
typed

A
κ(−)

−−→ X
κ(::)
←−− A × X (24)

The idea is that,

• κ(−)(a) ∈ X is the initial state of a process that starts with a ∈ A;

• κ(::)(x, a) ∈ X is the next state of a process after the state x ∈ X and event or action a ∈ A.

A history an = ( a1 a2 · · · an ) thus takes the process κ to the state

xn = κ(::)(an, κ(::)(an−1, . . . κ(::)(a1, κ(−)(a0)) · · · ))

Each string of n actions, construed as an A-history is thus mapped to a unique element of X. If the

histories ( a1 · · · an ) are viewed as the elements of An, then the disjoint union (coproduct)

A+ =

∞∐
n=1

An

17



is the type of all A-histories. This is what we call a history type. For any process of A-histories

κ over X there is a unique banana-function (a.k.a. fold, or catamorphism) A+
�κ�
−−→ X that makes

following diagram commute.

A+ A × A+

A

X A × X

�κ�

(::)

A×�κ�

(−)

κ(−)

κ(::)

Hence the history type constructor, the functor

(−)+ : S −−→ S (25)

A �→ A+

2.3.2 Retractions and idempotents

A retraction is a pair of maps A
q

�
i

B such that q ◦ i = idB. The type B is a retract of A when there

is such a pair. It is easy to see that the composite ϕ = i ◦ q is then idempotent, and the retraction

A
q

�
i

B is its splitting. The following diagram summarizes a retraction

A A

A

B B

q

ϕ

ϕ ϕ

qi

i

It is easy to see that i is then an equalizer of ϕ and the identity; and that q is a coequalizer of the

same pair. Since any functor preserves retractions, they provide an exampe of an absolute limit and

colimit. A categorical construction is absolute when it is preserved by all functors. It turns out that

all absolute limits and colimits boil down to retractions [82]. A category where all idempotents

split into retractions is thus absolutely complete. The absolute completion of a category takes its

idempotents as the objects, and a morphism f between the idempotents ϕ and ψ is required to

preserve them, in the sense that f = ψ◦ f ◦ϕ. This is the weakest form of a categorical completion.

Retractions, or idempotent splittings3, are thus an instance of the (co)limit operation.

The following proposition is a first step towards expanding the propositions-as-types paradigm

to processes, promised in the title of this paper.

3While the term idempotent splitting is well-established in category theory, the term retraction is familiar in math-

ematics at large. They refer to the same fundamental operation [96, Sec. 11].
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2.3.3 Proposition

Let S be a cartesian category. Then the static implications and the process implications induce

each other in the presence of the history types and the retractions. More precisely,

a) a cartesian closed category is process closed whenever it has the history types;

b) a process closed category is cartesian closed whenever it has the retractions.

The proof is given in the Appendix.

Process abstraction is function abstraction over history types. Prop. 2.3.3 says that a cartesian

closed category with history types has final AB-machines for all types A and B, and that their state

spaces [A, B] = (A+⇒B) support rules (16). A final AB-state machine can be constructed as a final

coalgebras for the functor

EAB : S −−→ S

X �→ (A⇒ (B × X))

i.e. as a limit of the tower in the form

1 (A⇒B) (A⇒ (B × (A⇒B)))

En
AB

(1) En+1
AB

(1) (A+⇒B)

! (A⇒(B×!))

En
AB

(!)

(26)

The process implications [A, B] are thus modeled together with the static implications (A⇒B), and

both sets of rules (4) and (16) are supported. Processes can thus be modeled as machines. This was

indeed the starting idea of process semantics [73]. However, early on along this path, it becomes

clear that many different machines implement indistinguishable processes. The problem of process

equivalence arises [75]. The input and the output types A and B of a process are observable, but

the state space X may not be. In fact, any observable behavior can be realized over many different,

unobservable state spaces.

2.4 The problem of cut in process logics

The fact that a process model may not support process composition is not just a conceptual short-

coming, but an obstacle to applications. Engineering tasks are in principle made tractable by de-

composing the required processes into components, implementing the components, and composing

the implementations. The process component models thus usually encapsulate and hide implemen-

tations, and display the interfaces. This methodology is conceptualized in full abstraction, one of

the tenets of semantics of computation ever since [73, Sec. 4].

The first logical requirement of compositionality is that the state spaces must be factored out.

This is necessary if the composition is to comply with a cut rule (1). If the process sequents are
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state machines in the form X×A |
ϕ
−→X ×B and Y ×B |

ψ
−→Y ×C, then the cut rule would be something

like

X ∧ A |
ϕ
−→X ∧ B Y ∧ B |

ψ
−→Y ∧ C

Z ∧ A |
(ϕ;ψ)
−−−→Z ∧C

(27)

The mismatch between the state spaces X and Y needs to be somehow resolved by composite state

space Z. How should processes pass their internal states to one another?

The intuitive difference between data and states is that data are processed, whereas the states

enable the processing. The structural difference is that data can be copied and sent in messages,

whereas the states are internal, and may not be communicable. The problem of process composi-

tion is thus that the observable aspects of processes, that get passed in process composition from

one process to another, need to be separated from the unobservable aspects, that remain hidden

from the compositions. The same problem arises in applying processes as dynamic functions on

sources as dynamic elements.The latter can, of course, be viewed as a special case of the former,

just like process propositions are viewed as a special case of process implications.

The idea towards a solution is that the observable aspects are presented as data types, the un-

observable aspects as state spaces. Processes should thus keep their internal states for themselves,

as any dynamics aspects of their interactions can be communicated using the process implications.

This follows from the fact, spelled out at the end of Sec. 2.2.2, that the process implications are the

state spaces of the final state machines. Dispensing with the internal states, the process composi-

tion should thus be defined as a sequent in the form

[A, B] ∧ [B,C] |
γ
−→ [A,C] (28)

In the static logics, the sequents that establish the transitivity of implication are equivalent with

the cut rule from (1). In the process logics, the sequents like (28) solve the problem with (27).

The final machine and coalgebra structures carried by the process implications have been used to

define composition in a variety of final-coalgebra-enriched categories [3, 11, 95, 57]. The general

derivation pattern behind the composition sequents in the form (28) is something like this:

υ

A ∧ [A, B] |
υ
−→B ∧ [A, B]

A ∧ [A, B] ∧ [B,C] |
α
−→B ∧ [A, B] ∧ [B,C]

υ

B ∧ [B,C] |
υ
−→C ∧ [B,C]

B ∧ [A, B] ∧ [B,C] |
β
−→C ∧ [A, B] ∧ [B,C]

A ∧ [A, B] ∧ [B,C] |
(α;β)
−−−→ C ∧ [A, B] ∧ [B,C]

�−�

[A, B] ∧ [B,C] |
γ=�α;β�
−−−−−−−→ [A,C]

(29)

The task of composing processes thus boils down to interpreting the process implications [A, B].

The task of applying processes to sources boils down to interpreting the process propositions [A] =

[�, A].
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3 Functions extended in time

3.1 Dynamic elements as streams

The outputs of a machine a =

(
X

〈a•,a◦〉
−−−−→ A × X

)
are observable as a stream aω = ( a0 a1 · · · an · · · ).

Starting from an initial state x0 ∈ X the process

• outputs a0 = a•x0
and updates the state to x1 = a◦x0

; then it

• outputs a1 = a•x1
and updates the state to x2 = a◦x1

; after n steps, it

• outputs an = a•xn
and updates the state to xn+1 = a◦xn

; and so on.

A dynamic4 element can thus be construed as a stream of outcomes of a repeated measurement or

count. Such data streams arise in science, and they are the subject of statistical inference [36]. If

the outcomes are the truth values, then these streams are the process propositions. When the fre-

quencies are counted, then they are the streams of random variables called sources in information

theory [20, Ch. 6].

3.2 Functions extended in time as deterministic channels

A dynamic function from A to B is generated by a machine in the form f =

(
A × X

〈 f •, f ◦〉
−−−−−→ B × X

)
.

Starting from an initial state x0 ∈ X the process consists of the following data maps and state

updates:

a0 �→ b0 = f •x0
(a0) a0 �→ x1 = f ◦x0

(a0)

a0 a1 �→ b1 = f •x1
(a1) a0 a1 �→ x2 = f ◦x1

(a1)

· · · · · ·

a0 a1 · · · an �→ bn = f •xn
(an) a0 a1 · · · an �→ xn+1 = f ◦xn

(an)

· · · · · ·

A dynamic function can thus be viewed as a stream of functions in the form

f ω =
(

f0 f1 · · · fn · · ·
)

where fn = f •xn
: An −−→ B

The propositions-as-types interpretation of the process implication is based on such streams of

functions. Streams of random functions are studied in information theory as channels. Those

considered here correspond to the deterministic channels [20, Sec. 3.2].

4We use the terms ”dynamic” and ”extended in time” interchangeably. A distinguishing aspect, that justifies

keeping both in traffic, will emerge later.
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3.3 History monad and comonad

The construction (−)+ : S −−→ S, described in Sec. 2.3.1, supports the monad structure

A A+ A+ B+

a
(

a
)

g(b1) · g(b2) · · · g(bn)
(

a1 a2 · · · an

)

η g#

where g is a function from B to A+, and · is the string concatenation. The algebras for this monad

are semigroups: the set of finite A-sequences (words, nonempty lists) A+ is the free semigroup over

A.

For our concerns, it is more interesting that the construction (−)+ : S −−→ S also supports the

comonad structure

A A+ B+

an (a1a2 · · · an)
(

f (a1) f (a1a2) · · · f (a1 · · · an)
)

ε f #

Thinking of the sequences (a1a2 · · · an) as sequences of events makes them into histories. The

cumulative functions f # thus capture the functions extended in time. Prop. 2.3.3 says that proofs of

the process implications [A, B] correspond to such functions. This correspondence makes process

implications into hom-sets of a category.

3.4 Category of functions extended in time

The category of free coalgebras for the comonad (−)+ is

|S+| = |S|

S+(A, B) = S(A+, B)

The lifting # gives rise to the composition in this category:

A+
f
−→ B

A+
f #

−→ B+ B+
g
−→ C

( f ; g) =

(
A+

f #

−→ B+
g
−→ C

)

The counit A+
ε
−→ A plays the role of the identity for this composition. The correspondence

S+(A, B) � S(1, [A, B])
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means that S+, in a sense, externalizes the process implications as functions extended in time,

and makes their proofs composable. The time extension of their composition unfolds in their

cumulative form. Since A+ is the disjoint union of
∐∞

n=1 An, a function f : A+ −−→ B can be viewed

as the stream f ω = ( f1 f2 · · · fn · · · ) of functions fn : An −−→ B, like in Sec. 3.2. The corresponding

cumulative function f # : A+ −−→ B+ can then be viewed as the stream f # =
(

f 1 f 2 · · · f n · · ·
)

of

functions f n : An −−→ Bn which commute in the following diagram

A A2 A3 A4 Ai

B B2 B3 B4 Bi

f 1

←−π

f 2

←−π

f 3

←−π

f 4 f i

←−π ←−π ←−π

(30)

Each ←−π projects away the rightmost component. The components f n are:

f 1 = f1 f i+1 =
〈

f i ◦ ←−π , fi+1

〉

4 Partial functions extended in time

4.1 Output deletions and process deadlocks

Recall from Sec. 1.3.1(10) that the partiality monad (−)⊥ : S −−→ S adjoins a fresh element ⊥ to

every type. A partial function f : A ⇀ B can be viewed as the total function A −−→ B⊥, which

sends to ⊥ the elements where f is undefined. There are two logically different ways to lift this to

processes:
A ∧ X |→B⊥ ∧ X

X |→ [A, B⊥]

A ∧ X |→ (B ∧ X)⊥

X |→ [A, B]⊥
(31)

On the left, the process may delete some of the outputs, but it always proceeds to the next state,

whether if has produced the output or not. On the right, the process may deadlock and fail to

produce either the output or the next state. The meanings of the two implications [A, B⊥] and

[A, B]⊥ are captured, respectively, by the final coalgebras of the two functors

DAB⊥ : S −−→ S DA⊥B : S −−→ S

X �→ (A⇒ (B⊥ × X)) X �→ (A⇒ (B × X)⊥)

The state spaces of the final coalgebras of these two functors are then the hom-sets of the two

categories of partial functions extended in time:

|S+⊥| = |S| |S⊥+| = |S|

S+⊥(A, B) = S(A+, B⊥) S⊥+(A, B) =
∐

S ∈�A+

S(S , B) (32)
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where � A+ is the set of safety specifications in A [3, 19, 95]

� A+ = {S ⊆ A+ | �x � �y ∈ S =⇒ �x ∈ S } (33)

and where the prefix relation �x � �y means that there is �z such that �x�z = �y. An S⊥+-morphism is a

ladder like (34), but with partial functions fi as rungs. The commutativity requirement imples that

fi(�s) must be defined whenever fi+1(�sa) is defined for some a. Hence S ∈� A+ in (32).

4.2 Safety and synchronicity

For B = 1, the right-hand part of (32) boils down to S⊥+(A, 1) � � A+. The safety properties in

� A+ can thus be viewed as the objects of categories of safe dynamic functions. The morphisms

may be synchronous or asynchronous, depending on whether the outputs are always observable.

They become asynchronous if some outputs may be hidden or deleted.

4.2.1 Synchronous safe functions

The category SFun of safe dynamic functions has all safety specifications as its objects. Combining

the S+-ladders from (30) with the S⊥/1-surjections from (15) shows that the safe dynamic functions

are ladders in the form

S 1 S 2 S 3 S 4 S i

T1 T2 T3 T4 Ti

f 1

←−π

f 2

←−π

�w

f 3

←−π

�w

f 4

�w

f i

�w

←−π ←−π ←−π

(34)

The functions f i are not mere surjections, in the sense that for every history �t ∈ T there is a history

�s ∈ S such that �t = f #(�s). They are surjections extended in time, in the sense that the prefixes of �t

must have been the image of the prefixes of �s, i.e. ←−π
(
�t
)
= f #

(
←−π�s

)
. Categorically, this amounts to

saying that the squares in (34) are weak pullbacks. Logically, the commutativity of (34) uncovers

a general coinductive pattern:

f #(�s) = �t ⇐⇒ ∀b ∈ B
(
�tb ∈ T =⇒ ∃a ∈ A. �sa ∈ S ∧ f #(�sa) = �tb

)
(35)

Such coinductive surjections lie at the heart of process theory as components of bisimulations,

which we shall encounter in the next section. Before that, note that the dynamic surjections satis-

fying (35) must be synchronous, in the sense that they preserve the length of the histories: the time

ticks steadily up the ladder. If there are silent actions, i.e. if functions may delete their outputs,

this synchronicity may be breached.

4.2.2 Asynchronous safe functions

The functions extended in time asynchronously inhabit the category S⊥+. The element ⊥ added to

the outputs plays the role of the silent, unobservable action [47, 76]. In synchronous models, the
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observer is assumed to have global testing capabilities [1]. The asynchrony arises when some of

the actions of the Environment may not be observable for the System. Viewed as channels, the

asynchronous functions extended in time become the deterministic deletion channels [77]. This

leads to coarser process equivalences. Combining both of the constructions (32) allows capturing

both forms of the partiality in

|S⊥+⊥| = |S|

S⊥+⊥(A, B) =
∐

S ∈�A+

S(S , B⊥) (36)

A function f ∈ S(S , B⊥) can be viewed as a stream of functions f =
(
fn : S ≤n −−→ B⊥

)∞
i=1, where

S ≤n are safe histories of length up to n, including the empty history, i.e.

S ≤n = (S ∩ A≤n) +
{
()
}

(37)

Here A≤n is the disjoint union (coproduct)
∐n

i=0 Ai. The cumulative form f # =
(
f ≤n : S ≤n −−→ B≤n

)∞
n=1

is now defined by

f ≤1() = () f ≤n+1() = ()

f ≤1(a) =

⎧⎪⎪⎨⎪⎪⎩() if f1(a) = ⊥

f1(a) otherwise
f ≤n+1(a�x) =

⎧⎪⎪⎨⎪⎪⎩ f ≤n(�x) if fn+1(a�x) = ⊥

f ≤n(�x) :: fn+1(a�x) otherwise

Its components are this time the rungs of the ladder

S ≤1 S ≤2 S ≤3 S ≤4 S ≤i

B≤1 B≤2 B≤3 B≤4 B≤i

f ≤1

←−π

f ≤2

←−π

f ≤3

←−π

f ≤4 f ≤i

←−π ←−π ←−π

(38)

where each ←−π again projects away the last component. The category ASFun = S⊥+⊥/1 of asyn-

chronous safe functions has the safety specifications as its objects again, and a morphism f ∈

ASFun(S �A, T�B) is a tower in the form

S ≤1 S ≤2 S ≤3 S ≤4 S ≤i

T≤1 T≤2 T≤3 T≤4 T≤i

f ≤1

←−π

f ≤2

←−π

�w

f ≤3

←−π

�w

f ≤4

�w

f ≤i

�w

←−π ←−π ←−π

(39)

This tower differs from (38) in that the squares are weak pullbacks, and the rungs of the ladder

are surjective5. It shows that the asynchronous surjections exended in time satisfy the following

5Formally, in any regular category S, the fact that all rungs are surjective can be derived from the assumption that

the starting component is a surjection, and that the squares are weak pullbacks.
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condition:

f #(�s) = �t ⇐⇒
(
∀b ∈ B. �tb ∈ T ⇒ ∃�a ∈ A+. �s�a ∈ S ∧ f #(�s�a) = �tb

)
(40)

This condition differs from (35) in that each step up the T -side by b ∈ B may be followed on the

S -side by a string of steps �a ∈ A+, rather than just a single step a ∈ A.

5 Relations extended in time

5.1 External and internal nondeterminism

We saw in Sec. 1.3.1 that nondeterminism is modeled using the powerset monad ℘ : S −−→ S.

Since a subset U ⊆ A corresponds to an element U ∈ ℘A, a binary relation R ⊆ A × B, viewed as

a set of subsets aR ⊆ B indexed over a ∈ A corresponds to the function •R : A −−→ ℘B. The same

relation, viewed as a set of subsets Rb ⊆ A, indexed over b ∈ B also corresponds to the function

R• : B −−→ ℘A. See Appendix A for more details.

There are two ways again in which the side-effect, this time nondeterminism, may affect pro-

cesses. Internal nondeterminism affects the outputs, whereas external nondeterminism may also

affect the states:

A × X
ξ
−→ (℘B × X)⊥

X
�ξ�
−−−→

[
A, ℘B

]
⊥

A × X
ζ
−→ ℘(B × X)

X
�ζ�℘
−−−−→ [A, B]℘

(41)

The external nondeterminism on the right incorporates the partiality as the empty outcome ∅ ∈

℘(B × X). The partiality monad (−)⊥ is explicitly added to the internal nondeterminism on the

left since they would otherwise never deadlock, which is problematic both conceptually and tech-

nically. If a process ξ on the left, e.g. involving some guessing that leads to internal nondeter-

minism, never deadlocks at a state x ∈ X and on an input a ∈ A, then it determines a unique

next state ξ◦(a, x) ∈ X, and may produce an output from the set ξ•(a, x) ∈ ℘B. For an externally

nondeterministic process ζ on the right, both the outputs and the state transitions are impacted by

the nondeterminism, and any pair from ζ(a, x) ∈ ℘(B × X) may be produced when the input a is

consumed at state x. The intended meanings of the two process implications
[
A, ℘B

]
⊥ and [A, B]℘

are captured, respectively, as the final coalgebras of the functors

PAB : S −−→ S QAB : S −−→ S

X �→
(
A ⇒ (℘B × X)

)
⊥ X �→ ℘(A × B × X) (42)

The expression on the right is based on the bijection ℘(A × B × X) �
(
A ⇒ ℘(B × X)

)
. The

state spaces of the final coalgebras of these two functors are quite different. We consider them

separately, in the next two sections.
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5.2 Internal nondeterminism

5.2.1 Synchronous safe relations

The state space of the final coalgebra of the functor PA℘B can be constructed within S as a limit of

the tower like (26)

1
(
A⇒℘B

)
⊥

(
A ⇒

(
℘B ×

(
A⇒℘B

)
⊥

))
⊥

Pn
AB

(1) Pn+1
AB

(1)
[
A, ℘B

]
⊥

! (A⇒(℘B×!))

Pn
A℘B

(!)

(43)

or presented simply as

|S+℘| = |S| (44)

S+℘(A, B) =
∐

S ∈�A+

S(S , ℘B)

A morphism from A to B in S+℘ is thus a pair 〈S ,R〉, where S is a safety specification, i.e. a

prefix-closed set of A-histories from (33), and R is a stream of relations, presented as a stream of

functions •R =

(
S n

•Rn

−−→ ℘B

)∞
n=1

, where S n = S ∩ An, or viewed cumulatively as

•R# =
(
S n

•Rn

−−→
(
℘B

)n
)∞

n=1

The inductive definition is analogous to the one at the end of Sec. 3. On any input (a1 a2 · · · an) ∈ S

the n-th component of •R# thus produces an n-tuple of subsets of B:

(a1 a2 · · · an)Rn =
〈
a1R1, (a1a2)R2, . . . , (a1 · · · an−1)Rn−1, (a1 · · · an−1an)Rn

〉
(45)

If each each function S n

•Rn

−−→
(
℘B

)n
is viewed as a relation S n

Rn

←→ Bn, then (45) says that they

make the following tower commute

S 1 S 2 S 3 S 4 S i

R1 R2 R3 R4 Ri

B B2 B3 B4 Bi

←−π ←−π ←−π

←−π ←−π ←−π

(46)

To preclude any nontrivial side-effects of processes with trivial outputs, we slice over the trivial

type 1 again, and define the category of safe synchronous relations extended in time as

SProc = S+℘/1 (47)
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This is the original interaction category, introduced in [3], and further studied in [11, 95]. The

descriptions were different, but it is easy to see that the objects coincide, since the morphisms

S ∈ S+℘(A, 1) are the prefix-closed sets S ⊆ A+. Reasoning like in Sec. 4.2.1, a morphism S �A

R
←→

T�B in S+℘/1 is now reduced to a ladder of spans

S 1 S 2 S 3 S 4 S i

R1 R2 R3 R4 Ri

T1 T2 T3 T4 Ti

←−π ←−π ←−π

�w

�w

�w

�w

�w

�w

�w

�w

←−π ←−π ←−π

(48)

Like in (14), we have relations that are total in both directions, which means that the projections

R → S and R → T are surjective, in this case componentwise. Like in (34), the surjections are

extended in time, in the sense that all rhombi in (48) are weak pullbacks. Putting it all together,

this tower says that R satisfies

�s R�t ⇐⇒ ∀a ∈ A
(
�sa ∈ S ⇒ ∃b ∈ B. �tb ∈ T ∧ �sa R�tb

)
∧

∀b ∈ B
(
�tb ∈ T ⇒ ∃a ∈ A. �sa ∈ S ∧ �sa R�tb

)
(49)

This condition means that S �A

R
←→ T�B is a strong or synchronous bisimulation relation [76, 83],

as required in the original definition of SProc in [3].

Bisimulations are intrinsic. The notion of bisimulation was introduced in process theory as an

imposed equivalence of the processes that are intended to be semantically indistinguishable [75,

83]. The logical reconstruction of synchronous bisimulation from process-types-as-propositions

shows that the same notion also arises as a property of morphisms in a category. The coinductive

reconstructions of the whole gamut of bisimulations comprise a well-studied field of research. The

present reconstruction, combining the nondeterminism monad ℘, the history comonad (−)+, and

the slicing over 1, displays the synchronous bisimulations as a logical property of processes arising

from nondeterministic choices extended in time, provided that that nontrivial side-effects only arise

when there are nontrivial outputs.

5.2.2 Asynchronous safe relations

Including in the model the silent, unobservable actions leads to asynchronicity, and to the notion

of weak or observational bisimulation [47, 76]. Proceeding like in Sec. 4.2.2, we consider the final

coalgebras of the functors

PAB⊥ : S −−→ S (50)

X �→
(
A ⇒ (℘(B⊥) × X)

)
⊥
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as the hom-sets of the category

|S+℘⊥| = |S| (51)

S+℘⊥(A, B) =
∐

S ∈�A+

S(S , ℘(B⊥))

The morphism tower is like (46), but with each S n, Rn and Bn replaced replaced with S ≤n, R≤n and

B≤n, as in (37) and (38). The category of safe asynchronous relations extanded in time is now

ASProc = S+℘⊥/1

and the morphism tower is like (48), with the same modification of the subscripts and the su-

perscripts. This modified tower characterizes the following logical property of the asynchronous

relation R extended in time:

�s R�t ⇐⇒ ∀a ∈ A
(
�sa ∈ S ⇒ ∃b ∈ B

(
�tb ∈ T ∧ �sa R�tb

)
∨

∃�x ∈ A∗ (�sa�x ∈ S ∧ �sa�x R�t
))

∧

∀b ∈ B
(
�tb ∈ T ⇒ ∃a ∈ A

(
�sa ∈ S ∧ �sa R�tb

)
∨

∃�y ∈ B∗ (�tb�y ∈ T ∧ �s R�tb�y
))

(52)

This characterizes the weak or observationsl bisimulations of [47, 76]. The category ASProc is

equivalent to the one introduced and studied under the same name in [3, 86, 95].

5.3 External nondeterminism

5.3.1 Synchronous dynamic relations

The state space of the final coalgebra of the functor QAB from (42) should again come with a tower

like

1 ℘(A × B) ℘(A × B × ℘(A × B)

Qn
AB

(1) Qn+1
AB

(1) [A, B]℘

! ℘(A×B×!)

Pn
℘AB

(!)

(53)

The trouble is that such a tower never stabilizes within a universe of sets, since there is no set X

such that X � ℘X. If we take A = B = 1, the tower boils down to

1 ℘1 ℘℘1 ℘n1 ℘n+1(1) [1, 1]P = H
∪ ∪ ∪ ∪

(54)

where the coinductive fixpoint H is the class of hypersets, or non-wellfounded sets [16]. It is dual

to von Neumann’s class of well-founded sets [113, 115], which arises as the inductive fixpoint V

along the tower

∅ ℘∅ = 1 ℘℘1 ℘n1 ℘n+11 V
ε ε ε ε ε

(55)
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Von Neumann, of course, did not draw categorical diagrams like (55), but specified his construction

using the transfinite induction

V0 = ∅ Vβ =
⋃
α<β

℘(Vα) V =
⋃
α∈Ord

Vα (56)

The class Ord of ordinals, over which the union in the third clause is indexed, is assumed to be

given. The construction thus provides an inner model of set theory within a given universe of sets

and classes [16], or equivalently within a universe with an inaccessible cardinal playing the role

of the class Ord [21].6. In any case, reach a fixpoint within a given universe, the constructor ℘
must be restricted to stay within a smaller universe. Early on, Gödel restricted it to the subsets de-

finable in the language of set theory, and constructed the universe L of constructible sets, proving

the independence of the Continuum Hypothesis, and launching the whole industry of the indepen-

dence proofs [43]. Inner models of set-theory have also been constructed over topological spaces,

concrete or abstract [49].

The above constructions also restrict to finite sets. The set theorists often explicitly exclude ℵ0

from the definition of inaccessible cardinals, but the inequalities 2n < ℵ0 and ∪n < ℵ0 hold for

all for all n < ℵ0, and that makes ℵ0 inaccessible from the universe fS of finite sets. Formally,

fS can be viewed as the subcategory of S spanned by U ∈ S such that #U < ℵ0, where #U

denotes the cardinality of U. Since computation is mostly concerned with finite sets, fS is often

by the computer scientists to be the universe of ”small sets”, and S is interpreted as the universe

of ”classes”. The powerset construction ℘ : S −−→ S where ℘X = {U ⊂ X} is then replaced with

P : S −−→ S where

PX = ℘<ωX = {U ⊂ X | #U < ℵ0} (57)

which restricts to P : fS −−→ fS. The tower (54) with P replacing ℘ thus lies in fS, and reaches

a fixpoint H � PH in S after countably many steps. Since P does not preserve limits, the tower

does not stabilize at its limit, but it turns out to stabilize at a retract of its limit [17, 21, 59, 89].

The projections from the fixpoint down the tower are still jointly monic, and support inductive

reasoning about the universe of finite hypersets H = [1, 1]P, which arises in the finite version of

(54), and about the finite AB-relations extended in time [A, B]P which arises in the finite version of

(53). Continuing with the workflow from the preceding sections, we use the process implications

arising from these finite versions of (53) to define the universe of sets with synchronous dynamic

relations:

|SP| = |S| (58)

SP(A, B) = [A, B]P

Like before, we factor out any nontrivial side-effects of processes with trivial outputs by slicing

over the trivial type 1 again and define the category synchronous dynamic relations

DProc = SP/1 (59)

6A universe of sets and classes is a model of the NBG set theory, whereas the one with an inaccessible cardinal can

be interpreted in terms of the ZFC axioms [72, Ch. 4].
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But now something new happens, and a path beyond the workflow from the previous sections

opens up. When nondeterminism is internalized, the powerset constructor P generates types with

enough structure to play the role of the labels. More precisely, the states built along the towers

(53) to be cumulatively stored and distinguished using the intrinsic structure, making the label sets

A, B ∈ S dispensable. In the constructions so far, the labels were used to identify the same action

when it occurs in different processes. Now action can be identified by its history, which the type

constructor, that generates the action, stores in the constructed type.

5.3.2 Internalising the labels

All process universes presented up to so far have been built starting from a given universe S of

labels. The coinductive construction leading to DProc has a novel feature that it can be built

starting from nothing: the role of the label sets A ∈ S can be played by structures arising from the

construction itself. The role of the labels a ∈ A is to identify the same action when it occurs in

different observations, or safety specifications S or T . This is assured by modeling them as subsets

S , T ⊆ A+. The upshot is that there can be at most one label-preserving function S −−→ T , namely

the inclusion S ↪→ T .

When all actions arise in a cumulative hierarchy, by iterating the constructorP, be it inductively

(55) or coinductively (54), they are always given as sets with the element relation ε , which records

the elements of each set, their elements, and so on. The axiom of extensionality

a = b ⇐⇒ (∀x. x ε a ⇐⇒ x ε b) (60)

says that this ε -structure completely determines the identity of each set: two sets with the same

elements are the same set. In the cumulative hierarchy, the elements of sets are sets too, so the same

elements are also the sets with the same elements. If such hereditary ε -relations are unfolded into

trees, the extensionality axiom means that these trees must be irredundant: they have no nontrivial

automorphisms. In other words, they cannot contain isomorphic subtrees at the same level [84].

The ε -structures that arise from the cumulative processes in (55) and (54) are extensional, thus

irredundant, because the powerset constructors impose {a, a, b, c, . . .} = {a, b, c, . . .}. The other

way around, Mostowski’s Collapse Lemma [80] says that every well-founded extensional relation

corresponds to the ε -structure of a set somewhere in V. Aczel’s crucial observation in [16] is

that the well-foundedness assumption can be dropped: any extensional relation, including non-

wellfounded, can be reconstructed as the ε -relation of a hyperset, somewhere in H, or for finite

sets somewhere in H . The upshot is that any two hypersets S , T ∈ H , there is at most one ε -

preserving function S −−→ T , or else nontrivial automorphisms arise. The role of the label sets can

now be played by the ε -structures.

Lemma 5.1 For every countable A ∈ S, i.e. such that #A ≤ ℵ0, there are dynamic relations A
m
−→ 1

and 1
e
−→ A in SP which make A into a retract of 1, i.e. their composite in SP is

idA =
(
A

e
� 1

m
	 A

)

31



A proof is sketched in Appendix C. To a category theorist, Lemma 5.1 says that the subcategory

SP
≤ℵ0
↪→ SP spanned by the countable sets is the idempotent completion within SP of the endomor-

phism monoid H = SP(1, 1). The underlying set of this monoid is the set H of finite hypersets.

The monoid operation is the dynamic synchronous relational composition, spelled out below. For

the categories

dProc = H/1 DProc≤ℵ0
= SP

≤ℵ0
/1 (61)

we have the following corollary, proved in Appendix D.

Corollary 5.2 The inclusion

dProc ↪→ DProc≤ℵ0
(62)

is an equivalence of categories.

Remark. The equivalence in the preceding corollary means that the embedding is full and faith-

ful, and essentially surjective, i.e. that every type in DProc≤ℵ0
is isomorphic to a type in the image

of dProc. This notion of equivalence allows finding an adjoint functor in the opposite direction

provided that the axiom of choice is given, in this case for classes. The equivalence in (62) there-

fore does not provide an effective global representation of DProc≤ℵ0
in dProc. Locally, however,

any structure present in DProc can be found in dProc, as long as we do not need uncountable sets

of labels. In the rest of the paper, we elide the labels, and work in dProc.

5.3.3 Synchronous dynamic relations as hypersets

The objects of the category dProc boil down the elements of the universe of finiteH , that arises as

the coinductive fixpoint of the tower like (54), but with ℘ restricted to P = ℘≤ℵ0
. Since H � PH ,

an element of H can also be viewed as its finite subset, which unfolds it into a tower

S 1 S 2 S 3 S 4 S n S

P1 P21 P31 P41 Pn1 H

ε ε ε

ε ε ε

(63)

where all S n and Pn1 are in fS. This seems like the most convenient presentation of the objects of

dProc. A tower corresponding to a morphism R ∈ dProc(S , T ) looks just like (48) in Sec. 5.2.1,

except that the projections ←−π are replaced by the set-theoretic operation ∪. The bisimulation

condition (49) now becomes

s R t ⇐⇒ ∀s′ ε s ∃t′ ε t. s′ R t′ ∧ ∀t′ ε t ∃s′ ε s. s′ R t′ (64)
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5.3.4 Asynchronous dynamic relations

So far, the asynchrony has been modeled using a silent action ⊥, which enabled waiting. When the

actions are modeled using the element relation ε , i.e. each state transition is a choice of an element,

then waiting can be enabled by allowing sets to contain and choose themselves, i.e. by making the

relation ε reflexive, satisfying x ε x for all x. The objects of the category aProc of asynchronous

dynamic relations are now the reflexive finite hypersets, conveniently viewed as towers of finite

subsets

S ≤1 S ≤2 S ≤3 S ≤n S

P≤11 P≤21 P≤31 P≤n1 H


ε ε

ε ε

(65)

where P≤nX =
∐n

i=0 P
iX, and H
 is the universe of reflexive finite hypersets. A morphism R ∈

aProc(S , T ) is now a reflexive hyperset relation, satisfying the following property

s R t ⇐⇒ ∀s′ ε s
(
∃t′ ε t. s′ R t′ ∨ ∃s′′ ε s′. s′′R t

)
∧

∀t′ ε t
(
∃s′ ε s. s′ R t′ ∨ ∃t′′ ε t′. s R t′′

)
(66)

The computational origins of this simulation strategies were studied in [110, 111]. Like before, it

also arises from the mathematical structure of final coalgebras, and can be logically reconstructed

from the paradigm of process-types-as-propositions.

6 Integers, interactions, and real numbers

6.1 The common denominator of integers and interactions

Counting generates the ordinals [113], but the integers arise from the duality of counting up and

down. Geometric and algebraic transformations generate monoids, but capturing the symmetries

requires groups. Interactions between the system and the environment generate process universes,

some of which we studied; but the dual interactions between the environment and the system were

not captured. The duality inherent in process interactions was noted, albeit in passing, very early

on in process theory:

”The whole meaning of any computing agent [would be that it is] a transducer, whose

input sequence consists of enquiries by, or responses from, its environment, and whose

output sequence consists of enquiries of, or responses to, its environment” [73, p. 160].

A similar vision of dual interactions between the system and the environment, as an ongoing ses-

sion of a question-answer protocol, re-emerged in linear logic [41]. It was formalized categorically

in [13], and retraced in [4]. The mathematical underpinning turned out to be the Int-construction,

generating free compact categories over traced monoidal categories [50]. The name does not refer

to interactions but to integers. Appying the Int-construction to the additive monoid N of natural

numbers, viewed as a discrete monoidal category, gives rise to the additive group Z of integers,
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viewed as a discrete compact category. The the trace structure on the monoid N is the cancellation

property:

m + k = n + k =⇒ m = n

The set of integers is defined as the quotient

Z = IntN = N− × N+/ ∼

where the equivalence relation ∼ is:

〈m−,m+〉 ∼ 〈n−, n+〉 ⇐⇒ m− + n+ = n− + m+

The two components of the product are annotated for convenience, e.g. as N− = {
′′−′′} × N and

N+ = {
′′+′′} × N. The cancellation property guarantees that each ∼-equivalence class contains a

unique canonical representative in the form 〈n, 0〉 or 〈0, n〉. The former can be written as −n, the

latter as +n.

The structural common denominator of integers and interactions, which makes the Int-construction

applicable to both, is the trace operation. It will also take us from relations extended in time to the

reals. Towards that goal, we spell out how the trace operation arises in categories of relations. This

will makes the Int-construction applicable to the interaction categories.

Since the categories of relations, described in Appendix A, are self-dual, the coproducts +

from the universe of sets and functions S become biproducts ⊕ in the category R of sets and

relations. As the coproduct lifts to the universes of functions extended in time, the biproducts lift

to the universes SProc, ASProc, dProc and aProc of relations extended in time. By definition,

the biproducts are both products and coproducts. Since the relation biproducts are induced by the

function coproducts, their unit is the function coproduct unit 0. For every type X, the biproduct

structure consists of

• a monoid 0
!

−−−→ X
[id,id]
←−−−− X ⊕ X, and

• a comonoid 0
!

←−−− X
〈id,id〉
−−−−→ X ⊕ X,

which are natural with respect to all morphisms in and out of X. The projections X
π
←− X ⊕ Y

π′

−→ Y

and the injections X
ι
−→ X ⊕ Y

ι′

←− Y are derived from the comonoid counits and from the monoid

units respectively. A propositions-as-types interpretation of biproducts is tenuous but a process

category with the biproducts and the hom-sets [A, B] supporting a coinductive rule

A ⊕ X
ξ
−→ B ⊕ X

X
�ξ�
−−−→ [A, B]

comes with the trace structure Tr derived by

A
ι
−→ A ⊕ Y A ⊕ Y ⊕ [A ⊕ Y , B ⊕ Y]

υ
−→ B ⊕ Y ⊕ [A ⊕ Y , B ⊕ Y] B ⊕ Y

π
−→ B

A ⊕ [A ⊕ Y , B ⊕ Y]
ι;υ;π
−−−→ B ⊕ [A ⊕ Y , B ⊕ Y]

[A ⊕ Y , B ⊕ Y]
Tr=�ι;υ;π�
−−−−−−−→ [A, B]
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Each of the categories of relations, R, SProc, dProc, etc., is easily seen to give rise to the trace

structure in this way. See Appendix E for more.

6.2 Games as labelled polarized relations extended in time

The biproducts in ASProc are in the form

(S ⊕ T )≤1 (S ⊕ T )≤2 (S ⊕ T )≤3 (S ⊕ T )≤i

(A + B)≤1 (A + B)≤2 (A + B)≤3 (A + B)≤iπ π

(67)

where (S ⊕ T )�A+B are all shuffles of S �A and T�B.

(S ⊕ T )≤i =
{
�x ∈ (A + B)≤i | �x �A∈ S ∧ �x �B∈ T

}
The trace structure of categories of relations with respect to the biproducts as the monoidal struc-

ture was analyzed already in the final section of [50], and explained in more detail for the interac-

tion categories in [4]. The analysis presented in that paper suggests that the AJM-games [12, 14, 15]

should be construed in terms of the Int-construction. The AJM-games are, of course, one of the

crowning achievements of the quest for fully abstract models of PCF, and a tool of many other

semantical results. They appeared in many different semantical contexts [5, 14, 109], with many

refinements and different presentation details. A crude common denominator can be obtained by

applying the Int-construction from Appendix E to the category ASProc, leading to

|Gam| = |ASProc|− × |ASProc|+

Gam(S , T ) = ASProc(S − ⊕ T+, T− ⊕ S +)

Some of the crucial features of game semantics, such as the copycat strategy, and the various

switching and starting conditions, arise in such reconstructions as abstract mathematical properties,

like the notions of bisimulations arose before.

6.3 Polarized dynamics

Since P(A + B) � PA × PB, applying the powerset constructor on polarized sets X− + X+ leads to

the functor

Q : S −−→ S

X �→ P−X × P+X

where the subscripts are still just annotations, and we can take, e.g., P−X = {′′−′′} × PX and

P+X = {′′+′′} × PX.
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6.3.1 Synchronous case

The universe of signed finite hypersets can be constructed just like the universe of hypersets in

Sec. 5.3, but bifurcating at each step into positive and negative hypersubsets:

1 P−1 × P+1 P− (P−1 × P+1) × P+ (P−1 × P+1)

Qn1 P− (Qn1) × P+ (Qn1) H±

! Q!

Qn!

(68)

The final coalgebra structure still maps each hyperset to its elements, but this time they can be

positive or negative

H± 〈 ε

−,

ε

+

〉�

∪

P−H± × P+H± (69)

Notation. Given s ∈ H±, we write s− =

ε

−(s) for the negative part and s+ =

ε

+(s) for the

positive part. We often tacitly identify H± with P−H± × P+H±, in which case s ∈ H± becomes a

pair s = 〈s−|s+〉, where s− =

ε

−(s) and s+ =

ε

+(s). We follow [34] and denote a generic element of

s− by s−, and a generic element of s+ by s+, and abbreviate s− ∈

ε

−(s) and s+ ∈

ε

+(s) to s−, s+ ε s.

Writing s = {s− | s+} instead of s = 〈s−, s+〉 is yet another well-established notational abuse, used

to great effect by John Conway in [34]. E.g., instead of ∪s = 〈∪s−,∪s+〉, the polarized union

operation, pointing left in (69), can be written in the form

∪s = {s−−, s−+ | s+−, s++}

Other coinductive definitions become even simpler, e,g.

 s = { s+ |  s−} s ⊕ t = {s− ⊕ t, s ⊕ t− | s+ ⊕ t, s ⊕ t+} (70)

Synchronous hypergames. The objects of the category gam are the signed finite hypersets from

the universe H±. The final coalgebra structure (69) separates their elements into a negative and

a positive part. In the game semantics, this is interpreted as separating a game s ∈ H± into a

pair s = 〈s−, s+〉, where s− = {s− ε s} ∈ P−(H±) are the moves available to the player −, whereas

s+ = {s+ ε s} ∈ P+(H±) are the moves available to the player +. The projections H±

qi

−→ Qn1

down the tower (68) represent each game s ∈ H± as a stream [s1, s2, s3, . . . , sn+1, . . .], where sn+1 =

qn+1(s) ∈ Qn+11 = P−(Qn1) × P+(Q
n1), and thus sn+1 = 〈sn+1

− , s
n+1
+ 〉, where sn+1

− , s
n+1
+ ⊆ Qn1.

A morphism R ∈ gam(s, t) should be a synchronous hyperstrategy. It is a hyperstrategy

because the players − and + play not one, but two games, s and t, distinguished by the dual goals

that the two players have in each of them:

s R t ⇐⇒ ∀s− ε s ∃t− ε t. s− R t− ∧ ∀t+ ε t ∃s+ ε s. s+ R t+ (71)
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The player − is thus tasked with simulating every s-step by a t-step, whereas the player + is

tasked with simulating every t-step by an s-step. A hyperstrategy into a polarized version of a

synchronous bisimulation (64). While a bisimulation relation between two processes provides a

simulation relation of each of them in the other one, both ways, the polarization of a hyperstrategy

separates the two simulation tasks, and each player is tasked with one.

6.3.2 Asynchronous case

Using the functor Q : S −−→ S where QX = X + QX, the tower in (68) becomes

1 Q≤1(1) Q≤2(1) Q≤n(1) Q≤n+1(1) R
! Q! Q

n
!

(72)

where Q≤n(1) =
∐n

i=0 Q
i(1). The final coalgebra structure is thus

R

ε

�

∪

R + P−R × P+R (73)

The coalgebra structure εmaps s = 〈s−, s+〉 to s =

ε(s) if s− ∈ s− and s+ ∈ s+. Otherwise it

unfolds its elements into s− =

ε

−(s) and s+ =

ε

+(s) like before. A straightforward induction along

the tower gives the following.

Lemma 6.1 Every s ∈ R is ε -transitive, in the sense that for all s−, s+ ∈ s holds

s−− ⊆ s− ⊆ s−+ s++ ⊆ s+ ⊆ s+− (74)

The elements of the universe R of transitive finite signed hypersets can be thought of as asyn-

chronous hypergames. They are the objects of the category R. An asynchronous hyperstrategy

R ∈ R(s, t) resembles a branching bisimulation from (66), except that the two simulation tasks are

again separated, like in (71), and assigned to the two players:

s R t ⇐⇒ ∀s− ε s (∃t− ε t. s− R t− ∨ ∃s−+ ε s−. s−+R t) ∧

∀t+ ε t (∃s+ ε s. s+ R t+ ∨ ∃t+− ε t+. s R t+−) (75)

Lemma 6.1 makes the relations induced by the coalgebra structure on R into hyperstrategies. Re-

member that s− ε s abbreviates s− ∈

ε(s) ∈ P−R, whereas s

ε

s+ abbreviates s+ ∈

ε(s) ∈ P+R.

Lemma 6.2 (75) holds when sRt is instantiated to s− ε s and s εs+, for any s ∈ R and s−, s+ ε s.

Proof. s−− ⊆ s− implies that for every s−− there is s′− with s−− ε s′−. s+ ⊆ s+− implies that for every

s+ there is some s−+ with s−+ ε s+. Hence (75) for s− ε s. s− ⊆ s−+ implies that for every s− there is

s+− with s −

ε

s+−. s++ ⊆ s+ implies that for every s++ there is some s′+ with s′+

ε

s++. Hence (75) for

s

ε

s+. �
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Remark. The property in (75) is not self-dual under the relational converse, but under the po-

larity change  in (70). In game semantics, the polarity change switches the roles of the player

and the opponent. The game-theoretic concept of equilibrium, where both players play their best

responses, reimposes the bisimulation requirement: that the same relation is a winning strategy

(simulation) in both directions. The equilibrium strategies are thus fixed under two dualities: under

the polarity change (switching the players − and +), and under the relational converse (switching

the component games s and t). The two dualities are generally not independent, as there are sit-

uations when they do not commute. However, for games where they do commute, they induce

a dagger-compact structure, akin to the adjunctions over the complex linear operators, which is

induced by two commuting dualities: the complex conjugation and the matrix transposition. This

structure also arises in many other areas of abelian and nonabelian geometry. It was not used in

the game semantics, but it emerged in the Abramsky-Coecke models of quantum protocols and has

been explored in other areas of the semantics of computation [10, 32, 90].

6.4 A category of real numbers

In closing this section, we encounter a remarkable and somewhat disturbing fact: that the posetal

collapse of the category R boils down to the ordered field R of the real numbers. It is disturbing

because it shows that the described process logic and game semantic constructions impose on the

processes no computability restrictions whatsoever since they include all real numbers. On one

hand, this observation should not be surprising, since John Conway reconstructed numbers from

games a long time ago [34], and game semantics was inspired by his ideas and informed by his

constructions [12]. On the other hand, it should be surprising, because game semantics has been

developed as the semantics of computational processes, albeit as a quotient of an undecidable term

calculus [24, 67, 74].

6.4.1 Coalgebra of reals

We adapt the alternating dyadics from [97, Sec. 3.2]7 to present the real numbers. Consider the

alphabet Σ = {−,+}, and denote by Σ� the set of finite and infinite strings over it. It comes with the

coalgebra structure

Σ�

χ

�

(::)

1 + Σ × Σ� (76)

where χ maps the empty string () into 1 and each nonempty strings into its head symbol and the

tail string. Equivalently, this coalgebra can be written in the form

Σ�

κ

�

[o,h−,h+]

1 + Σ�− + Σ
�
+ (77)

7See also [98, 100] for a broader context.
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Where the product Σ×Σ�, which is {−,+}×Σ� is expanded into {−}×Σ� + {+}×Σ�, and the products

with the singletons are abbreviated as subscripts. The structure map κ now maps the empty string

into 1, and the strings in the form ± :: �x as �x into Σ�±, whereas the components h− and h+ add − and

+ as the head, while o maps the singleton from 1 into the empty string.

Each Σ-string encodes a unique real number. The idea is that we count the first string of −s or

+s in the unary, and after that proceed in the alternating dyadics, e.g.

+ + − − − + −− �→ +1 + 1 − 1
2
− 1

4
− 1

8
+ 1

16
− 1

32
− 1

64

− − − − + − + · · · �→ −1 − 1 − 1 − 1 + 1
2
− 1

4
+ 1

8
· · ·

Since the infinite strings of −s and of +s encode the two infinities, we will have a map into the

extended reals R = R∪ {∞,−∞}. The bijection Σ� � R is described in Appendix F. We henceforth

identify the two, and use both names interchangeably, since Σ� refers to the encoding, and R says

what is encoded.

Ordering. The usual ordering of the reals in R corresponds to the lexicographic ordering of Σ�.

When the finite strings are padded by 0s, the symbol ordering is − < 0 < +.

6.4.2 Numbers extended in time: Conway’s version of Dedekind cuts

Theorem 6.3 There are functors

R

Γ

Υ

R (78)

which make the extended continuum R into the posetal collapse of the category R of asynchronous

hypergames. In particular,

• for every real number ς ∈ R holds ΥΓ(ς) = ς;

• for every asynchronous hypergame s ∈ R there are natural hyperstrategies

s
η
−→ ΓΥ(s) and ΓΥ(s)

ε
−→ s

Proof (sketch) . The functor Γ can be obtained from the anamorphism �κ�

R R + P−R × P+R

R R + P−R × P+R

κ

�κ� �κ�+P−�κ�+P+�κ�

ε

where κ is derived from (77), by mapping the empty string to the empty string, the Σ-strings in the

form (− :: ς) to the pair
〈
{ς}, ∅

〉
, and the strings in the form (+ :: ς) to

〈
∅, {ς}

〉
. Setting Γς = �κ� ς,
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the functoriality of Γ boils down to the observation that the lexicographic order ς ≤ ϑ on Σ� lifts

to a relation s ≤ t on s = Γς and t = Γϑ which satisfies (75), i.e.

s ≤ t ⇐⇒ ∀s− ε s (∃t− ε t. s− ≤ t− ∨ ∃s−+ ε s−. s−+ ≤ t) ∧

∀t+ ε t (∃s+ ε s. s+ ≤ t+ ∨ ∃t+− ε t+. s ≤ t+−) (79)

As long as ς and ϑ are unpadded by 0s, their lexicographic ordering leads to s = Γς and t = Γϑ

satisfying the synchronous comparison clauses s− ≤ t− and s+ ≤ t+ of (79). If ϑ is padded by 0s,

then (79) is satisfied because the lexicographic ordering induces s−+ ≤ t. If ς is padded by 0s, then

it induces s ≤ t+−. This completes the definition of Γ.

The functor Υ arises from Conway’s simplicity theorem [34, Thm. 11]. It picks the simplest

representatives of the equivalence classes of the posetal collapse of R, where the simplicity is

measured in [34] by the ”birthday ordinal”, which for our finite hypersets, signed or not, boils

down each element’s position on its coinduction tower. The simplicity theorem plays a central role

in all presentations of surreal numbers, and suitable versions have been proved in detail in [18, 44].

The arrow part ofΥ collapses theR-morphisms to the lexicographic order on Σ�. Conway shortcuts

his proof of the simplicity theorem by imposing the posetal collapse directly signed hypersets by

s ≤ t ⇐⇒ ∀s− ∈ s ∀t+ ∈ t. t � s− ∧ t+ � s (80)

Instantiating this definition to t ≤ s− and to t+ ≤ s (80) gives

t � s− ⇐⇒ ∃t− ε t. s− ≤ t− ∨ ∃s−+ ε s−. s−+ ≤ t

t+ � s ⇐⇒ ∃t+− ε t+. s ≤ t+− ∨ ∃s+ ε s. s+ ≤ t+

and shows that (80) implies (79). The converse, spelled out along the lines of the proofs of the

simplicity theorem that can be found in [18, 44], involves extensive but routinely case reasoning.

The equivalence classes of the posetal quotient of R are thus ordered by (80), which on Σ� boils

down to the lexicographic order. �

Remarks. Conway’s proof of the simplicity theorem demonstrates coinduction in action, not

only at the formal level in (80), but also at the meta-level. In order to define the R-ordering of the

minimal representatives of the equivalence classes of his games, reduced to numbers, he imposes

the sought ordering as a preorder on arbitrary representatives and then uses that preorder to prove

the existence of the minimal representatives. Lemma 6.2 also shows how the simplicity follows

from the coinductive construction, as it implies Υ(s−) ≤ Υ(s) ≤ Υ(s+), and steers the coinductive

descent towards the simplest representative.

6.4.3 Real numbers as processes

Thm. 6.3 says that the real numbers can be viewed as processes; and the other way around, that the

asynchronous, polarized, reflexive processes boil down to real numbers. The heart of the theorem

is in the ”boil down” part of the second statement. Its precise meaning is that the simulations
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between the asynchronous, polarized, reflexive processes implement (and are thus consistent with)

the real number ordering. If these processes are thought of as the processes of observing, then the

reals are the outcomes of the measurements. On the other hand, computing with the reals involves

some embedding into a universe where each number is the outcome of many processes. This is a

consequence of the observation, going back to Brouwer [26], that the irredundant representations

of the reals, where each real number corresponds to a unique stream of digits, there are always

basic arithmetical operations, and easily defined inputs, where no finite prefix suffices to determine

a finite prefix of the output. Such operations are obviously not computable.

Dropping the infinite strings −∞ = (− − − · · · ) and ∞ = (+ + + · · · ) on the left-hand side of

the retraction R R in (78), and the signed hypersets bisimilar to −∞ = {−∞|} and∞ = {|∞}

on the right-hand side, we get the retraction R R. It lifts to Rn Rn, i.e. it makes the

real vector spaces into retracts of the discrete functor categories. A real matrix L ∈ Rp×q becomes

an R-profunctor Λ =

(
p
ΓL
←→ q

)
, and the linear operators Rp

L
−→ Rq and Rq

L‡

−→ Rp become the

R-extensions of Λ = ΓL along the Yoneda embeddings, in the enriched-category sense.8

p Rp

q Rq

Λ

∇

Λ∗ !

Δ

Λ∗

The left Kan extension Λ∗ maps the functor α ∈ Rp into the coend, which is the colimit along α of

its tensors with the left transpose of Λ. The right Kan extension Λ∗ maps the functor β ∈ Rq into

the end, which is the limit along β of its cotensors with the right transpose of Λ. But since α and β

are discrete, the colimits boil down to coproducts, and the limits boil down to products. And since

R is self-dual, the products and the coproducts coincide as the biproducts, which we write ⊕; and

the tensors and the cotensors also coincide as ⊗. The Kan extensions thus become

Λ∗(α) =

⎛⎜⎜⎜⎜⎜⎝
p⊕

i=1

αi ⊗ Λi j

⎞⎟⎟⎟⎟⎟⎠
q

j=1

Λ∗(β) =

⎛⎜⎜⎜⎜⎜⎜⎝
q⊕

j=1

Λi j ⊗ β j

⎞⎟⎟⎟⎟⎟⎟⎠
p

i=1

(81)

where

s ⊕ t =
{

s− ⊕ t, s ⊕ t−
∣∣∣ s+ ⊕ t, s ⊕ t+

}
s ⊗ t =

{
(s− ⊗ t) ⊕ (s ⊗ t+)  (s− ⊗ t+), (s+ ⊗ t) ⊕ (s ⊗ t−)  (s+ ⊗ t−)

∣∣∣
(s− ⊗ t) ⊕ (s ⊗ t−)  (s− ⊗ t−), (s+ ⊗ t) ⊕ (s ⊗ t+)  (s+ ⊗ t+)

}
correspond respectively to Conway’s addition and multiplication operations [34]. Formally, this

correspondence means that the retraction Υ satisfies

Υ(s ⊕ t) = Υs + Υt Υ(s ⊗ t) = Υs · Υt

8The reader unfamiliar with what any of this means is welcome to skip the next paragraph paragraph.
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The usual matrix operations are thus ”rediscovered” as the Υ-image of the Kan extensions in (81)

of R-profunctors (corresponding to the real matrices) along the Yoneda embeddings of the bases

into their R-completions (corresponding to the real vector spaces).

6.5 Where is computation?

As exciting as it is to see the real numbers arising from the categorical structure of processes, it

also suggests that we lost the computation from sight somewhere along the way, while retracing

the paths of the categorical semantics of computation. The process universe R contains a repre-

sentative Γς of every real number ς from the field R. Whatever can be computed on such process

representatives of the reals in R can be projected back into R along Υ. Any real number can ς

can be obtained in that way, since ΥΓς = ς. But most real numbers are not computable. Arbi-

trarily long prefixes of uncomputable reals can be defined by enumerating all computations and

avoiding all computable reals by a diagonal argument. This idea has been refined in many direc-

tions, showing that almost all real numbers are uncomputable, whichever way we quantify them

[29, 40, 69]. And they all live in R. Everything that any oracle can tell any computer is already

there. Somewhere on the path from propositions-as-types, through process-propositions-as-types-

extended-in-time, to dynamic interactions, the idea of process-computability-as-programmability

got lost, and we got all processes.

In the final section, we retrace the path back to one of the original questions of categorical

semantics: How can intensional computation be characterized semantically?

7 Categorical semantics as a programming language

7.1 Computability-as-programmability

A process is computable if it is programmable.9 In a universe of processes, types are used to

specify requirements and to impose constraints. In a universe of computable processes, there is

also a type P of programs. Since any Turing-complete language can encode its own interpreter,

any model of a Turing-complete language must contain10 the type P of programs in that language.

A model of computable processes is extensional if it only describes the extensions of com-

putations, i.e. their input-output functions, and does not say anything about the process of com-

putation. Each computable function is thus assigned a unique ”program”. Type-theoretically,

this unique ”program” is captured by the (cartesian) abstraction operation, which fold a func-

tion fx(a) : A × X −−→ B with parameters from X to the X-indexed family of abstract functions

λa. fx(a) : X −−→ (A⇒B). The application operation applies an abstraction to its inputs and re-

covers the corresponding function. The bijection between the abstractions and their applications

was displayed in (4) and formalized in Def. 1.2 using the structure of cartesian closed categories.

9Network processes are sometimes also called computations, although they are not globally controllable, and thus

not programmable. They can be steered by interacting programs and protocols, but that is a different story. The notion

of computability was originally defined as computability by computers, and the term is still used in that sense.
10The tacit assumption is that a model of a programming language contains all types recognizable in that language.
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If ”programs” do not specify some input-output mappings, but also how they change during com-

putation, then the X-indexing becomes a state dependency, and the computations are presented as

state machines ξ : A×X −−→ B×X, producing the outputs by ξ• : A×X −−→ B and updating the states

by ξ◦ : A × X −−→ X. The bijection between the parametrized functions and their abstractions (4)

becomes a mapping (16) of machines ξ : A × X −−→ B × X to the anamorphisms
�
ξ

�
: X −−→ [A, B]

assigning to each state in X a dynamic function as the induced computational behavior. This ma-

chine abstraction was formalized in Def. 2.1 using the structure of process closed categories. The

machine abstraction is not injective because many different machines realize the same behaviors;

and it is not surjective because some dynamic functions are not implementable by machines. A

categorical structure capturing how actual computable functions are specified by actual programs

(without the quotation marks) is formalized in Def. 7.1. It characterizes computable functions

using the language of Definitions 1.2 and 2.1, but not in terms of an abstraction operation, since

program abstraction is not an operation.

The conceptual distinction between the static view of the function abstraction in (4), and the dy-

namic view of the process abstraction in (16) is echoed to some extent by the technical distinction

between the denotational and the operational semantics of computation [5, 9, 27]. Overarching

all such distinction is the logical distinction between the extensional and the intensional models of

meaning, going back to Frege, Carnap, Church and Martin-Löf [37]. All models of computation

that capture abstraction as an operation fall squarely on the extensional side. The intuitive reason

is that abstraction as an operation readily produces a ”program” to each computation; but program-

ming is not such an easy operation. It is a process that involves programmers and evolves other

processes.

In contrast with the denotational models of the λ-abstraction of functions, and with the op-

erational models of the �−�-abstraction of processes, the intensional models of computations are

based on the operations for evaluating programs and executing computations. There are many pro-

grams for each computation, but there is no operation that transforms computations into programs.

7.2 Categorical semantics of intensional computation

The logical schema of intensional computation is dual to (16):

X |
p
−→P

{|−|}�

A ∧ X |
{|p|}
−−→�(B ∧ X)

S (X, P)

SM(A × X, B × X)

{|−|} (82)

The idea of computability-as-programmability is expressed by the requirement that the maps {|−|}

are surjective: for any computation A×X
g
−→ M(B×X) there is a program ρ such that {|ρ|} = g. Com-

putations are presented as state machines to help capturing the dynamics of computation. Prop. 7.2

shows that this view of computation is equivalent to the standard view in terms of acceptable enu-

merations.
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The naturality of the program executions {|−|} in (82) can be described, mutatis mutandis, in a

similar way like the naturality of �−� in (16). An X-indexed family of functions {|−|}AB
X : S(X, P) −−→

SM(A × X, B × X) constitutes a natural transformation {|−|}AB : ∇P −−→ ΘAB between the functors

∇P : So −−→ R ΘAB : So −−→ R (83)

X �→ S(X, P) X �→ SM(A × X, B × X)

See (19) and (21) in Sec. 2.2.2 for the arrow parts of these functors. The naturality requirement is

dual to (17). It implies that the diagram here on the left commutes for every p ∈ S(X, P).

S (P, P) S (X, P)

SM (A × P, B × P) SM (A × X, B × X)

{|−|}AB
P

(−◦p)

{|−|}AB
X

(p)

A × X M(B × X)

A × P M(B × P)

{|ρ|}

A×ρ M(B×ρ)

{|id|}

(84)

The diagram on the right arises by chasing id ∈ S(P, P) around the diagram on the left. The left-

hand diagram says that {|id|}AB
P and {|p|}AB

X are related under ΘAB p, which by the definition in (19)

means that the right-hand square commutes. Since the naturality implies that

{|p f |}Y = {|p|}X (A × f ) = {|id|}P (A × p f )

holds for all f ∈ S(Y, X) and p ∈ S(X, P), droping the subcripts X from {|−|}X seldom causes

confusion. The other way around, by the surjectivity of {|−|}, for every computation g ∈ SM(A ×

X, B × X) there is an X-indexed program ρ ∈ S(X, P) such that {|ρ|}AB
X = g, making the right-hand

square in (84) commute. Since this is true for all A and B, the claim is thus that P is the state space

of a weakly11 final AB-machine {|id|}AB
P ∈ SM(A × P, B × P) — for all types A and B in S. The

categories of computable-as-programmable functions, induced by (84), are thus process-closed in

a suitable intensional sense that is both weaker and stronger than the extensional process-closed

structure (16). It is weaker in the sense that the abstractions are not unique, but it is stronger in the

sense that all abstractions, over all types, are of the same type P. They are the programs. Hence

the intensional cousin of the cartesian-closed and the process-closed categories defined in 1.2 and

2.1:

Definition 7.1 A categorical computer is a cartesian category S with a commutative monad M :

S −−→ S, a fixed type P of programs, and for any pair of types A, B an X-natural family of surjec-

tions, called program executions:

S(X, P)
{|−|}AB

X
SM(A × X, B × X) (85)

The naturality of the program executions {|−|}AB is with respect to the functors ∇P,ΘAB : So −−→ R

from (83).

11The word ”weakly” refers to the fact that the programs ρg are not unique: each machine g can be represented by

many of them; in fact infinitely many.
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Proposition 7.2 Let S be a cartesian category, P ∈ S a fixed type, and M : S −−→ S a commutative

monad. Specifying the the program executions {|−|} in (85), and establishing S as a categorical

computer, is equivalent to specifying the following data for all types A, B, X:

a) a universal evaluator (or interpreter) ϕAB ∈ SM(A × P, B) and

b) a partial evaluator (or specializer) σX ∈ S(X × P, P)

such that for any f ∈ SM(A, B) there is p ∈ S(1, P) with

f = ϕAB ◦
(
A × p

)
ϕ(AX)B = ϕAB ◦

(
A × σX

)
A B

A × P A × X × P

f

A×p ϕAB
ϕ(AX)B

A×σX

(86)

Proof (sketch). Given a categorical computer, the interpreters are ϕAB = πB◦{|id|}
AB
P and the special-

izersσX are chosen using the surjectivity of {|−|}AB
(XP). Showing that the sameσX can be chosen for all

A and B is the only part which requires work12. Towards he converse, setting {|p|}AB
X = ϕ

A(BX)◦(A×p)

defines a natural transformation. To show that its components are surjective, for an arbitrary com-

putation A × X
g
−→ M(B × X), set ρ(x) = σXP(x, r, r) using in the following diagram.

A × X M(B × X)

A × X × P M(B × X) × MP M(B × X × P)

A × X × P × P M(B × X × P × P)

A × P M(B × P)

A×ρ

g

A×X×r

B×ρ

M(B×X×r)

g×η

A×X×P×r

φ

M(B×X×Δ)

ϕ(AXP)(BP)

A×σXP M(B×σXP)

= {|id|}AB
P

ϕA(BP)

(87)

The program r is defined by the commutative trapezoid in the middle. It encodes the computation

where the state output A×X
g◦

−→ MX is fed into the function X×P
X×Δ
−−−→ X×P×P

σXP

−−−→ P where σXP

partially evaluates any program on itself. This computation is the composite of the arrows going

from A × X × P right along the top and down along the right side of the trapezoid. Some programs

12Most computability theory goes through with non-uniform specializers, which may vary with the context A, B.
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r that make the trapezoid commute when substituted as the left dashed side exist by Prop. 7.2(a).

The top rectangle is obtained by feeding some such r as the input to to the partial evaluator, to

evaluate it on itself. The triangle at the bottom commutes by Prop. 7.2(b). The commutativity of

the whole diagram gives {|ρ|}AB
X = g. �

Historic background. Prop. 7.2 says that the structure of categorical computer is a categorical

version of the standard concept of acceptable enumeration [103]. In the standard notation, the

enumeration would be a sequence
(
ϕn

x

)n∈N

x∈P , where x is the program index, and n is the arity of

the computable function ϕx. While the computable functions are usually modeled over natural

numbers, and the arity n means that the function takes the inputs of typeNn, and always produces a

single output of type N, the categorical treatment is over abstract types, so we write ϕAB to specify

the input type A and the output type B.

Programming background. The construction in the proof of Prop. 7.2 is easily seen to be a

version of Kleene’s construction of the fixpoint in his Second Recursion Theorem [103, Ch. 11].

The partial evaluator evaluating all programs on themselves plays the central role. This capability

of self-evaluation lies at the heart of many computational constructions [79]. While the diagram

chase above elides many equations, the string diagrammatic versions do not just abridge the con-

structions but display the geometric patterns behind many of them. They support a diagrammatic

programming language with convenient implementations of computable logic and arithmetic, pro-

gram schemas, abstract metaprogramming concepts like compilation, supercompilation, synthesis,

and to derive static, dynamic, and algorithmic complexity measures [94, 99].

The λ-calculus and the underlying type theories have been used as abstract programming lan-

guages in the semantics of computation from the outset [105], and remained at the heart of the

semantical investigations [14, 48]. Programming in abstract programming languages has also

been pursued since early on [101]. It led to functional programming, which now permeates pro-

gramming practices beyond the realm of. However, the mere presence of the abstraction oper-

ations makes the underlying type systems essentially extensional. Dropping the extensional λ-

conversions allows that multiple programs may correspond to a single computation, but still pro-

vides a canonical choice among them, maintains a canonical extensional core of the type system

[46]. This has been the main obstacle to studying genuinely intensional algorithmic phenomena,

such as complexity, within the semantics of computation.

7.3 Computability as an intrinsic property

A poset may be a monoid in many different ways: e.g., the reals are a monoid for addition, for

multiplication, and for many other operations. But a poset may be a lattice (an idempotent monoid)

in at most one way: the joins are the least upper bounds, the meets are the greatest lower bounds,

and if they exist, they are uniquely determined by the order. A category can be monoidal in

many different ways, but it can be cartesian in at most one way because the cartesian products are

uniquely determined. The lattice structure of a poset and the cartesian structure of a category are

unique, and they are therefore the properties of their carriers. When the meets in a poset have the
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right adjoints, the implications that arise are also unique, and the structure of a Heyting algebra in

is also a property. For the same reason, the cartesian-closed structure from Def. 1.2 is a property

of a category, as is the process-closed structure from Def. 2.1.

The structure of a categorical computer from Def. Def. 7.1 is also essentially unique and thus

a property of the category that carries it. Proving this requires a little more work than the simple

arguments above, but not much more. It boils down to a categorical encoding of the theorem that

all parametrized interpreters isomorphically interpret one another [103]. A categorical computer

thus displays computability as a categorical property: that all of its morphisms are programmable

functions.

On the other hand, it was explained in [9, Sec. 1.2.3] that the notion of computability, as defined

in the standard Church-Turing approach, is extrinsic, in the sense that a particular computable

function is recognized as such only by referring to a particular external model of computation, say

a Turing machine or a definitional schema. The invoked model then describes a particular process

of computing the function, which is not recorded or recognizable on the function itself. It was thus

argued in [9] that the standard definitions do not specify computability as an intrinsic structure,

even less a property of a function. In contrast, (82) expresses the idea of computability-as-pro-

grammability as a logical structure; and by the virtue of uniqueness of that structure, as a logical

property. Whatever programming language P might be used to encode programs, they are always

assigned semantics along some program executions S(X, P) � SM(A × X, B × X), or along some

equivalent mappings. The Rogers’ isomorphism theorem says that all programming languages are

isomorphic along semantics-preserving computable functions. Whichever Church-Turing model

of computation might be used to define computability, the underlying execution model will map its

process descriptions to the corresponding computational processes, and this mapping will make it

into a categorical computer. This structure provides a ”canonical form witnessing computability”,

sought in [9, Sec. 1.2.3].

Many languages of logic claim universality and establish their universality on their own terms.

The set theory proves that it is the foundation of all mathematics, first-order logic is the language of

predicates, category theory is the language of structures. The statement that logic is tasked with dis-

covering the universal laws of logic is a tautology, in a logic of logic. A universal law should not be

misunderstood as the last word about anything, but as the first word about something else. The idea

that computability-as-programmability is a model-invariant, syntax-independent, device-free con-

cept, and a property intrinsic to all computable objects and processes, is broader than any particular

structure, categorical or otherwise, in which it may be expressed. The idea of computability-as-

programmability lurks behind Kolmogorov’s invariance theorem [66, Sec. 2.1]. While recognizing

a particular function as computable depends on encodings in a particular model, the invariance

theorem is built upon the fact that the encodings and their transformations are programmable, and

that the programs are of constant lengths. Kolmogorov’s invariance theorem can be construed

as a quantitative counterpart of Rogers’ isomorphism theorem [28, Thm. 2.4.14]. Both theorems

characterize computability as an intrinsic property. Computability-as-programmability is not just

testable by any of the equivalent models of computation, as claimed by the Church-Turing thesis,

but it is also quantifiable, in Kolmogorov’s formulation by the length of programs. Kolmogorov’s

algorithmic complexity is thus the quantitative view of the intrinsic property of computability-as-
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programmability. By displaying programmability as a structure, categorical semantics provides

the qualitative view of this property.

It should be noted that the qualitative and the quantitative views of computability as an intrinsic

property of processes come about in disguise in many arenas of science. Although the search for

a program that makes a process computable is generally not a computable process, its average

algorithmic complexity is an intrinsic quantity again: the Shannon entropy [81, 116]. Information

theory as the theory of information processing has been viewed as a theory of computation in

microsystems, averaged out in thermodynamics. Domain theory has been viewed as a theory

of computability-as-approximation in suitable topologies [2, 107, Sec. 5.1]. A natural task for

categorical semantics is to bring such conceptual threads together. That is the message that I got

from Samson Abramsky’s categories that no one had seen before.

8 Summary

In the propositions-as-types view, the extensional operations of abstraction and application, viz the

structure of cartesian closed categories, correspond to the introduction and the elimination of the

propositional implication:

(A ∧ X) � B
============ ⊃
X � (A ⊃ B)

S(A × X, B)

S
(
X, (A⇒B)

)
(A⇒−)◦ηX εX◦(A×−)

In process logics, the process implication introduction rule corresponds to the coinductive inter-

pretation of arbitrary states as process behaviors, captured in the final machine:

A ∧ X |
ϕ
−→�(B ∧ X)

�−�

X |
�ϕ�
−−−→ [A, B]�

SM(A × X, B × X)

S (X, [A, B]M)

�−�X

In terms of dynamic types, computation corresponds to program execution. In terms of process

propositions, computability-as-programmability is thus an elimination rule, mapping programs, as

intensional proofs of the universal proposition, the programming language, into computations as

their extensions:

X |
p
−→P

{−}

A ∧ X |
{p}
−−→�(B ∧ X)

S (X, P)

SM(A × X, B × X)

{−}
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Categorical semantics provides convenient and sometimes effective tools for reasoning about types

and processes. Samson Abramsky led many of us through its vast landscape. I followed him to

the best of my ability. The present paper is an attempt at a travel report. But the territory is largely

uncharted, and there were times when I lost sight of Samson, probably somewhere far ahead. It is

thus likely that the travel report is not just about what I learned from Samson, but also about what I

misunderstood by getting lost, and maybe most of all about what I did not learn at all. Categorical

semantics of computational processes is a computational process itself, and it is the nature of such

processes that they may terminate, or not.
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[66] Ming Li and Paul M. B. Vitányi. An introduction to Kolmogorov complexity and its appli-

cations (2. ed.). Graduate texts in computer science. Springer, 1997.

[67] Ralph Loader. Finitary PCF is not decidable. Theoretical Computer Science, 266(1):341 –

364, 2001.

[68] Ernest Manes. Algebraic Theories. Number 26 in Graduate Texts in Mathematics. Springer-

Verlag, 1976.

53
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Appendices

A Category R of sets and relations

Relations A ←−− R −−→ B arise in two ways:

a) as subsets R
r
	 A × B, so that

aRb ⇐⇒ ∃x ∈ X. a = rA(x) ∧ rB(x) = b

b) as a nondeterministic functions A
�
−→ ℘B and B

�o

−→ ℘A, so that

aRb ⇐⇒ �(a) # b ⇐⇒ a ∈ �o(b)

where ℘ : S −−→ S is the powerset monad.

The equivalence between the two views lies at the heart of the elementary structure of topos [23,

38, 63], which can be defined in terms of the correspondece between the subsets R 	 A × B and

the elements χR ∈ ℘(A × B), and the natural bijections

S(X × A, ℘B) � S(X, ℘(A × B)) � S(X × B, ℘A) (88)

A relational calculus can, however, be developed entirely in terms of subobjects R 	 A × B, in

type universes without the powerset monad. Process relations are presented from this angle. The

universe S only needs to be regular [22, 85]. In addition to the cartesian structure, it is thus also

assumed to have the equalizers (i.e., the subsets characterized by equations), which induce the

pullback squares. The final assumption, crucial for the relational calculus, is that every function

f : A −−→ B has an epi-mono (surjective-injective) factorization: it can be decomposed in the form

f =

(
A

ef

� A′
mf

	 B

)
, where e f ∈ E and mf ∈ M. The family E can be thought of as the quotient

maps (coequalizers), whereas M are all monics. The family E is required to be stable under the

pullbacks. The category of relations in S is then defined to be

|R| = |S| (89)

R(A, B) = M�

/
(A × B)
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where M� is the set of the equivalence classes modulo the relation

m � m′ ⇐⇒

R R′

X

�

m m′

Without this quotienting, R(A, B) would in general be a proper class. The composition of relations

A
R

←→ B and B
S

←→ C, viewed as the M-monics R	 A× B and S 	 B×C, is defined using the

pullback R ×
B

S and the factorization in the following diagram.

R ×
B

S

R (R; S ) S

A B C

The identity A ←→ A in RS is the diagonal A −−→ A × A in S. More general categories of

relations can be defined in more general situations using technically different but conceptually

similar constructions [85, 87]. If S has the coproducts +, they become biproducts in R. The

products × from S induce a canonical monoidal structure in R, with the compact structure η : 1 ↔

A ↔ A × A and ε : A × A ↔ A ↔ 1 on every A [51].

B Proof of Prop. 2.3.3

a) Suppose that S is a cartesian closed category with the static implication (A⇒B), and with the

process of A-histories A
(−)
−−→ A+

(::)
←−− A × A+ for every A. Then [A, B] = (A+⇒B) is the state space

of the final AB-machine with the structure map

A ×
(
A+⇒B

) υ = 〈υ•,υ◦〉
−−−−−−−−→ B ×

(
A+⇒B

)
(90)
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where the components are derived by evaluating along the components of the A-history process

A ×
(
A+⇒B

) (
A×(−)⇒B

)
−−−−−−−−→ A × (A⇒B)

ε
−−→ B

A ×
(
A+⇒B

) υ•
−→ B

A+ × A ×
(
A+⇒B

)
� A × A+ ×

(
A+⇒B

) (::)×(A+⇒B)
−−−−−−−−→ A+ ×

(
A+⇒B

) ε
−−→ B

A ×
(
A+⇒B

) υ◦
−→

(
A+⇒B

)
To show that (90) is a final machine, first note that every AB-machine A×X

ξ = 〈ξ•,ξ◦〉
−−−−−−−→ B×X induces

an A-history process

A
κ(−)

−−→ (X⇒B)
κ(::)
←−− A × (X⇒B) (91)

with the components

A × X
ξ•

−→ B

A
κ(−)

−−→ (X⇒B)

X × A × (X⇒B) � A × X × (X⇒B)
ξ◦×(X⇒B)
−−−−−−→ X × (X⇒B)

ε
−−→ B

A × (X⇒B)
κ(::)
−−→ (X⇒B)

By Sec. 2.3.1, the A-history process κ induces the catamorphism (i.e. fold, banana-function) �κ�

A+ A × A+

A

(X⇒B) A × (X⇒B)

�κ�

(::)

A×�κ�

(−)

κ(−)

κ(::)

(92)

On the other hand, the transposition

A+
�κ�
−−→ (X⇒B)

X
�ξ�
−−−→

(
A+⇒B

)
induces the anamorphism (unfold, lens-function)

�
ξ

�

X × A X × B

(A+⇒B) × A (A+⇒B) × B

ξ

�ξ�×A �ξ�×B

υ

(93)

which shows that υ makes [A, B] into the process implication as in Sec. 2.2.2. The diagram chase

showing that the catamorphism (92) commutes if and only if (93) commutes is an instructive

exercise.
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b) The assumption is that S has final AB-machines

A × [A, B]
υ = 〈υ•,υ◦〉
−−−−−−−−→ B × [A, B]

Replacing the second component by the projection gives the machine which induces the anamor-

phism �υ•, π1�, which makes the outer square in the following diagram commute.

A × [A, B] B × [A, B]

A × (A⇒B) B × (A⇒B)

A × [A, B] B × [A, B]

〈υ•,π1〉

A×�υ•,π1�

A×q B×q

B×�υ•,π1�
〈ε,π1〉

A×m B×m

〈υ•,υ◦〉

(94)

Since �υ•, π1� is also endomorphism on the AB-machine A × [A, B]
〈υ•,π1〉
−−−−→ B × [A, B], the unique-

ness of �υ•, π1� as an AB-machine homomorphism from 〈υ•, π1〉 to 〈υ•, υ◦〉 implies that it is an

idempotent:

�
υ•, π1

�
◦

�
υ•, π1

�
=

�
υ•, π1

�

Here we use the assumption that the idempotents split in S, and define (A⇒B) as the splitting

�
υ•, π1

�
=

(
[A, B]

q
� (A⇒B)

m
	 [A, B]

)

also displayed in (94). The component A × (A⇒B)
ε
−−→ B of the factoring defined there is the

counit of the adjunction A × (−) ! (A⇒−), defined

S(X × A, B)
λ
−−→ S(X, (A⇒B))

f �−→ λ f = q ◦
�

f , π1

�

To show that ε ◦ (λA × f ) = f , chase the following diagram:

A × X B × X

A × [A, B] B × [A, B]

A × (A⇒B) B × (A⇒B)

〈 f ,π1〉

A×� f ,π1�

A×λ f

B×� f ,π1�

B×λ f
〈υ•,π1〉

A×q B×q

〈ε,π1〉

�
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C Proof sketch for Lemma 5.1

Since #A ≤ ℵ0, there is an ordinal number κ ≤ ω large enough to support an retraction P(A×A)	

Pκ(A) � P(A× A), and thus also QAA1	 Qκ
A1

1� QAA1 for the functor Q defined in (42). Hence

the tower of retractions:

1 QAA1 Q2
AA1 Qn

AA
1 [A, A]P

1 Qκ
A1

1 Qκ2
A1

1 Qκn
A1

1 [A, 1]P

! QAA!

m0

! Qκ
A1

!

e0

The symmetry A × 1 � 1 × A lifts to a smilar retraction

[A, A]P
m1

	 [1, A]P
e1

� [A, A]P

With these retractions, the proof boils down to showing the commutativity of the following diagram

1 [A, A]P

[A, 1]P × [1, A]P

[A, A]P [A, A]P × [A, A]P

�id�

�id�

〈id,id〉

〈m0,m1〉

�−;−� 〈e0 ,e1〉

�−;−�

where �−;−� are the enriched compositions, constructed like in (29) (or see [57] for more details),

whereas �id� is the enriched identity, constructed as the anamorphism (final coalgebra homomor-

phism) from the identity machine A × 1
η
−→ P(A × 1), where η is the unit of the monad P. This

diagram says that j = m0 �id� ∈ SP(A, 1) and r = m1 �id� ∈ SP(1, A) display A as a retract of 1 in

SP, i.e. that they compose to

idA =
(
A

j=m0�id�
−−−−−−→ 1

r=m1�id�
−−−−−−→ A

)
(95)

�

D Proof of Corollary 5.2

Since the embedding (62) is full and faithful by definition, we only need to prove that it is essen-

tially surjective: for an arbitrary object S ∈ DProc≤ℵ0
we must find S ′ ∈ dProc such that S � S ′ in
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DProc≤ℵ0
. An object of DProc≤ℵ0

is a dynamic relation A
S

←→ 1 in SP, where #A ≤ ℵ0. An object

of dProc is a hyperset S ′, viewed as a dynamic relation 1
S ′

←→ 1 in SP. By Lemma 5.1, there are

the relations j ∈ SP(A, 1) and r ∈ SP(1, A) such that ( j; r) = idA. Setting

S ′ =
(
1

r
←→ A

S
←→ 1

)
assures that the inner triangle in the following diagram commutes.

1 A

1

S ′

r

S

j

The outer triangle commutes because S ′ ◦ j = S ◦ r ◦ j = S by (95). So we have the morphisms

r ∈ DProc≤ℵ0
(S ′, S ) and j ∈ DProc≤ℵ0

(S , S ′). They form an isomorphism because r ◦ j = idS

by (95) again, and j ◦ r ∈ DProc≤ℵ0
(S ′, S ′) must be an identity because S ′ is a subobject of the

terminal object in DProc≤ℵ0
. �

E Traces and the Int-construction

The trace operation on a symmetric (or braided) monoidal category (C,⊗, I) is typed by the rule

A ⊗ Y
f
−→ B ⊗ Y

A
TrY ( f )
−−−−→ B

The equations for this operation, with some examples and explanations can be found in [6, 50, 92].

The free compact category over any traced monoidal C

|IntC| = |C|− × |C|+ (96)

IntC(A, B) = C (A− ⊗ B+, B− ⊗ A+)

where X− = {−} × X and X+ = {+} × X. The composition of IntC(A, B) × IntC(B,C)
•
−→ C(A,C) is

defined by

A− ⊗ B+
f
−−→ B− ⊗ A+ B− ⊗ C+

g
−−→ C− ⊗ B+

A− ⊗ C+ ⊗ B− ⊗ B+
σ
� A− ⊗ B+ ⊗ B− ⊗C+

f⊗g
−−−−→ B− ⊗ A+ ⊗ C− ⊗ B+

σ
� C− ⊗ A+ ⊗ B− ⊗ B+

g • f =
(
A− ⊗ C+

TrB−⊗B+ (σ◦(g⊗ f )◦σ)

−−−−−−−−−−−−−−→ C− ⊗ A+
)
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F The extended reals as alternating dyadics

Recall from Sec. 6.4.1 that R = R∪{∞,−∞} is the extended real continuum, and that Σ� =
∐ω+1

i=0 Σ
i

is the set of finite or infinite (countable) strings of symbols from Σ = {−,+}, which are treated in

(97) as {−1, 1}.

Define the value of the function Φ : Σ� −−→ R on an arbitrary string ς = ( ς0 ς1 ς2, . . . ) to be

Φ(ς) = z · ς0 +

∞∑
i=z+1

ςi

2i−z
(97)

where z = μn. ςn � ςn+1 is the length of the initial segment before the sign flips. If ς is the infinite

string of either one sign or the other, then z is infinite, and the value of Φ(ς) is either ∞ or −∞.

Leaving the two infinities aside, Φ establishes a bijection between the remaining Σ-stings, where

the sign eventually flips, and the finite real numbers from R. For an arbitrary x ∈ R, the string

υ ∈ Σ� such that x = Φ(υ) can be constructed as follows:

• Decompose the real line as the disjoint union of the closed-open and open-closed intervals

R =

∞∐
n=1

[−n,−n + 1) + {0} +

∞∐
n=1

(n − 1, n]

leaving the 0 on its own. Then there are 3 cases:

• (0) If x = 0 then υ is the empty string ().

• (-) If x ∈ [−n0,−n0 + 1), then υ begins with − − · · · −︸����︷︷����︸
n0

.

• (+) If x ∈ [n0 − 1, n0), then υ begins with + + · · ·+︸����︷︷����︸
n0

.

• In case (-), find

– the smallest n1 such that x ≤ −n0 +
∑n1

i=1
1
2i and append + · · ·+︸�︷︷�︸

n1

to υ;

– the smallest n2 such that x ≥ −n0 +
∑n1

i=1
1
2i −

∑n2

i=1
1

2n1+i and append − · · · −︸�︷︷�︸
n2

to υ;

– the smallest n3 such that x ≤ · · · , etc.

• In case (+), find

– the smallest n1 such that x ≥ n0 −
∑n1

i=1
1
2i and append − · · · −︸�︷︷�︸

n1

to υ;

– the smallest n2 such that x ≤ · · · , etc.

• If you ever reach a sum equal to x, then halt and leave υ finite. Otherwise υ is infinite.

In any case, it is easy to see that Φ(υ) = x and that Φ(υ) = Φ(ζ) implies υ = ζ. So Φ is an injection.

And we have just shown that it is a surjection by constructing for an arbitrary x ∈ R a υ ∈ Σ� such

that x = Φ(υ). The function Φ defined by (97) is thus the claimed bijection.
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