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Causality and deceit:

Do androids watch action movies?

Dusko Pavlovic
∗

Temra Pavlovic

Abstract

We seek causes through science, religion, and in everyday life. We get excited when

a big rock causes a big splash, and we get scared when it tumbles without a cause.

But our causal cognition is usually biased. The why is influenced by the who. It is

influenced by the self, and by others. We share rituals, we watch action movies, and

we influence each other to believe in the same causes. Human mind is packed with

subjectivity because shared cognitive biases bring us together. But they also make us

vulnerable.

An artificial mind is deemed to be more objective than the human mind. After

many years of science-fiction fantasies about even-minded androids, they are now sold

as personal or expert assistants, as brand advocates, as policy or candidate supporters,

as network influencers. Artificial agents have been stunningly successful in disseminat-

ing artificial causal beliefs among humans. As malicious artificial agents continue to

manipulate human cognitive biases, and deceive human communities into ostensive but

expansive causal illusions, the hope for defending us has been vested into developing

benevolent artificial agents, tasked with preventing and mitigating cognitive distor-

tions inflicted upon us by their malicious cousins. Can the distortions of human causal

cognition be corrected on a more solid foundation of artificial causal cognition?

In the present paper, we study a simple model of causal cognition, viewed as a quest

for causal models. We show that, under very mild and hard to avoid assumptions, there

are always self-confirming causal models, which perpetrate self-deception, and seem to

preclude a royal road to objectivity.

∗Partially supported by NSF and AFOSR.
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1 Introduction: Causal cognition and its vulnerabilities

1.1 Causal cognition in life and science

Causal cognition drives the interactions of organisms and organizations with their environ-
ments at many levels. At the level of perception, spatial and temporal correlations are often
interpreted as causations, and directly used for predictions [27]. At the level of science,
testing causal hypotheses is an important part of the practice of experiment design [16],
although the general concept of causation seldom explicitly occurs in scientific theories [41].
It does occur, of course, quite explicitly in metaphysics and in theory of science [7], and most
recently in AI1[36, 46].

1.2 Causal cognition and launching effects

Causal theories may or may not permeate science (depending on how you look at it) but
they certainly permeate life. Why did the ball bounce? Why did my program crash? Why
did the boat explode? Who caused the accident? Why did the chicken cross the street? We
need to know. We seek to debug programs, to prevent accidents, and to understand chicken
behaviors. We often refuse to move on without an explanation. Lions move on, mice run
away, but humans want to understand, to predict, to control.

In some cases, the path to a causal hypothesis and the method to test it are straightforward.
When a program crashes, the programmer follows its execution path. The cause of the crash
must be on it. The causal hypothesis is tested by eliminating the cause and verifying that
the effect has been eliminated as well. If a ball bounces like in Newton’s cradle, in Fig. 1 on
the left, we see that the ball was launched by another ball. If a boat explodes like in Fig. 1
on the right, we see that the explosion was caused by another boat crashing. Action movies
are chains of causes and effects, packed between a problem and a solution, which are usually
presented as a big cause and a big effect.

In other cases, establishing a causal hypothesis may be hard. It is obvious that the collision
caused the explosion; but who caused the collision? It is obvious that the bouncing ball
extends the trajectory of the hitting ball; but how is the force transferred from the hitting
ball to the bouncing ball through all the balls in-between, that don’t budge at all?

Such questions drive our quest for causes, and our fascination with illusions. They drive us
into science, and into magic. In a physics lab, a physics teacher would explain the physical

1AI is usually interpreted as the acronym of Artificial Intelligence. But the discipline given that name
in 1956 by John McCarthy evolved in the meantime in many directions, some of which are hard to relate
with any of the usual meanings of the word "intelligence". We are thus forced to either keep updating the
concept of "intelligence" to match the artificial versions, or to unlink the term "AI" from its etymology, and
to use it as a word rather than as an acronym, like it happened with the words gif, captcha, gulag, or snafu.
The latter choice seems preferable, at least in the present context.
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Figure 1: Launching effects

law behind Newton’s cradle. But in a magic lab, a magic teacher would present a magic
cradle, looking exactly the same like Newton’s cradle, but behaving differently. One time
the hitting ball hits, and the bouncing ball bounces. Another time the hitting ball hits, but
the bouncing ball does not bounce. But later, unexpectedly, the bouncing ball bounces all
on its own, without the hitting ball hitting. Still later, the bouncing ball bounces again, and
the hitting ball hits after that. Magic! Gradually you understand that the magic cradle is
controlled by the magic teacher: he makes the balls bounce or stick at his will.

Michotte studied such "launching effects" in his seminal book [27]. The action movie industry
is built upon a wide range of techniques for producing such effects. While the example in
Fig. 1 on the right requires pyrotechnic engineering, the example in Fig. 2 on the right is
close to Michotte’s lab setups. Observing subtle details, we can usually tell apart a real effect

Figure 2: The cause of an effect may appear obvious, but the appearance may deceive

from an illusion. But illusions are often more exciting, or less costly, and we accept them.
We enjoy movies, magic, superstition. We abhor randomness and complexity, and seek the
simplest causal explanations. We like to be deceived, and we deceive ourselves.
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1.3 Causal cognition as a security problem

Cognitive bias and belief perseverance are familiar and well-studied properties of human
cognition, promoted in evolution because they strengthen the group cohesion [21]. As human
interactions increasingly spread through media, human beliefs are hijacked, their biases are
manipulated, and social cohesion is amplified and abused at ever larger scales. This is also
well-known and well-studied in psychology [8, Part VI] and in social sciences [49]. However,
on the information technology side, cognitive bias manipulations on the web market and in
cyberspace have been so profitable in practice, that there was no time for theory.

We live in times of advertising and publicity campaigns. Brands and crowds are built and
steered using the same tools, and from the same materials: human cognition and sensitivi-
ties. The AI tools, recently added to the social engineering toolkit, appear to be among the
most effective ones, and among the least understood. The practice is far ahead of theory.
The research reported in this paper is a part of a broader effort [9, 31, 33, 34, 47] towards
developing models, methods, and tools for this area, where human and computational behav-
iors are not just inseparable, but they determine each other; and they do not just determine
each other, but they seek to control each other.

The specific motivating question that we pursue is: Is artificial causal cognition suitable as
a tool to defend human causal cognition from the rapid strategic advances in cognitive bias
manipulation, influencing, and deceit?

There are, of course, many aspects of this question, and many approaches to it. The combined
backgrounds of this paper’s authors provide equipment only for scaling the south-west ridge:
where the west cliff of computation meets the south cliff of communication. Neither of us is
equipped to place or interpret our model and results in the context of the extant research in
psychology, or social sciences, where they should be empirically validated. We are keen to
present it to a mixed audience hoping that there are gates between the silos. Rather than
attempt to shed light on the problem from a direction that is unfamiliar to us, we are hoping
to shed light on the problem from a direction that is unfamiliar to the reader, while doing our
honest best to avoid throwing any avoidable shadows. If the reader sheds some light from
their direction, this multi-dimensional problem may emerge in its multi-disciplinary space.

2 Background: Causality theories and models

Causality is studied in different communities from different standpoints. The following high
level overview is mainly intended to put us at a starting position. The reader is welcome to
fast-forward at any point.
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2.1 A very brief history of causality

Causal relations impose order on the events in the world: an event a causes an event b, which
causes an event c, whereas the event d is unrelated to a or b, but may contribute to c. An
event may have multiple causes, and multiple effects, and they may all be distant from one
another in time and in space. We impose order on the world by thinking in terms of causes
and effects.

But connecting causes and effects also causes difficulties. In Fig. 1, the force on one end of
Newton’s cradle causes the effect on the other end without affecting anything in-between;
whereas the boats collide and are subsequently engulfed in the explosion, but the explosion is
not caused by the collision, but staged. Tellingly, such decouplings are called special effects.
Our eye distrusts the physical effect on the left, and accepts the special effect on the right.
Recognizing such remote causations and adjacent non-causations requires learning about
the unobservable causes of observable effects that fill the world, and about the unobservable
effects of observable causes, and even about the unobservable causes of unobservable effects.
Imposing the causal order on the world forces us to think about the unobservable, whether
they are black holes or spirits of our ancestors.

While acting upon some causes to prevent some effects is a matter of individual adaptations
and survival for humans and androids, plants and animals, understanding the general process
of causation has been a matter of civilization and cognition. While the efforts in the latter
direction surely go back to the dawn of mankind, the early accounts go back to pre-Socratic
philosophy, and have been traditionally subsumed under Metaphysics, which was the (post-
Socratic) title of Aristotle’s manuscript that came after (i.e. it was the "meta-" to) his
Physics [1]. We mention just three paradigmatic steps towards the concept of causation:

i) Parmenides: "Nothing comes from nothing."
ii) Heraclitus: "Everything has a cause, nothing is its own cause."
iii) Aristotle: "Everything comes from an Uncaused Cause."

Step (i) thus introduces the principle of causation; step (ii) precludes causal cycles, and thus
introduces the problem of infinite regression through causes of causes; and step (iii) resolves
this problem by the argument2 that in Christian theology came to be interpreted as the
cosmological proof of existence and uniqueness of God. Just like the quest for causes of par-
ticular phenomena leads to magic and superstition, the quest for a general Uncaused Cause
leads to monotheistic religion. This logical pattern persists in modern cosmology, where

2"It is clear, then, that though there may be countless instances of the perishing of unmoved movers,
and though many things that move themselves perish and are succeeded by others that come into being,
and though one thing that is unmoved moves one thing while another moves another, nevertheless there is
something that comprehends them all, and that as something apart from each one of them, and this it is
that is the cause of the fact that some things are and others are not and of the continuous process of change;
and this causes the motion of the other movers, while they are the causes of the motion of other things.
Motion, then, being eternal, the First Mover, if there is but one, will be eternal also; if there are more than
one, there will be a plurality of such eternal movers." [1, 258b–259a]
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the Uncaused Cause arises as the initial gravitational singularity, known as the Big Bang.
Although it is now described mathematically, it still spawns untestable theories. The singu-
larity can be avoided using mathematical devices, inflating and smoothening the Uncaused
Cause into a field; but preventing its untestable implications requires logical devices.

While modern views of a global cause of the world may still appear somewhat antique, the
modern theories of local causations evolved with science. The seed of the modern idea that
causes can be separated and made testable through intervention [18, 45, 48] was sown by
Galileo: "That and no other is to be called cause, at the presence of which the effect always
follows, and at whose removal the effect disappears" (cited in [7]). As science progressed,
philosophers echoed the same idea in their own words, e.g., "It is necessary to our using the
word cause that we should believe not only that the antecedent always has been followed by
the consequent, but that as long as the present constitution of things endures, it always will
be so" [28].

But David Hume remained unconvinced: "When I see, for instance, a billiard-ball moving in
a straight line towards another; even suppose motion in the second ball should by accident be
suggested to me, as the result of their contact or impulse; may I not conceive, that a hundred
different events might as well follow from the cause? [. . . ] The mind can never possibly find
the effect in the supposed cause, by the most accurate scrutiny and examination. For the
effect is different from the cause, and can never be discovered in it." [22, 4.10] Hume’s
objections famously shook Immanuel Kant from his metaphysical "dogmatic slumber", and
they led him on the path of "transcendental deduction" of effects from causes, based on
synthetic a priori judgements, that are to be found mostly in mathematics [24]. Scientists,
however never managed to prove any of their causal hypotheses by pure reason, but took
over the world by disproving their hypotheses in lab experiments, whereupon they would
always proceed to formulate better causal hypotheses, which they would then try to disprove
again, and so on. The imperative of falsifiable hypotheses, and the idea of progress by
disproving them empirically, suggested the end of metaphysics, and of causality, and it
prompted Bertrand Russell to announce in 1912: "We shall have to give up hope of finding
causal laws such as Mill contemplated, as any causal sequence which we have observed may at
any moment be falsified without a falsification of any laws of the kind that the actual sciences
aim at establishing. [. . . ] All philosophers of every school imagine that causation is one of
the fundamental axioms or postulates of science, yet, oddly enough, in advanced science such
as [general relativity], the word ’cause’ never occurs. [. . . ] The law of causality, I believe,
like much that passes muster among philosophers, is a relic of a bygone age, surviving, like
the monarchy, only because it is erroneously supposed to do no harm." [41]

2.2 A very high-level view of causal models

In spite of the logical difficulties, the concept of causation persisted. General relativity re-
solved the problem of action at distance, that hampered Newtonian theory of gravitation, by
replacing causal interactions by fields; but the causal cones continued to mushroom through
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the spacetime of special relativity, even along the closed timelike curves. In quantum me-
chanics, causality was one of the main threads in the discussions between Einstein and Bohr
[5]. It was also the stepping stone into Bohm’s quantum dialectical materialism [2, 3]. Last
but not least, causality remains central in the modern axiomatizations of quantum mechanics
[10, 11], albeit in a weak form. Nevertheless, even the weakest concept of causality implies
that the observables must be objective, in the sense that the outcomes of measurements
should not depend subjective choices, which precludes covert signaling.

The most influential modern theory of causation arose from Judea Pearl’s critique of subjec-
tive probability, which led him to Bayesian networks [35, 37]. As a mathematical structure,
a Bayesian net can be thought of as an extension of a Markov chain, where each state is
assigned a random variable, and each transition represents a stochastic dependency. Ex-
tending Markov chains in this way, of course, induces a completely different interpretation,
which is stable only if there are no cycles of state transitions. Hence the causal ordering.

Originally construed as an AI model, Bayesian networks turned out to be a useful analysis
tool in many sciences, from psychology [19] to genetics and oncology [42]. Broad overviews
of the theory and of the immense range of its applications can be found in [25, 36, 46]. Very
readable popular accounts are [38, 39], and [44] is written from the standpoint of psychology.
The causal models imposing the acyclicity requirement on the dependencies between random
variables opened opened an alley towards an algorithmic approach to causal reasoning, based
on dependency discovery: given some input random variables and some output random
variables, specify a network of unobservable random variables whereby the given inputs can
cause the given outputs. A good introduction into such discovery algorithms is [46]. The
applications have had a tremendous impact.

A skeptic could, or course, argue that inserting in-between a cause and an effect a causal dia-
gram is just as justified as inserting Kant’s synthetic a priori judgements. A control theorist
could also argue that the canonical language for specifying dependencies between random
variables was provided by stochastic calculus a long time ago. They were not presented as
elegantly as in bayesian nets, but they were calculated and graphed. On the other hand, the
dependencies modeled in control theory are not required to be acyclic. This is, of course,
essential, since the acyclicity requirement precludes feedback. Is feedback acausal? A simple
physical system like centrifugal governor3 obviously obeys the same laws of causation like
its feedback-free cousins: an increase in angular momentum causes the valve lever to rise;
a wider opening lets more steam out and decreases the pressure; a lower pressure causes
a decrease in angular momentum. The only quirk is thus that some physical effects thus
cause physical effects on their causes, in continuous time. Whether that is causation or not
depends on the modeling framework.

Be it as it may, our very short story about the concepts and the models of causality ends

3Centrifugal governor consists of a pair of rotating weights, mounted to open a valve proportionally to
their rotation speed, were used to control pressure in steam engines, and before that on the windmill stones.
Bayesian nets require an added dimension of time to model such things, basically unfolding the feedback!

9



here. The upshot is that there are effective languages for explaining causation . The
availability and effectiveness of such languages is the central assumption on which the rest
of the paper is based. Such languages, effective enough to explain everything, have been
provided by metaphysics, and by transcendental deduction, and by bayesian networks, and
by stochastic processes. There are other such languages, and there will be more. The rest
of our story proceeds the same for any of them.

3 Approach: Causes in boxes, tied with strings

3.1 String diagrams

Cause �

Effect �

process �

Course

Hardness

Grade

Report

course

Class

Activity

reference
request

Reference

Letter

Student

Work

exam and
homework

Record

Figure 3: String diagrams: causation flows upwards

Henceforth, we zoom out, hide the "innards" of causal models, and study how they are
composed and decomposed. Towards this goal, causal processes are presented as string
diagrams, like in Fig. 3. String diagrams consist of just two graphic components:

• strings — representing types, and
• boxes — representing causal processes.

Formally, types and processes are the basic building blocks of a causal modeling language:
e.g., they may correspond to random variables and stochastic processes. Informally, a type
can be thought of as a collection of events. In a causal process, enclosed in a box, the events
of the input type, corresponding to the string that enters the box at the bottom, cause the
events of the output type, corresponding to the string that exits the box at the top. The
time just flows upwards in our string diagrams. We call the types consumed and produced
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by a causal process inputs and outputs (and not causes and effects) to avoid the ambiguities
arising from the fact that the events produced by one process as effects may be consumed by
another process as causes. The input and the output type may be the same. The diagram
in Fig. 3 on the left is hoped to convey an idea what is what. Presenting causal processes as
boxes allows us to abstract away the details when we need a high-level view, and also to refine
the view as needed, by opening some boxes and displaying more details. This is similar to the
mechanism of virtual functions in programming: we specify the input and the output types,
but postpone the implementation details. A refined view of a causal process in an open box
may be composed of other boxes connected by strings. An example4 is in Fig. 3 on the right.
The types of the strings coming in and out show that grades and reference letters, as events
produced as effects of a causal process course, are causally determined by students’ work
and class activities, as well as by the hardness of the course itself. All these causal factors
are viewed of events of suitable types. When we open the course box, we see that this causal
process is composed from two simpler causal processes: one is exam and homework, the
other reference request. Each of them inputs two causal factors at the bottom; exam and

homework outputs two effects, whereas reference request outputs one. Each grade, as an
event of type Grade Report, is caused both by the course hardness and by the student work ;
whereas the reference letters are caused (influenced, determined. . . ) by the class activity
and by the course record, which is again an effect of the student work and of the course
hardness in the process of exam and homework. The causal dependencies between the
random variables corresponding to the types Grade Report and Reference Letter, and their
dependencies on the random variables corresponding to Course Hardness, Student Work,
and Class Activity, are thus displayed in the string diagram inside the course box. For a
still more detailed view of causal relations, we could zoom in further, and open the boxes
exam and homework and reference request, to display the dependencies through some
other random variables, influenced by some other causal processes.

The causes corresponding to the input types are assumed to be independent on each other.
More precisely, the random variables, corresponding to the types Course Hardness, Student
Work, and Class Activity, are assumed to be statistically independent. On the other hand,
the causal dependencies of random variables corresponding to Grade Report, Record, and
Reference Letter are displayed in the diagram. E.g., the content of a Reference Letter is
not directly caused by Course Hardness, but it indirectly depends on it, since the student
performance in the Record depends on it, and the Record is taken into account in the
Reference Letter.

The abstract view of the causal process box match on the left could be refined in a similar
way. The causes are boxers’ actions, the effects are boxers’ states. The images display a
particular cause, and a particular effect of these types. The direct cause of the particular
effect that is displayed on top is a particular blow, that is only visible inside the box. The
cause at the bottom is the boxer’s decision to deliver that particular blow. The causal process
transforming this causal decision into its effect can be refined all the way to distinguishing

4This has been a running example in causal modeling textbooks and lectures at least since [25].
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good boxing from bad boxing, and to analyzing the causes of winning or losing.

Spelling out a process corresponding to the box match on the right in Fig. 2 might be even
more amusing. While the strings outside the box would be the same, the causal dependencies
inside the box would be different, as boxers’ states are not caused by their blows, but feigned;
and the blows are not caused by boxers’ decisions, but by the movie director’s requests.

3.2 A category of causal processes

String diagrams described in the previous section provide a graphic interface for any of
causal modeling languages, irrespective of their details, displaying only how causal processes
are composed. It is often convenient to arrange compositional structures into categories
[26]. The categorical structures capturing causations turn out to yield to string diagrams
[13, 12, 23]. For the most popular models, as mentioned above, the strings correspond to
random variables, the boxes to parametrized stochastic processes. The strings are thus the
objects, the boxes the morphisms of a monoidal category. When no further constraints are
imposed, this category can be viewed as the coslice, taken from the one-point space of the
category of free algebras for a suitable stochastic monad. For a categorical account of full
stochastic calculus, the monad can be taken over measurable spaces [15, 17]. For a simplified
account the essential structures, the convexity monad over sets may suffice [23]. For our
purpose of capturing causal explanations and taking them into account as causal factors,
we must deviate from the extant frameworks [13, 15, 17, 23]5 in two ways. One is minor,
and well tried out: the randomness is captured by subprobability measures, like in [29], to
account for nontermination. The other is that causal processes must be taken up to stochastic
indistinguishability, for the reasons explained in [46, Ch. 4].

Notation. In the rest of the paper, we fix an abstract universe C of causal processes, which
happens to be a strict monoidal category [26, Sec. VII.1]. This structure is precisely what
the string diagrams display. The categorical notation collects all strings together, in the
family of event types |C|; and for any pair of types A,B ∈ |C| it collects all boxes together,
in the family C(A,B) of causal processes. In summary,

• strings form in the family of types

|C| = {A,B,C . . . , Student Work,Grade Report . . .}

• boxes form for each pair A,B ∈ |C| the family of processes,

C(A,B) = {f, g, t, u, . . . ,box match, course . . .}

The compositional structure is briefly described in the Appendix.

5There is an entire research area of categorical probability theory, steadily built up since at least the
1960s, with hundreds of references. The three cited papers are a tiny random sample, which an interested
reader could use as a springboard into further references, in many different flavors.
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4 Modeling: Causal models as causal factors

4.1 Modeling causal models

The experimenter has been recognized as a causal factor in experiments since the onset
of science. Already Galileo’s concept of causality, mentioned in Sec. 2, requires that the
experimenter manipulates a cause in order to establish how the effect depends on it. In
modern theories of causation, this idea is refined to the concept of intervention [20]. In
quantum mechanics, the effects of measurements depend not only on the causal freedom of
the measured particles, but also on experimenters’ own causal freedom [4, 14]. As mentioned
in Sec. 1, similar questions arise even in magic: if the magician manipulates the effects, what
causes magician’s manipulations?

But if the magician and the experimenter are causal processes themselves, then they also
occur, as boxes among boxes, in the universe C of causal processes. And if the experimenter’s
causal hypotheses are caused by some causal factors themselves, then the universe C contains,
among other types, a distinguished type of causal models Ω, where the experimenter outputs
his hypotheses. For instance, Ω can be the type of our string diagram models, like in
Fig. 3. Or Ω can be the type of (suitably restricted) stochastic processes; or of Bayesian
nets, including the running example [25, Fig. 3.3], on which Fig. 3 is based.6 There are
many different languages for describing different causations, and thus many different ways
to think of the type Ω. Psychologist’s descriptions of causal cognition differ from physicist’s
view of the causal process of experimentation. What is their common denominator? What
distinguishes Ω from other types?

In the Sec. 4.3, we attempt to answer this question by specifying a structure, using three
simple axioms, which should be carried by the type Ω in all frameworks for causal modeling.
The other way around, we take this structure to mean that a framework where it occurs
describes causal modeling; that the blind men talking about different parts of an elephant
are talking about the same animal. This is where the assumption stated at the end of
Sec. 2 is used.

But stating and using the axioms requires two basic syntactic features, which are explained
next.

4.2 Parametrizing and steering models and processes

Suppose that we want to explore how learning environments influence the causal process
course from Fig. 3. How does the causal impact of Course Hardness change depending on

6One of the coauthors of this paper thinks of Ω as typing the well-formed expressions in any of the suitable
modeling languages, discussed in Sec. 2.2. The other coauthor is inclined to include a wider gamut of causal
theories, including those touched upon in Sec. 2.1. Different theories may not only describe different models,
but also prescribe different interpretations.
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the school where a course takes place? Abbreviating for convenience the cause and the
effect types of the causal process course to

Causes = Course Hardness⊗ Student Work⊗ Class Activity

Effects = Grade Report⊗ Reference Letter

we now have

• a family of causal processes Causes
course (shool)

−−−−−−−−−→ Effects, indexed over
school ∈ Schools, or equivalently

• a parametric causal process Schools⊗ Causes
course

−−−−→ Effects.

In the first case, each causal process course(school) consumes the causal inputs in the
form course(school)(hardness, work, activity); whereas in the second case, all inputs are
consumed together, in the form course(school, hardness, work, activity). The difference
between the parameter school and the general causal factors hardness, work, activity is
that the parameter is deterministic, whereas the general causal factors influence processes
with some uncertainty. This means that entering the same parameter school always produces
the same causal process, whereas the same causal factors hardness, work, activity may have
different effects in different samples.

The convenience of internalizing the indices and writing indexed families as parametric pro-
cesses is that steering processes can be internalized as reparametrizing. E.g. given a function
ς : Teachers −→ Schools, mapping each teacher the the school where they work, induces the
reindexing of families

Causes
course (shool)

−−−−−−−−−→ Effects school ∈ Schools

Causes
course (ς (teacher))

−−−−−−−−−−−−→ Effects teacher ∈ Teachers

which can however be captured as a single causal process in the universe C

Teachers ⊗ Causes
ς ⊗ Causes

−−−−−−−→ Schools⊗ Causes
course

−−−−−→ Effects

where the causal factor s happens to be deterministic. In general, an arbitrary causal process
Y ⊗A

process

−−−−−−→ B can be steered along an arbitrary function steer : X −→ Y , viewed as a
deterministic process:

X ⊗ A
steer⊗ A

−−−−−−→ Y ⊗ A
process

−−−−−−→ B

Deterministic functional dependencies are characterized in string diagrams in Appendix D.

4.3 Axioms of causal cognition

Every framework for causal modeling must satisfy the followin axioms:

I : Every causal model models a unique causal process (over the same parameters).
II : Every causal process has a model (not necessarily unique).

III : Models are preserved under steering.
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4.3.1 Axioms formally

We view a causal model as a family P (y) ∈ Ω, indexed by y ∈ Y , i.e. as a parametrized

model Y
P

−−→ Ω. The notation introduced in Sec. 3.2 collects all Y -parametrized causal
models in the set of processes C(Y,Ω). The parameter type Y is arbitrary. On the other
hand, all Y -parametrized causal processes Y ⊗ A

p
−→ B, where the events of type A cause

events of type B, are collected in the set C(Y ⊗ A,B).

Axiom I postulates that every parametrized causal model Y
P
−→ Ω induces a unique causal

process Y ⊗ A
�P �
−−→ B with the same parameters Y . A causal modeling framework is thus

given by a family of the prediction maps

C(Y,Ω)
�−�
−−→ C(Y ⊗ A,B) (1)

indexed over all types Y,A and B.

Axiom II says that the prediction maps �−� are surjective: for every causal process Y ⊗A
p
−→

B there is a causal model Y
P
−→ Ω that predicts its behavior, in the sense that the process

�P � is indistinguishable from p, which we write �P � ≈ p. The indistinguishability relation ≈
is explained in the next section.

Axiom III says that for any function ς : X −→ Y and any causal model Y
P
−→ Ω

reparametrizing P along ς models steering the modeled process �P � along it, in the sense
that

�X
ς
−→ Y

P
−→ Ω� = X ⊗ A

ς⊗A
−−→ Y ⊗A

�P �
−−→ B (2)

4.3.2 Axioms informally

Axiom I is a soundness requirement: it says that every causal model models some causal
process. If causal processes are viewed as observations, the axiom thus says that for any
causal model, we will recognize the modeled process if we observe it.

Axiom II is a completeness requirement: it says that for every causal process that we may
observe, there is a causal model that models it. Can we really model everything that we
observe? Yes, but our models are valid, i.e. their predictions are consistent with the behavior
of the modeled processes only in so far as our current observations go. Given a process p,
we can always find a model P whose predictions �P � summarize our observations of p, so
that �P � and p are for us indistinguishable, i.e. �P � ≈ p. The less we observe, the less we
distinguish, the easier we model.

Indistinguishability relations, be it statistical, computational, or observational, are cen-
tral in experimental design, in theory of computation, and in modern theories of causation
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[46, Ch. 4]. The problem of distinguishing between observed processes has been tackled since
the early days of statistics by significance testing, and since the early days of computation
by various semantical and testing equivalences. Axiom II says that, up to an indistinguisha-
bility relation, any observed causal process has a model. It does not say anything about the
hardness of modeling. This problem is tackled in research towards cause discovery algorithms
[46].

Axiom III is a coherence requirement: it says that steering a process Y ⊗ A
p
−→ B along a

deterministic function ς : X −→ Y does not change the causation, in the sense of (2) or

�P � ≈ p =⇒ �P ◦ ς� ≈
(
p ◦ (ς ⊗A)

)
(3)

4.4 Universal testing

Since any causal modeling language can thus be viewed as a type Ω, living in the process
universe C, the family of all causal models ω ∈ Ω, trivially indexed over itself, can be rep-

resented by the identity function Ω
Id
−→ Ω, viewed as a Ω-parametrized model. Instantiating

in (2) Id for P (and thus Ω for Y ) yields �ς� = �Id� ◦ (ς ⊗ A), for any X
ς
−→ Ω. Mutatis

X

B

A

model
P

≈

X

B

A

causal

process

p

universal

testing

�Id�

Ω

Figure 4: There is an explanation for every causation

mutandis, for an arbitrary process p and a model P assured by axioms I and II, axiom II
thus implies p ≈ �Id� ◦ (P ⊗A), as displayed in Fig. 4.

Any causal universe C, as soon as it satisfies axioms I–III, thus contains, for any pair A,B,

a universal testing process Ω ⊗ A
�Id�
−−→ B, which inputs causal models and tests their
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predictions, in the sense that X⊗A
P⊗A
−−−→ Ω⊗A

�Id�
−−→ B is indistinguishable from X⊗A

p
−→ B

whenever �P � is indistinguishable from p. Universal testing is thus a causal process where
the predictions of causal models are derived as their effects. It can thus be construed as a
very high level view of scientific practice; perhaps also as an aspect of cognition.

4.5 Partial modeling

If a causal process has multiple causal factors, then they can be modeled separately be
treating some of them as model parameters. E.g. a process in the form Y ⊗ X ⊗ A

r
−→ B

can be viewed as a Y -parametrized process with causal factors of type X ⊗ A, or as a
Y ⊗ X-parametrized process with causal factors of type A. The two different instances of

(1), both surjections by axiom II, would lead to models Y
R′

−→ Ω, and Y ⊗ X
R′′

−→ Ω, with
r ≈ �R′�Y ≈ �R′′�Y⊗X by (1), and thus r ≈ �Id�X⊗A ◦ (R′ ⊗X ⊗ A) ≈ �Id�A ◦ (R′′ ⊗ A) by
Fig. 4.

≈

X

B

A

universal

testing

�Id�A

Ω

Ω

B

AΩ X

Ξ

universal

testing

�Id�X⊗A

Figure 5: Causes of type X are treated as parameters

In particular, taking r to be the universal process Ω ⊗ X ⊗ A
�Id�
−−→ B, and interpreting it

as an Ω ⊗ X-parametrized process, leads to an Ω ⊗ X-parametrized model Ξ, such that
�Id�X⊗A ≈ �Id�A ◦ (Ξ⊗A), as displayed in Fig. 5.

4.6 Slicing models

Using universal testing processes and partial modeling, causal processes can be modeled
incrementally, factor by factor, like in Fig. 6.
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model

model

causal

process
(b)
≈

(c)
≈

(a)
≈ testing testingtesting

partial steered

model

Figure 6: Separating independent causes allows incremental modeling

5 Construction: Self-confirming causal models

In everyday life, we often defend our views by steering ourselves to the standpoints where
they seem valid. This assures belief perseverance, but also leads to cognitive bias and self-
deception. In science, experimenters obviously influence the outcomes of their experiments
by choosing what to measure. In quantum mechanics, this influence propagates to processes
themselves, as the choice of the measurement basis determines the choice of the states to
which the measured process may collapse [5, 14]. Causal models are thus always among
the causal factors of the modeled quantum processes7. Formally, a quantum process is thus
always in the form Ω⊗A

q
−→ B, parametrized by its models in Ω.

Many processes outside the realm of quantum are in this form as well, as causal cognition
curls into itself by influencing causation. The placebo and the nocebo effects are ubiquitous:
patient’s belief in the effectiveness of a medication contributes to its effectiveness, whereas
negative beliefs often cause negative effects. In Shakespeare’s tragedy, Macbeth is driven
to murder the King by the prophecy that he would murder the King. In the early days of
Facebook, attracting new members required convincing them that many of their friends were
already members. This initially had to be a lie, but many believed it, joined, and it ceased
to be a lie.

Other causal models impact their own validity negatively. If the customers of a restaurant
come to believe that it is too busy on Fridays, it may end up empty on Fridays: the belief
will invalidate itself. If the rumor that it was empty spreads, the customers will swarm back,
and the model will invalidate itself again. Such network effects are observed not only in the
famous El Farol bar in Santa Fe, and in Kolkatta paise restaurants, but also in financial
and stock markets, and in urban agglomerations. Causal models often influence the modeled
causal structures, and sometimes impact their own validity. — What are the conditions and
limitations of this phenomenon?

Fig. 7 formalizes this question. Under which conditions can a process Ω⊗A
q
−→ B be steered

by a model Γ ∈ Ω to a process which confirms Γ’s predictions, i.e. such that q◦(Γ⊗A) ≈ �Γ�?

7"The complete freedom of the procedure in experiments common to all investigations of physical phe-
nomena, is in itself of course contained in our free choice of the experimental arrangement." [6]
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By reinterpreting the outputs of q, under certain additional conditions, the same schema can

�Id�

Γ

≈

Γ

q

A

Ω

A

Ω

B B

Figure 7: The process q steered by a self-confirming model Γ into q(Γ, a) ≈ �Γ�(a)

be used to construct models that would invalidate themselves.

In any case, it turns out that a causal universe C contains a self-confirming causal model for
every causal process parametrized over models, as soon as it supports axioms I–III.

The crucial insight is that the partial model Ξ : Ω ⊗ Ω −→ Ω from Sec. 4.5 induces the Ω-

parametrized model Ω
Δ
−→ Ω⊗Ω

Ξ
−→ Ω, or in the indexed form Ξ(ω, ω), which for every ω ∈ Ω

predicts the effect of steering the Ω-parametrized process �ω� to ω. This "self-model" Ξ ◦Δ
is displayed in Fig. 8 on the left, where we precompose the given process q with it. Axiom

�Id�

G

≈q

Ξ

Ω A

Ω

Ω A

Ω

Δ

Figure 8: Modeling self-modeling

II now gives a model G of the resulting composite process. Fig. 9 shows that Γ = Ξ ◦Δ ◦G
provides the claimed causal model of the given process Ω ⊗ A

q
−→ B, parametrized over the

possible models. The first step follows from the definition of G in Fig. 8, by substituting G

also as the input. The second step folds two copies of G into one. The third step follows
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�Id�

G

≈
q

G G

�Id�
≈

G G

�Id�
≈

Ξ Ξ

Γ Γ

Ω

A A A A

Ω

Ω Ω Ω

Δ ΔΔ

Ω

Figure 9: Setting Γ = Ξ ◦Δ ◦G gives q ◦ (Γ⊗ A) ≈ �Γ�

from the definition of Ξ in Fig. 5. The upshot is that the causal process �Id� ◦ (Γ ⊗ A) on
the right, which is by Sec. 4.4 just the process �Γ� modeled by Γ, is indistinguishable from
the instance q ◦ (Γ⊗A) on the left, obtained by steering the process q, which is parametrized
over its models, to the model Γ. The causal model Γ thus steers the given causal process q

to an instance which confirms Γ as its model.

6 Summary: Towards artificial causal cognition?

The concept of causality made a remarkable historic voyage, from ancient physics and meta-
physics [1] to modern physics [2, 10, 11], through incisive critiques in philosophy [22, 41],
through enduring attention in psychology [27, 18, 44], all the way to its current promise in
machine learning and in AI [25, 36, 37, 39, 40, 46]. How much does the new outlook change
the scene of causal cognition?

If subjectivity is implied by cognitive self-confirmation, then the results presented in this
paper suggest that all causal cognition, human or artificial, is inexorably subjective, as soon
as models cannot be eliminated as causal factors. In particular, we have shown how causal
models and causal processes can be steered to support each other, and adapted to absorb
any new evidence. This is a concerning conclusion, if scientific theories are required to be fal-
sifiable. The fact that causal cognition, as modeled here, permits steering and self-validation
under the assumptions as mild as axioms I–III, can also be interpreted as demonstrating
that causal cognition cannot be understood just in terms of logic and structure. Such a
conclusion would have significant repercussions on the AI research.

Computer science has been recognized as a natural science almost from the outset.This is by
now largely accepted in principle, although often misunderstood in the popular narrative,
and dismissed as irrelevant by many working computer scientists and engineers. With the

20



advent of the web, and the spread of personal devices, computation propagated through the
vast area of economic, political, and social processes, and came to play a role in many forms
of human cognition. Changing the angle only slightly, the same process can be viewed as
evolution of artificial cognition within a natural process of network computation. Whether
the androids of the future will be attracted to causal illusions of action movies remains to
be seen; but the humanities of the present cannot avoid studying human cognition together
with artificial cognition. Like identical twins, or like parallel universes, or like Lao Tse and
the butterfly, the two can be reliably distinguished only by themselves, observing each other
from within, but difficult to tell apart for the external observers. The human gave rise to
the artificial, and then the artificial gave rise to a new human, and then maybe there was a
new artificial, and then they lost count.

Psychology of artificial mind? Herbert Simon, one of the originators AI, anticipated
the creation of a whole new realm of "The Sciences of the Artificial" [43]. With the AI
technologies permeating market and politics, a psychology of the artificial seems to have
become not just a real possibility, but also an urgent task.
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Appendix

A Composing and decomposing causal processes

The salient feature of the string diagram presentation of processes is that the two dimensions
of string diagrams correspond to two kinds of function composition. This is displayed in
Fig. 10.

B

A

f

g

C

U

V

t
f ⊗ t

g ◦ f

s

W

Figure 10: Sequential composition g ◦ f and parallel composition f ⊗ t

• Sequential composition of causal processes corresponds to linking the corresponding

string diagrams vertically : the effects of the causal process A
f
−→ B are passed to the

causal process B
g
−→ C to produce the causal process A

g◦f
−−→ C;

• parallel composition lays causal processes next to each other horizontally : the pro-

cesses A
f
−→ B and U

t
−→ V are kept independent, and their composite A⊗U

f⊗t
−−→ B⊗V

takes each processes causal factors separately, and produces their effects without any
interactions between the two:

As categorical structures, these operations are captured as the mappings

C(A,B)× C(B,C)
◦
−→ C(A,C)

C(A,B)× C(U, V )
⊗
−→ C(A⊗ U,B ⊗ V )

Meaning of the sequential composition. The composite A
g◦f
−−→ C inputs the cause

a ∈ A and outputs the effect g(f(a)) ∈ C of the cause f(a) ∈ B, which is itself the effect of
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the cause a ∈ A . In summary, we have

a ∈ A f : A −→ B

f(a) ∈ B g : B −→ C

g ◦ f(a) = g(f(a)) ∈ C

(4)

Meaning of the parallel composition and product types. Since the strings in a
string diagram correspond to types, drawing parallel strings leads to product types, like
A ⊗ U , which is the name of the type corresponding to the strings A and U running in
parallel. The events of this type are the pairs 〈a, u〉 ∈ A ⊗ U , where a ∈ A and u ∈

U . The parallel composite A ⊗ U
f⊗t
−−→ B ⊗ V can thus be defined as the causal process

transforming independent pairs of causes into independent pairs of effects, without any
interferences between the components:

〈a, u〉 ∈ A⊗ U

a ∈ A f : A −→ B

f(a) ∈ B

〈a, u〉 ∈ A⊗ U

u ∈ U t : U −→ V

t(u) ∈ V

(f ⊗ t)〈a, u〉 =
〈
f(a), t(u)

〉
∈ B ⊗ V

B Units

Vectors, scalars, covectors. There are processes where events occur with no visible causes;
and there are processes where events have no visible effects. Such processes correspond, re-
spectively, to string diagrams c and e in Fig. 11. There are even processes with no observable
causes or effects, like the one represented by the diamond s in the middle of Fig. 11. When
there are no strings at the bottom, or at the top of a box in a string diagram, we usually
contract the bottom side, or the top side, into a point, and the box becomes a triangle. When
there are no strings either at the bottom or at the top, then contracting both of them results
in a diamond. A diamond with no inputs and outputs may still contain a lot of information.
E.g., if causal processes are timed, then reading the time without observing anything else
would be a process with no observable causes or effects. If processes are viewed as linear
operators, then those that do not consume any input vectors and do not produce any output
vectors are scalars. The processes that do not consume anything but produce output are just
vectors, since they boil down to their output. The processes that do not produce vectors,
but only consume them, are just covectors, or linear functionals.

Invisible string: The unit type I. Since every process must have an input type and an
output type for formal reasons, in order to fit into a category of processes, a process that
does not have any actual causes is presented in the form I

e
−→ A, where I is the unit type,

satisfying
I ⊗ A = A = A⊗ I (5)
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for every type A. The unit type is thus degenerate, in the sense that any number of its copies
can be added to any type, without changing its elements. It is easy to see that it is unique,
as the units in algebra tend to be. A process that does not output any effects is then in the
form A

c
−→ I. The unit type is the unit with respect to the type product and to the parallel

composition of processes, just like 0 is the unit with respect to the addition of numbers. It
can be thought of as the type of a single event that never interferes with any other events.

Since it is introduced only to make sure that everything has a type, but otherwise has no
visible causes or effects, the unit type is usually not drawn in string diagrams, but thought
of as an "invisible string". In Fig. 11, the invisible string is coming in below e, and out above
c, and on both sides of s.

A

A

s

c

e

Figure 11: String diagrams with invisible strings

Invisible boxes: The unit processes idA. For every type A there is a unit process

A
idA−−→ A, called the identity of A, such that

idB ◦ f = f = f ◦ idA (6)

holds for every process A
f
−→ B. This property is clearly analogous to (5), but has a different

meaning: the causal process idA inputs causes and outputs effects, both of type A; but it
does not modify anything: it just outputs every cause a ∈ A as its own effect. Since the
box corresponding to idA thus just passes to the output string whatever comes at the input
string, and there is nothing else in it, we do not draw such a box. In string diagrams, the
boxes corresponding to the identity processes idA can thus be thought of as "invisible boxes".
In a sense, the strings themselves play the role of the identities.

Because of (5), any number of invisible strings can be added to any string diagram without
changing its meaning. Because of (6), any number of invisible boxes can be added on any
string, visible or invisible, without changing its meaning. This justifies eliding the units not
only from string diagrams, but also from algebraic expressions, and writing things like

f ⊗ U = f ⊗ idU and A⊗ t = idA ⊗ f

With this notation, the algebra of tensor products, studied in serious math, boils down to a
single law, from which everything else follows:
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C The middle-two-interchange law

The main reason why string diagrams are convenient is that their geometry captures the
middle-two-interchange law:

(f ; g)⊗ (t; s) = (f ⊗ t); (g ⊗ s) (7)

Note that the both sides of this equation correspond to the same string diagram, displayed
in Fig. 10. The left-hand side of (7) is obtained by first reading the sequential compositions
vertically, and then composing them in parallel horizontally; whereas the right-hand side is
obtained by first reading the parallel compositions horizontally, and then composing them
in sequence vertically. Sliding boxes along stings provides an easy way to derive further
equations from the middle-two-interchange low of (7), such as

(f ⊗ t); (g ⊗ V ) = (f ⊗ U); (B ⊗ t); (g ⊗ V ) = (f ⊗ U); (g ⊗ t)

In string diagrams, this is just

B

A

f

g

C

U

V

t

= B

A

f

g

C

U

V

t = B

A

f

g

C

U

V

t

D Functions

Causations are usually uncertain to some extent: a cause induces an effect with a certain
probability. Those causations that are certain, so that the input always produces the output,
and the same input always produces the same output, are called functions. If causations are
presented as stochastic processes, then functions are the subfamily deterministic processes.

An intrinsic characterization of functions in a monoidal framewrok is provided by the fol-
lowing definitions.

A data type is a type A ∈ C, equipped with data services, i.e. the operations

I
�
←− A

Δ
−→ A⊗ A (8)

respectively called deleting and copying, which satisfy the following equations:
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(Δ⊗ A) ◦Δ = (A⊗Δ) ◦Δ (�⊗ A) ◦Δ = idA = (A⊗�) ◦Δ

= = =

Δ = ς ◦Δ

=

We define data as the elements preserved by data services. Such elements are precisely those
that can be manipulated using variables [30, 32].

Remark. If we dualize data services, i.e. reverse the arrows in (8), we get a binary operation
and a constant. Transferring the equations from deleting and copying makes the binary
operation associative and commutative, and it makes the constant into the unit. The dual of
data services is thus the structure of a commutative monoid. The structure of data services
itself is thus a commutative comonoid.

Functions are causations that map data to data. A causation A
f
−→ B is a function if it

is total and single-valued, which respectively corresponds to the two equations in Fig. 12.
They also make f into a comonoid homomorphism from the data service comonoid on A to
the data service comonoid on B.

=
f

f f

=
f

Figure 12: f is a function if and only if it is a comonoid homomorphism
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