
978-1-7281-7172-2/20/$31.00 ©2020 IEEE

Teaching Computational Thinking to Multilingual
Students through Inquiry-based Learning

Sharin Jacob
School of Education

University of California, Irvine
Irvine, US

sharinj@uci.edu

Ha Nguen
School of Education

University of California, Irvine
Irvine, US

thicn@uci.edu

Leiny Garcia
School of Education

University of California, Irvine
Irvine, US

leinyg@uci.edu

Debra Richardson
Bren School of ICS

University of California, Irvine
Irvine, US

djr@ics.uci.edu

Mark Warschauer
School of Education

University of California, Irvine
Irvine, US

markw@uci.edu

Abstract— Central to the theory of learning are inquiry-based
approaches to education. Whereas there is a plethora of research
on inquiry learning in the domain of science [19, 20], few studies
have analyzed how inquiry-based learning can be applied to
computer science education, and how different approaches to
inquiry may benefit diverse learners. This is one of the first studies
to analyze teacher enactment of inquiry-based learning during the
implementation of an upper elementary, computational thinking
curriculum, and to explore how teacher approaches to inquiry
appear to support or constrain multilingual students’
development of computational thinking and computer science
identities. Design-based research was used to iteratively develop,
test, and refine the inquiry-based curriculum, which aligns with
computer science and literacy standards, provides linguistic
scaffolding, and integrates culturally responsive materials. We
adopt a cross-case mixed-methods design to collect data from five
teachers and 149 students including detailed field notes, teacher
interviews, student computational artifacts, and student identity
surveys. Through analyses of teacher moves, we find that teachers
adopt different approaches to inquiry that can be indexed along a
continuum ranging from open to closed. Patterns in student data
revealed that those who received more structured inquiry lessons
developed more sophisticated computational artifacts and showed
greater identification with the field of computer science. Findings
from this study are being used to add more structured inquiry
approaches to the next iteration of our curriculum, including
integrating USE/MODIFY/CREATE models into lessons and
applying metacognitive strategies from reading research to
students’ programming activities.

Keywords—inquiry-based learning, computer science,
computational thinking, multilingual, English learners

I. INTRODUCTION
Considerable effort has been dedicated to integrating

computer science into K-12 education for students who are
traditionally underrepresented in STEM (e.g., women, students
of color, students with disabilities). For example, the White
House’s 2016 Computer Science for All (CSforAll) initiative
seeks to equip all K-12 students with the computing and
computational thinking skills necessary to become creators, and
not just consumers, of technology [1]. To help realize this goal,
the National Science Foundation developed the CSforAll

program which focuses on developing research-practice
partnerships (RPPs) that foster the types of theory and practice
needed to bring computer science and computational thinking
to all students in K-12 schools. With a focus on CSforAll,
educational policy makers and stakeholders have shifted their
attention to developing computer science pedagogy and
materials that meet the needs of diverse learners.

While efforts to combat underrepresentation in computer
science education have been numerous and laudable [2, 3], little
attention has been paid to broadening participation for
multilingual students [4, 5], or those who speak a language
other than English at home. This is especially important for the
large and growing Latinx population--which grew from 9
million (6% of U.S. population) in 1970 to 59 million (18% of
population) in 2017, and is projected to reach 132 million (30%
of population) by 2050, but is seriously underrepresented in CS
education and achievement. For example, in California, the site
of this study, Latinx students constitute 54% of the K-12
population, but only 22% of advanced placement CS test takers
[6]. A number of important obstacles hinder CS study for
Latinx students, including reduced access to home computers
or family members who are knowledgeable about CS [7], lack
of Latinx role models in CS whether through direct experience
or through media representations [8], fewer course offerings in
CS in Latinx-neighborhood schools [6], and decontextualized
and individualized methods of CS instruction that are not a
good match for the cultural values of Latinx students and
families.

Inquiry-based learning has shown particular promise for
engaging culturally and linguistically diverse students in STEM
education [9]. Given the efficacy of inquiry-based learning for
raising science achievement for multilingual students [9],
inquiry-based approaches may also be effective for engaging
the nation’s growing Latinx student population in computer
science education. Despite the promise of inquiry learning
approaches, it remains unclear as to whether more structured or
open inquiry approaches are more effective for engaging these
student in computer science. Proponents of open inquiry argue
that the freedom to construct and conduct investigations
develops students’ higher order thinking skills, disciplinary

2

knowledge, and inductive methods of inquiry [10]. Those who
prefer structured approaches claim that providing students
systematic methods for conducting investigations supports the
development of content knowledge, scientific skills, and a
nuanced understanding of the discipline [11]. Structured
approaches are further thought to prevent lost opportunities that
arise from students getting stuck due to minimal guidance [12].

The purpose of this study is to analyze teacher enactment of
inquiry-based learning during the implementation of an upper
elementary, computational thinking curriculum, and to explore
how teacher approaches to inquiry appear to support or
constrain multilingual students’ development of computational
thinking. Whereas there is a plethora of research on inquiry
learning in the domain of science [13,14], few studies have
analyzed how inquiry-based learning can be applied to
computer science education. The curriculum has been adapted
from a grade 3-5 sequence developed by Computer Science in
San Francisco, a path breaking initiative that seeks to normalize
K-12 computer science instruction in schools across the San
Francisco Unified School District. It has been adapted to
integrate inquiry-based approaches to learning, align with
computer science, English language development, and literacy
standards, provide linguistic scaffolding, and integrate
culturally responsive materials. We adopt a cross-case mixed-
methods design to collect data from five teachers and 149
students including detailed field notes, teacher interviews,
student identity surveys, and student computational artifacts.
Through analyses teacher moves, we find that teachers adopt
different approaches to inquiry that can be indexed along a
continuum ranging from open to structured. Patterns in student
data revealed that those who received more structured inquiry
lessons developed more proficient computational artifacts and
showed greater identification with the field of computer
science. Findings from this study are being used to add more
structured inquiry approaches to the next iteration of our
curriculum including integrating USE/MODIFY/CREATE
models into lessons and applying metacognitive strategies from
reading research to students’ programming activities.

We address the following research questions: (1) In what
ways, if any, did teachers endeavor to teach computer science
as inquiry to multilingual students in their classrooms? (2) How
do differences in teachers’ approaches to inquiry appear to
support or constrain students’ development of computational
thinking skills and computer science identities?

II. THEORETICAL FRAMEWORK

A. Inquiry-based Learning and Computational Thinking
Inquiry-based learning involves engaging students in

authentic scientific practices and methods for the purpose of
constructing knowledge [15]. Through student engagement in
exploration, experimentation, and hands-on activities, inquiry-
based learning provides a powerful mechanism for providing
authentic contexts for language use [16]. During open inquiry-
based learning, students develop questions and participate
actively in open ended interrogations to discover and construct
new knowledge [17]. During structured inquiry, teachers model

methods and procedures for conducting investigations [14].
Inquiry-based learning emphasizes problem solving and
students apply multiple problem solving approaches, practices,
and skills as they conduct their investigations [18]. Since the
mid-1990s, teachers have been encouraged to better meet the
needs of language learners by integrating inquiry-based
approaches to make instruction more engaging, concrete, and
meaningful [19].

Pedaste et al. [20] conducted a systematic literature review
identifying key features of inquiry-based learning and
synthesized a framework incorporating all elements of inquiry
that persisted across models. This general framing of the phases
of inquiry relates inquiry to the scientific method, requiring a
measure of reconsideration in its application to the field of
computer science. Notably, scientific inquiry focuses on
identifying and evaluating hypotheses to understand a set of
principles governing the physical world. This objective
contrasts with inquiry in computer science, which focuses on
constructing and testing logical processes to address an abstract
computational problem. Instruction in computer science then
seeks to develop a set of skills, practices, and dispositions
collectively referred to as computational thinking, representing
an ability to formulate thoughts and questions for interpretation
by a computer to achieve desired results [21]. Constructing a
theoretical framework for applying inquiry-based learning to
the field of computer science is beyond the scope of this paper.

In its implementation, inquiry-based learning can be
structured or unstructured based on the teaching and learning
goals of a lesson or unit of instruction. Windschitl [14]
conducted a multiple case study investigating how teachers
perceived and enacted inquiry in their science classrooms and
developed a continuum of inquiry demarcated by the degree of
freedom students have in developing and conducting
investigations. At the structured end of the continuum lies
confirmatory experiences, in which students are provided a
systematic method for authenticating scientific principles. Next
to confirmatory experiences lies structured inquiry, in which the
teacher presents a scientific concept, question, or hypothesis and
students are prescribed a procedure for exploring it. The next
level is guided inquiry, where the teacher provides a problem to
be solved but leaves the method of investigation up to the
students. The most independent form of inquiry is open inquiry,
in which students identify their own concepts or questions and
devise their own methods of investigation. We use this
continuum to characterize participants’ approaches to teaching
computer science lessons to multilingual students.

B. Review of the Literature
Research on engaging students in Science, Technology,
Engineering, and Mathematics (STEM) through inquiry-based
learning has been well established. A recent meta-analysis
conducted by Estrella at al. [22] examined the effectiveness of
inquiry instruction in increasing STEM achievement for
elementary language learners. An analysis of 26 articles
indicated that inquiry-based instruction produced significantly
greater results on measures of science achievement than
traditional instruction. Furthermore, elementary students who

3

participated in a blended program that integrated linguistic
scaffolding with science inquiry-based unit plans showed
statistically significant increases on California English
Language Development Test (CELDT) and California
Standards Test for English Language Arts scores compared to
students in a traditional program [23].

A growing body of research on using inquiry to teach
computational thinking demonstrates benefits for students [24,
25], however little research specifically focuses on the types of
inquiry approaches and levels of support that develop
computational thinking and identity development for diverse
learners. Reiser [26] acknowledges the potential of inquiry to
provide authentic learning contexts for students, but also
articulates the challenges inherent to inquiry learning. For
example, students need to acquire sufficient foundational
discipline specific knowledge to conduct investigations, and
often focus on finding the right answer to a problem as opposed
to identifying the principles underlying answers. To ameliorate
these issues, he proposes presenting more structured problem
solving activities and problematizing subject matter to promote
deeper understanding of content.

C. Overview of the computational thinking curriculum
Researchers worked collaboratively with teachers to adapt

an existing grade three through five curriculum created by
Computer Science in San Francisco. The curriculum was
adapted to meet the needs of the district’s culturally and
linguistically diverse students. This was achieved by 1)
integrating inquiry-based approaches, 2) aligning the
curriculum with computer science and literacy standards, 3)
providing linguistic scaffolding, and 4) including culturally
responsive pedagogy and materials.

First, researchers and teachers aligned materials with the
Common Core State Standards for English Language Arts
(ELA), and the California Department of Education English
Language Development (ELD) Standards. Linguistic scaffolds
were developed to promote and leverage academic language
proficiency for language learners. Researchers and teachers
developed linguistic frames to scaffold both the academic
language related to computer science concepts as well as the
functions of social interaction. To integrate inquiry-based
approaches, we utilized the “5 E” model of inquiry to guide unit
development. Bybee [27] drew from constructivist approaches
to learning to construct the "5E's” model, which includes five
indicators of inquiry-based instruction: Engage, Explore,
Explain, Elaborate, and Evaluate. 1 While we integrated the
phases of inquiry into the curriculum, we encouraged teachers
to use their own judgement when determining the level of
structure necessary to meet students’ needs. Finally, the
partnership paid special attention to integrating literacy into the
computational thinking curriculum. Culturally responsive
stories depicting diverse characters who pioneered the

1 Engage involves stimulating interest on a topic. Explore refers to conducting
hands-on activities in which students grapple with a problem or phenomenon.
Explain means to leverage the language and conceptual understanding used by

computer science and engineering fields were selected to make
the content relatable to students.

III. METHOD

A. Study Context and Participants

This study took place in five upper elementary (grades 3-5)
classrooms across a large urban school district. The district in
which the study is situated has among the highest percentages
low-income students (91%), Latinx students (96%), and
English learners (63% in elementary grades) in the nation. Due
to attrition, five out of the seven original teachers were selected
for this study. All the students in their classes (total N=149)
participated in the project and thus were part of the study.
Student demographics at the classroom level broadly mirror
those at the district level.

B. Data Sources & Analysis
The participating teachers piloted the year long, five-unit

computational thinking curriculum in their classrooms once a
week for a lesson duration of fifty minutes. The researchers
conducted weekly classroom observations and took detailed
field notes on the types of instructional strategies used. The
McGill Inquiry Teacher Short Interview (MITSI) protocol was
used to interview the five participating teachers in their
classrooms. A rubric for scoring Scratch projects developed by
SRI International was utilized to assess students’ 1) overall
proficiency in programming, 2) user experience, and 3) the use
of coding and computational thinking constructs [28]. The
researchers conducted interrater reliability checks on the rubric
data. After each scorer completed ten projects, interrater-
reliability ranged from 75% to 80. Finally, this study adapted
the “Is Science Me?” [29] survey to computer science to
measure student attitudes towards and identification with the
field of computer science.

The generation of codes and categories for classroom
observations and teacher interviews is situated within a
procedural, deductive, frame of analysis [30]. This process
consisted of reading the data multiple times to categorize
inquiry learning phases and subcategories within each phase.
Codes and categories were then compared within and across
each case to determine the types of inquiry being enacted in
each classroom.

To assess students’ Scratch projects, a sum score for each
category (e.g., overall proficiency, design mechanics, user
experience) was calculated and z-score transformed. A one-way
ANCOVA with post-hoc Tukey HSD test was conducted to
examine whether there was a statistically significant difference
among the teachers on the computational thinking criteria for the
end-of-unit projects, controlling for student background
information (i.e., computer access and parental education).
Assumptions of normal distribution and homoscedasticity were
met. When the ANOVA tests indicated that the scores across

students to develop explanations. Elaborate involves providing opportunities
for students to apply what they have learned. Finally, evaluate means engaging
students in reflecting on their own understanding.

Identify applicable funding agency here. If none, delete this text box.

4

classes were significantly different, this study performed
pairwise t-tests with Bonferroni and Holm adjustments to
examine which class was substantially different from the other
classes.

Finally, the Is Science Me? survey mostly included three-
point Likert scale items. This study calculated internal
consistency using McDonald’s omega instead of Cronbach’s
alpha, as Cronbach’s alpha may be less accurate when data come
from ordinal items with few response options [31]. A
confirmatory factor analysis using polychoric correlations
matrix was conducted based on the theorized constructs on the
pretest and posttest datasets. Both datasets showed good model
fit according to the guideline in [32]: CFI and TLI higher than
or equal to .90, RMSEA smaller than .05, SRMR smaller
than .08. Because the survey items were ordinal and did not
approximate a normal distribution, this study performed the
Wilcoxon matched-pairs signed-rank test to measure the
changes from pre to posttest for each survey item for each
teacher.

IV. FINDINGS
Based on classroom observations and detailed field notes, it

became apparent that teachers enacted the curriculum
differently across the five classrooms. The first four teachers
used inquiry in different points along the continuum mentioned
in the theoretical framework of this paper, with Ellen using
open inquiry, Juanita using guided inquiry, Jenny using a
combination of guided and structured inquiry, and Helen using
confirmatory experiences. The fifth teacher, Sue, did not use
inquiry-based instruction and instead adopted a direct, explicit
approach to teaching computer science content to her students.
What follows are descriptions of teaching episodes for each
classroom that are representative of how teachers conducted
inquiry in their classrooms.

A. Open Approaches to Inquiry
Two of the teachers, Ellen and Juanita, exemplified open

inquiry approaches in mentoring their students through various
aspects of computer science research. On a typical day, both
teachers would orient students to computational thinking
concepts through activities structured around focal phenomena,
and facilitate collaborative sense-making of key computational
thinking concepts and practices. During investigation, Ellen
often promoted independent learning in her classroom, acting
as a facilitator of the research process by equipping students
with the resources and strategies necessary for conducting
open-ended investigations.

Ellen openly expresses her views of computer science
learning as a research process in which students seek out the
resources necessary to solve complex problems.

Ellen: When you get stuck, we have resources. I am not the
greatest resource because I am learning with you too. I can
guide you to resources. Your peers are a resource…When
you get stuck, we have resources...Am I your only resource?
Students: No

Ellen: You know, many of you have learned that I am not
the greatest resource. I'm not wanting to be. Why, because
I'm learning this with you too. Okay. So I can kind of guide
you in how to be resourceful. I'm finding more and more
places that I can get help when I need it and that's what you
need to do as scholars.
Ellen describes herself as a being a guide for her students,

using herself as a model to illustrate the types of habits (i.e.,
being resourceful, help-seeking) her students can engage in as
scholars. To this end, she disrupts her traditional role as teacher
to create a more horizontal, symmetrical space in which
students and the teacher co-navigate computer science research.
She provides the learning environment and resources necessary
for students to ask and answer complex problems, and steps
aside to facilitate scholarly activity.

Juanita similarly promotes independence during the
investigation phases of inquiry, but unlike Ellen, models
methods of problem formulation. She also disrupts the direct
instruction model by encouraging students to negotiate their
own learning among peers before coming to her for answers.
For example, in the excerpt below Juanita modeled the first
steps in a shape drawing activity designed to teach algorithms.
Students were presented with written steps for drawing shapes
and a picture with the desired visual outcome (i.e. a picture of
a house). However, the steps did not match the shape, that is,
there were errors embedded in the steps and students were
tasked with debugging the algorithm so that the steps matched
the desired outcome.

Juanita: Who can read step two?
Anita: Draw an orange equilateral triangle with one edge
lined up with the of the square
Juanita: Do you guys see that?
Class: No
Juanita: Okay, again let's look at this, who could tell me
where my equilateral triangle is
Roxanne: On top of the blue square
Juanita: Remember, equilateral means it's what on all sides.
Class: Equal.
Juanita: Equal. Very cool. Okay, so check that it's lined up
with the top of the blue square. Ok, so do you guys see it
now?
Class: Yes
Juanita: Now talk to your table, your elbow partner. And I
want you to go through...I want you to figure out with your
partner the rest of the steps and let me know what you think
the bug is. Once you’ve figured out what the bug is, I don't
want to hear any ah ah ah's or ooh ooh ooh's. Figure out
what it is before you raise your hand.
In this teaching episode, Juanita defined the scope of the

problem for students and modeled the first few steps for solving
it, then encouraged students to rely on their peer networks to
finish debugging the algorithm. To this end, she established a
peer learning community in which students discuss debugging
techniques with their classmates before they ask the teacher. As
students were provided with a problem, but not explicitly given
a procedure for solving the problem, the above example

5

supports the guided inquiry model. After students worked to
debug the sample algorithm, students were assigned to
individually create their own algorithm and drawing using only
their peer networks for support, further supporting the guided
inquiry hypothesis.

B. Structured Approaches to Inquiry
Two of the teachers, Jenny and Helen, tended to teach

inquiry learning in a structured manner by 1) providing
methods for formulating and solving problems, or 2)
demonstrating and confirming key computational principles.
Jenny utilized a combination of guided and structured inquiry
to teach computer science to her students. She typically opened
with a guided inquiry lesson and then moved to more structured
approaches when students had difficulty accessing abstract
concepts. In the example below, Jenny initially used the guided
inquiry approach to develop students’ understanding of
sequence and repetition. Students were provided with multiple
steps of a dance and tasked with working in teams to
conceptually map the dance, using loops so as to not articulate
each single step. While Jenny identified the scope of the
problem for students, she did not provide with them methods
for solving the problem.

Jenny: In your team, I want you to identify the actions in
this dance…write a computer code, if you were to tell
someone how to do this dance, what would you do, are there
repeated actions, how many times do they repeat. What
would an algorithm, a code for this, look like?
In this example, students were given more freedom to

develop and conduct their own investigations and the teacher
focused primarily on facilitating the learning process and
detecting student issues as they arose. As Jenny focused in on
students’ needs, she moved from guided to structured inquiry
to create more efficient learning environments. For example,
students had difficulty characterizing the dance on their first
attempt, likely because they had not committed the sequence of
moves to memory. In response, Jenny used a variety of
techniques to respond to this need including replaying the
dance, refocusing students’ attention to counting and naming
the moves, using dialogic questioning to facilitate students’
recall of the dance, and physically enacting the dance before the
class. Each of these instructional moves points toward a more
structured inquiry approach, that is, Jenny modeled alternative
methods for students to investigate the key computational
concepts.

Helen provided structure for her students through
confirmation experiences designed to teach computing
concepts. Helen’s typical investigation was highly structured
and relied primarily on teacher modeling and scaffolding
techniques to facilitate knowledge acquisition. To illustrate a
simple example, Helen drew two sprites, or characters in the
Scratch interface, on the whiteboard, prepping the class to
discuss what parallelism means.

Helen: What do I do if I want the sprites to do the same thing
at the same time?

Next, Helen drew two columns, one for sprite 1 and one for
sprite 2 and added blocks to each column. Then, she
manipulated blocks in a variety of ways and asks students to
make predictions.

Helen: What’s going to happen?
To test the concept, Helen hit a mock flag button to start a “test
run” of parallel commands. When sprites 1 and 2 correctly
executed their commands, students verified their understanding
of how to use commands in Scratch to make two sprites take
actions simultaneously.

Helen: It worked!
Upon checking student understanding, Helen added

additional layers of complexity to teach more advanced
computational concepts. For example, she modeled more
complicated multi-step commands for each sprite to execute
simultaneously, except in this case the sprites are doing two
different things at the same time (i.e., sprite 1 walks forward,
sprite 2 jumps up and down). Furthermore, she purposefully
included errors in her mock code to engage students in
debugging during concept development.

In the above scenario, students were presented with a
variety of scenarios in which parallelism could occur, and then
these scenarios were verified by ‘test runs.’ Although she
increased the complexity of her examples, students were not
provided the opportunity to generate or conduct investigations
on their own. Instead, they engaged in confirmatory
experiences of key computational principles.

C. Direct Approaches to Teaching
Sue did not take an inquiry-based approach to teaching

computer science to her students. Instead, she focused on
rhythm and periodicity within her classroom, ensuring that
students had access to stable routines and durable infrastructure
to support knowledge acquisition. This allowed her to manage
interaction and bring about predictability of sequential
classroom activities and students’ behaviors.

Sue predominantly used the mirroring technique to teach
computer science concepts to her students. In the example
below, she taught the concepts of sequence and order, initiating
the mirroring activity, in which she would say “mirrors on”, and
the students would imitate her words and actions

Sue: Okay. I liked what you said about the events, but when
we're talking about sequence of events, what does that
mean? Is it, are we talking about groups or am I talking
about order?
Class: Order
Sue: Right? Mirrors on! Sequence (Sue waives hand
motions, class repeats) is order (Sue waives hand motions,
class repeats) or sequence is the order of events.
In this excerpt, Sue took a direct, explicit approach to

teaching, enforcing targeted stimuli (i.e., teacher models

6

specific motions) and response (students mimic teacher’s
motions) behaviors, coupled with repetition to teach key
concepts. She also reinforced correct verbal and motor
associations with a clip up classroom management technique,
using positive reinforcement as an example for the class of what
types of behaviors are preferred.

D. Student Outcomes
First, we combined students’ scores on items using the

selected SRI rubric scale. When examining teachers’ overall
combined average rubric scores for complexity, design
mechanics, user experience, and use of computer science
constructs, we saw that Helen and Jenny’s students performed
better overall (See Figure 1). Results of the ANCOVA showed
that overall, Helen’s and Jenny’s class performed substantially
better in several criteria (See Figure 2). There were significant
differences among the classes in overall complexity, F(4, 107)
= 17.33, p < .01; user experience, F(4, 107) = 5.27, p < .001;
CS constructs, F(4, 107) = 9.11, p < .001; and counts of
different types of Scratch blocks, F(4, 107) = 4.58, p < .01, after
accounting for home computer access, mother’s education, and
father’s education. Tukey HSD test revealed that there was a
significant difference in the overall scores for Ellen and Sue (p
< .001), and Jenny and Sue (p < .01). For user experience, there
was a significant difference between Helen and Ellen (p = .03),
Juanita and Sue (p < .01) and Helen and Sue (p < .001). For CS
constructs, there was a significant difference between Helen
and Ellen (p < .001), Helen and Juanita (p < .001), Ellen and
Sue (p < .001), Sue and Juanita (p = .01), and Helen and Jenny
(p = .02). For block use, there was a significant difference for
Juanita and Helen (p = .01), and Juanita and Jenny (p < .01).

There appeared to be positive changes from pre to posttest
in three classes (Helen, Jenny, and Sue) in terms of students’
ability beliefs, perceptions of support for computer science
interests from family and friends, and perceptions of the
usefulness and importance of computer science (See Figure 3).
The effect size ranged from medium to large, Cohen’s d =
(.46, 1.07).

V. DISCUSSION
The idea of teaching science as inquiry has been well

supported by research [33, 34] and has been found particularly
effective for engaging English learners in STEM [22].
Recently, researchers have called inquiry learning into question
[35, 36], finding that explicit instructional approaches better
support learning and transfer [37]. This is one of the first studies
to investigate how different approaches to inquiry support or
constrain multilingual students’ development of computational
thinking skills. Preliminary findings indicated that more
structured forms of inquiry appear to better support multilingual
students in engaging in and identifying with computer science.

A. Overview of Findings
A primary aim of this study was to explore the question: “In
what ways, if any, did teachers endeavor to teach computer
science as inquiry in their classrooms?” One of the ways to

gain insight into how teachers used inquiry approaches was to
analyze how teachers enacted computer science lessons in
their classrooms. By exploring the phases of inquiry that
emerged from the lessons, we were able to piece together the
ways in which teachers approached inquiry and index these
approaches as being more open or closed along an established
continuum. While the phases [20, 27] and types [14] of
inquiry in science education have been well established, our
study provides considerable insight into how the types of
inquiry pertain to the discipline of computer science. These
results extend our knowledge of the ways in which computer

Fig. 1. Combined ratings of student Scratch projects by teacher

Fig. 2. Mean differences in Scratch project scores by category

Fig. 3. Mean differences in student identity survey scores by category

7

science can be taught as inquiry, and how different approaches
can be used to meet the needs of diverse students.

An additional aim of this study was to explore how
teachers’ differing approaches to inquiry appeared to support
or constrain multilingual students’ development of
computational thinking skills. Patterns in the data revealed
three clusters of teachers, those whose teaching sequences
revealed more open approaches, those whose sequences
revealed more structured approaches, and those whose
patterns displayed direct instructional approaches. For
teachers who were indexed as being more structured along the
inquiry-based learning continuum (Helen and Jenny), students
tended to develop more sophisticated Scratch projects. We
present several conjectures for this relationship. In these
classrooms, teachers used modeling techniques to illustrate
methodologies for solving problems, such as simulating
algorithmic processes, physically enacting computational
concepts, and incrementally increasing levels of complexity.
The upshot of these moves is that they facilitate schema
building, in which students draw from a conceptual foundation
when addressing increasingly abstract problems, thereby
building knowledge from prior understandings [38].

The current literature on inquiry learning portrays students
as scientists who develop hypothesis and conduct
investigation, linking these practices to the development of
discipline specific skills such as computational thinking [13,
14]. In this model, confirmatory experiences are frowned upon
as encompassing the rote presentation of scientific facts, with
little contribution to students’ development of scientific
practices. Yet these teachers provided worked examples to
characterize conceptual and investigative principles, using
strategies such as repetition, refocusing students’ attention,
and open ended questioning techniques to address student
confusion. Studies have indicated that providing worked
examples reduces the tax on working memory and opens up
the resources necessary for learning [39]. It is plausible that
working through examples of algorithmic processes, as
observed in Helen’s class, provided the scaffolding necessary
for successful problem solving.

In this study, we also see that more structured and direct
approaches produced better outcomes for diverse learners’
identification with the field of CS. Although inquiry-based
instruction engages students in authentic scientific practices,
delivering unstructured inquiry without sufficient schema
building and preparation can lead to disappointment and lost
opportunities [40]. All four teachers who implemented
inquiry-based approaches reported students getting lost,
getting stuck, and jumping in without seeing the big picture. If
we want to broaden participation in computing, it is important
to not only give students experiences, but to give them
successful experiences. We were especially impressed the
work from Estelle, herself a Latina who had substantial
experience with the community she served and taught large
number of multilingual students and students with disabilities.
Further exploration into the methodological and incremental
approach she used could uncover valuable strategies that meet
the cognitive and affective needs of multilingual students.

B. Limitations and Future Research
There are several limitations to this study. First, as this was an
exploratory study that is part of a larger project aimed at
revising, testing, and scaling instructional materials and
pedagogies that meet the needs of diverse learners, we do not
make causal claims about our findings. Each of the classes we
observed had different compositions and grade levels and
these factors could provide confounds to our claims.
Furthermore, the data instruments we used to measure
students’ computational thinking skills may not be sensitive to
the types of learning that took place in the open inquiry
classes. In open inquiry classrooms, different types of learning
and growth may take place, such as problem formulation, goal
setting, planning strategies, and persistence. Future studies
should design measures for capturing the types of learning and
growth taking place in these classrooms.

Despite these limitations, this paper poses several
questions to the understudied area of teaching computational
thinking to multilinguals students through inquiry-based
learning. As this project represents the exploratory phase of a
larger project, we are currently using these findings to
integrate more structured approaches in the next iteration of
our curriculum. This includes integrating the
USE/MODIFY/CREATE model into our lessons and applying
metacognitive strategies from reading research to students’
development of computational thinking. To integrate more
structure, the next phase of this project will modify the
curriculum to integrate a CS instructional approach known as
Use-Modify-Create [41] in which students will first use
existing programs, then work together to modify them, and
finally create their own. Furthermore, during the use stage, we
will incorporate an additional layer of scaffolding with a
learning strategy borrowed from reading research known as
“TIPP&SEE,” developed by the Computing for ANyONe
(CANON) lab at the University of Chicago and faculty at
Texas State University. TIPP&SEE is derived from the
reading strategy THIEVES [42], and focuses students on using
context clues to better grasp intended material. Students first
read the title of the program and make predictions based on
the title. Then they analyze the instructions to better
understand the tasks they are asked to engage in. Next,
students think about the purpose of the program to consider
the learning goals of the activity. Finally, they play with the
program to examine its characteristics and practice
documenting their observations. Students are then tasked with
looking inside the program to examine the sprites and the
events controlling the sprites, and then they explore the code.
During the explore phase, students are instructed to change
features of the code, test the changes, and document the
results, preparing them for the MODIFY stage of the
USE/MODIFY/CREATE model. This new curriculum will be
scaled to three school districts and tested using randomized
control trial to formally examine the impact of structured
approaches to inquiry on multilingual students’ development
of computational thinking skills.

8

ACKNOWLEDGMENT
This research was supported in part by a NSF Computer Science for
All grant 1738825

REFERENCES
[1] M Smith. 2016. Computer Science for All,

https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-
science-all.

[2] J Goode and J Margolis. 2011. Exploring Computer Science: A Case
Study of School Reform. ACM Trans. on Comp. Edu. (TOCE), 11(2).

[3] Ladner and M Israel. 2016. For all in Computer Science for All.
Communications of the ACM, 59(9), 26-28.

[4] S Jacob, H Nguyen, C Tofel-Grehl, D Richardson, and M Warschauer.
2018. Teaching Computational Thinking to English Learners. NYS
TESOL journal, 5(2), 12-24.

[5] S Vogel, C Hoadley, L Ascenzi-Moreno, and K Menken. 2019. The Role
of Translanguaging in Computational Literacies: Documenting Middle
School Bilinguals' Practices in Computer Science Integrated Units. In
Proc. of the 50th ACM Tech. Symp. on Comp. Sci. Ed (pp. 1164-1170).

[6] Martin, A., McAlear, F., & Scott, A. (2015). Path not found: Disparities
in access to computer science courses in California high schools.

[7] Royal, D., & Swift, A. (2016, October 18). U.S. minority students less
exposed to computer science. Gallup.

[8] Wang, J., Hong, H., Ravitz, J., & Moghadam, S. H. (2016, February).
Landscape of K–12 computer science education in the US: Perceptions,
access, and barriers. In Proc. of the 47th ACM Tech. Symp. on Comp.
Sci. Edu. (pp. 645–650). New York, NY.

[9] G Estrella, J Au, SM Jaeggi, and P Collins. 2018. Is Inquiry Science
Instruction Effective for English Language Learners? A Meta-Analytic
Review. AERA Open, 4(2).

[10] Krystyniak, R.A., & Heikkinen, H.W. (2007). Analysis of verbal
interactions during an extended, open-inquiry general chemistry
laboratory investigation. JRST, 44(8), 1160-1186.

[11] Quintana, C., Zhang, X., & Krajcik, J. (2005).A framework for supporting
metacognitive aspects of on-line inquiry through software-based
scaffolding. Educational Psychologist, 40(4), 235-244.

[12] Trautmann, N., MaKinster, J., & Avery, L. (2004, April). What makes
inquiry so hard? (and why is it worth it?). Paper presented at the annual
meeting of the Nat. Assoc. for Research in Sci. Teach., Vancouver, BC.

[13] Crawford, B. A. (2007). Learning to teach science as inquiry in the rough
and tumble of practice. JRST, 44(4), 613-642.

[14] Windschitl, M. (2003). Inquiry projects in science teacher education:
What can investigative experiences reveal about teacher thinking and
eventual classroom practice?. Science education, 87(1), 112-143.

[15] A Keselman. 2003. Supporting Inquiry Learning by Promoting
Normative Understanding of Multivariable Causality, JRST, 40, 898-921.

[16] National Research Council (NRC). 1996. National Science Education
Standards. Washington, DC: National Academy Press. (ERIC Document
Reproduction Service No. ED 391 690).

[17] National Research Council (NRC). 1996. National Science Education
Standards. Washington, DC: National Academy Press. (ERIC Document
Reproduction Service No. ED 391 690).

[18] T De Jong and WR Van Joolingen. 1998. Scientific Discovery Learning
with Computer Simulations of Conceptual Domains. Review of
educational research, 68(2), 179-201.

[19] National Research Council. 2012. A framework for K–12 science
education: Practices, crosscutting concepts, and core ideas. Washington,
DC: National Academies Press.

[20] Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A.,
Kamp, E. T., ... & Tsourlidaki, E. (2015). Phases of inquiry-based
learning: Definitions and the inquiry cycle. Educational research review,
14, 47-61.

[21] JM Wing. 2006. Computational Thinking. Communications of the ACM,
49(3), 33–35.

[22] Estrella, G., Au, J., Jaeggi, S. M., & Collins, P. (2018). Is Inquiry Science
Instruction Effective for English Language Learners? A Meta-Analytic
Review. AERA open, 4(2).

[23] Zwiep, S. G., & Straits, W. J. (2013). Inquiry science: The gateway to
English language proficiency. JRST, 24(8), 1315-1331.

[24] Wagh, A., Cook‐Whitt, K., & Wilensky, U. (2017). Bridging inquiry‐
based science and constructionism: Exploring the alignment between
students tinkering with code of computational models and goals of
inquiry. JRST, 54(5), 615-641.

[25] Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark,
D. (2016). Identifying middle school students’ challenges in
computational thinking-based science learning. Research and practice in
technology enhanced learning, 11(1), 13.

[26] Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of
structuring and problematizing student work. The Journal of the Learning
Sciences, 13(3), 273-304.

[27] Bybee, R. W. (1997). Achieving scientific literacy: From purposes to
practical action. Portsmouth, NH: Heinemann.

[28] S Basu, KW McElhaney, S Grover, CJ Harris, and G Biswas. 2018. A
Principled Approach to Designing Assessments that Integrate Science and
Computational Thinking. Intl. Soc. of the Learn. Sci. [ISLS].

[29] PR Aschbacher, M Ing, and SM Tsai. 2014. Is Science Me? Exploring
Middle School Students’ STEM Career Aspirations. Journal of Science
Education and Technology, 23(6), 735-743.

[30] Boyatzis, R. E. (1998). Transforming qualitative information: Thematic
analysis and code development. Newbury, CA: Sage.

[31] AM Gadermann, M Guhn, and BD Zumbo. 2012. Estimating Ordinal
Reliability for Likert-type and Ordinal Item Response Data: a Conceptual,
Empirical, and Practical Guide. Research & Evaluation, 17(3).

[32] R.B. Kline, 2011 Convergence of Structural Equation Modeling and
Multilevel Modeling, The SAGE Handbook of Innovation in Social
Research Methods, Sage, Newbury, CA, USA.

[33] D Dean Jr and D Kuhn. 2007. Direct Instruction vs. Discovery: The Long
View. Science Education, 91, 384-397.

[34] CE Hmelo-Silver, RG Duncan, and CA Chinn. 2007. Scaffolding and
Achievement in Problem-based and Inquiry Learning: A Response to
Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2),
99-107.

[35] D Cairns and S Areepattamannil. 2019. Exploring the Relations of
Inquiry-based Teaching to Science Achievement and Dispositions in 54
Countries. Research in Science Education, 49(1), 1-23.

[36] J Jerrim, M Oliver, and S Sims. 2019. The Relationship between Inquiry-
based Teaching and Students’ Achievement. New Evidence from a
Longitudinal PISA Study in England. Learning and Instruction, 61, 35-
44.

[37] D Klahr and M Nigam. 2004. The Equivalence of Learning Paths in Early
Science Instruction Effects of Direct Instruction and Discovery Learning.
Psychological Science, 15(10), 661-667.

[38] Smith III, J. P., Disessa, A. A., & Roschelle, J. (1994). Misconceptions
reconceived: A constructivist analysis of knowledge in transition. The
Journal of the Learning Sciences, 3(2), 115-163.

[39] Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal
guidance during instruction does not work: An analysis of the failure of
constructivist, discovery, problem-based, experiential, and inquiry-based
teaching. Educational psychologist, 41(2), 75-86.

[40] Bransford, J. D., Stipek, D. J., Vye, N. J., Gomez, L. M., & Lam, D.
(2009). The Role of Research in Educational Improvement. Boston, MA:
Harvard Education Press.

[41] Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., et al.
(2011). Computational thinking for youth in practice. ACM Inroads, 2(1),
32-37.

[42] Manz, S. L. (2002). A strategy for previewing textbooks: teaching readers
to become THIEVES.. The Reading Teacher, 55(5), 434-436.

https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all

	I. Introduction
	II. theoretical framework
	A. Inquiry-based Learning and Computational Thinking
	B. Review of the Literature
	C. Overview of the computational thinking curriculum

	III. method
	A. Study Context and Participants
	B. Data Sources & Analysis

	IV. Findings
	A. Open Approaches to Inquiry
	B. Structured Approaches to Inquiry
	C. Direct Approaches to Teaching
	D. Student Outcomes
	First, we combined students’ scores on items using the selected SRI rubric scale. When examining teachers’ overall combined average rubric scores for complexity, design mechanics, user experience, and use of computer science constructs, we saw that He...

	V. Discussion
	A. Overview of Findings
	B. Limitations and Future Research
	Acknowledgment
	References

