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ABSTRACT 
   Thin non-uniform particle size wicks are essential to improve 
the maximum heat flux of two-phase thermal management 
systems by improving the wickability. To understand the 
enhanced wickability, we examine a pore-scale capillary flow 
within the thin sintered particle wick using a free-energy-based, 
single-component, two-phase Lattice Boltzmann Method (LBM) 
with a minimal parasitic current. The developed LBM approach 
is validated through the rate-of-rise in the two-parallel plates 
with parallel plates spacing of W=48 against analytical 
Bosanquet equation, achieving the RMS error below 10%. The 
LBM predicts the rate-of-rise through the uniform and non-uniform 
particle-size wicks between two-parallel plate, including the 
capillary meniscus front and dynamic capillary filling. At the 
same plate spacing and porosity, i.e., W = 48 lu and  = 0.75, 
the non-uniform particle size wick achieves enhanced wickability 
by providing the selective flow pathway through pore networks 
formed in the smaller pores between the small/large particles, 
which is in qualitative agreement with previous experimental 
results. The enhancement of the maximum and minimum 
dimensionless liquid height and the liquid-filled pore ratio of 
non-uniform particle size wick is found to be up to 11.1, 27.47, 
and 26.11%, respectively. The simulation results provide insights 
into the optimal wick structures for high heat flux two-phase 
thermal management system by enhancing the wickability 
through the non-uniform particle (or pore) sizes. 
 

Keywords: rate of rise, permeability, optimal wick structure, 
capillary flow 

NOMENCLATURE 
a  constant 
b  constant 
cs   speed of sound, lu/ts 
Dp  average particle size, lu 
E0  bulk energy, mu-lu2/ts2  
e  microscopic particle velocity, lu/ts 
F  intermolecular interaction force, mu-lu/ts2 

fα  distribution function 
fα

 eq  equilibrium distribution function 

g  gravitational acceleration, lu/ts2 
h  liquid height, lu 
h0  submersion length of the plates, lu 
h1  initial liquid surface-particle gap, lu 
h*  dimensionless liquid height  
K  permeability, lu2 
Lp  large pore, lu 
rc  meniscus radius, lu 
rp  particle radius, lu 
Sp  small pore, lu 
p  pressure, mu/lu-ts2 

t  time, ts 
t*  dimensionless time 
u, U  macroscopic velocity, lu/ts  
W  plate spacing, lu 
 
Greek symbols 
  density, mu/lu3 
σ  surface tension, mu/ ts2 

δx  x-direction lattice spacing, lu 
δy  y-direction lattice spacing, lu 
δt  time spacing, ts 
λ  relaxation time, ts 
μ  chemical potential, lu2/ts2 
κ   gradient parameter, mu3/lu5 
β  constant 
θeq  equilibrium contact angle 
θd  dynamic contact angle 
ε  porosity of the particle bed 
η  liquid-filled pore ratio or liquid saturation 
Ω  dimensionless wetting potential 
α  angle related to equilibrium contact angle 
ϕ  constant related to density on solid surface 
ψ  mixing energy density, mu-lu2/ts2 
 
subscripts 
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c  capillary 
eq  equilibrium 
l  liquid phase 
p  particle 
s  solid wall or surface 
sat  saturation 
v  vapor phase 
 

1. INTRODUCTION 
    The ever-growing heat flux associated with modern 
miniaturized and compact electronic and power conversion 
systems requires advanced thermal control systems with high 
heat flux thermal management capabilities. Employing the large 
latent heat of evaporation of the working fluid, i.e., two-phase 
cooling systems, such as heat pipes and vapor chamber, provide 
an efficient and reliable thermal management compared to single 
phase cooling mechanisms, i.e., forced convection over the 
extended surfaces. However, the maximum heat transfer 
capability of the heat pipes is limited by poor coolant supply to 
the heating surface through capillary flow which in turn results 
in premature surface dryout and eventual operation failure. 
    Thin evaporating wicks combined with thick liquid artery 
wicks have significantly improved maximum heat flux and 
reduced thermal resistance across the wicks [1,2], and they can 
be further improved by utilizing thin wicks with non-uniform 
particle size distribution, i.e., bimodal wick [3,4]. The enhanced 
two-phase cooling capability is attributed to the improved 
capillary flow from the selective liquid percolation through 
smaller pores associated with the non-uniformity in particle size, 
but the additional efforts are critically needed to further 
understand the pore-scale capillary flow enhancement 
mechanisms as the current capillary flow understanding 
primarily remains in the thick uniform particle size wick. Holley 
and Faghri [5] have measured the rate-of-rise and effective pore 
radius of the thin porous media, while the permeability has been 
estimated by curve-fitting the rate-of-rise into the developed 
force balance equation. 
    Over the past few decades, Lattice Boltzmann method 
(LBM) has emerged as a powerful tool for simulation of flow in 
complex geometries such as porous media. The main benefit of 
the LBM is the simple boundary condition implementations, 
especially for the non-uniform pore distribution over other 
alternatives such as Volume of Fluid (VOF). The implementation 
of complicated solid boundaries can be achieved conveniently 
through bounce-back rule. The previous LBM approaches have 
been used to study fluid flows in porous media, but those mainly 
focus on single phase flow [6] and capillary flow in fibrous 
porous materials [7]. Hoef et al. [6] developed a single-phase 
LBM to model low-Reynolds-number gas flow over mono- and 
bi-disperse arrays of spheres and reported results for 
permeability and drag force. Nabovati et al. simulated [7] fluid 
flow in three-dimensional random fibrous media using single-
phase model, and reported the permeability of the medium using 
the Darcy law across a wide range of void fractions. Recently, 
Liu et al. [8] has examined two-phase fluid flow of gas displacing 
liquid in particle-bed porous media, mainly focusing on uniform 

particle sizes. In this study, the thin particle size wick is 
examined using the two-phase free-energy-based LBM 
approach, especially for understanding the enhanced capillary 
flow mechanisms through non-uniform particle size distribution.  

    This paper is organized as follows. In Section 2, the working 
principles of enhanced capillary flow in uniform and non-
uniform wicks are discussed. In Section 3, the mathematical 
formulation of the LBM is presented, including the illustration 
of the LBM simulation details and validation. In Section 4, the 
predicted rate-of-rise in the uniform and nonuniform particles in 
the two-parallel plates are shown, including discussions. Finally, 
a conclusion will be made. 
 
2. WORKING PRINCIPLES 
    An ideal wick structure for the two-phase cooling systems 
requires not only a large capillary pressure, i.e., capillary 
pumping capability, but also a large permeability for maximum 
liquid coolant supply to the heated surface. The maximum 
capillary pressure, pc, is inversely proportional to the capillary 
meniscus radius given as [9] 

 2
c

c

p
r


=  (1) 

where σ is the surface tension, and rc is the capillary meniscus 
radius, while the permeability K is given as [9]  
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where ε is the porosity, a is a constant, and rp is the particle 
radius. Note that the capillary meniscus radius, rc is proportion 
to the particle radius, rp [9]. In the wick structure with the 
uniform particle size, to increase the capillary pressure, one can 
use the small particle size to increase the capillary pressure by 
1/rp. However, the small particle size also decreases the 
permeability by rp

2, which in turn results in the overall 
wickability reduction. To simultaneously increase the capillary 
pressure and permeability, the non-uniform particle sizes can be 
used, while the small particle size can increase the capillary 
pressure and the large particle leads to the large permeability 
[3,10] as shown in Figure 1. 
  

       
Figure 1: Schematic of the liquid-filled sintered particle wick with 
nonuniform particle size distribution. Non-uniform capillary meniscus 
radii are also shown. 
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Recent experimental studies show that the wicks with 
nonuniform particle sizes enhance the heat flux and heat transfer 
coefficient by improving capillary flow and permeability as well 
as creating additional evaporation sites [4]. In this study, the 
pore-scale enhanced wicking mechanisms of the non-uniform 
particle sizes are examined using the LBM as described below. 
 
3. LATTICE BOLTZMANN METHOD (LBM) 
3.1 Governing Equations and Boundary Conditions 
       To simulate the pore-scale capillary flow in the sintered 
particle wicks, the LBM is used. The discrete Boltzmann 
equation (DBE) for the van der Waals fluid with Bhatnagar-
Gross-Krook (BGK) collision operator can be written as [11]  
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where fα is the particle distribution function, eα is the microscopic 
particle velocity, u is the macroscopic velocity, ρ is the density, 
cs is the speed of sound, λ is the relaxation time, f  eq is the 
equilibrium distribution function, and F is the averaged external 
force experienced by each particle, i.e., intermolecular 
interaction force. Note that cs=c/3, where c = δx/ δt is the lattice 
speed, and δx, δy, and δt are 1 respectively. Diffuse interface 
methods like LBM generally suffer from the existence of 
spurious currents. These undesirable currents are small-
amplitude velocity fields that arise from imbalance between 
discretized forcing terms at the phase interface. Recently, Lee 
and Fischer [12] utilized the phase field theory to develop a new 
forcing scheme in Lattice Boltzmann Equation (LBE) in which 
the spurious currents are eliminated to round-off. This forcing 
scheme, so called the potential form, can be expressed as given 
as 

          2 2
0( ) ( )sc    =  −  − F  (4) 

where κ is the gradient parameter and μ0 is the chemical 
potential. The equilibrium properties of an isothermal 
thermodynamic system that contains wall boundaries can be 
described by summing the bulk free energy and a linear wall free 
energy [13]. Therefore, the total free energy will take the 
following form 

2
0 1( ( ) )

2b s sE d d
   

 
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   In the vicinity of the critical point, the equation of state can 
be simplified, thereby resulting in the following approximation 
for the bulk energy E0 
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where ρl

sat and ρv
sat are the liquid and vapor densities at 

saturation, respectively, and β is the constant related to the 
compressibility of the bulk phase. The chemical potential μ0 is 
related to the bulk energy given as 
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    The gradient parameter κ and the liquid-vapor surface 
tension force σ are 
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where D is the interface thickness which should be greater than 
3 lattice units for numerical stability. Here, we used D = 4. The 
relation between φ1 in Eq.(5), the dimensionless wetting potential 
Ω, and the equilibrium contact angle θeq can be expressed by  
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where 
                   2arccos(sin )eq = .    

(12) 
    It follows that the boundary condition at the wall for 2  in 
Eq.(4) would take the form of  

 
1s   = −n                         

(13)      
where n is the unit vector normal to the wall. By establishing the 
appropriate boundary condition for Laplacian using Eq.(13), μ  
= μ0-κ2 can be treated as a scalar, which avoids the 
development of parasitic currents at the phase interface. The 
values of the LBM parameters used in the present study are 
summarized in Table 1. All values are in lattice unit, i.e., a 
combination of lattice length unit (lu) and lattice time unit (ts). 
 
Table 1. Values of the parameters used in the LBM simulations 

LBM Parameter Magnitude in Lattice Unit 

δx 1 

δx 1 

δt 1 

ρl
sat 1 

ρv
sat 0.2 

θeq 30°   

cs 1/√3 
g 0 

λ 0.5 
σ 1.365×10-3 

β 0.01 
κ 0.0128 
D 4 

h0 93  

h1 2 

h2 161 
    The unknown particle distribution at the wall can be found 
by implementing equilibrium boundary condition, which 
essentially includes the calculation based on the bounce back 
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rule after streaming, followed by the immediate relaxation 
toward the equilibrium state. This condition implies that any 
unknown variable ϕ near the wall should be approximated by  
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(14)    

where xs is the wall node and δt is the time step.  and μ at the 
wall boundary should be calculated using Eq. (14). Further 
details on the wall boundary conditions are found in the previous 
work [13]. Since a normal vector cannot be defined at the sharp 
corners of solid particles and plates, special boundary treatment 
is necessary. Here, we have used the isotropic method proposed 
by Connington et al. [14]  
    To validate the LBM, the rate-of-rise between the two plates 
using the LBM are compared with the closed-form solution, so 
called Bosanquet equation, given as [15] 

2

2 * * *
* * 2 * * *

0 0* **
( ) ( ) ( ) cos d

d h dh dhh h h h a bh
dt dtdt

+ + + + = −  (15) 

where h*=h(t)/W and h0
*=h0/W are dimensionless liquid height 

above the liquid-vapor surface and dimensionless liquid-
submerged length, respectively, as shown in Figure 2. The W is 
the space between two parallel plates, t*=t/t0 is the dimensionless 
time and t0 = l (W2)/12μl, a = 2l (W) σ/(12μl)2 and b = l

2
 (W)3 

g/(12μl)2, g and σ are gravitational acceleration and surface 
tension, respectively. We have also decided to work with static 
contact angle for the sake of simplicity. The simplified 
Bosanquet equation was solved using 4th order Runge-Kutta 
method. Figure 3 shows a comparison between the LBM 
simulation results and the solutions of Eq.(15) for W =48 and 
g=0, which agree well. Note that the liquid height, h* in the LBM 
predicts the maximum (capillary meniscus liquid front near the 
plate) and the minimum heights (central part of the capillary 
meniscus recess), and only minimum height is shown in Figure 
3, showing the RMS error below 10%. A detailed analysis of the 
capillary rise between parallel plates under dynamic conditions 
and by considering the effect of long-range interactions between 
the fluid and solid walls is presented in the previous work [15]. 

 
Figure 2: Rate of rise between two parallel plates in contact with a 
liquid reservoir. The space between the plates, W, the liquid height, h, 

the liquid-submerged depth, h0, and static contact angle d, and the 
boundary conditions are also shown. 

3.2 LBM Simulations 
To investigate the effects of nonuniform particle size 

distribution on enhanced wickability, uniform and nonuniform 
simulations are performed as shown in Figure 4. In Figure 4(a), 
the two parallel plates are filled with uniform square particles 
(case 1), while Figure 4(b) and (c) show non-uniform square 
particles between the two plates with the spacing of W (case 2 
and 3, respectively). In case 3, the small pores (Sp6 and Sp8) are 
smaller than the corresponding pores in case 2 resulting in higher 
capillary pumping capability. In addition, the larger pores in case 
3 (Lp3 and Lp4) are larger than the corresponding pores in case 
2, offering large liquid-permeable space. These have been 
achieved by moving the smaller particles closer to the larger 
particle and/or closer to the wall. 

 

 
Figure 3: Predicted LBM results for the rate of rise between parallel 
plates with W = 48 lu and g = 0, compared with close-form solution, i.e., 
the Bosanquet equation, Eq.(15).  

Note that all three cases have the same number of particles (4 
rows and 3 columns of particles) with the same porosity,   =  
0.75. Except for the wall boundary at the bottom, the rest of the 
boundary conditions are gradient free. Table 2 and 3 summarize 
the dimensions of the distance between the plates and 
uniform/non-uniform pores used in the LBM simulations shown 
in Figure 4. 
The liquid-vapor density ratio, spacing of the parallel plates and 
the porosity of the medium are lv =   
W =  lu respectively. The LBM simulation size is a 721×251 
lattice, where the liquid-vapor interface outside the parallel 
plates does not change significantly due to the loss of liquid by 
capillary flow. The initial liquid elevation above the bottom 
boundary h2, the liquid submerged length h0 and the gap between 
the initial liquid-vapor interface, and the first row of particles h1 
are 161, 93 and 2 lu, respectively. The contact angle is 30° inside 
the parallel plates, while it is 90° at the outside of the plates to 
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prevent the liquid from climbing up at the external side of the 
wall.  
Table 2: Summary of the LBM simulation dimensions for uniform 
particle size distribution setup. 

Simulation parameter Magnitude, Lattice Unit 
(Case 1) 

W 48 
lx1, lx2, lx3 , lx5 8 

lx4 4 
 
Table 3: Summary of the LBM simulation dimensions for nonuniform 
particle size distribution for two different setups. 

Simulation 
parameter 

Magnitude, Lattice 
Unit (Case 2) 

Magnitude, Lattice 
Unit (Case 3) 

W 48 48 
lx1, lx2 4 4 
lx3, lx4 10 10 

lx5 8 8 
lx6, lx12 4 4 

lx7 5 5 
lx8 3 0 
lx9 10 11 
lx10 5 4 
lx11 3 6 

 
Note that the contact angle of the external wall does not  
influence the fluid flow inside of the two plates. Furthermore, 
since this study focuses on the capillary-driven flow, i.e., low 
Bond number we have neglected the effect of gravity by 
choosing g = 0 lu/ts2. 
 
 

 

 

 
Figure 4: (a) Uniform particle-filled two parallel plates (case 1), (b) 
nonuniform particle-filled two parallel plates (case 2), and (c) modified 
nonuniform particle-filled two parallel plates showing the small pores 
(Sp) and large pores (Lp) created (case 3). The plates, particles, pore 
sizes and boundary conditions are also shown. 

4. RESULTS AND DISCUSSION 
    In this section, the LBM simulation predicts the rate-of-rise 
through uniform/non-uniform particle wick, especially for the 
enhanced wickability of the non-uniform particle wick along 
with discussions. Figure 5(a) shows the maximum dimensionless 
liquid height of the capillary meniscus front, h*, as a function of 
dimensionless time, t*. As the time increases, the maximum 
liquid height increases for all three cases, with different rate-of-
rise at given time. In other words, initially it sharply increases, 
then it slows down for a certain period of time until it sharply 
increases again, i.e., periodic sharp rate of rise.  
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Figure 5: (a) Maximum and (b) minimum dimensionless liquid height 
as a function of dimensionless time, t*, and (c) snapshots of rate of rise 
simulation at different time steps for uniform (case 1) and nonuniform 
(case 2 and 3) particle size distribution. The plate spacing W and 
porosity, , are also shown. 

The sharp rate-of-rise periods are mainly associated with the 
rise of liquid in the small pores between the particles (adjacent 

to the plates) and the plates, while the slow ones between the 
sharp ones, i.e., plateaus, correspond to the delayed capillary 
flow to the upper particles. In uniform particle wick (case 1), the 
plateau periods are larger than the other cases, and the three 
periods increase as the time increases, indicating that the period 
of maintaining the plateaus increases as the liquid height 
increases. The duration of the first plateau is inversely 
proportional to the pore size formed between the first and second 
rows of particles adjacent to the plates [Sp1 in Figure 4(a), Sp3 
in (b) and Sp6 in (c)], i.e., the smaller the pore size, the higher 
the capillary pressure which in turn results in a faster rate of rise 
and hence a  shorter plateau in liquid height. The marginally 
higher rate of rise for case 1 at t* = 55.55 is related to the rapid 
capillary rate-of-rise through the small but lengthy pore between 
the particle and plate in the second particle row, i.e., Sp2 in 
Figure 4(a), as shown in Figure 5(c). However, this sharp rise is 
followed by a relatively large plateau period, i.e., second plateau 
of case 1 in Figure 5(a) from t* = 50 to t* = 130 because it needs 
some time for the liquid to fully fill the pores between the first 
and second particle rows. On the other hand, the second plateaus 
for case 2 and 3 are relatively short, and the liquid can rise 
quickly through the pores in the second particle row until it 
reaches the top surface of the large particles at the third row. 
Figure 5(c) shows the corresponding snapshot for case 2 at t* = 
106.65. This sharp rate of rise is in part due to the combination 
of small and large pores between the particles in the in the first 
and second rows, i.e., Lp1 and Sp4 in Figure 4(b), and Lp3 and 
Sp7 in (c). While the large pores provide enough space for liquid 
flow, the small pores create a high capillary pressure which 
improves the liquid rise from one particle layer to the next. 
Figure 5(c), case 3, illustrates how the liquid flows through the 
small pores in diagonal direction, i.e., Sp4 and Sp6, which is 
much different from the case 1. Furthermore, the large permeable 
pores in the second particle row, i.e., Lp2 and Lp4 in Figure 4(b) 
and (c), respectively, improve the permeability of the 
nonuniform particle size wick. The sharp rate-of-rise of the non-
uniform particle size wicks (cases 2 and 3) occurs at 50 < t* < 
70, which is followed by a long plateau. The rapid capillary front 
advancement is shown in Figure 5(c), case 2. This is due to the 
fact that the pore between the plate and the particles at the third 
and fourth particle rows, i.e., Sp5 in Figure 4(b), is not small 
enough to create the necessary capillary pressure for the rise of 
capillary meniscus front and hence the liquid should fill the 
remaining pores in the third particle row until it can rise to the 
next particle row. On the other hand, the small pore at the same 
location for case 3, i.e., Sp9, assists the liquid rise by providing 
a large capillary pressure which results in a smaller plateau, i.e., 
sharp rate of rise at  t* = 145. In Figure 5(a), the instantaneous 
enhancement of the maximum dimensionless heights of the 
capillary front of the non-uniform particle size wick (case 2) is 
43.5% compared to that of the uniform particle size wick (case 
1) at t* = 105, while it is about 45% in the non-uniform particle 
size wick (case 3) at t* = 105. The cumulative (time integral) 
enhancement of the maximum dimensionless heights of the 
capillary front of the non-uniform particle size wick (case 2) is 
1.24% compared to that of the uniform particle size wick (case 
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1), while it is 11.1%  in the non-uniform particle size wick (case 
3). 

Figure 5(b) shows the minimum liquid height of the 
capillary flow, i.e., bottom portion of the capillary meniscus. 
Similarly observed in the maximum height, the minimum height 
also shows the periodic sharp rate-of-rise, but the plateaus are 
completely flat, i.e., no minimum height change for a certain 
period time. This is associated with the delayed capillary 
meniscus crescent detachment from the top corners of the 
particles. The non-uniform particle wicks, especially case 3, 
show shorter plateau periods, since the liquid quickly fills the 
small pores (along the diagonal direction) between the particles 
in different rows [such as Sp4 in Figure 4(b), and Sp7 in (c), 
respectively]. The detailed explanations on the delayed capillary 
meniscus crescent detachment are found in previous work [16]. 
The instantaneous enhancements of the minimum dimensionless 
heights of the capillary front of both of the non-uniform particle 
size wicks (case 2 and 3) are around 160% compared to that of 
the uniform particle size wick (case 1) at t* = 79. The cumulative 
(time integral) enhancement of the minimum dimensionless 
heights of the capillary front of the non-uniform particle size 
wick (case 2) is 13.43% compared to that of the uniform particle 
size wick (case 1), while it is 27.47% in the non-uniform particle 
size wick (case 3). 

Figure 6 illustrates the snapshots of the rate-of-rise for 
uniform particle size wick at different simulation time steps. 
Figure 6(a) shows the initial liquid height within the two plates, 
which stays in the same level of the liquid pool at t* = 0. (b) In 
the early stage of the simulation, i.e., t* = 0.4, the liquid quickly 
interacts with the inner wall and bottom surface of the particle in 
the first row due to the attractive intermolecular forces between 
the liquid and solid surfaces. Note that at the very early stages, 
i.e., t* < 0.4, the minimum liquid height, i.e., central part of the 
liquid, is lower than the liquid height in the pool due to the 
capillary meniscus formation as observed in Figure 5(b). (c) As 
the time increases, at t* = 5.21, the liquid rises quickly to the top 
surface of the first particle layer. Once the liquid height reaches 
the same height of the top surface of the first particle row at t* = 
5.21, the liquid level stays nearly the same until the liquid rises 
along the side wall toward the second particle layer. (d) Once 
liquid reaches the particle at the second row, i.e., t* = 41.23, it 
rises quickly to the top surface of the particle by the capillary 
flow through the pores between the wall and the particles 
adjacent to the wall [Sp2 in Figure 4(a)], i.e., the small capillary 
meniscus radius in the small pores. This is shown in (e), i.e., t* = 
55.55. (f) The liquid in the central part of the capillary meniscus 
stays at the same level of the top surface of the first particle row, 
i.e., t* = 63.80, until it finally detaches from the top surface of 
the first particle row. As previously mentioned in this section, 
this delayed liquid rise due to the corner of the particle has been 
similarly observed in the previous work [16], which studied on 
the interaction of fluid interfaces with immersed solid particles. 
(g) Once the liquid detaches from the top surface of the particle, 
t* = 80.73, (h) the liquid-vapor interface very quickly rises 
toward the upper layer until it touches the bottom surface of the  

 
Figure 6: Snapshots of rate of rise in particle-filled parallel plates with 
uniform particle size wick (case 1). The dimensionless time, t*, 
corresponding to each of the snapshots are also shown. 

second particle row at t* = 84.63.(i) The liquid then rises quickly 
through the pores between the particles. (j) The liquid finally 
rises to the top surface of the second particle layer. In a sense, (j) 
and (c) are similar, which means that after the step (j), the liquid 
repeats the similar wetting and capillary flow behaviors observed 
in (c)-(j). 

Figure 7 illustrates the snapshots of the rate-of-rise for 
nonuniform particle size wick case 2 at different simulation time. 
Figure 7(a) shows the final stage of the first sharp rate of rise at 
t* = 7.81, after which the liquid level remains nearly the same for 
a long period (first plateau). (b) Unlike case 1 in which liquid 
rises from first particle row to the second during the first plateau 
only due to interaction with the wall, in case 2 the small pore in 
the diagonal direction between the large particles in the first and 
second layer, i.e., Sp4 in Figure 4(b), provides a high capillary 
pressure which assist liquid rise between first and second particle 
rows, i.e., t* = 36.37. (c) The capillary meniscus crescent finally 
detaches from the top surface of the large particle at first row, 
i,e., t* = 55.99, and it rises through the pore between the middle 
large particle at second particle row and plate at a moderate rate. 
(d) The liquid reaches the small particles at the second particle 
row at t* = 71.27. (e) since the pore between the particle and plate 
is smaller than the pore between the particles at the second 
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particle row, the associated higher capillary pressure adjacent to 
the plate provides a faster rate of rise until the meniscus reaches 
the particle at the third row, i.e., t* = 98.90. (f) The liquid 
experiences a sharp rate of rise in the small pore between the 
particle and the plate in the third particle row, i.e. t* = 106.6. (g) 
It takes a long time for the meniscus to detach from the top 
surface of the large middle particle at the third particle row due 
to both the corner effect and the relatively large surface length of 
the large particle. The meniscus finally detaches at t* = 155.2 
while the liquid is rising adjacent to the plate. (h) Liquid rises 
through the pores between the particles. The liquid level adjacent 
to the wall does not change significantly, though. (i) After a very 
long time the capillary meniscus adjacent to the plate reaches the 
small particle at the fourth particle row at t* = 264.1. (j) The 
liquid rises quickly through the small pore between the particle 
and plate. This rise requires the meniscus at the center to recede 
as observed by comparing the capillary meniscus front of (i) and 
(j) at the center of the parallel plates. This observation can 
explain the sudden decrease in minimum liquid height at 264 < 
t* < 280 in Figure 5(b). The other occasions where the maximum 
or minimum liquid height experience a sudden decrease can also 
be similarly explained. (k) The liquid rises through the pores 
between the particles and plates. (l) The liquid reaches the top 
surface of the particles at fourth row. 

Figure 8 illustrates the snapshots of the rate-of-rise for 
nonuniform particle size wick case 3 at different simulation time 
steps. Figure 8(a) shows the particle arrangement between the 
parallel plates and the initial liquid height within the two plates 
at t* = 0. (b) The liquid rises quickly to the top of the first particle 
row. (c) The high capillary pressure associated with the small 
pore between the plate and particles at the first and second row, 
i.e., Sp6 in Figure 4(c) provides a high capillary pressure that 
assist the liquid rise to the second row, i.e.,  t* = 32.98. This is 
in contrast to the situation for case 2 at t* = 36.37 where liquid 
rise to the second particle row took place mainly due to the small 
pore between the large particles in diagonal direction, i.e., Sp4 
in Figure 4(b). 
(d) Liquid detaches from the top surfaces of all the three particles 
in the first particle row relatively quickly at t* = 46.87. Aside 
from the high capillary pressure associated with the small pores 
adjacent to the plate and in the diagonal direction, the relatively 
quick meniscus detachment from the top surface of the particles 
at the first particle row is due to the large permeable pore 
between the middle particles in the first and second row, i.e., Lp1 
and Lp3 in Figure 4(b) and (c), respectively. (e) Liquid rise 
through the pores in the second particle row. The large pore 
between the particles in the second row, i.e., Lp4 in Figure 4(c) 
provide space for liquid to rise in the middle, i.e., t* = 72.92. (f) 
The liquid that passes the small particles in the second row 
reaches the particles adjacent to the plate and rises sharply 
through the small pore between the plate and the particle in the 
third particle row. (g) The liquid rises to the top surface of the 
large particle at the third row quickly, and the small pore between 
the middle particles at the second and third particle row, i.e., Sp8 
in Figure 4(c) provides a high capillary pressure by which the 

 
Figure 7: Snapshots of rate of rise in particle-filled parallel plates 
with nonuniform particle size wick case 2. The non-dimensional time-
steps corresponding to each of the snapshots are also shown. 

meniscus is detached from the top surface of the large middle 
particle much more quickly compared to the case 2. This is 
consistent with the shorter plateau of case 3 which ends much 
sooner than that of case 2 at t* = 130.2 in the curve for the 
minimum liquid height in Figure 5(b). This interaction is visible 
in (g). (h) The small pore between the plate and the particles in 
the third and fourth particle row, i.e., Sp9 in Figure 4(c), provides 
a high capillary pressure by which the liquid reaches the small 
particle in the fourth row relatively quickly at t* = 152.8. (i) The 
liquid detaches from the top surface of the particles in the third 
particle row and rise to the fourth particle row at t* = 225.7. (h) 
The liquid reaches the top surface of the particles at the fourth 
row and continue to rise along the plate. 
The minimum and maximum liquid heights do not always reflect 
the wickability. For example, in Figure 6(e), the maximum and 
minimum liquid heights show significant differences due to the 
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Figure 8: Snapshots of rate of rise in particle-filled parallel plates with 
nonuniform particle size distribution case 3. The non-dimensional time-
steps corresponding to each of the snapshots are also shown. 

different pore-scale capillary flow scenarios from the different 
capillary flow history and pore distributions. Thus, to simplify 
the capillary flow behaviors, dimensionless parameter η, liquid-
filled pore ratio, which is the ratio between the pores filled with 
liquid to the maximum pore volume, , i.e., liquid saturation, 
only within the space between the two plates. 

    Figure 9 shows the liquid-filled pore ratio, , as a 
function of dimensionless time, t*. This parameter is beneficial 
to characterize the liquid saturation in the pore structures. The 
uniform particle size wick (case 1) shows that the liquid filling 
is similar to those observed from the maximum and minimum 
liquid heights [see Figure 5(a) and (b)], i.e., step-wise pore 
filling. This is attributed to the fact that the capillary meniscus 
front advances by the capillary fingering through the pores 
formed between the two adjacent horizontal particles, while the 
liquid filling delays by the corner of the pores formed between 
the two adjacent vertical particles. While the same overall trend 
also applies to non-uniform particle size wicks, the period 
between the two sharp rises reduces compared to the uniform 
particle wick, due to the staggered capillary filling between the 
small and larger pores. While the higher  for case 3 compared  

 

 

Figure 9: Dimensionless liquid filled pore ratio as a function of 
dimensionless time for uniform (case 1) and non-uniform particle size 
wicks (cases 2 and 3). The plate spacing W and porosity, , are also 
shown. 

to case 2 at 30 < t* < 80 is related to the enhanced capillary filling 
through the small pores between the particles and walls, i.e., Sp6  
in  Figure 4(c), the higher  at t* > 80 is partly related to the 
small pore between the middle particle of row 2 and 3, i.e., Sp8 
in Figure 4(c) and partly related to the small pore between the 
plate and the particles at the third and fourth rows, i.e., Sp9. The 
instantaneous enhancement of the liquid-filled pore ratio of the 
non-uniform particle size wick (case 2) is 68% compared to that 
of the uniform particle size wick (case 1) at t* = 148 while it is 
about 75% in the non-uniform particle size wick (case 3) at t* = 
148. The cumulative (time integral) enhancement of the liquid-
filled pore of the non-uniform particle size wick (case 2) is 
12.31% compared to that of the uniform particle size wick (case 
1), while it is 26.11%  in the non-uniform particle size wick 
(case 3). 
 
5. CONCLUSION 
    In this study, the free-energy-based, single-component, two-
phase Lattice Boltzmann method (LBM) with a minimal 
parasitic current is utilized to predict the rate of rise through the 
capillary channels between the two parallel plates, uniform/non-
uniform particle wicks between two plates. The LBM-predicted 
rate-of-rise between two parallel plates agrees well the analytical 
solution within RMS error of 10%. In the uniform particle size 
wick, the capillary meniscus front percolates though the pores by 
the periodic capillary filling, resulting in the step-wise rate-of-
rise. The plateau periods increase as the liquid level increases. 
The LBM predicts that the non-uniform particle wick enhances 
the rate of rise by providing higher capillary pumping capability 
through the small pores and high permeability through the larger 
pores. The maximum and minimum liquid height and liquid-
filled pore ratio are enhanced by 1.24%, 13.43%, and 12.31 for 
non-uniform particle size wick (case 2) and 11.1 %, 27.47%, and 
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26.11%, for non-uniform particle size wick (case 3),  
respectively.  In practice, the non-uniform pore size distribution 
can be achieved by mixing the smaller and larger particles for the 
traditional furnace sintering process or by using 3D printing 
technique, which is currently being studied. 
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