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ABSTRACT

Thin non-uniform particle size wicks are essential to improve
the maximum heat flux of two-phase thermal management
systems by improving the wickability. To understand the
enhanced wickability, we examine a pore-scale capillary flow
within the thin sintered particle wick using a free-energy-based,
single-component, two-phase Lattice Boltzmann Method (LBM)
with a minimal parasitic current. The developed LBM approach
is validated through the rate-of-rise in the two-parallel plates
with parallel plates spacing of W=48 against analytical
Bosanquet equation, achieving the RMS error below 10%. The
LBM predicts the rate-of-rise through the uniform and non-uniform
particle-size wicks between two-parallel plate, including the
capillary meniscus front and dynamic capillary filling. At the
same plate spacing and porosity, i.e., W =48 lu and & = 0.75,
the non-uniform particle size wick achieves enhanced wickability
by providing the selective flow pathway through pore networks
formed in the smaller pores between the small/large particles,
which is in qualitative agreement with previous experimental
results. The enhancement of the maximum and minimum

dimensionless liquid height and the liquid-filled pore ratio of

non-uniform particle size wick is found to be up to 11.1, 27.47,
and 26.11%, respectively. The simulation results provide insights
into the optimal wick structures for high heat flux two-phase
thermal management system by enhancing the wickability
through the non-uniform particle (or pore) sizes.

Keywords: rate of rise, permeability, optimal wick structure,
capillary flow

NOMENCLATURE
a constant
b constant
Cs speed of sound, lu/ts
D, average particle size, lu
Ep bulk energy, mu-lu?/ts
e microscopic particle velocity, lu/ts
F intermolecular interaction force, mu-lu/ts?

fa distribution function

fal equilibrium distribution function

g gravitational acceleration, lu/ts®

h liquid height, Iu

ho submersion length of the plates, Iu
hy initial liquid surface-particle gap, lu
h” dimensionless liquid height

K permeability, 1u?

Lp large pore, lu

e meniscus radius, lu

p particle radius, lu

Sp small pore, lu

p pressure, mu/lu-ts?

t time, ts

t dimensionless time

u, U macroscopic velocity, lu/ts

w plate spacing, lu

Greek symbols

P density, mu/Iu’®

o surface tension, mu/ ts?

ox x-direction lattice spacing, lu

oy y-direction lattice spacing, lu

ot time spacing, ts

A relaxation time, ts

u chemical potential, lu?/ts?

K gradient parameter, mu’/lu’

B constant

Ocq equilibrium contact angle

04 dynamic contact angle

£ porosity of the particle bed

n liquid-filled pore ratio or liquid saturation
Q dimensionless wetting potential

a angle related to equilibrium contact angle
¢ constant related to density on solid surface
v mixing energy density, mu-lu?/ts’
subscripts
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c capillary

eq equilibrium

/ liquid phase

p particle

s solid wall or surface
sat saturation

v vapor phase

1. INTRODUCTION

The ever-growing heat flux associated with modern
miniaturized and compact electronic and power conversion
systems requires advanced thermal control systems with high
heat flux thermal management capabilities. Employing the large
latent heat of evaporation of the working fluid, i.e., two-phase
cooling systems, such as heat pipes and vapor chamber, provide
an efficient and reliable thermal management compared to single
phase cooling mechanisms, i.e., forced convection over the
extended surfaces. However, the maximum heat transfer
capability of the heat pipes is limited by poor coolant supply to
the heating surface through capillary flow which in turn results
in premature surface dryout and eventual operation failure.

Thin evaporating wicks combined with thick liquid artery
wicks have significantly improved maximum heat flux and
reduced thermal resistance across the wicks [1,2], and they can
be further improved by utilizing thin wicks with non-uniform
particle size distribution, i.e., bimodal wick [3,4]. The enhanced
two-phase cooling capability is attributed to the improved
capillary flow from the selective liquid percolation through
smaller pores associated with the non-uniformity in particle size,
but the additional efforts are critically needed to further
understand the pore-scale capillary flow enhancement
mechanisms as the current capillary flow understanding
primarily remains in the thick uniform particle size wick. Holley
and Faghri [5] have measured the rate-of-rise and effective pore
radius of the thin porous media, while the permeability has been
estimated by curve-fitting the rate-of-rise into the developed
force balance equation.

Over the past few decades, Lattice Boltzmann method
(LBM) has emerged as a powerful tool for simulation of flow in
complex geometries such as porous media. The main benefit of
the LBM is the simple boundary condition implementations,
especially for the non-uniform pore distribution over other
alternatives such as Volume of Fluid (VOF). The implementation
of complicated solid boundaries can be achieved conveniently
through bounce-back rule. The previous LBM approaches have
been used to study fluid flows in porous media, but those mainly
focus on single phase flow [6] and capillary flow in fibrous
porous materials [7]. Hoef et al. [6] developed a single-phase
LBM to model low-Reynolds-number gas flow over mono- and
bi-disperse arrays of spheres and reported results for
permeability and drag force. Nabovati et al. simulated [7] fluid
flow in three-dimensional random fibrous media using single-
phase model, and reported the permeability of the medium using
the Darcy law across a wide range of void fractions. Recently,
Liuetal. [8] has examined two-phase fluid flow of gas displacing
liquid in particle-bed porous media, mainly focusing on uniform

particle sizes. In this study, the thin particle size wick is
examined using the two-phase free-energy-based LBM
approach, especially for understanding the enhanced capillary
flow mechanisms through non-uniform particle size distribution.

This paper is organized as follows. In Section 2, the working
principles of enhanced capillary flow in uniform and non-
uniform wicks are discussed. In Section 3, the mathematical
formulation of the LBM is presented, including the illustration
of the LBM simulation details and validation. In Section 4, the
predicted rate-of-rise in the uniform and nonuniform particles in
the two-parallel plates are shown, including discussions. Finally,
a conclusion will be made.

2. WORKING PRINCIPLES

An ideal wick structure for the two-phase cooling systems
requires not only a large capillary pressure, i.e., capillary
pumping capability, but also a large permeability for maximum
liquid coolant supply to the heated surface. The maximum
capillary pressure, p., is inversely proportional to the capillary
meniscus radius given as [9]

2 1
D. P (1)

where o is the surface tension, and 7. is the capillary meniscus
radius, while the permeability K is given as [9]
&2
a—2r2_
(1-¢)’
where ¢ is the porosity, a is a constant, and r, is the particle
radius. Note that the capillary meniscus radius, 7. is proportion
to the particle radius, 7, [9]. In the wick structure with the
uniform particle size, to increase the capillary pressure, one can
use the small particle size to increase the capillary pressure by
1/r,. However, the small particle size also decreases the
permeability by 7,2, which in turn results in the overall
wickability reduction. To simultaneously increase the capillary
pressure and permeability, the non-uniform particle sizes can be
used, while the small particle size can increase the capillary
pressure and the large particle leads to the large permeability
[3,10] as shown in Figure 1.

)

Improved capillary
pressure (small pore)

\

Improved permeability
(large pore}

/

Figure 1: Schematic of the liquid-filled sintered particle wick with
nonuniform particle size distribution. Non-uniform capillary meniscus
radii are also shown.
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Recent experimental studies show that the wicks with
nonuniform particle sizes enhance the heat flux and heat transfer
coefficient by improving capillary flow and permeability as well
as creating additional evaporation sites [4]. In this study, the
pore-scale enhanced wicking mechanisms of the non-uniform
particle sizes are examined using the LBM as described below.

3. LATTICE BOLTZMANN METHOD (LBM)

3.1 Governing Equations and Boundary Conditions
To simulate the pore-scale capillary flow in the sintered

particle wicks, the LBM is used. The discrete Boltzmann

equation (DBE) for the van der Waals fluid with Bhatnagar-

Gross-Krook (BGK) collision operator can be written as [11]

— {4 — .
Dove, vf, = Lot CTOT
ot A folen

where f,, is the particle distribution function, e, is the microscopic
particle velocity, u is the macroscopic velocity, p is the density,
¢s 1s the speed of sound, 4 is the relaxation time, f ¢ is the
equilibrium distribution function, and F is the averaged external
force experienced by each particle, i.e., intermolecular
interaction force. Note that c;=c/V3, where ¢ = dx/ 5t is the lattice
speed, and dx, Jdy, and J¢ are 1 respectively. Diffuse interface
methods like LBM generally suffer from the existence of
spurious currents. These undesirable currents are small-
amplitude velocity fields that arise from imbalance between
discretized forcing terms at the phase interface. Recently, Lee
and Fischer [12] utilized the phase field theory to develop a new
forcing scheme in Lattice Boltzmann Equation (LBE) in which
the spurious currents are eliminated to round-off. This forcing
scheme, so called the potential form, can be expressed as given
as

F=V(pc)=pV(p, =1V’ p) €
where x is the gradient parameter and uy is the chemical
potential. The equilibrium properties of an isothermal
thermodynamic system that contains wall boundaries can be
described by summing the bulk free energy and a linear wall free
energy [13]. Therefore, the total free energy will take the
following form

¥, 48, = [ (E(p)+ VA M- [ gpdl )

In the vicinity of the critical point, the equation of state can
be simplified, thereby resulting in the following approximation
for the bulk energy Eo

E(p)=Blp-p"V(p-p") (6

where p/ and p, are the liquid and vapor densities at

saturation, respectively, and f is the constant related to the

compressibility of the bulk phase. The chemical potential xy is
related to the bulk energy given as

_ 9K, 7

Hy op (7

The gradient parameter x and the liquid-vapor surface
tension force ¢ are

B —pl)
8

sat

sat 3
o= % lzKﬂ )

where D is the interface thickness which should be greater than
3 lattice units for numerical stability. Here, we used D = 4. The
relation between ¢; in Eq.(5), the dimensionless wetting potential
Q, and the equilibrium contact angle 8., can be expressed by

4
Q= Janp (10)

o=y

Q= ZSgn(g -0, )(cos(%)[l - cos(%)])g (11)

)

where
a = arccos(sin @, )*.
It follows that the boundary condition at the wall for V?p in
Eq.(4) would take the form of

Kn'ps:_¢l (13)

where n is the unit vector normal to the wall. By establishing the
appropriate boundary condition for Laplacian using Eq.(13), u
= up-kV?p can be treated as a scalar, which avoids the
development of parasitic currents at the phase interface. The
values of the LBM parameters used in the present study are
summarized in Table 1. All values are in lattice unit, i.e., a
combination of lattice length unit (lu) and lattice time unit (ts).

Table 1. Values of the parameters used in the LBM simulations

LBM Parameter Magnitude in Lattice Unit
ox 1
ox 1
ot 1
pre 1
P 0.2
Oeq 30°
cs 13
g 0
y/ 0.5
o 1.365x1073
s 0.01
K 0.0128
D 4
ho 93
hi 2
h2 161

The unknown particle distribution at the wall can be found
by implementing equilibrium boundary condition, which
essentially includes the calculation based on the bounce back
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rule after streaming, followed by the immediate relaxation
toward the equilibrium state. This condition implies that any
unknown variable ¢ near the wall should be approximated by

P(x, +e,01) = P(x, —e,o1)

P(x, +2e,0t) = g(x, —2e,OF) (14)
where X; is the wall node and o¢ is the time step. p and u at the
wall boundary should be calculated using Eq. (14). Further
details on the wall boundary conditions are found in the previous
work [13]. Since a normal vector cannot be defined at the sharp
corners of solid particles and plates, special boundary treatment
is necessary. Here, we have used the isotropic method proposed
by Connington et al. [14]

To validate the LBM, the rate-of-rise between the two plates
using the LBM are compared with the closed-form solution, so
called Bosanquet equation, given as [15]

o d'h dl . e dh’ .

(h +h°)?+(F)2+(h +hO)F=acos:9d—bh (15)
where h"=h(t)/W and hy"=hy/W are dimensionless liquid height
above the liquid-vapor surface and dimensionless liquid-
submerged length, respectively, as shown in Figure 2. The W is
the space between two parallel plates, £*=t/t, is the dimensionless
time and #) = o (W?)/12u, a = 201 (W) o/(12w)* and b = p? (W)?
g/(12w)?, g and o are gravitational acceleration and surface
tension, respectively. We have also decided to work with static
contact angle for the sake of simplicity. The simplified
Bosanquet equation was solved using 4" order Runge-Kutta
method. Figure 3 shows a comparison between the LBM
simulation results and the solutions of Eq.(15) for W =48 and
¢=0, which agree well. Note that the liquid height, /" in the LBM
predicts the maximum (capillary meniscus liquid front near the
plate) and the minimum heights (central part of the capillary
meniscus recess), and only minimum height is shown in Figure
3, showing the RMS error below 10%. A detailed analysis of the
capillary rise between parallel plates under dynamic conditions
and by considering the effect of long-range interactions between

the fluid and solid walls is presented in the previous work [15].
Gradienl Free B.C.

Gradient Free B.C.
“y'g 221 JUAIpRID

Wall B.C.

Figure 2: Rate of rise between two parallel plates in contact with a
liquid reservoir. The space between the plates, W, the liquid height, #,

the liquid-submerged depth, /o, and static contact angle 6s, and the
boundary conditions are also shown.

3.2 LBM Simulations

To investigate the effects of nonuniform particle size
distribution on enhanced wickability, uniform and nonuniform
simulations are performed as shown in Figure 4. In Figure 4(a),
the two parallel plates are filled with uniform square particles
(case 1), while Figure 4(b) and (c) show non-uniform square
particles between the two plates with the spacing of W (case 2
and 3, respectively). In case 3, the small pores (Sp6 and Sp8) are
smaller than the corresponding pores in case 2 resulting in higher
capillary pumping capability. In addition, the larger pores in case
3 (Lp3 and Lp4) are larger than the corresponding pores in case
2, offering large liquid-permeable space. These have been
achieved by moving the smaller particles closer to the larger
particle and/or closer to the wall.

35 T T T T T T T T T T
W=48 lu, g=0

w
o
1

I

25 Bosanquet

2.0 ) il i

Dimensionless Liquid Height, 4

0.0 ¢ T T T T T T T T T T T
0 50 100 150 200 250 300

. . . *
Dimensionless Time, ¢

Figure 3: Predicted LBM results for the rate of rise between parallel
plates with =48 lu and g =0, compared with close-form solution, i.e.,
the Bosanquet equation, Eq.(15).

Note that all three cases have the same number of particles (4
rows and 3 columns of particles) with the same porosity, & =
0.75. Except for the wall boundary at the bottom, the rest of the
boundary conditions are gradient free. Table 2 and 3 summarize
the dimensions of the distance between the plates and
uniform/non-uniform pores used in the LBM simulations shown
in Figure 4.

The liquid-vapor density ratio, spacing of the parallel plates and
the  porosity of the medium are p/p. =5,
W = 48 lu, respectively. The LBM simulation size is a 721x251
lattice, where the liquid-vapor interface outside the parallel
plates does not change significantly due to the loss of liquid by
capillary flow. The initial liquid elevation above the bottom
boundary /42, the liquid submerged length £ and the gap between
the initial liquid-vapor interface, and the first row of particles /;
are 161, 93 and 2 lu, respectively. The contact angle is 30° inside
the parallel plates, while it is 90° at the outside of the plates to
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prevent the liquid from climbing up at the external side of the
wall.
Table 2: Summary of the LBM simulation dimensions for uniform

iarticle size distribution setui.

W 48
lx]a le, lx3 > lx5 8
L4 4

Table 3: Summary of the LBM simulation dimensions for nonuniform

iarticle size distribution for two different setuis.

w 48 48
L, Lo 4 4
lx3, lx4 10 10

lx5 8 8
Ly, L2 4 4

lx7 5 5

lx8 3 0

lx9 10 11

Lo 5 4
L 3 6

Note that the contact angle of the external wall does not
influence the fluid flow inside of the two plates. Furthermore,
since this study focuses on the capillary-driven flow, i.e., low
Bond number we have neglected the effect of gravity by
choosing g = 0 lu/ts®.

(a) Gradient Free B.C.

Particle

Gradient Free B.C.
"y ¢] 99 TWAIpRIn)

Wwall B.C.

(b) Gradient Free B.C.

Plate

Gradient Free B.C.
'€ 9917 JUIIpRIn)

Particle

Wall B.C.
(©) Gradient Free B.C.

Platc

Particle

Gradient Free B.C.
0'g 3344 Jusipeiny

Figure 4: (a) Uniform particle-filled two parallel plates (case 1), (b)
nonuniform particle-filled two parallel plates (case 2), and (c¢) modified
nonuniform particle-filled two parallel plates showing the small pores
(Sp) and large pores (Lp) created (case 3). The plates, particles, pore
sizes and boundary conditions are also shown.

4. RESULTS AND DISCUSSION

In this section, the LBM simulation predicts the rate-of-rise
through uniform/non-uniform particle wick, especially for the
enhanced wickability of the non-uniform particle wick along
with discussions. Figure 5(a) shows the maximum dimensionless
liquid height of the capillary meniscus front, 4", as a function of
dimensionless time, ¢*. As the time increases, the maximum
liquid height increases for all three cases, with different rate-of-
rise at given time. In other words, initially it sharply increases,
then it slows down for a certain period of time until it sharply
increases again, i.e., periodic sharp rate of rise.
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Figure 5: (a) Maximum and (b) minimum dimensionless liquid height
as a function of dimensionless time, ", and (c) snapshots of rate of rise
simulation at different time steps for uniform (case 1) and nonuniform
(case 2 and 3) particle size distribution. The plate spacing W and
porosity, &, are also shown.

The sharp rate-of-rise periods are mainly associated with the
rise of liquid in the small pores between the particles (adjacent

to the plates) and the plates, while the slow ones between the
sharp ones, i.e., plateaus, correspond to the delayed capillary
flow to the upper particles. In uniform particle wick (case 1), the
plateau periods are larger than the other cases, and the three
periods increase as the time increases, indicating that the period
of maintaining the plateaus increases as the liquid height
increases. The duration of the first plateau is inversely
proportional to the pore size formed between the first and second
rows of particles adjacent to the plates [Spl in Figure 4(a), Sp3
in (b) and Sp6 in (c)], i.e., the smaller the pore size, the higher
the capillary pressure which in turn results in a faster rate of rise
and hence a shorter plateau in liquid height. The marginally
higher rate of rise for case 1 at #* = 55.55 is related to the rapid
capillary rate-of-rise through the small but lengthy pore between
the particle and plate in the second particle row, i.e., Sp2 in
Figure 4(a), as shown in Figure 5(c). However, this sharp rise is
followed by a relatively large plateau period, i.e., second plateau
of case 1 in Figure 5(a) from #* = 50 to #*= 130 because it needs
some time for the liquid to fully fill the pores between the first
and second particle rows. On the other hand, the second plateaus
for case 2 and 3 are relatively short, and the liquid can rise
quickly through the pores in the second particle row until it
reaches the top surface of the large particles at the third row.
Figure 5(c) shows the corresponding snapshot for case 2 at ¢* =
106.65. This sharp rate of rise is in part due to the combination
of small and large pores between the particles in the in the first
and second rows, i.e., Lp1 and Sp4 in Figure 4(b), and Lp3 and
Sp7 in (c). While the large pores provide enough space for liquid
flow, the small pores create a high capillary pressure which
improves the liquid rise from one particle layer to the next.
Figure 5(c), case 3, illustrates how the liquid flows through the
small pores in diagonal direction, i.e., Sp4 and Sp6, which is
much different from the case 1. Furthermore, the large permeable
pores in the second particle row, i.e., Lp2 and Lp4 in Figure 4(b)
and (c), respectively, improve the permeability of the
nonuniform particle size wick. The sharp rate-of-rise of the non-
uniform particle size wicks (cases 2 and 3) occurs at 50 < ¢* <
70, which is followed by a long plateau. The rapid capillary front
advancement is shown in Figure 5(c), case 2. This is due to the
fact that the pore between the plate and the particles at the third
and fourth particle rows, i.e., Sp5 in Figure 4(b), is not small
enough to create the necessary capillary pressure for the rise of
capillary meniscus front and hence the liquid should fill the
remaining pores in the third particle row until it can rise to the
next particle row. On the other hand, the small pore at the same
location for case 3, i.e., Sp9, assists the liquid rise by providing
a large capillary pressure which results in a smaller plateau, i.e.,
sharp rate of rise at #* = 145. In Figure 5(a), the instantaneous
enhancement of the maximum dimensionless heights of the
capillary front of the non-uniform particle size wick (case 2) is
43.5% compared to that of the uniform particle size wick (case
1) at £* = 105, while it is about 45% in the non-uniform particle
size wick (case 3) at #* = 105. The cumulative (time integral)
enhancement of the maximum dimensionless heights of the
capillary front of the non-uniform particle size wick (case 2) is
1.24% compared to that of the uniform particle size wick (case
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1), while itis 11.1% in the non-uniform particle size wick (case
3).

Figure 5(b) shows the minimum liquid height of the
capillary flow, i.e., bottom portion of the capillary meniscus.
Similarly observed in the maximum height, the minimum height
also shows the periodic sharp rate-of-rise, but the plateaus are
completely flat, i.e., no minimum height change for a certain
period time. This is associated with the delayed capillary
meniscus crescent detachment from the top corners of the
particles. The non-uniform particle wicks, especially case 3,
show shorter plateau periods, since the liquid quickly fills the
small pores (along the diagonal direction) between the particles
in different rows [such as Sp4 in Figure 4(b), and Sp7 in (c),
respectively]. The detailed explanations on the delayed capillary
meniscus crescent detachment are found in previous work [16].
The instantaneous enhancements of the minimum dimensionless
heights of the capillary front of both of the non-uniform particle
size wicks (case 2 and 3) are around 160% compared to that of
the uniform particle size wick (case 1) at £*=79. The cumulative
(time integral) enhancement of the minimum dimensionless
heights of the capillary front of the non-uniform particle size
wick (case 2) is 13.43% compared to that of the uniform particle
size wick (case 1), while it is 27.47% in the non-uniform particle
size wick (case 3).

Figure 6 illustrates the snapshots of the rate-of-rise for
uniform particle size wick at different simulation time steps.
Figure 6(a) shows the initial liquid height within the two plates,
which stays in the same level of the liquid pool at ¢* = 0. (b) In
the early stage of the simulation, i.e., = 0.4, the liquid quickly
interacts with the inner wall and bottom surface of the particle in
the first row due to the attractive intermolecular forces between
the liquid and solid surfaces. Note that at the very early stages,
i.e., ¢ < 0.4, the minimum liquid height, i.e., central part of the
liquid, is lower than the liquid height in the pool due to the
capillary meniscus formation as observed in Figure 5(b). (c) As
the time increases, at ¢* = 5.21, the liquid rises quickly to the top
surface of the first particle layer. Once the liquid height reaches
the same height of the top surface of the first particle row at t* =
5.21, the liquid level stays nearly the same until the liquid rises
along the side wall toward the second particle layer. (d) Once
liquid reaches the particle at the second row, i.e., " = 41.23, it
rises quickly to the top surface of the particle by the capillary
flow through the pores between the wall and the particles
adjacent to the wall [Sp2 in Figure 4(a)], i.e., the small capillary
meniscus radius in the small pores. This is shown in (e), i.e., t* =
55.55. (f) The liquid in the central part of the capillary meniscus
stays at the same level of the top surface of the first particle row,
i.e., " = 63.80, until it finally detaches from the top surface of
the first particle row. As previously mentioned in this section,
this delayed liquid rise due to the corner of the particle has been
similarly observed in the previous work [16], which studied on
the interaction of fluid interfaces with immersed solid particles.
(g) Once the liquid detaches from the top surface of the particle,
t* = 80.73, (h) the liquid-vapor interface very quickly rises
toward the upper layer until it touches the bottom surface of the

(a) (b)
£=00.00 =00.40
(c) (d)
=05.21 =41.23
(e) (D
'=55.55 =63.80

(g)
£=80.73

(h)
£'=84.63

[=87.67 IE
_l i S

(1) )

=110.24

Figure 6: Snapshots of rate of rise in particle-filled parallel plates with
uniform particle size wick (case 1). The dimensionless time, ",
corresponding to each of the snapshots are also shown.

second particle row at ¢* = 84.63.(i) The liquid then rises quickly
through the pores between the particles. (j) The liquid finally
rises to the top surface of the second particle layer. In a sense, (j)
and (c) are similar, which means that after the step (j), the liquid
repeats the similar wetting and capillary flow behaviors observed
in (¢)-().

Figure 7 illustrates the snapshots of the rate-of-rise for
nonuniform particle size wick case 2 at different simulation time.
Figure 7(a) shows the final stage of the first sharp rate of rise at
t"=7.81, after which the liquid level remains nearly the same for
a long period (first plateau). (b) Unlike case 1 in which liquid
rises from first particle row to the second during the first plateau
only due to interaction with the wall, in case 2 the small pore in
the diagonal direction between the large particles in the first and
second layer, i.e., Sp4 in Figure 4(b), provides a high capillary
pressure which assist liquid rise between first and second particle
rows, i.e., = 36.37. (c) The capillary meniscus crescent finally
detaches from the top surface of the large particle at first row,
i,e., "= 55.99, and it rises through the pore between the middle
large particle at second particle row and plate at a moderate rate.
(d) The liquid reaches the small particles at the second particle
row at "= 71.27. (e) since the pore between the particle and plate
is smaller than the pore between the particles at the second
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particle row, the associated higher capillary pressure adjacent to
the plate provides a faster rate of rise until the meniscus reaches
the particle at the third row, ie., " = 98.90. (f) The liquid
experiences a sharp rate of rise in the small pore between the
particle and the plate in the third particle row, i.e. £ = 106.6. (g)
It takes a long time for the meniscus to detach from the top
surface of the large middle particle at the third particle row due
to both the corner effect and the relatively large surface length of
the large particle. The meniscus finally detaches at ¢* = 155.2
while the liquid is rising adjacent to the plate. (h) Liquid rises
through the pores between the particles. The liquid level adjacent
to the wall does not change significantly, though. (i) After a very
long time the capillary meniscus adjacent to the plate reaches the
small particle at the fourth particle row at t* = 264.1. (j) The
liquid rises quickly through the small pore between the particle
and plate. This rise requires the meniscus at the center to recede
as observed by comparing the capillary meniscus front of (i) and
(j) at the center of the parallel plates. This observation can
explain the sudden decrease in minimum liquid height at 264 <
¢* <280 in Figure 5(b). The other occasions where the maximum
or minimum liquid height experience a sudden decrease can also
be similarly explained. (k) The liquid rises through the pores
between the particles and plates. (1) The liquid reaches the top
surface of the particles at fourth row.

Figure 8 illustrates the snapshots of the rate-of-rise for

nonuniform particle size wick case 3 at different simulation time
steps. Figure 8(a) shows the particle arrangement between the
parallel plates and the initial liquid height within the two plates
at £ = 0. (b) The liquid rises quickly to the top of the first particle
row. (c¢) The high capillary pressure associated with the small
pore between the plate and particles at the first and second row,
i.e., Sp6 in Figure 4(c) provides a high capillary pressure that
assist the liquid rise to the second row, i.e., ¢*=32.98. This is
in contrast to the situation for case 2 at ¢ = 36.37 where liquid
rise to the second particle row took place mainly due to the small
pore between the large particles in diagonal direction, i.e., Sp4
in Figure 4(b).
(d) Liquid detaches from the top surfaces of all the three particles
in the first particle row relatively quickly at ¢* = 46.87. Aside
from the high capillary pressure associated with the small pores
adjacent to the plate and in the diagonal direction, the relatively
quick meniscus detachment from the top surface of the particles
at the first particle row is due to the large permeable pore
between the middle particles in the first and second row, i.e., Lp1
and Lp3 in Figure 4(b) and (c), respectively. (e) Liquid rise
through the pores in the second particle row. The large pore
between the particles in the second row, i.e., Lp4 in Figure 4(c)
provide space for liquid to rise in the middle, i.e., ¢ = 72.92. (f)
The liquid that passes the small particles in the second row
reaches the particles adjacent to the plate and rises sharply
through the small pore between the plate and the particle in the
third particle row. (g) The liquid rises to the top surface of the
large particle at the third row quickly, and the small pore between
the middle particles at the second and third particle row, i.e., Sp8
in Figure 4(c) provides a high capillary pressure by which the

(a) (b)
=07.81 £=36.37
(©) (d)
£=55.99 £=71.27

()
£=106.6

(©)
£'=98.90

(h)
£=170.3

(2
r=155.2

(i) @

=264.1 ®-a =277.6
N M
(k) 3“ : (1)
=325.6 1 1] _ £=390.2
¥ .

Figure 7: Snapshots of rate of rise in particle-filled parallel plates
with nonuniform particle size wick case 2. The non-dimensional time-
steps corresponding to each of the snapshots are also shown.

meniscus is detached from the top surface of the large middle
particle much more quickly compared to the case 2. This is
consistent with the shorter plateau of case 3 which ends much
sooner than that of case 2 at " = 130.2 in the curve for the
minimum liquid height in Figure 5(b). This interaction is visible
in (g). (h) The small pore between the plate and the particles in
the third and fourth particle row, i.e., Sp9 in Figure 4(c), provides
a high capillary pressure by which the liquid reaches the small
particle in the fourth row relatively quickly at "= 152.8. (i) The
liquid detaches from the top surface of the particles in the third
particle row and rise to the fourth particle row at ¢ = 225.7. (h)
The liquid reaches the top surface of the particles at the fourth
row and continue to rise along the plate.

The minimum and maximum liquid heights do not always reflect
the wickability. For example, in Figure 6(e), the maximum and
minimum liquid heights show significant differences due to the
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Figure 8: Snapshots ofrate of rise in particle-filled parallel plates with
nonuniform particle size distribution case 3. The non-dimensional time-
steps corresponding to each of the snapshots are also shown.

different pore-scale capillary flow scenarios from the different
capillary flow history and pore distributions. Thus, to simplify
the capillary flow behaviors, dimensionless parameter #, liquid-
filled pore ratio, which is the ratio between the pores filled with
liquid to the maximum pore volume, 7, i.e., liquid saturation,
only within the space between the two plates.

Figure 9 shows the liquid-filled pore ratio, 7, as a
function of dimensionless time, ¢*. This parameter is beneficial
to characterize the liquid saturation in the pore structures. The
uniform particle size wick (case 1) shows that the liquid filling
is similar to those observed from the maximum and minimum
liquid heights [see Figure 5(a) and (b)], i.e., step-wise pore
filling. This is attributed to the fact that the capillary meniscus
front advances by the capillary fingering through the pores
formed between the two adjacent horizontal particles, while the
liquid filling delays by the corner of the pores formed between
the two adjacent vertical particles. While the same overall trend
also applies to non-uniform particle size wicks, the period
between the two sharp rises reduces compared to the uniform
particle wick, due to the staggered capillary filling between the
small and larger pores. While the higher 7 for case 3 compared

1.00 T T ——

= W= 48 lu, £=0.75 s
£ ] -~ /
= ) P //"
& 0759 Nonuniform, case3 -~ ,,.,J/’\ -
§ \ - e - s
= b4 Nonuniform, case 2
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g /7
—0.50 / 4
= AN
8 /7 Uniform, case 1
§ o025 j
g -
£
= i
|
0.00 : , :
0 100 200 300

Dimensionless Time, ¢
Figure 9: Dimensionless liquid filled pore ratio as a function of
dimensionless time for uniform (case 1) and non-uniform particle size
wicks (cases 2 and 3). The plate spacing W and porosity, &, are also
shown.

to case 2 at 30 <¢* < 80 is related to the enhanced capillary filling
through the small pores between the particles and walls, i.e., Sp6
in Figure 4(c), the higher 7 at t* > 80 is partly related to the
small pore between the middle particle of row 2 and 3, i.e., Sp8
in Figure 4(c) and partly related to the small pore between the
plate and the particles at the third and fourth rows, i.e., Sp9. The
instantaneous enhancement of the liquid-filled pore ratio of the
non-uniform particle size wick (case 2) is 68% compared to that
of the uniform particle size wick (case 1) at #* = 148 while it is
about 75% in the non-uniform particle size wick (case 3) at t* =
148. The cumulative (time integral) enhancement of the liquid-
filled pore of the non-uniform particle size wick (case 2) is
12.31% compared to that of the uniform particle size wick (case
1), while it is 26.11% in the non-uniform particle size wick
(case 3).

5. CONCLUSION

In this study, the free-energy-based, single-component, two-
phase Lattice Boltzmann method (LBM) with a minimal
parasitic current is utilized to predict the rate of rise through the
capillary channels between the two parallel plates, uniform/non-
uniform particle wicks between two plates. The LBM-predicted
rate-of-rise between two parallel plates agrees well the analytical
solution within RMS error of 10%. In the uniform particle size
wick, the capillary meniscus front percolates though the pores by
the periodic capillary filling, resulting in the step-wise rate-of-
rise. The plateau periods increase as the liquid level increases.
The LBM predicts that the non-uniform particle wick enhances
the rate of rise by providing higher capillary pumping capability
through the small pores and high permeability through the larger
pores. The maximum and minimum liquid height and liquid-
filled pore ratio are enhanced by 1.24%, 13.43%, and 12.31 for
non-uniform particle size wick (case 2) and 11.1 %, 27.47%, and
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26.11%, for non-uniform particle size wick (case 3),
respectively. In practice, the non-uniform pore size distribution
can be achieved by mixing the smaller and larger particles for the
traditional furnace sintering process or by using 3D printing
technique, which is currently being studied.
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