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Abstract

We study least squares linear regression over N uncorrelated Gaussian features that
are selected in order of decreasing variance. When the number of selected features
p is at most the sample size n, the estimator under consideration coincides with the
principal component regression estimator; when p > n, the estimator is the least
{5 norm solution over the selected features. We give an average-case analysis of
the out-of-sample prediction error as p, n, N — oo with p/N — «and n/N — 3,
for some constants « € [0,1] and S € (0,1). In this average-case setting, the
prediction error exhibits a “double descent” shape as a function of p. We also
establish conditions under which the minimum risk is achieved in the interpolating
(p > n) regime.

1 Introduction

In principal component regression (PCR), a linear model is fit to variables obtained using principal
component analysis on the original covariates. Suppose the data consists of n i.i.d. observations
(®1,%1), -+, (Tn, yn) from RY x R. Let X := [zy]---|z,]” be the n x N design matrix, y :=
Y1,--.,Yn)" be the n-dimensional vector of responses, and ¥ := E[x;2{] € RV*YN_ Assuming
3 is known (as we do in this paper), the PCR fit is given by V(X V) y, where V' € RV *? is the
matrix of top p (orthonormal) eigenvectors of X, and A denotes the Moore-Penrose pseudo-inverse
of A. PCR notably addresses issues of multi-collinearity in under-determined (n < V) settings, while
avoiding saturation effects suffered by other regression methods such as ridge regression [1, 7, 12].

The critical parameter in PCR is the number of components p to include in the regression. Nearly
all previous analyses of variable selection have restricted attention to the p < n regime [e.g., 4].
This restriction may seem benign, as conventional wisdom suggests that choosing p > n leads to
over-fitting. This paper aims to challenge this conventional wisdom in a particular setting for PCR.

We study the prediction error of the PCR fit for all values of p in the under-determined regime. We
assume the x; are Gaussian and conduct an “average-case” analysis, where the “true” coefficient
vector is randomly chosen from an isotropic prior distribution. Thus, all of the original variables
in x; are relevant but weak in terms of predicting the response. When the eigenvalues of 3 exhibit
some decay, one expects diminishing returns as p increases. It is often suggested to find a value of p
that balances bias and variance, and such a value of p can be found in the p < n regime.

However, we show that when p > n, the prediction error can again be decreasing with p. This
phenomenon—the second descent of the so-called “double descent” risk curve [2]—has been observed
in a number of scenarios and for many different machine learning models (where p is regarded as a
nominal number of model parameters) [2, 3, 8, 13, 17]. In these previous studies, the limiting risk
as p — oo was often (but not always) observed to be lower than the best risk achieved in the p < n
regime. We prove that this phenomenon occurs with PCR in our data model: the lowest prediction
error is achieved at some p > n, rather than any p < n.
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Our data model. Ourdata (x1,y1),...,(®n, ys) are assumed to be i.i.d. with z; ~ (0, X), and

yi = x; 0 4+ w;.
Here, w1, ..., w, are i.i.d. N(0, o?) noise variables, and @ € RY is the true coefficient vector. We
assume, without loss of generality, that ¥ is diagonal. In fact, we shall take ¥ := diag(\1, ..., An)

with distinct positive eigenvalues A\; > --- > Ay > 0. The prediction (squared) error of 0’ € RV is
Exy[(y — x76")%], where (x,y) is an independent copy of (x1, y1).

Some notation. For a vector v € RN, let vp € RP denote the sub-vector of the first p entries of v, and
let v pe € RY—P denote the sub-vector of the last N — p entries. Similarly, for a matrix M € RPXN
let M p € R™*P denote the sub-matrix of the first p columns of M, and let M p. € R"*(N=p)
denote the sub-matrix of the last NV — p columns.

Recall that PCR selects components in order of decreasing A;. So, using the notation from above, the
PCR estimator  for  is defined by

7 (XpXp) ' Xpy ifp<n, A
0p = . Op. := 0. 1
P {X;(XPX;)_ly ifp > n; F M
(Recall that X := [@1| - |x,]" and y := (y1,...,yn)"; also, the matrices being inverted above

are, indeed, invertible with probability 1.) The prediction error of the PCR estimate 6 is denoted by
Error := Eg,[(y — x70)?.

Observe that the (squared) correlation between the response and the jth variable is proportional to
)\j9]2., but PCR selects variables only on the basis of the A;. So, for a worst-case 8, PCR may be
unlucky and end up selecting the p least correlated variables. To avoid this worst-case scenario, we
consider an “average-case” analysis, where the true coefficient vector 6 is independently drawn from
an isotropic prior distribution:

Eo[0] =0, Eq[007]=1. )

We will study the random quantity E,, g [Error], where the expectation is conditional on the design
matrix X, but averages over the observation noise w = (wq, . . . , w;, ) and random choice of 6.

Our analysis uses high-dimensional asymptotic considerations to study the under-determined (n < V)
regression problem, letting p, n, N — oo with p/N — « and n/N — [ for some fixed constants
a €[0,1] and 8 € (0,1). We are primarily interested in the limiting value of E,, g [Error], which is
the asymptotic risk.

Our results. In Section 2, we give an exact expression for the asymptotic risk in the case where
the eigenvalues of X exhibit polynomial decay, namely A; = 7" for a fixed constant £ > 0. Our
expression covers both the p < n and p > n regimes, and we find that the smallest asymptotic risk
can be achieved with p > n (or equivalently, @ > ) in noiseless settings. In noisy settings, the
comparison of the p < n and p > n regimes depends crucially on the exponent k.

In Section 3, we relax the condition on the eigenvalues, and instead just assume that the empirical
distribution of the ¢y A;, for some suitable sequence (en) N>1, has a “nice” limiting distribution. We
obtain results similar to those in Section 2 using a slightly different variable selection rule.

Our analyses permit a 1 —o(1) fraction of A;’s to converge to zero as p,n, N — oo. (In particular, the
cn may go to infinity.) This makes our analysis technically non-trivial and more generally applicable.

The proofs of the results are detailed in the full version of the paper [19].

Related works. Strategies for choosing the optimal value of p in PCR (e.g., cross validation,
variance inflation factors) are typically only studied in the p < n regime [9]. For instance, the exact
risk of PCR as a function of p for Gaussian designs can be extracted from the analysis of Breiman
and Freedman [4], but only for the p < n regime.

The high-dimensional analyses of ridge regression by Dicker [5], Dobriban and Wager [6], Hastie
et al. [8] are closely related to our work. Indeed, for fixed p, the PCR estimator (or “ridgeless”
estimator) is obtained by taking the ridge regularization parameter to zero. These analyses extend



beyond the Gaussian design setting that we consider, but are restricted to cases where either all
eigenvalues of 3 remain bounded below by an absolute constant as N — oo, or where the ridge
regularization parameter is held at some positive constant.

The “double descent” phenomenon was observed by several researchers [e.g., 2, 8, 13, 17] for a
variety of machine learning models such as neural networks and ensemble methods. Belkin et al.
[3], Hastie et al. [8], Muthukumar et al. [13] provide statistical explanations for this phenomenon by
studying the behavior of the minimum ¢5 norm linear fit with p > n. The analysis of Muthukumar
et al. [13] restricts attention to correctly-specified linear models (i.e., p = N in our notation) and
shows some potential benefits of the p > n regime. A related analysis of estimation variance was
carried out by Neal et al. [14]. The analysis of Belkin et al. [3] studies an isotropic Gaussian design
that is otherwise similar to our setup, as well as a Fourier design that is related to the random
Fourier features of Rahimi and Recht [15]. The analyses of Hastie et al. [8] look at more general
and non-isotropic designs (and, in fact, certain non-linear models related to neural networks!), but
as mentioned before, they assume the eigenvalues of 3 are bounded away from zero. While their
“misspecified” setting appears to be similar to our setup, we note that varying their p/n parameter
(which they call ~y) changes the statistical problem under consideration. In contrast, our analysis
looks at the effect of choosing different p on the same statistical problem, and thus is able to shed
light on the number of variables one should use in principal component regression.

Notations for asymptotics. For any two random quantities X and Y, we use the notation X By
to mean that X =Y + 0,(Y") as n, p, N — oo. Similarly, for any two non-random quantities X and
Y, we use the notation X — Y to mean that X =Y + o(Y) as n, p, N — oco. Finally, we say that
X > Y holds in probability if Pr(X >Y) — lasn,p, N — co.

2 Analysis under polynomial eigenvalue decay

In this section, we analyze the asymptotic risk of PCR under the following assumptions:

A.1 There exists a constant £ > 0 such that \; = j~ " forall j = 1,..., N.
A.2 There exist constants o € [0,1] and 8 € (0,1) such that p/N — « and n/N — (3 as
p,n, N — o0.
Assumption A.1 implies that the eigenvalues of 3 decay to zero at a polynomial rate, while Assump-
tion A.2 is a standard scaling for high-dimensional asymptotic analysis.

We also assume in this section that there is no observation noise, i.e., var(w;) = o2 = 0. In the
noiseless setting, the asymptotic risk is the limiting value of Eg[Error]. Results for the noisy setting
are stated in Appendix C.

2.1 Main results

Our first theorem provides characterizes the asymptotic risk when a < 3. Define the functions h,
and R, on (0, 5):

1
he(a) == gi/ t*=2dt — 1, forall a < 3; 3)

1
Ri(a) = Nl_“/ t‘"‘dt-L forall a < 5. 4

B—a’
Theorem 1. Assume A.1 with constant k; A.2 with constants o and 3; 02 =0;and a < B. Then
Eg[Error] 2 R.(a).

Furthermore, the equation h,(«) = 0 has a unique solution o* over the interval (0, 8), and R, ()
is decreasing on « € |0, a*) and increasing on « € (a*, 3). Finally,

* . —K ﬂ
Re(a®) = onin Rye(a) = N! @)

&)
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Figure 1: The asymptotic risk function R, as a function of o (with n = 300, N = 1000, 5 =
n/N = 0.3 and k = 1, 2 respectively). The location of a* from Theorem 1 is marked with a black
circle. In both cases, the asymptotic risk at « = 1 is lower than the asymptotic risk at a*.

The proof of Theorem 1 is sketched in Section 2.2, with some details left to Appendix A. Theorem 1
supports the well-known intuition that the risk curve is “U-shaped” in the p < n regime. Our next
theorem, however, shows a very different behavior when o > 3.

Formally define m, (z) for z < 0 to be the smallest positive solution to the equation

1 1 [ 1
e S B e K ©6)

and let m/_(-) denote the derivative of m,(+). Also define the function R,; on (5, 1]:

_ B /1 _ m!.(0)
R.(a) = N'=* trdt - —= ., forall . 7

. (mﬁ,«n LT ) forte= s ™
Theorem 2. Assume A.1 with constant ; A.2 with constants o and B; 0 = 0; and o > B. The

function m,; and its derivative m!, are well-defined and positive at z = 0 (and hence R, () is
well-defined for all o > ). Moreover,

Eg[Error] 2 R, (a).

The proof of Theorem 2 is sketched in Section 2.3, with some details left to Appendix B.

We plot the asymptotic risk function R, in Figure 1 for two different values of «, both with 8 = 0.3.
(In simulations, we find that Eg[Error| matches these curves very closely for sample sizes as small
as n = 300.) For both values of x € {1, 2}, we observe the striking “double descent” behavior as
found in previous studies [e.g., 2]. Moreover, we see that the asymptotic risk at &« = 1 is smaller than
the minimum asymptotic risk achieved at any o < /3. This, in fact, happens for all values of x > 0,
as we claim in the next theorem.

Theorem 3. Assume A.1 with constant k, A.2 with constants o and 5, 02 = 0. Let o be
the minimizer of R, over the interval [0, ). Then limsupy Rx(1)/Rx(a*) < 1. Moreover,
Ri(a)/Ru(l) = c0casa — 5.

The proof of Theorem 3 is given in Section 2.4. Theorem 3 shows that the asymptotic risk exhibits a
second decrease somewhere in the p > n regime when N is sufficiently large, and moreover, that it is
possible to find a value of p in this p > n regime to achieve a lower asymptotic risk than any p < n.

In the noisy setting (see Appendix C), it is possible for the asymptotic risk to be dominated by the
noise, in which case the minimum asymptotic risk is in fact achieved by o = 0 (i.e., p = o(n)).
However, there exists a regime with 2 > 0 in which we have the same conclusion as in Theorem 3.




2.2 Proof sketch for Theorem 1

We first show that h,(a) = 0 has a unique solution on (0, 3). Define & (a) := a'~*h, (). We

shall show that f, () = 0 has a unique solution on (0, 3), which in turn immediately implies that
hy(a) = 0 also has a unique solution on the same interval. Observe that

dh,.(a) _ —kB+ ka
- e <, ®)

Hence, the function ﬁn(a) is strictly decreasing on a € (0, §]. Furthermore, we have

he(a) >0 asa— 0%, and he(a) <0 ata = 3. )

Because /. is continuous, it follows that the equation /() = 0 has a unique solution on (0, ).

We now prove Eg[Error] = R, (). Since the proof only requires standard techniques, we just
sketch the main ideas in this section, and leave the full proof to Appendix A. First, since a < 3, for
large enough N, we have p < n. Then the prediction error is given by

Error = Eoul(y—2'0)°] = [S¢% (XpXp) " XpXpeOpe|? + 1242002,

where Xp € RP*? and X p. € RWV—P)*(N=P) are two diagonal matrices whose diagonal elements
are the first p and last N — p diagonal elements of 3, respectively. By (2), we have

Eo[Error] = tr(Xp.Xp (XpXp)  Sp (XpXp)  XpXpe) + tr(Zpe).

Note that X p- is independent of X p, thus, given X p, the trace that includes X pc is a sum of
N — p independent random variables. Therefore, we have

Eg[Error] 2 tr(Zpe)- (tr(XpXp) 1 2p) + 1)
= tr(Tpe)- (tr((XpXp) H+1)
B

2 tr(zpc)ﬂ —,

where Xp = X pEIZl/ % is a standard Gaussian matrix. The first line above uses Markov’s
inequality to show that [Eg [Error| converges in probability to Eg x . [Error]. The third line above

uses Assumption A.2 and the fact that X , X p is a standard Wishart matrix W, (I,n). So, to prove
(4), we just need to compute tr(X pc). Note that fSH tTrdt <sTF < f;l t—* dt. Hence, we have

S

N N N
N% 1 N* 1 NE o1
[ty <y X g =N ee) < [ Gran g 4o
1=p+1 p

Therefore, we have tr(Xpe) — N1=F f; t=" dt as p — oo, and thus we have Eg[Error] > R, ().

Finally, to prove (5), we analyze the shape of R («) to find its minimum value over o < 3. We take
the derivative of g, (a) := N* 1R, (a):

e a4 LAt —Bal R (o)
=f T Gy NCErT "

Using (8) and (9), we deduce that R («) first decreases and then increases as a function of « in the
interval (0, ). Therefore, the minimum risk is achieved at the unique solution o* of the equation
hy(a) = 0 over the interval (0, 5). Equation (11) also implies f; t="dt = (B—a*)(a*)~". Hence,
the minimum risk is given by

dg,(a)
da

1
min R,(a) = N'°F b rdr = NP
a<f B—a* [, (a*)"




2.3 Proof sketch for Theorem 2

We first show that m,,(0) is well-defined. Consider the RHS expression from Equation (6) evaluated
at z = 0; by a change-of-variable in the integral, we have

11 [ gl lr 1 B T
— — = dt = — dt 12
m B Jo—r 1+t-m Baml—1/x <m1/”/oz a/l/w/a 14+tr (12)

where m = m,(0). So, we just need to show that ¢, (s, &) = 0 has a unique solution s}, for s over
the positive real line, where g (s, ) is defined by

ﬂ /00 tnf2
(S, = = — dt. 1
t(ss0) == T-a | (13)

(This makes m,; (0) well-defined, via the equation s* = m,(0)'/*/a, and also verifies its positivity.)
The derivative of ¢, (s, &) with respect to s is

u(s, ) _ (a—P)s" =
ds o 82(14s%)

(14)

Hence, since « > 3, we know the function g, (s, «) is strictly decreasing on s € (0, (aiiﬁ)l/”} and

strictly increasing on s € [(—ﬁ)l/K 00). Furthermore, g (s, ) — oo as s — 0 and ¢, (s, ) — 0

as s — oco. Hence, by the continuity of s — ¢, (s, ), we conclude that g, (s, «) = 0 has a unique
solution s7,.

Using the chain rule, we can also show that m/_(0) is well-defined, and that its value is given by

mye(0) = £Bm(0) - (1+ (s2)")/ (B + (B — a)(s%)") > 0.
We leave the details to Appendix B.1.

Our next goal is to prove Eg[Error] 2 R, (a). Since o > /3, we have p > n for large enough N. In
this case,

Error = Eu,[(y—270)% = Euy[(xp(8p — 0p) — xp.Opc)?]
- ||21/2((HXP —1)6p + Xp(XpXp) ' Xpebpe)|® + |Z120p |2,

where Ix, = X p (XPX}_,) " X p, and the diagonal matrices X p and X pe are as defined in
Section 2.2. Hence, Eg[Error] is equal to

tr(Zp(I —Mx,)) +tr( X pe(XpXp) ' XpEpX p(XpXp) ' X pe) +tr(Zpe).  (15)

part 1 part 2

We claim that

N'=5p P m;.(0)
1l S d {2 B Nl-n. =
pa . (O) s an par mi (O)

1
/ t"2dt + o, (N'7F);  (16)

together, they complete the proof that Eg[Error] 2 R, (). Rigorous proofs of the claims in (16)
are presented in Appendix B.2 and Appendix B.3; here, we give a heuristic argument that conveys

the main idea. For part 1, let b3 P = N3 p and X p = N*/2X p. This scaling ensures that the
empirical eigenvalue distribution of 3 p has a limiting distribution with probability density

I - K
fals) = —s71 7" Aaeiar )

(Lemma 2 in Appendix B.2). Also, under this scaling, we have

-1
— dim  Pa s (L I -
= lim tr (213 <nXPXp+MI> >}L11)I%)NK ntr(ZpSn), (17



where S, := (n‘lj{ ;5( p + puI)~1. As long as the empirical eigenvalue distribution of > p has a
limiting distribution with bounded support, we have
1 (1= - 1
Yu >0, p-—tr EP<X;XP+MI) L
n n (1)
where m,,(z) is, in fact, the Stieltjes transform of the limiting empirical eigenvalue distribution of

n'XpX ; (Lemma 1 in Appendix B.2); this follows from results of Dobriban and Wager [6],
which in turn are derived from the results of Ledoit and Péché [11]. Assume we can exchange the two
limits 4+ — 0% and N — oo, and also that (18) still holds for f(s) which has unbounded support.
Then, from (17), we conclude

(18)

Nl—nﬁ
part 1 = tr(Zp (I —x,)) = )

For part 2, note that X pc is independent of X p. Thus, conditional on X p, part 2 is a sum of N — p
independent random variables. Therefore, using Markov inequality, we can show that

part2 B Ex,.[part2] = tr(Zpe)- <tr (EPX} (XpX}) Xp) +1)

- - - -1 _ - - - —1
tr (Spe) - (hm tr (zzp (X;Xp + ;mI) X, Xp (X;Xp + ;mI) ) + 1)

pn—0

= tr(Zpe)- (}Ligbitr (Spsn) —%tr (Epéi)Jrl). (19)

Again, if we ignore the fact that the support of f,(s) is unbounded and assume the limits of p — 0
and N — oo can be exchanged, then by Lemma 7.4 of Dobriban and Wager [6], we have

!/
part2 % tr(Spe) - (nm 1o (3r8.)  Lr (2557) + 1) 2, (Sp) - e O
n—0n n my (O)
A straightforward analysis of tr(X pc) (as in (10)) completes the analysis of part 2 of (16).
Remark 1. Although Theorem 2 should intuitively hold given the results of Dobriban and Wager
[6], a careful and more involved argument is needed to deal with the facts that |3 p||z — oo (since
[Z5" |2 — o) and p — 0. For example, standard techniques only imply %tr(EPSn) = Op(N").
However, we need the stronger bound £ tr(XpS,) = O,(1) (e.g., Appendix B.2.2).

(20)

2.4 Proof of Theorem 3

Comparing the expression for R («) in (7) at & = 1 to the expression for R, (a*) in (5), we see that
it suffices to prove m,(0)'/* > a*. Recall that in Section 2.3, we have proved s* := m,(0)'/* is
the unique solution of the equation ¢, (s, 1) = 0. Furthermore, using the expression for the derivative
of ¢, (s, 1) with respect to s in (14), we know that ¢(s,1) > 0 = s < s%. Thus, we only need to
show ¢, (a*,1) > 0 = h,(a*), where the equality is due to the definition of «* in Theorem 1. Note
that by the definitions of the functions g, and A, in (3) and (13), we have
ﬂ ! K—2 * tn—Q ! K—2
By (s) < " 2dt — 1 QH(S,l)-‘r/s (1+tﬂ)dt /st dt —1.
Furthermore, h,;(s) — ¢ (s, 1) is increasing in s:
K—2 2Kk—2
d(hn(s) qn(svl)) _ s _’_sn72 _ 8 > 0.

ds (14 s%) 14"

Hence, for all for all s € (0, 1], we have

tn72

hK/(S)*%{(Svl) < hﬁ(l)iqﬁ,(17]~) = /loommdtl

- /Oo " /ooldt— /Oo L _dt <o
o () 2 2+ .
Since a* < 8 < 1, we have 0 = hy(a*) < gx(a*, 1), and thus we have s, > o*.

By inspection of the expression for R, («) in (4), it is also clear that R («)/R.(1) — oo as
a— [



3 Analysis under general eigenvalue decay

In this section, we extend the results from Section 2 (with noise) to hold under a more general
assumption on the eigenvalues of 3. To simplify calculations, we use a slightly different feature

selection procedure that includes all components j such that A; > vy, sop = Z;V:1 Lon>uny

Instead of Assumptions A.1 and A.2, we assume the following:

B.1 ||X|l2 < C for some constant C' > 0. Also, there exists a positive sequence (cn)n>1
such that the empirical eigenvalue distribution of ¢y 3 converges as N — oo to F' =
(1 = 6)Fy + 6Fy, where § € (0,1], Fy is a point mass of 0, and F; has a continuous
probability density f supported on either [, 72] or [1;1, 00) for some constants 7,72 > 0.

B.2 There exist constants v > 0 and 8 € (0,6) s.t. yycy — vand n/N — Sasn, N — oc.

The cy in Assumption B.1 generalizes the N* scaling introduced in the proof of Theorem 2. In
fact, Assumption B.1 is more general than the eigenvalue assumptions made by Dobriban and Wager
[6] and Hastie et al. [8]: the eigenvalues of 3 could decrease smoothly (§ = 1), or there could be a
sudden drop between (say) A; and A; 1 (§ < 1). Since p is now determined by v, whether p < n
or p > n is now determined by whether v > v}, or v < 13, where v, > 7 is given by the equation
5fy°: f(t) dt = B. Finally, by Assumption B.1,

N

1 as. >

% = NE:H{CWZ”} Y SEe[lasy] = 5/ f)dt = a(v), Yr>0. (2l
Jj=1 v

For v =0, i.e., vy = o(1/cn), we choose vy be the § NV largest eigenvalues of X, then a(v) = 6.
Hence, combined with Assumption B.2, we have the same asymptotics considered in Section 2,
except that 3 is now restricted in (0, §). This restriction on 3 is required, otherwise both ¢y X ™ X
and ¢y X X " are asymptotically singular.

The following theorem generalizes the results in Section 2 to hold under Assumptions B.1 and B.2.

Theorem 4. Assume B.1 with sequence (cn)n>1 and constants C, 6, 1, and ns; and B.2 with
constants v and 3.

(i) Assume v € (vp,00). Then

p [N Y 2 B .
E. ¢[Error] — <0N~6/m tf(t)dt+ o ) W =: Rs(v,0). (22

Define hy(v) == v —vé [° f(t)dt — 5f7: tf(t)dt. If the equation hy(v) = 0 has a
solution on (vy, 00) (| supp(f), then the solution v* is unique, and

Rs(r*,0) = min Rs(r,0) = N—ﬁ-u*. (23)
VE(vp,00) CN
Otherwise,
inf Rp(,0) = lim R;(r,0) = ﬁé/m tf(t)dt. (24)
I/G(l/b7oo) V—00 CN m

(ii) Assume v € [0,13). Define q(s,v) = s — sé foo YO ¢, Then

s+t
N N tf(t)dt + o2
Eo g[Error] 2 —68} +5-= j 0] =: R¢(v,0), (25)
eN 83 [, R

where s} is the unique solution of the equation qr(s,v) =0.

(iii) Suppose o = 0. Let v* be the minimizer of R (v, 0) over the interval (v, 00| (including o).
Let R (m,0) be the risk achieved at v = 1. Then limsup, Ry (m,0)/R¢(v*,0) < 1.

The proof of this theorem is presented in Appendix D.



4 Discussion

Our results confirm the emergence of the “double descent” risk curve in a natural setting with
Gaussian design. As in previous works [e.g., 3, 8, 13], the shape emerges when there is a spike at the
interpolation threshold (p = n), which is typically caused by a near-zero minimum eigenvalue of the
empirical covariance matrix.

More importantly, however, our results shed light on when the minimum risk is achieved before
or after the interpolation threshold in terms of the noise level and eigenvalues of the (population)
covariance matrix. For instance, when the eigenvalues decay very slowly or not at all (x < 1), a
smaller risk is achieved after the interpolation threshold (p > n) than any point before (p < n). On
the other hand, when the eigenvalues decay more quickly (x > 1), a smaller risk is achieved in the
p > n regime only in the noiseless setting. In general, the p < n regime yields a smaller risk when
the noise dominates the error due to model misspecification. Providing a full characterization is an
important direction for future research.

Finally, we point out that the PCR estimator we study is a non-standard “oracle” estimator because it
generally requires knowledge of 3. Although it can be plausibly implemented in a semi-supervised
setting (by estimating 32 very accurately using unlabeled data), a full analysis that accounts for
estimation errors in 35, or of a more standard PCR estimator, remains open. However, we note that
the PCR estimator with p = N can be implemented, and in our analysis, the dominance of the p > n
regime is always established at p = N. We believe that this should be true for the standard PCR
estimator as well.
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