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ABSTRACT
Individuals with reduced speech and motor ability due to injury
or motor neuron diseases have difficulties in communication. Such
events at the terminal stage lead to the loss of all muscular activity
which is referred as locked-in state. In this condition, communi-
cation can only be performed with electroencephalogram (EEG)
signals. Brain computer interfaces (BCI) typing systems provide
people without muscular control a communication baseline. In BCI
typing systems, user is presented stimuli and corresponding EEG
evidence is used to detect the user intent among a pre-defined al-
phabet. Due to low signal-to-noise ratio (SNR) of EEG evidence,
multiple stimuli sequences are required. Thus, to limit the time
spent on typing the stimuli presented to the user should be opti-
mized. BCI typing systems are designed to operate including dif-
ferent modalities where modalities surpass each other either in
SNR of the respective signal or time spent to acquire the response.
Therefore, it is a fundamental problem when to choose cheap in
time - weak in response questions and when to choose expensive
in time - strong in response questions. In this study we propose a
modality selection mechanism for systems that rely on recursive
evidence collections under Gaussian evidence model assumption.
Specifically, we focus on BCI typing systems that operate with error
related potentials (ERPs) and feedback related potentials (FRPs).
We analytically derive a decision threshold to select each of these
modalities. We also demonstrate the performance of the proposed
method using a BCI typing system.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models; •Theory of computation→Active learning; Bayesian
analysis.
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1 INTRODUCTION
Individuals with reduced speech and motor ability due to injury or
motor neuron diseases, including cerebral palsy, multiple sclerosis
(MS), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy,
locked-in syndrome, spinal cord injury, stroke, and traumatic brain
injury, currently have assistive technology solutions to increase
the quality of the communication. Unfortunately, after the loss
of muscular activity resulting in locked-in state, communication
can only be performed with electroencephalogram (EEG) signals.
Brain computer interfaces (BCIs) have shown promising capacity
to mitigate the dependency on muscular activity, providing people
with disabilities a communication baseline. Such systems typically
rely on detection of event related potentials (ERPs), in which the
user is expected to generate a signature change that allows the
system to infer intent from the spatio-temporal time series collected
[1, 17] as a result of stimuli presentation to the user. In this work
we mainly focus on a gaze-independent BCI typing system called
RSVPKeyboard as presented in Figure1. The stimuli are flashed in
a rapid fashion on a fixed pre-defined location as shown in Figure1-
(a). Different operation modalities and a detailed description of
the system is presented in Appendix section (Section 6). In the
figure the subject in Figure1-(b) is performing a copy phrase task,
in which he is tasked to complete the phrase ’I am an arctic explorer’
as presented in Figure1-(a). Implementation of RSVPKeyboard is
accessible from https://github.com/BciPy/BciPy.
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(a) (b)

Figure 1: Electroencephalogram (EEG) driven Rapid Serial Visual Presenta-
tion (RSVP) keyboard typing interface. (a) The stimuli is flashed in themiddle
of the screen while the user is informed with the text above. (b) The user is
conducting copying the phrase task. The user is informed about the required
phrase. EEG is collected on top of the scalp non-invasively.

Even being the most common evidence used in BCI typing systems,
ERP is not the only possible modality. In addition to commonly
used ERPs such as p300 [3], feedback related potentials (FRPs) have
shown promising results in BCI community in typing systems to
elicit respective responses [4]. FRP is often related with cognitive
response to errors and hence also named as error related potentials
(Errps) in the literature. In Chavariagga’s work [2], FRP usage in
non-invasive BCIs is discussed especially discussing high SNR val-
ues across users. Moreover, Gonzalez’s work [6] discusses using
two different response mechanisms at the same time to improve
classification performance. In the presence of different modalities,
where each stimuli selection method has a respective response time
(computation time is negligible) and response characteristics (re-
sponse signal to noise ratio (SNR), evidence distribution separability
etc.), there exists a source selection problem to achieve better perfor-
mance. In such cases, ideally the system actively alternates between
modalities deciding either cheap but weak evidence collection or
expensive but strong evidence collection. This decision is built on
top of the posterior distribution evolution and observed evidences.
Just to give a toy example; p300 driven ERP systems stimulate 6
letters approximately in a second compared to FRP systems span
700ms interval to stimulate a single letter. As the user is respond-
ing to a single letter instead of multiple rapid flashes, the signal
quality and classification assessment for FRP is higher compared
to ERP. Therefore, it is required to optimize an alternation algo-
rithm between these two paradigms in estimation for faster user
intent detection. Thus in our work we focus on designing a stimuli
selection method that alternates between different modalities.

Query, sensor selection for brain computer interfacing is required
to increase the speed of communication. It is argued in Mogham-
madfalahi’s work [11] that showing the entire alphabet as a stimuli
is not practical and the selection is optimized with maximizing ex-
pected posterior. In Mansiah’s work [10] work mutual information
is used to select stimuli. In our previous findings [9] a new speed
term is introduced to speed up the estimation process. All these
methods show promising results. However, these methods stagger
from not incorporating time required for stimuli selection. This ul-
timately leads to assumption of unit stimuli-response time which is
not realistic in presence of different observation methods. Addition-
ally, it is required to find relative EEG feature model performances
of different methods for better assesment. Different distribution
effect on BCI systems is also investigated from a distribution shift

Figure 2: In this work we aim to find the optimal decision criteria (shown
as IS FRP? in the figure) that allows us to optimally alternate between two
different stimuli that result in two different performance characteristics. In
BCI typing systems event related potentials (ERP) are cheaper in time to stim-
uli compared to feedback related potentials (FRP) however the response EEG
SNR is much lower.

perspective. In Satti’s work [16], a confusion matrix is learned over
the trials to assess the performance of the EEG quality. In Raza’s
work [15], authors propose to update their model statistics over
time based on recently observed data. Even though these models
consider the evidence from single modality changes, they do not
consider selecting different modalities with different performances.
In this work we focus on active selection across modalities and
stimuli in a BCI paradigm to optimize information gain per unit
time.

Specifically, we assume the existence of two evidence sources; (1)
cheap-less informative ERP-evidence, (2) expensive-more infor-
mative FRP-evidence. Both evidence sources are assumed to yield
features that are randomly distributed in 1D. Also we assume each
evidence modality employs respective negative and positive evi-
dence distributions for positive and negative response to the stimuli
by the subject respectively. In this paper we propose an algorithm
to optimally alternate between these two query-evidence sources
with a threshold. This decision for the BCI typing systyem is vi-
sualized in Figure2. We make the following contributions: (i) We
propose an objective that maximizes the information gain per unit
time. (ii) We define a threshold on the recent posterior probability
distribution over the alphabet. Once such threshold is passed, sys-
tem queries to expensive but crisp evidence source. (iii) We evaluate
the time-accuracy gain with such approach in a BCI typing system.
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2 PRELIMINARIES
Let target letter denoted by 𝜎 being an element of a finite set
(namely the alphabet) denoted by A. Each step in the sequential
decision making process is named sequences indexed by 𝑠 ∈ S. The
system decides on a subset of queries with cardinality 𝑁 ∈ N
Φ𝑠 ≜ {𝜙1𝑠 , . . . , 𝜙𝑁𝑠 } at the beginning of each sequence, where
𝜙𝑖𝑠 ∈ A denotes a single letter flash. After querying, corresponding
EEG evidence 𝜀𝑠 ≜ {𝜀1𝑠 , . . . , 𝜀𝑁𝑠 } is observed. As the system pro-
ceeds through sequences, the decision and query selection will rely
on previously asked queries and observed evidence. To preserve
neat notation, we present H𝑠 ≜ {𝜀1:𝑠 ,Φ1:𝑠 ,H0} to represent the
task history andH0 to denote the information from the language
model. Conventional query selection optimization for query selec-
tion in BCIs is centered about mutual information maximization,
where the objective at sequence 𝑠 as; argmaxΦ∈Q𝑁 𝐼 (𝜎, 𝜀𝑠 |Φ,H𝑠−1).
Here 𝐼 (., .) denotes the mutual information function between two
arguments. In our previous work [8], mutual information objective
and other surrogate objectives including posterior maximization
and uncertainty reduction are shown to result in the same query
type; presenting most likely letters.

However, as explained before, in the presence of different infor-
mation channels it is plausible to maximize information rate. Oth-
erwise the system, independent of time requirements selects the
evidence source with highest separation between positive and neg-
ative response distributions. Therefore in this paper we focus on
the following objective for query selection;

Φ𝑠 = arg max
Φ∈Q𝑁

1
𝑇Φ

𝐼 (𝜎, 𝜀𝑠 |Φ,H𝑠−1) (1)

3 METHOD
As presented in the previous section, the aim of querying is to
reduce the uncertainty during Bayesian classification task as fast
as possible. As presented in the literature, the following equality
holds;

arg max
Φ∈Q𝑁

1
𝑇Φ

𝐼 (𝜎, 𝜀𝑠 |Φ,H𝑠−1) = arg max
Φ∈Q𝑁

−1
𝑇Φ

𝐻 (𝜎 |𝜀𝑠 ,Φ,H𝑠−1)

Therefore one optimizes the objective presented in (1) by minimiz-
ing conditional entropy. In BCI typing systems, there exist two
response channels; positive and negative responses. If shown, the
subject reacts to the target of intent from the positive evidence
channel (ERP-FRP) and the subject reacts to other non-target let-
ters from the negative evidence channel (no ERP-no FRP). These
responses indicate responses to target letter stimuli and non tar-
get stimuli respectively. Let us represent the positive and negative
responses by ℓ = 1 and ℓ = 0 respectively defined as ℓ = 𝛿𝜎 (𝜙).
Here 𝛿. (.) represents the delta function and is equal to 1 if 𝜎 ∈ 𝜙 .
Hence, the label of a letter becomes 1 if shown in the stimuli. We
first tailor the objective presented in (1) using the binary response
mechanism as the following;

𝐻 (𝜎 |𝜀𝑠 ,Φ,H𝑠−1) = 𝐸𝜎 |H𝑠−1𝐸𝜀𝑠 |𝜎,Φ

(
log 𝑝 (𝜀𝑠 |𝜎,Φ)

𝑝 (𝜀𝑠 |Φ)

)
= 𝐸𝜎 |H𝑠−1𝐸𝜀𝑠 |𝜎,Φ

(
log 𝑝 (𝜀𝑠 |𝜎,Φ)∑

𝑣∼𝜎 𝑝 (𝜀𝑠 |Φ, 𝑣)𝑝 (𝑣)

) (2)

Here 𝑣 in the denominator is used a marginalization variable over
the entire alphabet. We further make use of
𝑝 (𝜀𝑠 |𝜙, 𝜎) =

∑
ℓ 𝑝 (𝜀𝑠 |ℓ)𝛿𝜎 (𝜙) introducing the label information

into the equation yields the following;

𝐸𝜎 |H𝑠−1𝐸𝜀𝑠 |𝜎,Φ

(
log 𝑝 (𝜀𝑠 |ℓ = 1)𝛿𝜎 (Φ) + 𝑝 (𝜀𝑠 |ℓ = 0) (1 − 𝛿𝜎 (Φ))∑

𝑣∼𝜎 𝑝 (𝜀𝑠 |Φ, 𝑣)𝑝 (𝑣)

)
In this equation, dividing and multiplying the term inside the loga-
rithm with 𝑝 (𝜀𝑠 |ℓ = 0) yields us an equation with likelihood ratios
as the following;

𝐸𝜎 |H𝑠−1𝐸𝜀𝑠 |𝜎,Φ

(
log

𝑝 (𝜀𝑠 |1)
𝑝 (𝜀𝑠 |0) 𝛿𝜎 (Φ) + (1 − 𝛿𝜎 (Φ))∑

𝑣∼𝜎
𝑝 (𝜀𝑠 |1)
𝑝 (𝜀𝑠 |0) 𝛿𝑣 (Φ)𝑝 (𝑣) + (1 − 𝛿𝑣 (Φ))𝑝 (𝑣)

ª®®¬
(3)

Inserting (3) into (2) and furthermore using in (1) yields us the
following objective;

Φ𝑠+1 = arg min
Φ∈Q𝑁

1
𝑇Φ

𝐸𝜎 |H𝑠−1𝐸𝜀𝑠 |𝜎,Φ

(
log

𝑝 (𝜀𝑠 |1)
𝑝 (𝜀𝑠 |0) 𝛿𝜎 (Φ) + (1 − 𝛿𝜎 (Φ))∑

𝑣∼𝜎
𝑝 (𝜀𝑠 |1)
𝑝 (𝜀𝑠 |0) 𝛿𝑣 (Φ)𝑝 (𝑣)

ª®®¬
(4)

However, a general analytical solution to the term in (4) is not pos-
sible and hence one needs reasonable simplifications. In p300 and
FRP driven BCI typing systems, it is widely assumed the relevant
features extracted from the signals employ a Gaussian distribution.
In inference, the system evaluates the likelihoods of new features
using the distributions learned in the training time and proceed. In
this work to approximate (4), we calculate mean and variance values
for the likelihood ratio assuming evidence is distributed randomly
for both positive and negative case and additionally, we make use
of Teh’s work [18] to approximate the conditional entropy.

3.1 Approximating conditional entropy
It is impractical to calculate the expected value of the log term in (4).
However, the order of expectation and log is not interchangeable
due to properties shown in Jensen’s work [7]. However, Teh in
the work [18] presents an approximation to the expected value of
the log. Let 𝑥 be a random variable the approximation is as the
following;

𝐸 (log(𝑥)) ≈ log(𝐸 (𝑥)) − (𝐸 (𝑥2) − 𝐸2 (𝑥))/2𝐸2 (𝑥)

Equality holds when variance of the distribution is negligible to the
mean-squared. From a practical standpoint, 𝐸 (log(𝑥)) ≈ log(𝐸 (𝑥))
eases the computation dramatically and usually preferred. In our
work we employ this simplification following [18]. Please refer to
Appendix (Section6.2) for the statistics of the likelihood ratios that
allows us to obtain an approximation to (4).

3.2 Algorithm for Query Selection
In this section, we present a query selection algorithm starting a
general solution and narrowing it down to the BCI query selection
level. We employ the following score representation;

sc = 𝐸𝜀 |1 (𝑝 (𝜀 |1)/𝑝 (𝜀 |0))
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Algorithm 1 Query Selection Using ERP-FRP for BCI

1: learn N(M0,ERP, 𝜎20,ERP),N(M1,ERP, 𝜎21,ERP)
2: learn N(M0,FRP, 𝜎20,FRP), N(M1,FRP, 𝜎21,FRP)
3: initialize 𝑇ΦERP ∈ R+,𝑇ΦFRP ∈ R+, 𝑁 ∈ N+
4: scERP ← 𝐸𝜀 |ℓ=1 (𝑝ERP (𝜀 |1)/𝑝ERP (𝜀 |0)) ⊲ (9)
5: scFRP ← 𝐸𝜀 |ℓ=1 (𝑝FRP (𝜀 |1)/𝑝FRP (𝜀 |0)) ⊲ (9)
6: 𝑐 ← s.t. ObjERP (𝑐, scERP) = ObjFRP (𝑐, scFRP)

⊲ (7),(8)
7: 𝑠 ← 0
8: while iterations do
9: 𝑝 (𝜎 |H𝑠 ) gets updated
10: 𝑐 ← max𝜎 𝑝 (𝜎 |H𝑠 )
11: if 𝑐 > 𝑐 then

FRP Query Selection
12: Φ𝑠+1 ← argmax𝜎 𝑝 (𝜎 |H𝑠 )
13: else

ERP Query Selection
14: for 𝑖 ∈ {1, · · · , 𝑁 } do
15: Φ𝑠+1 ← Φ𝑠+1 ∪ argmax𝜎∉Φ𝑠+1 𝑝 (𝜎 |H𝑠 )
16: end for
17: end if
18: 𝑠 ← 𝑠 + 1
19: end while

The value of the score function (expected value of the likelihood
ratio under target distribution) assuming 1D-Gaussian distribu-
tions is provided in the Appendix (Section6.2). Following the score
definition we rewrite the objective in (4) as the following;

Φ𝑠+1 = arg min
Φ∈Q𝑁

1
𝑇Φ

𝐸𝜎 |H𝑠−1

log(sc𝛿𝜎 (Φ) + (1 − 𝛿𝜎 (Φ))
− log

(∑
𝑣

sc 𝑝 (𝑣)𝛿𝑣 (Φ) + 𝑝 (𝑣) (1 − 𝛿𝑣 (Φ))
)

(5)

(5) is easily formed by computing the function value for each letter
in the alphabet and solved greedily. This greedy solution yields a
close to optimum solution as presented in Nemhauser’s work [12].
The solution to objective (5) is selecting the most likely 𝑁 letters
from the alphabet [8].

Observe that in (5), 𝐸𝜎 |H𝑠−1 log(sc𝛿𝜎 (Φ) + (1 − 𝛿𝜎 (Φ)) =∑
𝜎 ∈Φ (𝑝 (𝜎 |H𝑠−1)) log sc = PΦ log sc. Applying this simplification

and a similar algebraic manipulation in the denominator, it is pos-
sible to obtain the following simplification;

Φ𝑠+1 = arg min
Φ∈Q𝑁

1
𝑇Φ
(PΦ log sc − log(PΦsc + (1 − PΦ))) (6)

Without loss of generality assume 𝐴 ∈ A being the most likely
letter (i.e. 𝑝 (𝐴) = 𝑐 = max𝑖 𝑝 (𝑖)). Let ΦERP,ΦFRP denote queries
for ERP and FRP respectively and 𝑁FRP = 1 denote FRP has only
1 letter as the query. From our previous discussion 𝐴 ∈ ΦERP and
ΦFRP = {𝐴}. It is shown in our previous work [8] that the objective
in (5) is monotonically decreasing wrt. PΦ which implies as the
query set size |Φ| increases the objective decreases. Therefore the

objective in (5) for ERP (𝑁ERP > 1) becomes the following;
ObjERP (𝑐, scERP) =
1

𝑇ΦERP
(𝑐 log scERP − log(𝑐scERP + (1 − 𝑐)))

>
1

𝑇ΦERP
(PΦERP log scERP − log(PΦERPscERP + (1 − PΦERP )))

(7)

Similar simplification is also doable for the FRP as the following;

ObjFRP (𝑐, scFRP) =
1

𝑇ΦFRP
(𝑐 log scFRP − log(𝑐scFRP + (1 − 𝑐))) (8)

Hence ERP querying is preferred if ObjFRP > ObjERP. It is also
possible to find numerically a threshold number 𝑐 s.t. ObjERP (𝑐) =
ObjFRP (𝑐). Hence the BCI systems continues with FRP if
max𝜎 𝑝 (𝜎 |H𝑠−1) > 𝑐 . We visualize the algorithm in Algorithm1.

3.3 Algorithm Explanation
In this section we present a verbal explanation of the algorithm
from a practical standpoint with the intent to simplify the approach
and ease its usage.

Specifically for the BCI typing system, ERP requires multiple con-
secutive rapid stimuli to be elicited whereas FRP response appears
to a single stimuli flash 𝑁 = 1. Let us denote the queries selected for
both paradigs as Φ𝑠,ERP and Φ𝑠,FRP respectively. Therefore decision
between ERP and FRP relies only on the comparison of the objective
in (5), whichever yields the minimum is selected. Ideally, showing
multiple stimuli is expected to decrease uncertainty more than a
single stimuli. However, in practice, FRP response of the user is
more distinguishable compared to ERP yielding scFRP >> scERP
moreover the time required for FRP is less than time required to
elicit ERP𝑇ΦFRP < 𝑇ΦERP . Therefore in certain cases FRP reduces the
uncertainty more than ERP.

The algorithm requires 4 Gaussianmodels for ERP positive-negative
and FRP positive negative respectively. These distributions are re-
quired to calculate the necessary approximations. A threshold 𝑐 is
computed using objectives presented in (7) and (8). 𝑐 satisfies the fol-
lowing; if the maximum value in the current posterior is 𝑐 , objective
for ERP and FRP are equal. Hence, for a posterior probability with
an element higher probability value than 𝑐 FRP is preferred. ERP
selects most likely 𝑁 candidates for stimuli, whereas FRP selects
the most likely letter only.

4 EXPERIMENTS
We use electroencephalography (EEG) data recorded when human
users performed typing tasks using RSVP Keyboard (available for
public use [https://github.com/BciPy/BciPy]), which is a noninva-
sive EEG-based brain computer interface for typing. Specifically,
calibration data of 12 healthy participants (collected with North-
eastern University IRB-130107) is used for our simulation results.
During calibration, participants are presented with 100 sequences
of symbols followed with a feedback symbol. A sequence contains
randomly ordered ten symbols with a pre-defined target symbol
and a randomly selected feedback symbol. EEG is acquired from 16
channels using the International 10–20 configuration (Fp1, Fp2,F3,
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(a) (b)

(c)

Figure 3: Probability of error vs time plots. Probability of error is calculated as
1−𝑝 (𝜎) where𝜎 is the target letter. Observe that probability of error decreases
faster if FRP query is used. Random ERP and Max ERP represent ERP pre-
sentation of randomly selected letters and top candidates respectively. FRP
threshold 𝑐 and respective error probability lines are color andmarker coded.
(a) represents a scenario where language model is adversarial (the target let-
ter is one of the least likely). (b) represents where there exists no language
model (uniform prior). (c) represents a scenario where the language model is
supportive (target letter is one of the most likely).

F4, Fz, Fc1, Fc2, Cz, P1, P2,C1, C2, Cp3, Cp4, P5, P6). At each se-
quence, respective evidence of consecutive rapid stimuli is treated
as ERP evidence, whereas respective response to the feedback sym-
bol is treated as FRP evidence. These signals are used to learn class
conditional EEG evidence feature distributions. For more informa-
tion about our system please refer to Appendix (Section6.1). Class
conditional EEG evidence distributions are further used to simulate
a copy letter task (copy phrase task where the task is a single letter)
to assess the performance of the method with a simulated user
(using the so called learned evidence distributions for ERP and FRP).
During simulations when a target/nontarget letter is presented to
the user in ERP/FRP paradigm, EEG features from corresponding
class conditional distributions are sampled. These samples are used
to estimate the user intent. For more information about our sim-
ulation framework, we refer the reader to Orhan’s work [14]. In
our experiments we categorize users based on their calibration
performances. The performance is measured with area under re-
ceiver operating characteristics curve of the features samples of
the training data both for ERP and FRP.

Our first set of experiments is to visualize how fast probability of
error in letter estimation decreases with different values of 𝑐 with
an average performance user (AUCERP = .75, AUCFRP = .87). In
language model assisted BCI typing systems, effect of the language
model is crucial. Statistically, since languages are structured, lan-
guage models speed up the estimation process. However, in rare
cases the user tries to type a statistically uncommon word (wrt. the
training set of the language model) in which typing a letter task
requires the user to overcome the information of language model.
In our experiments we simulate an environment with uniform prior,
supportive language model (where the target letter is one of the

Figure 4: Effects of changing FRPmodel performance with a fixed ERPmodel
performance on decision. Top figure represents from copy letter simulations
where the language model is adversarial, bottom figure represents results
from copy letter simulations without language model. Each bar plot and ac-
curacy is a result of 1000 Monte Carlo simulations. The methods are color
coded (from left to right on each block in the figure); Random, ERP only and
𝑐 = [0.9, 0.7, 0.5, 0.3] It can be observed that FRP presence decreases time re-
quired till decision without sacrificing accuracy.

likely letters wrt. the language model) and adversarial language
model (where the target letter is one of the least likely). We plot
the change in probability of error over time as visualized in Figure3
where probability of error represents ( 1 − 𝑝 (𝜎 |H𝑠 ) where 𝜎 is the
target letter). We pick Random ERP querying as a universal baseline
and we pick max ERP as the method baseline which selects the
most 𝑁 likely candidates and proceeds with ERP querying. Here in
the figure different colors represent different values of thresholds
𝑐s. As it it designed for, the system proceeds with FRP if there exists
a letter with higher probability than 𝑐 otherwise continues with
ERP. It is observed that FRP in this scenario benefits the system
significantly.

In our second set of experiments we investigate the performance
effect of ERP and FRP models. We synthetically generate a set of
performance intervals using real data from an average performing
user. First we keep the ERP model performance constant and in-
crease FRP model performance gradually. To report the accuracy
and speed values we select a decision threshold of %95 confidence
level (once a candidate letter achieves 0.95 posterior value), once
received the system terminates. We visualize the results in Figure4.
Observe that as FRP performance increases, it is more beneficial to
focus on FRP querying. This is due FRP response resulting higher
impact evidence that allows faster inference. Additionally, compar-
ing the uniform prior (no language model) and adversarial language
model case, FRP querying is more impactful. This is due to over-
coming the prior belief. In uniform case, the system selects many of
the non-target letters as stimuli that causes a delay on FRP stimulus
selection. Whereas in adversarial case, to be eligible being the query
in FRP paradigm, the letter needs to be already up and coming not-
ing it being the target letter. We also investigate the effect of ERP
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Figure 5: The exact same scenario with changing ERP model performances
andmarginally better FRPmodel performance. Given these performance val-
ues and respective distributions, our algorithm results 𝑐 > 0.9 that results in
ERP dominating the stimulus selection.

when there exists a marginal difference between ERP and FRP (by
definition, we expect FRP to have higher performance, otherwise
ERP is always preferable to FRP). We visualize our findings in Fig-
ure5. It is observed that when there’s a marginal difference between
ERP and FRP performances the system does not gain a significant
speed boost using FRP. Moreover, the optimal 𝑐 for the scenarios
presented in Figure5 is close to 1, suggesting to continue with ERP.

Without such knowledge, it is possible to rule out FRP stimulus
selection due to no significant improvement considering only a case
in Figure5, however it is apparent from Figure4 FRP is beneficial
and provides a speed up to the letter selection inference.

5 CONCLUSION
In this work we presented an optimal selection between two differ-
ent sources; (1) cheap in time - low in inference impact evidence
source, (2) expensive in time - high in inference impact evidence
source. Specifically, we tuned our derivations under Gaussian dis-
tribution for evidence distributions conditioned on state and query.
We derived an algorithm to optimally alternate between these two
modalities that achieves faster inference without sacrificing accu-
racy. Moreover, we validated our findings with simulations that are
based on human-in-the-loop experiment data.

As a feature work, we plan to investigate the sensitivity of the
threshold parameter that adjusts selection between ERP and FRP to
evidence model variance. Moreover, we would like to investigate
the effects of distribution shift on different evidence modalities
(specially for our work ERP and FRP). This will allow us to employ
the fatigue effects on different evidence modalities and enable us
to design an active update paradigm for the modality selection
threshold 𝑐 .
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6 APPENDIX
6.1 System details
As described in the manuscript, we use RSVPKeyboard a language
model assisted EEG-based BCI typing interface. The typing interface
focuses on rapid serial visual presentation as the stimuli paradigm,
however also supports other modalities including FRP, row-column
flash matrix, single letter flash matrix etc. The system operates on
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the alphabet, which is called the state spaceA that includes English
alphabet and additionally a space symbol and a backspace symbol
(for deletion). Therefore A = {𝐴, 𝐵,𝐶, ..., 𝑍, _, <}, where _ and <

represent space and backspace, respectively. In this paper we make
use of the implementation and the simulation environment named
BciPy in https://github.com/BciPy/BciPy. This implementation is
an updated version of Orhan’s work [13].

Modules

Display: System employs a display module that controls the par-
adigm of visual stimuli presentation. In RSVP paradigm, a set of
pseudo-randomly ordered stimuli are presented on a pre-fixed lo-
cation of the screen in a rapid serial manner. Each stimulus is a
trial. A set of trials which has been presented with no time gap in
between, is called a sequence. Every ERP sequence flashes unique
letters and hence enforced to contain at most only one single tar-
get stimulus. Time-series analysis is used to identify the stimulus
on which the attention (target) is placed on. Every FRP sequence
include only one element in the query set and flash the selected
letter on the pre-defined location for a longer duration to obtain
the user response.

Feature Extraction: The system collects EEG evidence. Due to low
SNR values, it is mandatory to process and extract some features for
signal reasoning. The system includes a drift removal filtering (fre-
quencies «1Hz) and a bandpass filtering to remove artifact-related
high frequency components. After filtering, EEG is decomposed into
trials to obtain data for respective stimuli flash. Time-windowed
data from different EEG channels is concatenated to obtain the
EEG feature vector that has high dimensionality due to using all
the channels. The dimensionality is reduced applying a channel
wise principal component analysis (PCA) and EEG features are
extracted from the reduced dimensional feature vectors using regu-
larized discriminant analysis [5]. These features for both positive
and negative responses are assumed to be randomly distributed.

Language Model (LM): Provides the prior distribution that is used for
computing the posterior distribution of a symbol using an Online-
Context Language Model (OCLM) that provides prior distributions
given EEG evidence as part of our BCI system.

Operation Modes

Calibration mode: In the calibration mode, users are asked to pay
attention to pre-defined target symbols within randomly-ordered
sequences to collect labeled EEG data. This collection is specified
for both ERP and FRP to learn class-conditional EEG evidence
distributions and feature extraction pipeline parameters.

Copy phrase task mode: In this mode, users are presented with a set
of pre-defined phrases. Each phrase includes a missing word and
the users are asked to complete the phrase by typing the missing
word. This mode is designed to assess the system and the typing
performance in terms of speed and accuracy in the presence of a
language model.

Free spell mode: The typing mode that allows the subject to type
freely without any pre-defined task text.

6.2 Statistics of likelihood ratio
Conditional entropy calculates the expected resulting entropy if
the query set Φ was selected. Resulting distribution relies on the
evidence distributions, specifically the likelihood ratio as presented
in (4). Given two one dimensional Gaussian distributions 𝜀 |ℓ=1 ∼
N(M1, 𝜎12) and 𝜀 |ℓ=0 ∼ N(M0, 𝜎02), (4) takes the expected value
of the likelihood ratio 𝑝 (𝜀 |1)/𝑝 (𝜀 |0) wrt. 𝜀 |𝜎,Φ. Therefore we need
to take two conditions into consideration; taking the expected value
where 𝜀 |ℓ=1 and 𝜀 |ℓ=0. We derive the mean likelihood ratio for both
cases using a little bit of algebra as the following;

𝐸𝜀 |ℓ=0
𝑝 (𝜀 |1)
𝑝 (𝜀 |0) =

∫ ∞

−∞
𝑝 (𝜀 |1)𝑑𝜀 = 1

𝐸𝜀 |ℓ=1
𝑝 (𝜀 |1)
𝑝 (𝜀 |0) =

∫ ∞

−∞

𝑝2 (𝜀 |1)
𝑝 (𝜀 |0) 𝑑𝜀 =

𝜎
1/2
0

2𝜋1/2𝜎1
𝑒𝑐1𝑒𝑏1

2/4𝑎1 𝜋
1/2

𝑎11/2

(9)

Here in (9), let sgn(.) denote the signum function, the parameters
are the following;

𝑎1 = 𝑘 (1/𝜎12 − 1/(2𝜎02), 𝑘 = sgn(1/𝜎12 − 1/(2𝜎02))
𝑏1 = 𝑘 (2M1/𝜎12 −M0/𝜎02)
𝑐1 = (−M2

1/𝜎1
2 +M2

0/(2𝜎0
2))

With a similar approach, we calculate the variances of the likeli-
hood ratio distributions. To calculate the variance we require the
second moment information of the ratio. With a little algebraic ma-
nipulation, second moments of the likelihood ratios are calculated
as the following;

𝐸𝜀 |ℓ=0

(
𝑝2 (𝜀 |1)
𝑝2 (𝜀 |0)

)
=

∫ ∞

−∞

𝑝2 (𝜀 |1)
𝑝 (𝜀 |0) 𝛿𝜀 = 𝐸𝜀 |ℓ=1

𝑝 (𝜀 |1)
𝑝 (𝜀 |0)

𝐸𝜀 |ℓ=1

(
𝑝2 (𝜀 |1)
𝑝2 (𝜀 |0)

)
=

∫ ∞

−∞

𝑝3 (𝜀 |1)
𝑝2 (𝜀 |0)

𝛿𝜀 =
𝜎0

2𝜋1/2𝜎3/21
𝑒𝑐2𝑒𝑏2

2/4𝑎2 𝜋
1/2

𝑎21/2

(10)
Here in (10), let sgn denote the signum function, the parameters
are the following;

𝑎2 = 𝑘 (3/2𝜎12 − 1/𝜎02), 𝑘 = sgn(3/2𝜎12 − 1/𝜎02)
𝑏2 = 𝑘 (3M1/𝜎12 − 2M0/𝜎02)
𝑐2 = (−3M2

1/2𝜎1
2 +M2

0/𝜎0
2)

https://github.com/BciPy/BciPy
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