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ABSTRACT

Short-and-sparse deconvolution (SaSD) is the problem of extracting localized,
recurring motifs in signals with spatial or temporal structure. Variants of this
problem arise in applications such as image deblurring, microscopy, neural spike
sorting, and more. The problem is challenging in both theory and practice, as natu-
ral optimization formulations are nonconvex. Moreover, practical deconvolution
problems involve smooth motifs (kernels) whose spectra decay rapidly, resulting
in poor conditioning and numerical challenges. This paper is motivated by recent
theoretical advances (Zhang et al., 2017; Kuo et al., 2019), which characterize the
optimization landscape of a particular nonconvex formulation of SaSD and give
a provable algorithm which exactly solves certain non-practical instances of the
SaSD problem. We leverage the key ideas from this theory (sphere constraints, data-
driven initialization) to develop a practical algorithm, which performs well on data
arising from a range of application areas. We highlight key additional challenges
posed by the ill-conditioning of real SaSD problems, and suggest heuristics (accel-
eration, continuation, reweighting) to mitigate them. Experiments demonstrate the
performance and generality of the proposed method.

1 INTRODUCTION

Many signals arising in science and engineering can be modeled as superpositions of basic, recurring
motifs, which encode critical information about a physical process of interest. Signals of this type
can be modeled as the convolution of a zero-padded short kernel ag € RP° (the motif) with a longer
sparse signal ¢g € R™ (m >» pg) which encodes the locations of the motifs in the sample':

Yy = tag ® xo. (D

We term this a short-and-sparse (SaS) model. Since often only y is observed, short-and-sparse
deconvolution (SaSD) is the problem of recovering both ay and x( from y. Variants of SaSD arise in
areas such as microscopy (Cheung et al., 2018), astronomy (Briers et al., 2013), and neuroscience
(Song et al., 2018). SaSD is a challenging inverse problem in both theory and practice. Natural
formulations are nonconvex, and very little algorithmic theory was available. Moreover, practical
instances are often ill-conditioned, due to the spectral decay of the kernel ag (Cheung et al., 2018).

This paper is motivated by recent theoretical advances in nonconvex optimization and, in particular,
on the geometry of SaSD. Zhang et al. (2017) and Kuo et al. (2019) study particular optimization

*YL and QQ contributed equally to this work. The full version of this work can be found at https:
//arxiv.org/abs/1908.10959.

"For simplicity, (1) uses cyclic convolution; algorithms are results also apply to linear convolution with minor
modifications. Here ¢ denotes the zero padding operator.
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formulations for SaSD and show that the landscape is largely driven by the problem symmetries of
SaSD. They derive provable methods for idealized problem instances, which exactly recover (aq, o)
up to trivial ambiguities. While inspiring, these methods are not practical and perform poorly on real
problem instances. Where the emphasis of Zhang et al. (2017) and Kuo et al. (2019) is on theoretical
guarantees, here we focus on practical computation. We show how to combine ideas from this theory
with heuristics that better address the properties of practical deconvolution problems, to build a novel
method that performs well on data arising in a range of application areas. A critical issue in moving
from theory to practice is the poor conditioning of naturally-occurring deconvolution problems: we
show how to address this with a combination of ideas from sparse optimization, such as momentum,
continuation, and reweighting. The end result is a general purpose method, which we demonstrate on
data from neural spike sorting, calcium imaging and fluorescence microscopy.

Notation. The zero-padding operator is denoted by ¢ : R — R™. Projection of a vector v € RP
onto the sphere is denoted by Psy-1(v) = v/ ||v|,, and P, (v) = v — (v, z) z denotes projection
onto the tangent space of z € SP~!. The Riemannian gradient of a function f : SP~! — R at point 2
on the sphere is given by grad f(z) = P,(V f(2)).

Reproducible research. The code for implementations of our algorithms can be found online:
https://github.com/qingqu06/sparse_deconvolution.
For more details of our work on SaSD, we refer interested readers to our project website

https://deconvlab.github.io/.

2 SYMMETRY AND GEOMETRY IN SASD

In this section, we begin by describing two intrinsic properties for SaSD. Later, we show how these
play an important role in the geometry of optimization and the design of efficient methods.

An important observation of the SaSD problem is that it admits multiple equivalent solutions. This is
purely due to the cyclic convolution between aq and x(, which exhibits the trivial ambiguity?

y = ag®zo = (asi[taog]) ® (Ls_[z0]),

for any nonzero scalar « and cyclic shift s, [-]. These scale and shift symmetries create several
acceptable candidates for ag and x(, and in the absence of further information we only expect to
recover ag and x( up to symmetry. Furthermore, they largely drive the behavior of certain nonconvex
optimization problems formulated for SaSD. Since the success of SaSD requires distinguishing
between overlapping copies of ay, its difficulty also depends highly on the “similarity” of the ag to
its shifts. Here we capture this notion using the shift-coherence of ay,

pao) = max [(tao, s¢ [rao])] € [0,1]. 2

Intuitively, the shifts of @ become closer together as 1(ag) increases (Figure 10), making objective
landscapes for optimization less favorable for recovering any specific shift of a.

2.1 LANDSCAPE GEOMETRY UNDER SHIFT-INCOHERENCE

A natural approach to solving SaSD is to formulate it as a suitable optimization problem. In this
paper we will focus on the Bilinear Lasso (BL) problem, which minimizes the squared error between
the observation y and its reconstruction a ® «, plus a ¢;-norm sparsity penalty on x,

min [\IIBL(a,m) = %Hyﬂa@mngunmul]. 3)

aeSP—1 xeR™
Later in this section, we will see that the kernel length p should be set slightly larger than py.

The Bilinear Lasso is a nonconvex optimization problem, as the shift symmetries of SaSD create dis-
crete local minimizers in the objective landscape. The regularization created by problem symmetries

*We therefore assume w.l.o.g. that ||ao |, = 1 in this paper.
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(a) Near one shift (b) Two shifts (c) Multiple shifts

(d) pasL (e) waL

Figure 1: Geometry of pagr. near superpositions of shifts of ap (Kuo et al., 2019). (a) Regions near single
shifts are strongly convex. (b) Regions between two shifts contain a saddle-point, with negative curvature
towards each shift and positive curvature orthogonally. (¢) The span of three shifts. For each figure, the top shows
the function value in height, and the bottom shows function value over the sphere. (d,e) When ps(ao) ~ 0, the
Bilinear Lasso ppL(a) = ming Upr(a, ) and ABL papr(a) are empirically similar in the span of three shifts.

in nonconvex inverse problems are a fairly general phenomenon (Sun et al., 2015) and, as Kuo et al.
(2019) shows, its influence in SaSD extends beyond the neighborhoods of these local minimizers.
Kuo et al. analyzed an Approximate Bilinear Lasso (ABL) objective3 W gL, Which satisfies

\I’ABL(avw) = \IJBL(a‘v (E), when :U’(a) ~ 0.

This non-practical objective serves as a valid simplification of the Bilinear Lasso for analysis when
the true kernel is itself incoherent, i.e. 1(ag) ~ 0 (Figures 1d and 1e). Under its marginalization*

wapL(a) = mingepm Uapi(a,x), 4

certain crucial properties regarding its curvature can be characterized for generic choices of . The
reason we choose to partial minimize « instead of a is because (i) the problem (4) is convex w.r.t. &,
and (ii) the dimension of the subspace of a is significantly smaller than that of x (i.e., p € m), which
is the place that the measure concentrates.

Curvature in the span of a few shifts. Suppose we set p > pg, which ensures that we can find
an @ ~ a18¢,[ag] + aasy,[ag] € SP~! that lies near the span of two shifts of ag. If a; ~ +1
(or ag ~ 0) then, under suitable conditions on ag and xg, Kuo et al. (2019) asserts that a lies
in a strongly convex region of @apr, containing a single minimizer near s, [ag] (Figure 1a); the
converse is also true. A saddle-point exists nearby when ai; ~ « is balanced, characterized by large
negative curvature along the two shifts and positive curvature in orthogonal directions (Figure 1b).
Interpolating between these two cases, large negative gradients point towards individual shifts.

The behavior of papL between two shifts of ag — strong convexity near single shifts, and saddle-
points near balanced points — extends to regions of the sphere spanned by several shifts (Figure 1c);
we elaborate on this further in Appendix A.1. This regional landscape guarantees that a can be
efficiently recovered up to a signed shift using methods for first and second-order descent, as soon as
a can be brought sufficiently close to the span of a few shifts.

Optimization over the sphere. For both the Bilinear Lasso and ABL, a unit-norm constraint on
a is enforced to break the scaling symmetry between ay and y. Choosing the /2-norm, however,
has surprisingly strong implications for optimization. The ABL objective, for example, is piecewise
concave whenever a is sufficiently far away from any shift of ag, but the sphere induces positive
curvature near individual shifts to create strong convexity. These two properties combine to ensure
recoverability of ag. In contrast, enforcing ¢;-norm constraints often leads to spurious minimizers
for deconvolution problems (Levin et al., 2011; Benichoux et al., 2013; Zhang et al., 2017).

Initializing near a few shifts. The landscape of pap;. makes single shifts of ag easy to locate if a
is initialized near a span of a few shifts. Fortunately, this is a relatively simple matter in SaSD, as y is

3 As the intention here is apply some key intuition from the ABL objective towards the Bilinear Lasso itself,
we intentionally omit the concrete form of Wagpr(a). Readers may refer to Appendix A for more details.
*Minimizing (apr, this is equivalent to minimizing ¥ ap;. as 2 can be recovered via convex optimization.



Published as a conference paper at ICLR 2020

itself a sparse superposition of shifts. Therefore, one initialization strategy is to randomly choose a

length-py window ¥; = [y; Yit1 - - - pro,l]T from the observation and set
al® = Pop 1 ([0py15 Gi; 0py1])- (5)

This brings a(®) suitably close to the sum of a few shifts of ag (Appendix A.2); any truncation effects
are absorbed by padding the ends of g;, which also sets the length for a to be p = 3pg — 2.

Implications for practical computation. The (regionally) benign optimization landscape of @apL,
guarantees that efficient recovery is possible for SaSD when a is incoherent. Applications of sparse
deconvolution, however, are often motivated by sharpening or resolution tasks (Huang et al., 2009;
Candes & Fernandez-Granda, 2014; Campisi & Egiazarian, 2016) where the motif ag is smooth and
coherent (i.e. u(ayp) is large). The ABL objective is a poor approximation of the Bilinear Lasso in
such cases and fails to yield practical algorithms, so we should optimize the Bilinear Lasso directly.

From Figures 1d and le, we can see that low-dimensional subspheres spanned by shifts of a are
empirically similar when a is incoherent. Although this breaks down in the coherent case, as we
illustrate in Appendix A.3, the symmetry breaking properties of ¢p; remain present. This allows us
to apply the geometric intuition discussed here to create an optimization method that, with the help of
a number of computational heuristics, performs well in for SaSD even in general problem instances.

Algorithm 1 Inertial Alternating Descent Method (iIADM)

Input: Initializations a(® € SP~!, & € R™; observation y € R"™; penalty A > 0; momentum ¢ € [0,1).
Output: (a(k), m(k)), a local minimizer of Wg;..
Initialize aV = a(O), D = 2O,
for kK =1,2,... until converged do
Update x with accelerated proximal gradient step:
w® « g® 4o (z® _ gHD)

e* T softyg, ['w(k) —tr - Vi (a,(k)7 w(k))],
where softy (v) = sign(v) @ max(|v — A|, 0) denotes the soft-thresholding operator.
Update a with accelerated Riemannian gradient step:

2" rpsvfl(a(k) + <a<‘k>,z(—k_1)> ‘Pa(k—n(a(k)))

a*th Psp-1 (z(k) — Tk - grad, ¥ (z(k), m(kﬂ))).
end for

(a) Gradient descent (b) GD with momentum
Vmin(CaCa) Vmin(CaCa)

Figure 2: Momentum acceleration. a) Iterates of gradient descent oscillate on ill-conditioned functions; each
marker denotes one iteration. b) Momentum dampens oscillation and speeds up convergence.

3 DESIGNING A PRACTICAL SASD ALGORITHM

Several algorithms for SaSD-type problems have been developed for specific applications, such as
image deblurring (Levin et al., 2011; Briers et al., 2013; Campisi & Egiazarian, 2016), neuroscience
(Rey et al., 2015; Friedrich et al., 2017; Song et al., 2018), and image super-resolution (Baker &
Kanade, 2002; Shtengel et al., 2009; Yang et al., 2010), or are augmented with additional structure
(Wipf & Zhang, 2014; Ling & Strohmer, 2017; Walk et al., 2017).

Here, we instead leverage the theory from Section 2 to build an algorithm for general practical
settings. In addition to applying an appropriate initialization scheme (5) and optimizing on the sphere,
we minimize the Bilinear Lasso (3) instead of the ABL (4) to more accurately account for interactions
between shifts of ag in highly shift-coherent settings. Furthermore, we also address the negative
effects of large coherence using a number of heuristics, leading to an efficient algorithm for SaSD.
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Momentum acceleration. In shift-coherent settings, the Hessian of W becomes ill-conditioned®
near shifts of ag, a situation known to cause slow convergence for first-order methods (Nesterov,
2013). A remedy is to add momentum (Polyak, 1964; Beck & Teboulle, 2009) to first-order iterations,
for instance, by augmenting gradient descent on some smooth f(z) with stepsize 7 with the term w,

w® < 20 4. (50 _ H0-1) ©)
2B w® T f(w®). @)

Here, o controls the momentum added®. As illustrated in Figure 2, this additional term improves
convergence by reducing oscillations of the iterates for ill-conditioned problems. Momentum has
been shown to improve convergence for nonconvex and nonsmooth problems (Pock & Sabach, 2016;
Jin et al., 2018). Here we provide an inertial alternating descent method (iIADM) for finding local
minimizers of Wg (Algorithm 1), which modifies iPALM (Pock & Sabach, 2016) to perform updates
on a via retraction on the sphere (Absil et al., 2009).

Algorithm 2 SaS-BD with homotopy continuation

Input:  Observation y € R™, motif size po; momentum « € [0, 1); initial AM final \*, penalty decrease
n € (0, 1); precision factor 6 € (0, 1).
Output:  Solution path {(a™,&™; \("))} for SaSD.
Set number of iterations N« [log(A\*/A™")) /logn|.
Initialize 6% € R?"°~2 ysing (5), © = 0 e R™.
for n=1,...,N do
Minimize W, () to precision SA™ with Algorithm 1:
(@™, 2™ —iaDM(a" " 2"y, A a).
Update X"TD — pA(™),
end for

(@X=5x10""1 b)X=5x10"2 ©X=5x10"3

Figure 3: Bilinear-lasso objective ¢ on the sphere SP~*, for p = 3 and varying ); brighter colors indicate
higher values. The function landscape of ¢, flattens as sparse penalty A decreases from left to right.

Homotopy continuation. It is also possible to improve optimization by modifying the objective
Wy directly through the sparsity penalty A. Variations of this idea appear in both Zhang et al. (2017)
and Kuo et al. (2019), and can also help to mitigate the effects of large shift-coherence.

When solving (3) in the noise-free case, it is clear that larger choices of A\ encourage sparser
solutions for . Conversely, smaller choices of A place local minimizers of the marginal objective
vpL(a) = ming g (a,x) closer to signed-shifts of ag by emphasizing reconstruction quality.
When p(ag) is large, however, g becomes ill-conditioned as A — 0 due to the poor spectral
conditioning of a, leading to severe flatness near local minimizers and the creation spurious local
minimizers when noise is present (Figure 3). Conversely, larger values of A limit  to a small set of
support patterns and simplify the landscape of gy, at the expense of precision.

It is therefore important both for fast convergence and accurate recovery for A to be chosen appro-
priately. When problem parameters — such as noise level, pg, or § — are not known a priori, a
homotopy continuation method (Hale et al., 2008; Wright et al., 2009; Xiao & Zhang, 2013) can be

used to obtain a range of solutions for SaSD. Using initialization (5), a rough estimate (d(l), :&(1))

S>This is because the circulant matrix Cgq, is ill-conditioned.

®Setting o = 0 removes momentum and reverts to standard gradient descent.

"The stepsizes t; and 7y, are obtained by backtracking (Nocedal & Wright, 2006; Pock & Sabach, 2016) to
ensure sufficient decrease for Wgy, (a““), w(k)) — UpL (a(k), m(k“)), and vice versa.
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is obtained by solving (3) with iADM using a large choice for A(!). This estimate is refined via a
solution path {(d("), &), )\("))} by gradually decreasing A("). By ensuring that & remains sparse
along the solution path, the objective Upy enjoys restricted strong convexity w.r.t. both a and =
throughout optimization (Agarwal et al., 2010). As a result, homotopy achieves linear convergence
for SaSD where sublinear convergence is expected otherwise (Figures 4c and 4d). We provide a
complete algorithm for SaSD combining Bilinear Lasso and homotopy continuation in Algorithm 2.

4 EXPERIMENTS

4.1 SYNTHETIC EXPERIMENTS

Here we perform SaSD in simulations on both coherent and incoherent settings. Coherent kernels
are discretized from the Gaussian window function ag = gp, 0.5, Where g, » = Pgo-1 ([ exp (—
(2i—p—1)2 )]P

2 (p—1)2 i:l)‘ Incoherent kernels ag ~ Unif(SP°~1) are sampled uniformly on the sphere.

(a) Incoherent ag (b) Coherent ag (c) Incoherent ag (d) Coherent ag

os y D —ADM
' . E iADM
' DM

l0g1(1) I

Figure 4: Synthetic experiments for Bilinear Lasso. Success probability (a, b): xo ~iia. BR(0), the
success probability of SaS-BD by solving (3), shown by increasing brightness, is large when the sparsity
rate 0 is sufficiently small compared to the length of a, and vice versa. Success with a fixed sparsity rate
is more likely when ao is incoherent. Algorithmic convergence (¢, d): iterate convergence for iIADM with
ar = (k—1)/(k+ 1) vs. ax = 0 (ADM); with and without homotopy. Homotopy significantly improves
convergence rate, and momentum improves convergence when ao is coherent.

(a) Simulated kernel recovery (c) Real calcium signal vs. reconstruction

8

noisy data
reconstructed w/ IADM
reconstructed w/ reweighting
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Figure 5: Deconvolution for calcium imaging using Algorithm 2 with iADM and with reweighting (Ap-
pendix B). Simulated data: (a) recovered AR2 kernel; (b) estimate of spike train. Real data: (c) reconstructed
calcium signal (d) estimate of spike train. Reweighting improves estimation quality in each case.

Recovery performance. We test recovery probability for varying kernel lengths py and sparsity
rates 6. To ensure the problem size is sufficiently large, we set m = 100py. For each py and 6, we
randomly generate8 x ~i;q. BR(0) for both coherent and incoherent ay. We solve ten trials of (3) on

clean observation data ag ® xo using iADM with A = %. The probability of recovering a signed

8BR(0) denotes the Bernoulli-Rademacher distribution, which has values +1 w.p. 8/2 and zero w.p. 1 — 6.
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shift of ag is shown in Figure 4. Recovery is likely when sparsity is low compared to the kernel
length. The coherent problem setting has a smaller success region compared to the incoherent setting.

Momentum and homotopy. Next, we test the performance of Algorithm 1 with momentum
(ap = ’;—1%; see Pock & Sabach (2016)) and without (o« =0). This is done by minimizing Wy with

initialization (5), using clean observations with po = 102, m = 104, and = Do 3/% for coherent and

incoherent ag. We also apply homotopy (Algorithm 2) with A(Y) = max;|(s,[a(?], y)| — see Xiao
& Zhang (2013), \* = %, n = 0.8, and § = 0.1. The final solve of (3) uses precision e* = 1076,

regardless of method. Figures 4c and 4d show the comparison results on coherent problem settings.

Comparison to existing methods. Finally, we compare iADM, and iADM with homotopy, against
a number of existing methods for minimizing gy.. The first is alternating minimization (Kuo et al.,
2019), which at each iteration k& minimizes a® with *) fixed using accelerated (Riemannian)
gradient descent with backtracking, and vice versa. The next method is the popular alternating
direction method of multipliers (Boyd et al., 2011). Finally, we compare against iPALM (Pock &
Sabach, 2016) with backtracking, using the unit ball constraint on a instead of the unit sphere.

For each method, we deconvolve signals with py = 50, m = 100py, and 6 = p, 3/4 for both coherent

and incoherent ag. For both iADM, iADM with homotopy, and iPALM we set o = 0.3. For

homotopy, we set A\() = max|(s¢[aD], y)|, \* = %, and § = 0.5. Furthermore we set ) = 0.5

or 7 = 0.8 and for ADMM, we set the slack parameter to p = 0.7 or p = 0.5 for incoherent and
coherent ag respectively. From Figure 6, we can see that ADMM performs better than iADM in the
incoherent case, but becomes less reliable in the coherent case. In both cases, iADM with homotopy
is the best performer. Finally, we observe roughly equal performance between iPALM and iADM.

(a) Incoherent ag (b) Coherent ag (¢) Calcium AR2
0 0.4
—~ + 1ADM * iADM
B 06 © iADM-homotopy 021% o iADM-homotopy
& : iPALM w\ iPALM
05 x ADMM ! ~_ x ADMM
A \ -0.8 A Alt. Min. : R E
<
g ~ -1
B -1 (e
= \ﬁ 1.2
o
) -
15 14
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
FFT operations FFT operations FFT operations

Figure 6: Algorithmic comparison. (a) Convergence of various methods minimizing ¥g1. with incoherent ao
over FFT operations used (for computing convolutions). The y-axis denotes the log of the angle between a®
and the nearest shift of ao, and each marker denotes five iterations. (b) Convergence for coherent ao, and (c)
with an AR2 kernel for modeling calcium signals.

4.2 IMAGING APPLICATIONS

Here we demonstrate the performance and generality of the proposed method. We begin with calcium
fluorescence imaging, a popular modality for studying spiking activity in large neuronal populations
(Grienberger & Konnerth, 2012), followed by stochastic optical reconstruction microscopy (STORM)
(Rust et al., 2006; Huang et al., 2008; 2010), a superresolution technique for in vivo microscopy”’.

Sparse deconvolution of calcium signals. Neural spike trains created by action potentials, each
inducing a transient response in the calcium concentration of the surrounding environment. The
aggregate signal can be modeled as a convolution between the transient ay and the spike train x.
Whilst @ and x( both encode valuable information, neither are perfectly known ahead of time.

Here, we first test our method on synthetic data generated using an AR2 model for ag, a shift-
coherent kernel that is challenging for deconvolution, see e.g. Friedrich et al. (2017). We set
o ~i.q. Bernoulli(py */°) € R19" with additive noise n ~i;q. /(0,5 - 10-2). Figures 5a and 5b
demonstrate accurate recovery of ag and x in this synthetic setting. Next, we test our method on
real data'®; Figures 5c and 5d demonstrate recovery of spike locations. Although iADM provides

°Other superresolution methods for microscopy include photoactivated localization microscopy (PALM)
(Betzig et al., 2006), and fluorescence photoactivation localization microscopy (fPALM) (Hess et al., 2006).
Obtained at http://spikefinder.codeneuro.org.
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decent performance, in the presence of large noise estimation quality can be improved by stronger
sparsification methods, such as the reweighting technique by Candes et al. (2008), which we elaborate
on in Appendix B. Additionally, Figure 6¢c shows that the proposed method converges to higher
precision in comparison with state-of-the-art methods.

(a) Frame 100, time = 4s (b) Frame 200, time = 8s (¢) Original

(d) Resolved

Figure 7: SaSD for STORM imaging. (a, b) Individual frames (left) and predicted point process map using
SaSD (right). (¢, d) shows the original microscopy and the super-resolved image obtained by our method.

(a) Calcium image Y

(c) Reconstruction Ay [¥ X (k= 1,2)

Figure 8: Classification of calcium images. (a) Original calcium image; (b) respective kernel estimates; (c)
reconstructed images with the (left) neuron and (right) dendrite kernels; (d) respective occurence map estimates.

Super-resolution for fluorescence microscopy. Fluorescence microscopy is often spatially limited
by the diffraction of light; its wavelength (several hundred nanometers) is often larger than typical
molecular length-scales in cells, preventing a detailed characterization of subcellular structures. The
STORM technique overcomes this resolution limit by using photoswitchable fluorescent probes
to multiplex the image into multiple frames, each containing a subset of the molecules present
(Figure 7). If the location of these molecules can be precisely determined for each frame, synthesizing
all deconvolved frames will produce a super-resolution microscopy image with nanoscale resolution.
For each image frame, the localization task can be formulated via the SaS model

Y: = tAg Xo,t + N; ®)
—— —— ——
STORM frame point spread function sparse point sources noise

where [#] denotes 2D convolution. Here we will solve this task on the single-molecule localization
microscopy (SMLM) benchmarking dataset'!' via SaSD, recovering both the PSF A and the point

source maps X ; simultaneously. We apply iADM with reweighting (Appendix B) on frames of size
128 x 128 from the video sequence “Tubulin”; each pixel is of 100nm? resolution'?, the fluorescence
wavelength is 690nm, and the framerate is f = 25Hz. Figure 7 shows examples of recovered
activation maps, and the aggregated super-resolution image from all 500 frames, accurately predicting
the PSF (see Appendix D) and the activation map for each video frame to produce higher resolution
microscopy images.

Localization in calcium images. Our methods are easily extended to handle superpositions of
multiple SaS signals. In calcium imaging, this can potentially be used to track the neurons in
video sequences, a challenging task due to (non-) rigid motion, overlapping sources, and irregular

"Data can be accessed at http: //bigwww.epfl.ch/smlm/datasets/index.html.
Here we solve SaSD on the same 128 x 128 grid. In practice, the localization problem is solved on a finer
grid, so that the resulting resolution can reach 20 — 30 nm.
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background noise Pnevmatikakis et al. (2016); Giovannucci et al. (2019). We consider frames video
obtained via the two-photon calcium microscopy dataset from the Allen Institute for Brain Science'?,
shown in Figure 8. Each frame contains the cross section of several neurons and dendrites, which
have distinct sizes. We model this as the SaS signal Y; = tA; [ X+ + t Ay [#] X5 ;, where each
summand consists of neurons or dendrites exclusively. By extending Algorithm 2 to recover each of
the kernels Ay and maps X}, we can solve this convolutional dictionary learning (SaS-CDL; see
Appendix C) problem which allows us to separate the dendritic and neuronal components from this
image for localization of firing activity, etc. As a result, the application of SaS-CDL as a denoising or
analysis tool for calcium imaging videos provides a very promising direction for future research.

5 DISCUSSION

Many nonconvex inverse problems, such as SaSD, are strongly regulated by their problem symmetries.
Understanding this regularity and when or how it breaks down is important for developing effective
algorithms. We illustrate this by combining geometric intuition with practical heuristics, motivated
by common challenges in real deconvolution, to produce an efficient and general purpose method that
performs well on data arising from a range of application areas. Our approach, therefore, can serve
as a general baseline for studying and developing extensions to SaSD, such as SaS-CDL (Bristow
& Lucey, 2014; Chun & Fessler, 2017; Garcia-Cardona & Wohlberg, 2018), Bayesian approaches
(Babacan et al., 2008; Wipf & Zhang, 2014), and hierarchical SaS models (Chen et al., 2013).
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A APPROXIMATE BILINEAR LASSO OBJECTIVE
Recall from Section 2.2 of the main text that SaSD can be formulated as the Bilinear Lasso problem

min [\IIBL(a,w) = %Hy—m@w”%—l—)\Hle]. )

aeSP—1 geR™

Unfortunately, this objective is challenging for analysis. A major culprit is that its marginalization
cor(@) = min{ Ly —a@a|;+Alel, |. (10)

generally does not admit closed form solutions due the convolution with a in the squared error term.
This motivates Kuo et al. (2019) to study the nonconvex formulation

min_ [ei(a,2) = al} - Ga®@ey)+ ll2 A2l ab
aeSP—1 xeR™

We refer to (11) as the Approximate Bilinear Lasso formulation, and it is quite easy to see that

UapL(a, ) ~ Vg (a,z) when |[a® x| ~ |z|, i.e. if a is shift-incoherent, or yi(a) ~ 0. The

marginalized objective function ¢pr.(a) = min, Upg(a, ) now has the closed form expression

paL(a) = —3 [softy [a®y]|5. (12)

Here soft denotes the elementwise soft-thresholding operator soft (z;) = sign(z;) - max(|a;| — t,0),
and a denotes the adjoint kernel of a, i.e. the kernel s.t. (ta ® u, v) = (u,a @ v) Vu,v € R™,

A.1 LANDSCAPE GEOMETRY

The rest of Section 2.2 discusses the regional characterization of @papy in the span of a small number
of shifts from ag. This language is made precise in the form of the subsphere

Sz = { Yyer auseftag] + apeR} () SP7L (13)

spanned by a small set of cyclic shifts of tag. Although we will not discuss the explicit distance
function here, the characterization by Kuo et al. (2019) holds whenever a is close enough to such
a subsphere with |Z| < 40pg, where 6 is the probability that any individual entry of x is nonzero.
Suppose we have @ ~ »,,.; ays; [tag] for some appropriate index set Z. Note that if p,aq ~ 0,
then psa ~ 0, Va € Sz. Now let a(1) and a2y be the first and second largest coordinates of the
shifts participating in a, and let s(1y[ao] and s(9)[ao] be the corresponding shifts. Then

«
o If -2
am

minimizer corresponding to s(1)[ao].

~ 0, then a is in a strongly convex region of @apy, containing a single local

o If

X(2)
o

~ 1, then a is near a saddle-point, with negative curvature pointing towards s 1) [ao]

o(3)
(2)
then wapy is also characterized by positive curvature in all orthogonal directions.

and s(9)[ao]. If ~ 0,1.e. s(1y[ao] and s(2)[ao] are the only two participating shifts,

e Otherwise, (—gradpapL(a), z — a) takes on a large positive value, for either u = 5(1)[ao]
or u = 5(zy[ao], i.e. the negative Riemannian gradient is large and points towards one of the
participating shifts.
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Figure 9: Data-driven initialization for a: using a piece of the observed data y to generate a good initial point
a®. Top: data y = ap ® xo is a superposition of shifts of the true kernel ag. Bottom: a length-po window
contains pieces of just a few shifts. Bottom-center: one step of the generalized power method approximately fills
in the missing pieces, yielding an initialization that is close to a linear combination of shifts of ao (right).

This is an example of a ridable saddle property (Jin et al., 2017) that allows many first and second-
order methods to locate local minimizers. Since all local minimizers of @apy near St must correspond
to signed-shifts of ag, this guarantees that the Approximate Bilinear Lasso formulation can be
efficiently solved to recover ag (and subsequently x() for incoherent a, as long as a is initialized

near some appropriate subsphere and the sparsity coherence tradeoff pgf < (us(ao))_l/ % is satisfied.
We note that this is a poor tradeoff rate, which reflects that the Approximate Bilinear Lasso formulation
is non-practical and cannot handle SaSD problems involving kernels with high shift-coherence.

A.2 DATA-DRIVEN INITIALIZATION

For the SaS-BD problem, we usually initialize « by 2(?) = 0, so that our initialization is sparse.
For the optimization variable @ € R”, recall from Section 2.2 in the main text that it is desirable to
obtain an initialization a® which is close to the intersection of SP~! and a subsphere Sz spanned by
a few shifts of ag. When x is sparse, our measurement y is a linear combination of a few shifts
of ag. Therefore, an arbitrary consecutive po-length window §; = [y; Yit1 - .- yi+p0,1]T of the
data y should be not far away from such a subspace Sz. As illustrated in Figure 9, one step of the
generalized power method (Kuo et al., 2019)

a® = Py, ([0p—15 Ti; 0p1]) (1
al® =Py (—V@ABL (5(0)» (1

produces a refined initialization that is very close to a subspace Sz spanned by a few shifts of ay with
|Z| ~ 0po. However, (15) is a relatively complicated for a simple idea. In practice, we find that the
simple initialization a©® = a© from (14) works suitably well for solving SaSD with (9).

A.3 COMPARISON TO THE BILINEAR LASSO

Although it is easy to see that Upy (@) and ¥ (a) are similar as long as p(a) ~ 0, it is also clear
that these two quantities can be very different when p(a) is large. This is especially significant when
u(ap) is itself large, as the desired solutions for a are then also coherent.

From Figure 10, we can see that these changes are reflected in the low-dimensional subspheres (13)
spanned by adjacent shifts of ag. Compared to the incoherent case, gy also takes on small values in
regions between adjacent shifts, creating a “global valley” on the subsphere. Theoretically, this makes
it difficult to ensure exact recovery of up to symmetry when a is coherent, and the objective function
becomes much more complicated. This is not a significant issue in terms of practical computation,
however, since adjacent shifts of ag become indistinguishable as ;1(ag) — 1, meaning that one only
needs to ensure that a lands in the “global valley” to achieve good estimates of ay up to symmetry.

13



Published as a conference paper at ICLR 2020

(a) @asL, incoherent (b) wgL, incoherent (¢) vBL, coherent

Figure 10: Low-dimensional subspheres spanned by shifts of ag. Subfigures (a,b) present the optimization
landscapes of papr (@) and wgr.(a), for @ € SP~* () span{ao, s1[ao], s2[ao}, with higher values being brighter.
The red dots denote the shifts of ag. Subfigure (¢) shows the landscape pgr. when ag is coherent, which
significantly departs from the landscapes of (a,b), but still retains symmetry breaking curvature.

B REWEIGHTED SPARSE PENALIZATION

When a is shift-coherent, minimization of the objective Wy with respect to « becomes sensitive
to perturbations, creating “smudging” effects on the recovered map «. These resolution issues can
be remedied with stronger concave regularizers. A simple way of facilitating this with the Bilinear
Lasso is to use a reweighting technique (Candes et al., 2008). The basic idea is to adaptively adjust
the penalty by considering a weighted variant of the original Bilinear Lasso problem from (9),
. . 2
min_ Vg (a,z) = 5ly—a®@z|; + A|wo |, (16)
aeSP—1 zeR™

where w € R’ and © denotes the Hadamard product. Here we will set the weights w to be roughly
inverse to the magnitude of the true signal xy, i.e.,

1

= 17
|.CL'0’7;|+€ an

Wy

Algorithm 3 Reweighted Bilinear Lasso

Input: Initializations (%), (9, penalty A > 0
Output: Local minimizers @), &) of ¥%"
Initialize w™) = 1,,, j « 1.
while not converged do
Using the initialization (@U~Y, £ ~1)) and weight w(?), solve (16) — e.g. with iADM — to
obtain solution (d(j ), 20));
Set ¢ with (19) and update the weights as

‘ 1
G+ - - 18
v 70 + = e
Update ¢ «— £ + 1.
end while

In addition to choosing A > 0, here € > 0 trades off between sparsification strength (small £) and
algorithmic stability (large ¢). Let |z (i) denote the i-th largest entry of |x|. For experiments in the

main text, we set

Starting with the initial weights w(®) = 1,,,, Algorithm 3 successively solves (16), updating the
weights using (17) at each outer loop iteration j. As j — 0, this method becomes equivalent to
replacing the ¢;-norm in (9) with the nonconvex penalty >, log(|z;| + €) (Candes et al., 2008).

We can easily adopt our iADM algorithm to solve this subproblem, by taking the proximal gradient
on z with a different penalty A, for each entry ;. Figure 11, as well as calcium imaging experiments
in Section 4.2, Figure 5 of the main text, demonstrate improved estimation as a result of this method.

14



Published as a conference paper at ICLR 2020

(a) True map xo (c) Noisy y, ¢1 only (e) Noisy y, reweighted

(b) True motif ag (f) Noisy a, reweighted

Figure 11: Recovery of , with ¢;-reweighting. (a, b) Truth signals. (¢) Solving min, ¥g.(a, ) with noisy
data and coherent ag leads to low-quality estimates of x; (d) performance suffers further when a is a noisy
estimate of ao. (e, f) Reweighted /1 minimization alleviates this issue significantly.

C EXTENSION FOR CONVOLUTIONAL DICTIONARY LEARNING

Y = ap1 O o1 4+ aope O o2

Figure 12: Convolutional dictionary learning. Simultaneous recovery for multiple unknown kernels
N o N N
{ao,r},_, and sparse activation maps {xox},_, fromy = >" | agr ® xo .

(a) PSF in 2D (b) PSF in 3D

Figure 13: Estimated PSF for STORM imaging. The left hand side shows the estimated 8 x 8 PSF in 2D,
the right hand side visualizes the PSF in 3D.

The optimization methods we introduced for SaSD here can be naturally extended for sparse blind
deconvolution problems with multiple kernels/motifs (a.k.a. convolutional dictionary learning; see
Garcia-Cardona & Wohlberg (2018)), which have broad applications in microscopy data analysis
(Yellin et al., 2017; Zhou et al., 2014; Cheung et al., 2018) and neural spike sorting (Ekanadham
etal., 2011; Rey et al., 2015; Song et al., 2018). As illustrated in Figure 12, the new observation y is
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the sum of N convolutions between short kernels {ao,k},iv:l and sparse maps {xg, k}gzl’

N
Yy = Z Lag . ® Tok, agr € RPo, Tok € R™, (]. <k<N) (20)
k=1

The natural extension of SaSD, then, is to recover {ao,k}szl and {iEo,k}szl up to signed, shift, and
permutation ambiguities, leading to the SaS convolutional dictionary learning (SaS-CDL) problem.
The SaSD problem can be seen as a special case of SaS-CDL with NV = 1. Based on the Bilinear
Lasso formulation in (9) for solving SaSD, we constrain all kernels ag j, over the sphere, and consider
the following nonconvex objective:

1
min —
{an}l_y = }h, 2

2

N
+A D @kly, stoapeSPTT (1<k<N). (21)
2 k=1

N
Y- Z ay ® xy,
k=1

Similar to the idea of solving the Bilinear Lasso in (9), we optimize (21) via iADM, by taking
alternating descent steps on {ak},i\[:1 and {x k}ivzl with the other variable fixed.

D SUPER-RESOLUTION WITH STORM IMAGING

For point source localization in STORM frames, recall that we use the SaS model from Section 4.2.2,

lft = LA() X()’t + Nt . (22)
—— —— ——
STORM frame point spread function sparse point sources noise

We then apply our SaSD method to recover both Ay and X ; from Y;. We show our recovery of
Xy, as well as the super-resolved image using all available frames in Figure 6 of the main text. Since
the main objective of STORM imaging is to recover the point sources, we have deferred the recovered
PSF Aj to Figure 13 here.
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